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ABSTRACT 

 

Background: Human echinococcoses are zoonotic parasitic diseases of major public 

health importance globally. According to recent estimates, the geographical distribution 

of echinococcosis is expanding and becoming an emerging and re-emerging problem in 

several regions of the world. Echinococcosis endemicity is geographically heterogeneous 

and might be affected by global environmental change over time. The aims of my 

research were: 1) to assess and quantify the spatiotemporal variation in land cover and 

climate change in Ningxia Hui Autonomous Region (NHAR); 2) to identify highly 

endemic areas for human echinococcoses in NHAR, and to determine the environmental 

covariates that have shaped the local geographical distribution of the disease; 3) to 

develop spatial statistical models that explain and predict the spatiotemporal variation of 

human exposure to Echinococcus spp. in a highly endemic county of NHAR; and 4) to 

analyse associations between the environment and the spatiotemporal variation of human 

exposure to the parasites and dog infections with Echinococcus granulosus and 

Echinococcus multilocularis in four echinococcosis-endemic counties of NHAR. 

Methods: Data on echinococcosis infections and human exposure to E. granulosus and 

E. multilocularis were obtained from different sources: 1) A hospital-based retrospective 

survey of human echinococcosis cases in NHAR between 1992 and 2013; 2) three cross-

sectional surveys of school children conducted in Xiji County in 2002–2003, 2006–2007 

and 2012–2013; and 3) A cross-sectional survey of human exposure and dog infections 

with E. granulosus and E. multilocularis conducted in Xiji, Haiyuan, Guyuan and 

Tongxin Counties. Environmental data were derived from high-resolution (30 m) 

imagery from Landsat 4/5-TM and 8-OLI and meteorological reports provided by the 

Chinese Academy of Sciences. Image analysis techniques and a Bayesian statistical 
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framework were used to conduct a land cover change detection analyses and to develop 

regression models that described and quantified climate trends and the environmental 

factors associated with echinococcosis risk at different spatial scales.  

Results: The land cover changes observed in NHAR from 1991 to 2015 concurred with 

the main goals of a national policy on payments for ecosystem services, implemented in 

the Autonomous Region, in increasing forest and herbaceous vegetation coverages and 

in regenerating bareland. Statistically significant positive trends were observed in annual, 

summer and winter temperatures in most of the region, and a small magnitude change 

was found in annual precipitation, in the same 25-year period. The south of NHAR was 

identified as a highly endemic area for cystic echinococcosis (CE; caused by E. 

granulosus) and alveolar echinococcosis (AE; caused by E. multilocularis). Selected 

environmental covariates explained most of the spatial variation in AE risk, while the risk 

of CE appeared to be less spatially variable at the township level. The risk of exposure to 

E. granulosus expanded across Xiji County from 2002–2013, while the risk of exposure 

to E. multilocularis became more confined in communities located in the south of this 

highly endemic area. In 2012–2013, the predicted seroprevalences of human exposure to 

E. granulosus and dog infection with this parasite were characterised by similar 

geographical patterns across Xiji, Haiyuan, Guyuan and Tongxin Counties. By contrast, 

the predicted high seroprevalence areas for human exposure and dog infection with E. 

multilocularis did not coincide spatially. Climate, land cover and landscape 

fragmentation played a key role in explaining some of the observed spatial variation in 

the risk of infection with Echinococcus spp. among schoolchildren and dogs in the south 

of NHAR at the village level. 

Conclusions: The findings of this research defined populations at a high risk of human 

exposure to E. granulosus and E. multilocularis in NHAR. The research provides 
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evidence on the potential effects of landscape regeneration projects on the incidence of 

human echinococcoses due to the associations found between the infections and 

regenerated land. This information will be essential to track future requirements for 

scaling up and targeting the control strategies proposed by the National Action Plan for 

Echinococcosis Control in China and may facilitate the design of future ecosystem 

management and protection policies and a more effective response to emerging local 

environmental risks. The predictive models developed as part of this research can also be 

used to monitor echinococcosis infections and the emergence in Echinococcus spp. 

transmission in the most affected areas. 
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CHAPTER 1 INTRODUCTION 

1.1 Context 

Echinococcoses are often severe and potentially lethal zoonotic diseases caused by cestode 

species of the genus Echinococcus. There are three different types of echinococcoses in humans 

that result from infection with different Echinococcus spp.: cystic echinococcosis (CE), 

alveolar echinococcosis (AE) and neotropical echinococcoses (unicystic and polycystic 

echinococcoses) (1, 2). This research focused on CE, caused primarily by Echinococcus 

granulosus, and alveolar echinococcosis (AE), which results from infection with Echinococcus 

multilocularis. Both infections are widespread worldwide and cause health conditions with 

high global public health relevance (3-5). The apparent expansion of the geographical range of 

E. granulosus and E. multilocularis in recent decades has raised great interest in examining the 

potential role of anthropogenic environmental change in influencing the transmission patterns 

of these parasites (6-10).  

China is a country heavily affected by CE and AE (11). Control efforts have markedly 

contributed to estimated reductions in the national echinococcosis burden in China (11). 

However, a lack of evidence on echinococcosis risk at local levels indicates that sub-national 

data and maps of disease distribution are needed to facilitate the progress of interventions for 

echinococcosis control (11). This information will be essential in gaining a better insight into 

the local epidemiology of human echinococcoses at finer spatial scales. This Chapter presents 

the introduction and outlines the major themes of the thesis. The introduction starts with a 

background about Echinococcus spp. and the global disease burden of E. granulosus and E. 

multilocularis infections. This is followed by the description of the geographical extent of the 

parasites, current measures for control and future challenges. Subsequently, a description of 

the contributions of this thesis, the research goals, specific objectives, approach and methods 

are presented. Finally, the thesis structure is outlined. 
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1.2 Background 

Human echinococcoses are parasitic diseases caused by the larvae of dog and fox cestode 

worms of the genus Echinococcus. There are currently ten recognised species of Echinococcus 

and among them, the species that cause infection in humans are: E. granulosus, E. 

multilocularis, E. oligarthrus, E. vogeli, E. ortleppi, E. canadensis and E. intermedius (2). E. 

granulosus, the main causative agent of CE, and E. multilocularis, the etiological agent of AE, 

are the two species of major global public health importance (3-5). Both have a wide 

geographic distribution and cause serious and chronic debilitating diseases that if poorly treated 

or left untreated may be potentially fatal (3-5). Infections with E. vogeli and E. oligarthrus 

cause polycystic and unicystic echinococcoses in humans, respectively (2). 

Human echinococcoses affect approximately 200,000 people every year with a total of 

2–3 million people infected worldwide (12). The latest global estimates of the burden of CE 

indicate that 188,000 people are infected with E. granulosus annually which, measured in terms 

of Disability-Adjusted Life Years (DALYs), represents a human health burden of 184,000 

DALYs lost (12). When underreporting is accounted for, the global burden of CE exceeds 1 

million DALYS lost and results in an annual estimated cost of $760 million (12). The global 

estimates of AE suggest that there are approximately 18,235 people infected every year and a 

total of 0.3-0.5 million AE cases diagnosed worldwide. Most of the disease burden of AE 

occurs in Western China and results in the loss of 666,434 DALYs per annum (13). However, 

these figures could be underestimates of the real global burden of human echinococcoses due 

to challenges with the early diagnosis of the infections and the lack of mandatory reporting in 

several countries (14, 15). Recent epidemiological reports suggest that Echinococcus spp. 

might be expanding their geographical range and becoming an emerging problem in previously 

unaffected areas and a re-emerging problem in previously endemic areas (5, 16, 17). These 

new trends in the geographical distribution of the parasites and the limited evidence on the 
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effectiveness of control and elimination strategies across several regions have raised concerns 

about the impact of environmental change on the transmission dynamics of Echinococcus spp. 

between definitive and intermediate hosts (18).  

 

1.2.1 Echinococcus spp. transmission and clinical course of the infections in humans 

Echinococcus spp. are transmitted in complex multi-host systems that include a broad range of 

animal species as definitive and intermediate hosts. The transmission of E. granulosus occurs 

in domestic settings involving domestic dogs and other canids as typical definitive hosts, and 

sheep and other ungulates as intermediate hosts (5). E. multilocularis is transmitted within 

semi-domestic and sylvatic predator-prey cycles that involve different species of foxes and 

small mammals as definitive and intermediate hosts, respectively (5, 19). Foxes are the main 

source of environmental contamination with E. multilocularis eggs in most endemic areas (5). 

However, this parasite species has also been found in coyotes, wolves, raccoon-dogs and wild 

cats (20). In China, Central Europe and some areas in North America, high prevalence of E. 

multilocularis has also been detected in domestic dogs (21-23). Therefore, in several regions, 

domestic dogs are currently recognized as important transmission sources of both, E. 

granulosus and E. multilocularis, to the local human population (24, 25). 

Transmission of Echinococcus spp. takes place when intermediate hosts ingest the 

parasite eggs. Eggs are produced by the adult worms in the small intestine of definitive hosts 

and are released in the faeces. Cysts develop in the organs of intermediate hosts and cysts are 

then ingested by definitive hosts when they feed on the intermediate hosts, completing the cycle 

(3). Humans usually do not play a role in the transmission of these parasites but can be affected 

as aberrant intermediate hosts (3).  
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After the accidental ingestion of the parasite eggs by humans, these infections remain 

asymptomatic for several months or even years (26). Clinical manifestations and disease 

courses vary for the different species of the parasite and depend on the organs where the cysts 

are located. In most patients, the infections affect a single organ and harbours a unique cyst, 

while in a lower number of cases, infections involve multiple organ systems (27-29). The liver 

and lungs are the most common organs affected (29). However, cysts can occur in any organ 

system including bone, heart, brain or muscle (29). The clinical presentation of AE can be 

compared to the development of an invasive tumor that grows and infiltrates adjacent organs 

and produces distant metastases (29). Ultrasonography is the method of choice for the diagnosis 

of abdominal lesions. However, other imaging techniques such as computed tomography, 

radiography or magnetic resonance imaging may be indicated depending upon the 

characteristics and location of the cyst(s) (30, 31). Serology is another supportive diagnostic 

method that can play a confirmative role when the infections are suspected, and it can be used 

to aid epidemiological surveys of CE and AE in endemic regions (32). However, the specificity 

of serological tests is limited by cross-reactions due to other helminth infections, liver cirrhosis 

malignancies and presence of anti-P1 antibodies (33, 34).  

Treatment of CE usually depends on the stage, number, size, and location of cysts. 

Therapeutic options for this infection include the watch-and-wait approach, administration of 

albendazole and/or surgical intervention (32). Cure of AE can be achieved by radical surgery 

(32). However, most patients are not candidates for curative surgery at the time of diagnosis 

and are treated with life-long albendazole (32). The average case fatality rate for patients with 

CE has been estimated to be approximately 2.2% and for patients with untreated AE 10 and 15 

years after diagnosis, 71% and 100%, respectively (3, 35). 
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1.2.2 Geographical distribution of E. granulosus and E. multilocularis 

Human echinococcoses are among the most geographically widespread zoonoses in the world, 

and prevalence varies considerably within endemic regions (5). E. granulosus in particular has 

a wide global distribution and occurs in all continents, and in circumpolar, temperate, 

subtropical and tropical zones (5).  Overall, the highest parasite prevalence has been reported 

from regions in Eurasia (especially in the Mediterranean region, China, the Russian Federation 

and adjacent independent states), North East Africa, Australia and South America (5). Effective 

eradication or control of the parasite have been achieved in some countries including Iceland, 

Cyprus and New Zealand, and in some regions such as Tasmania in Australia and the provinces 

of Neuquen and Rio Negro in Argentina (18, 26, 32). At the end of the 1980s, there was a 

limited number of countries that reported cases of AE (5). However, recent epidemiological 

surveys suggested that E. multilocularis has a much wider geographical distribution than 

previously anticipated and a more diverse range of suitable hosts (17, 20, 36). Since adequate 

information from early reports of AE cases is not available, it has been difficult to determine if 

these findings correspond to the expansion of the geographical range of the parasite or the first 

identification of previously unknown endemic areas (16). Currently, AE is found in non-

tropical areas of the northern hemisphere affecting regions in Northern and Central Eurasia, 

Japan and parts of North America, China and Russia (5). The endemic areas for E. oligarthrus 

and E. vogeli are restricted to Central and South America (5).  

The current level of human–ecosystem interaction has been responsible for accelerated 

environmental change (37). The resulting alterations to species assemblages and 

human/animal/pathogen contact rates have been increasingly recognized as potential drivers of 

the apparent geographical expansion of Echinococcus spp. (38, 39). Land cover and land use 

determine vegetation patterns and microclimates and therefore, play an important role in 

facilitating the transmission cycles of these parasites (40). Thus, the understanding of 
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environmental determinants of human echinococcosis risk has become essential in order to 

explain the regional gaps and differences observed at different spatial scales (41). 

Deforestation, afforestation, grazing practices, climate variability and direct or indirect control 

of intermediate and definitive hosts are currently being studied as potential determinants of the 

persistence and geographical expansion of E. multilocularis (25, 42-46). As a result, this 

parasite species has been found in countries of Europe that were not previously endemic and 

discovered in foci of high incidence in Western China and other endemic areas in Central Asia 

and Siberia (47). In North America, substantial research to establish the epidemiology and 

transmission patterns of E. multilocularis was conducted between the early 1930s and the 

1980s (48-51). In following decades, the limited number of reported human echinococcosis 

cases in this region resulted in a lack of concern regarding the potential public health threat 

posed by these infections (52). However, the apparent expansion of E. multilocularis across 

areas in Europe and Asia, motivated the scientific community to reconsider the public health 

risks of this parasite in North America and assess possible species introductions that might 

have occurred in recent decades (53). Although data have been difficult to compare due to 

spatial and temporal inconsistencies in the sources, studies suggest that a similar emerging 

phenomenon may be occurring in the central region of the United States and Canada (44, 53, 

54). In the city of Calgary, Alberta, Canada, particularly, E. multilocularis infections in Myodes 

gapperi (Cricetidae) were detected in 2012 (54). Myodes gapperi is a southern red-backed vole 

that was not recognized previously as an intermediate host for E. multilocularis and that can 

be found in close proximity to, and within metropolitan areas (54). Also, domestic dogs were 

found to be infected with E. multilocularis in the city of Calgary were parasite transmission 

involving coyotes and rodent intermediate hosts occurs in urban settings (44). Establishment 

and local transmission of a European-type strain of E. multilocularis in wildlife in a forested 

region of North America have also been reported (55).  
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Socio-demographic, economic and human behavioural factors also determine the 

heterogeneous geographical distribution of Echinococcus spp. transmission. Some factors 

associated with high risk of exposure to the parasite include low income, poor hygienic 

practices, dog ownership and limited education. In contrast, the use of tap water has been 

identified as a factor that can protect against the disease (56-60). Higher risk of acquiring the 

infection has been observed in females compared to males (58-60). This observation is likely 

to be related to greater exposure rather than a different gender predilection. In China, the 

Buddhist practice of allowing old livestock to die naturally, the unrestricted disposal of animal 

viscera and the presence of free ranging dogs have been identified as important factors 

influencing the high prevalence of human CE among Tibetan communities (61). Following the 

collapse of the Soviet Union in 1991, there was an apparent emergence of human 

echinococcoses in Central Asia (62, 63). In Kazakhstan, official reports indicated that the 

number of annual CE cases increased from about 200 to approximately 1000 between 1994 

and the beginning of the 21st century (62). This epidemic coincided with local worsening 

economic conditions and deteriorating health services (63). The Soviet model of health care 

was centrally planned and provided universal, free access to basic care (64). However, most of 

the systems that emerged posteriorly were characterised by large inequalities due to 

affordability (64). Increases in the incidence of human echinococcosis cases were also 

described in Kyrgyzstan (65), Uzbekistan, Turkmenistan (66) and Tajikistan (67). 

 

1.2.3 Human echinococcoses in China 

According to recent estimates, there are approximately 0.6–1.3 million cases of human 

echinococcoses in China (1/3 are children), especially in western areas, where the highest local 

prevalence of AE infection has been recorded worldwide (24, 68). 
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In China, human echinococcoses affect at least twenty of the thirty-three Provinces, 

Autonomous Regions and Municipalities of the country. The endemic areas cover 

approximately 87% of the entire national territory (69, 70). However, most of the infection risk 

tends to occur in Provinces or Autonomous Regions located in Central and Western China such 

as, Shaanxi, Gansu, Sichuan, and Qinghai Provinces, Ningxia Hui Autonomous Region 

(NHAR), Xinjiang Uyghur Autonomous Region (XUAR) and Tibet Autonomous Region 

(TAR) (70). Notably, despite the high national burden of AE, CE is the most frequent form of 

the disease in China, and the regions with the highest risk of echinococcosis infection are 

usually co-endemic for both human CE and AE (26). CE occurs in all echinococcosis endemic 

areas of the country, affecting regions where livestock husbandry practices maintain stable 

transmission of the parasite between definitive and intermediate hosts (69).  

Human AE has been known to occur in Western China since the early 1950s (71). 

However, this form of the infection was identified as a major public health problem in semi-

pastoral and pastoral communities from mountainous areas in Western, Northern, and Central 

China until recent decades. Currently, human AE is highly endemic in nine Provinces, 

Autonomous Regions and Municipalities of the country (72). Epidemiological studies have 

revealed that the Qinghai-Tibetan plateau has the highest rates of human AE ever recorded in 

the world (73). This region covers most of the Tibet Autonomous Region and the Qinghai 

Province, and parts of Sichuan, Gansu and Yunnan Provinces and XUAR.  

 

1.2.4 Strategies for prevention and control of human echinococcoses  

The One Health concept, proposed by William Osler in 1973 and reintroduced by Calvin W. 

Schwabe in 1984 (74, 75) and the field of EcoHealth, applied since the 1990s (75), have been 

increasingly recognized as major components of disease assessments and interventions in 

recent decades (76). Both emphasize particularly on transdisciplinary collaboration among the 
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sectors of human, animal, and environmental health to understand better the ecological, socio-

economic and epidemiological mechanisms influencing the persistence and emergence of 

diseases (77). Therefore, One Health/Eco Health approaches provide a holistic framework 

within which professionals such as clinicians, public health scientists, ecologists, veterinarians 

and economists join efforts for effective surveillance and control of zoonotic pathogens and 

elimination or mitigation of their transmission routes (78). Due to the ecological 

interconnectedness among Echinococcus spp. hosts, effective prevention and control of human 

echinococcoses will only be achieved by such concerted efforts to implement sustained and 

long-term interventions in highly endemic areas (79). 

The most critical component of interventions against Echinococcus spp. is aimed at the 

definitive hosts (dogs and foxes) (18). Such interventions are aimed at reducing or eliminating 

the population of adult worms, and therefore, the production of parasite eggs, thereby 

decreasing infection pressure on intermediate hosts (18, 80). Praziquantel is highly effective 

against Echinococcus spp. and is the recommended antiparasitic drug for regular deworming 

of dogs and foxes (18). However, regular mass treatment of dogs and foxes is usually 

challenging in most settings (80). Japan and some regions in Europe have decreased the 

infection pressure with E. multilocularis by implementing regular baiting with praziquantel 

(81-85).  

To control human echinococcoses, it is also possible to target the intermediate hosts for 

E. granulosus (18). This is involves undertaking classical meat inspection at slaughter houses 

and can also involve using an infection preventive vaccine (EG95) (80). Strategies to target 

small mammals are not currently considered as a feasible strategy against AE (80). 

Pharmacological and/or surgical treatment of human CE and AE cases is a measure that is 

regarded a public health priority (80). However, treatment of human cases does not have an 

impact on the transmission of the parasites (80). Reduction in human exposure to parasite eggs 
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can also be achieved with health education campaigns that promote hygiene and sanitation, 

appropriate slaughter practices and dog contact, community acceptance and participation in 

long-term implementation of control programmes (80). 

In China, the National Control Programme to prevent and cure echinococcoses was 

developed by the National Health and Family Planning Commission (formerly the Ministry of 

Health) in 2005 (86). Aiming to decrease the seropositivity rate in children aged <12 years and 

reduce infection rates in dogs, the measures that are currently being implemented in endemic 

areas include: community-based epidemiological surveys involving serological, abdominal 

ultrasound and chest X-ray screening for early detection, treatment and surveillance of the 

disease, education campaigns to enhance awareness among local people and health officials, 

and regular antihelmintic treatment for deworming of dogs (18, 87). To date, the 

implementation and long-term sustainability of the programme has proven challenging in most 

endemic regions due to the lack of effective surveillance data, dispersed populations and 

movement of people and livestock to summer pastures (80). Consequently, the Chinese 

government is currently trying to identify areas at higher risk for infection, estimate the public 

health impact of human disease in the country and promote integrated control measures 

involving multidisciplinary and international cooperation (88). 

 

1.3 Contributions of this thesis  

This research was conducted in NHAR, which is an underdeveloped Autonomous Region 

located in North-western China and a hyper-endemic area for both, CE and AE (89). In NHAR, 

human echinococcoses represent a severe public health problem that primarily affects 

communities with low socioeconomic development that depend on subsistence agriculture and 

livestock herding as the main source of livelihood (89, 90).  
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Similar to other Provinces/Autonomous Regions in China, NHAR has experienced a 

considerable population growth in the past five decades. Consequently, the natural landscape 

and wildlife biodiversity of the region have been transformed by the human population to cope 

with the high demand for food and natural resources (91). Since the late 1990s, the Chinese 

government through the "Sloping Land Conversion Program", also called “Grain for Green 

Project”, is attempting to recover the degraded areas of the country by reducing over-grazing 

on high pastures and reforesting eroded landscapes (92). However, increasing evidence 

indicates that the landscape rehabilitation process that is taking place near human settlements 

in rural areas of China has affected the population density and dynamics of various suitable 

intermediate and definitive hosts of E. multilocularis, and therefore, exacerbating the risk of 

human AE infections (24, 93-95). Currently, little is known about the host-environment 

interactions that take place at different spatial scales in China to regulate the transmission of E. 

granulosus in domestic settings. 

Although previous epidemiological reports provided estimates of the impact of human 

echinococcoses in NHAR (43, 60, 87, 96) it has been difficult to determine the local 

distribution of E. granulosus and E. multilocularis and the changes that may have occurred in 

the geographical ranges of these parasites as a result of environmental change. Therefore, there 

was a need to identify highly endemic areas for CE and AE in NHAR, analyse the incidence 

of both infections over time and identify the role of climatic and land cover factors in 

determining the local transmission dynamics of the parasites (43, 88). Despite compelling 

evidence indicating that there is a link between the risk of AE infection and the structure and 

composition of the landscape (43, 46, 94, 95, 97-100), it is apparent that the association is not 

consistent across regions. Landscape features may affect predator – prey interactions and the 

survival of the parasite eggs in the external environment in several different ways (reviewed in 

Chapter 2). The findings and predictive maps created as part of the work included in this thesis 
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provide insight into the complex environmental processes underlying the heterogeneous 

spatiotemporal variation of CE and AE risk in NHAR. 

Community screening surveys have contributed notably to providing better estimates 

of the incidence of CE and AE (or, in the case of serology, exposure to the parasites causing 

these diseases), and to reducing the impact of the infections by facilitating early detection and 

treatment of the disease. However, screening is a measure that may be inefficient and resource-

intensive if implemented in areas of low prevalence of echinococcoses. Previous experience 

indicates that targeted screening represents a cost-effective strategy that offers the opportunity 

to refine prevention and control interventions (43). The research presented in this thesis will be 

significant in that the findings will offer a scientifically sound basis that may assist local and 

national initiatives against echinococcoses by providing visual representations of the areas at 

higher risk of infection. This may lead to an improvement of the cost-effectiveness of 

echinococcosis programmes by facilitating targeted interventions and a better allocation of 

resources to those places where they are most required. 

Successful echinococcosis strategies designed and implemented in NHAR based on the 

findings of this work may also be translated into practices that potentially promote effective 

environmentally based control strategies to reduce the burden of human echinococcoses in 

China.  

The PhD project presents concepts for broader landscape epidemiological studies and 

research development in other echinococcosis-endemic regions of the world that may also be 

affected by environmental change. 

 

1.4 Research goal and objectives 

The goal of the research presented in this thesis is to quantify climatic and land cover factors 

impacting on the incidence of echinococcoses in NHAR over the past three decades, and to 
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predict the spatiotemporal distribution of the risk of infection with Echinococcus spp. in 

NHAR. The research was guided by the following specific objectives: 

 

Objective 1: To quantify and describe the spatial and temporal patterns of climate and land 

cover change in NHAR from 1980 to 2015, a period of extensive landscape restoration in 

NHAR. 

 

Objective 2: To identify highly endemic areas for human echinococcoses in NHAR, and to 

determine and quantify the environmental covariates that shaped their geographical 

distributions at the township level from 1992 to 2013. 

 

Objective 3: To determine the spatiotemporal distribution of human echinococcoses in Xiji 

County based on selected demographic and environmental factors, and to produce spatial 

prediction maps to show the evolving geographical distribution of these infections in 2002–

2003, 2006–2007 and 2012–2013. 

 

Objective 4: To predict and compare the spatial distribution of human seropositivity for E. 

granulosus and E. multilocularis and infections with these parasites in dogs in four counties 

located in the south of NHAR, Guyuan, Haiyuan, Tongxin and Xiji, in 2012–2013, and to 

identify communities where targeted prevention and control efforts are required. 

 

1.5 Approach and methods 

The methods used in this thesis are described separately in each research Chapter. This section 

summarizes the different data sources, statistical software and analytical methods applied 

throughout the thesis.   
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Data on echinococcosis infections and human exposure to E. granulosus and E. 

multilocularis were obtained from existing and updated epidemiological data sets that were 

collected as part of a larger echinococcosis research program in NHAR. The sources of the data 

sets include: first, a hospital-based retrospective survey of human CE and AE cases conducted 

in NHAR between 1992 and 2013; second, two mass serological screening surveys of 

randomly-selected children aged 6–18 years conducted in Xiji County in 2002–2003 and 2006–

2007; and third, cross-sectional school surveys of human echinococcoses conducted in 

Guyuan, Haiyuan, Tongxin and Xiji Counties in 2012–2013.  

Data on infection status in dogs were collected from cross-sectional surveys, with 

diagnosis using copro-multiplex PCR assays, undertaken in Guyuan, Haiyuan, Tongxin and 

Xiji Counties in 2012–2013. 

Multiple data sources and analytical software were used to derived environmental data 

for the analyses: high-resolution (30 m) imagery from Landsat 4-5 Thematic Mapper (Landsat 

4-5 TM) and Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat-

8 OLI/TIRS) were downloaded for the period 1990 to 2015 for the entire region to estimate 

enhanced vegetation index (EVI) values and create land cover maps of NHAR using ENVI 

version 5.3 (101). Also, ArcGIS software version 10.3.1 (102) was used to quantify land cover 

changes in a spatially explicit way. Monthly averages of temperature and precipitation data for 

the period January 1 1980 to December 31 2013 were provided by the Chinese Academy of 

Sciences. Elevation estimates were obtained in a GeoTIFF format at the spatial resolution of 1 

arc-second (approximately 30 m) from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 

downloaded from the (103). 
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A geographic information system (GIS) platform was used to assemble, summarise and extract 

the data using administrative boundary maps of NHAR. Multivariate spatial regression models 

were developed based on a Bayesian statistical framework in OpenBUGS software 3.2.3 rev 

1012 (104). 

 

1.6 Research and thesis structure 

This thesis consists of seven Chapters (Figure 1); an introduction, five Chapters comprising 

five journal publications (either published or in Press), and a discussion with general 

conclusions based on the results of the work presented in this thesis. The first publication is a 

narrative review about landscape epidemiology and its potential applications to characterise 

patterns of parasite transmission across natural and human-altered landscapes. This is followed 

by a compilation of four journal papers that present original research work. All of the Chapters 

commence with a description of context of the paper. References appear at the end of each 

Chapter.  
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Figure 1 Thesis structure 
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The details of each Chapter are listed below: 

Chapter 1 contains the introduction and outlines the major themes of the thesis. 

The introduction provides a background about Echinococcus spp. and the global disease 

burden of E. granulosus and E. multilocularis infections. This is followed by a 

description of the geographical extent of the parasites, current measures for control and 

future challenges. This Chapter also outlines the contributions of this thesis, research 

objectives, a summary of the approaches and methods applied throughout the thesis and 

the research and thesis structure. 

Chapter 2 is a detailed narrative review in which I provide a theoretical 

background to investigate spatiotemporal variation in echinococcosis risk at different 

spatial scales. This Chapter describes important epidemiological features of the parasite 

and discusses the most relevant biophysical environmental factors that can affect the 

transmission of E. granulosus and E. multilocularis. Also, this Chapter presents 

information on how landscape epidemiology may be used to improve the understanding 

of the transmission dynamics of Echinococcus spp. and facilitate targeted allocation of 

resources for echinococcosis control. 

In Chapter 3, I addressed Objective 1 by producing single date land cover maps 

for NHAR for the years 1991, 1996, 2000, 2005, 2010 and 2015, and quantifying changes 

in land cover in NHAR from 1991 to 2015. I also describe and present the results of an 

analysis conducted to identify annual, summer and winter temperature and precipitation 

trends in the Autonomous Region from 1980 to 2013 (Appendix A). Visual representation 

of land cover changes is also provided in this Chapter. 

In Chapter 4, I addressed the requirements of Objective 2 by exploring and 

describing the spatio-temporal patterns of human echinococcoses at the township level in 

NHAR between January 1994 and December 2013. In this Chapter, I also provide 
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evidence on the potential impact of national landscape regeneration projects on the 

incidence of AE.  

Chapter 5 addresses Objective 3 by exploring and quantifying changes in the 

predicted prevalence of human exposure to E. granulosus and E. multilocularis in Xiji 

County, which is a highly endemic area for human echinococcoses, from 2002 to 2013, 

a period during which extensive landscape restoration projects were implemented in 

NHAR and other parts of China.  

Chapter 6 presents predicted risk maps of human exposure to E. granulosus and 

E. multilocularis and domestic dog infections with these parasites. In this chapter, I 

extended the work undertaken in Xiji County to other three neighbouring counties, 

Haiyuan, Guyuan and Tongxin, to address Objective 4. Maps of prediction error are also 

presented to identify those areas where prediction uncertainty is greatest.  

Chapter 7 includes a discussion about the key findings from Chapters three to six. 

In this Chapter, I placed the findings in the context of other research and observations, 

present general conclusions and identify future research priorities. 
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CHAPTER 2 LITERATURE REVIEW  

2.1 Context 

This literature review highlights the importance of landscape epidemiology in the 

assessment of global, regional, local and individual vulnerabilities to human 

echinococcoses based on the environmental processes that underlie the transmission 

dynamics of Echinococcus spp. The main reason to describe and promote the use of 

landscape epidemiological studies in this review include: first, this approach has proven 

to be essential for achieving significant  advances in the understanding of the role of 

landscape characteristics in determining the geographical distribution of E. 

multilocularis; second, there is limited evidence on the use of landscape epidemiological 

studies that examine the impact of anthropogenic environmental change on the 

transmission of E. granulosus in domestic settings; and third, the integrated use of GIS, 

RS and spatial modelling techniques may help to identify the environmental conditions 

that favour the persistence, emergence and re-emergence of both of echinococcoses in 

different regions of the world. Landscape epidemiology allows the application of novel 

technologies and analytical methods to target appropriate surveillance and response 

interventions where they are most required. 

In general, this Chapter attempts to provide a theoretical framework within which 

the influences of the environment on parasite transmission might be studied at global, 

regional and local contexts. 

 In this Chapter I presented the principles of landscape epidemiology. Then, I 

introduced and described in detailed two conceptual diagrams that were created to 
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represent the environmental factors that may influence the patterns of E. granulosus and 

E. multilocularis transmission at different spatial scales. Finally, the review identifies 

limitations, challenges and gaps in the current evidence and proposes research priorities 

to support the surveillance of human echinococcoses in highly endemic areas, and guide 

the implementation of appropriate intervention strategies for prevention and control.  
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2.2 The landscape epidemiology of echinococcoses 
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Barnes, T.S.; Williams, G.M.; Magalhães, R.J.S.; Hamm, N.A.S.; Clements, A.C.A. The 

landscape epidemiology of echinococcoses. Infectious Diseases of Poverty. 
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Abstract

Echinococcoses are parasitic diseases of major public health importance globally. Human infection results in chronic
disease with poor prognosis and serious medical, social and economic consequences for vulnerable populations.
According to recent estimates, the geographical distribution of Echinococcus spp. infections is expanding and becoming
an emerging and re-emerging problem in several regions of the world. Echinococcosis endemicity is geographically
heterogeneous and over time it may be affected by global environmental change. Therefore, landscape epidemiology
offers a unique opportunity to quantify and predict the ecological risk of infection at multiple spatial and temporal scales.
Here, we review the most relevant environmental sources of spatial variation in human echinococcosis risk, and describe
the potential applications of landscape epidemiological studies to characterise the current patterns of parasite
transmission across natural and human-altered landscapes. We advocate future work promoting the use of this
approach as a support tool for decision-making that facilitates the design, implementation and monitoring of
spatially targeted interventions to reduce the burden of human echinococcoses in disease-endemic areas.
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Introduction
Landscape epidemiology is the study of the spatial vari-
ation in disease risk, in strong connexion with landscape
characteristics and relevant environmental factors that
influence the dynamics and distribution of host, vector
and pathogen populations. The fundamental concepts of
landscape epidemiology were formalised and introduced
by the Russian parasitologist, Pavlovsky, in 1966 [1]. Ac-
cording to Pavlovsky, landscape epidemiology is based
on three observations: first, diseases tend to be limited
geographically; second, the spatial variation in the distri-
bution of a disease is determined by variations of

physical and/or biological conditions that support a
pathogen, its vectors and reservoirs; and third, the con-
temporaneous and future risk of a disease can be pre-
dicted if those conditions are mapped [2]. This
conceptual framework has been developed and extended
progressively to integrate concepts and approaches from
multidisciplinary studies, including landscape ecology,
for a better understanding of the complex composition
of the landscape and its relationship with the transmis-
sion processes and geographical distribution of a disease
[3–5]. The current principles of landscape epidemiology
have been recently summarised in a set of propositions
outlined by Lambin and colleagues (Table 1) [6].
Most modern landscape epidemiological studies use

Earth observation (EO) to obtain remotely sensed (RS)
and in situ data about the environment [5]. Geographic
information systems (GIS) are used to capture, store,
analyse and display geo-referenced data that may be
exported to various analytical and statistical platforms
[5]. The integrated use of these technologies and the ap-
plication of spatiotemporal statistics allow investigators
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to explore in detail the landscape patterns that influence
the transmission dynamics of an infectious disease at dif-
ferent spatiotemporal scales. EO, GIS and the use of in-
novative analytical methods also provide the opportunity
to visualise and predict the geographical variations in
disease risk in response to shifting environmental pat-
terns [7, 8]. In this way, landscape epidemiology may
offer a feasible and acceptable framework to reduce dis-
ease burdens by allowing a more precise estimation of
populations at high risk and the identification of priority
areas where allocation of disease control resources is
most required [9].
To date, landscape epidemiology has been mainly ap-

plied to examine associations between the environment
and the transmission dynamics of mosquito-borne dis-
eases such as malaria, dengue, leishmaniasis, filariasis
and trypanosomiasis [10–13]. However, with the advent
of global environmental change, there has been an in-
creasing interest in conducting studies centred on the
understanding of the landscape epidemiological aspects
of non-mosquito-borne helminth infections, such as
schistosomiasis [14–16]. This approach has been suc-
cessful in providing valuable information to enhance the
implementation of strategies for surveillance, control
and elimination of helminth infections in various set-
tings [17–19].
Echinococcoses are zoonotic parasitic diseases caused

by larval stages of taeniid cestodes of the genus Echino-
coccus. Currently, there are nine recognised species
within the genus and six of these species cause infection
in humans, E. granulosus, E. multilocularis, E. canaden-
sis, E. ortleppi, E. vogeli and E. oligarthrus [20, 21].
Among them, E. granulosus, the main aetiological agent
of cystic echinococcosis (CE), and E. multilocularis, the
causative agent of alveolar echinococcosis (AE), are the
species of major public health importance globally [22].

Both have a wide geographic distribution and cause se-
vere disease in humans that can be fatal if left untreated
[23–25]. The other two less common forms of human
infection are polycystic echinococcosis and unicystic
echinococcosis caused by Echinococcus species restricted
to Central and South America [25].
There are approximately 200,000 new cases of human

CE or AE cases diagnosed every year and a total of 2–3
million people infected worldwide [26, 27]. According to
the Office International des Epizooties databases and
published case reports, the estimated human burden of
CE measured in terms of Disability-Adjusted Life Years
(DALYs) lost is 285,407. When underreporting in
accounted for, the global burden of this form of infection
exceeds 1 million DALYS, which results in an annual es-
timated cost of $760 million [26]. Global estimates of
AE suggest that there are approximately 18,235 people
infected every year and a total of 0.3–0.5 million AE
cases diagnosed worldwide. Most of the disease burden
of AE is focused on Western China and results in the
loss of 666,434 DALYs per annum [28]. Although these
reports may be underestimates due to challenges with
the early detection of the diseases and lack of mandatory
reporting in most countries, it is apparent that the burden
of echinococcoses has increased in recent years and hu-
man infection is becoming an emerging or re-emerging
problem in several regions in the world [29–36]. Conse-
quently, landscape epidemiological approaches have been
incorporated progressively into echinococcosis research to
identify the environmental mechanisms underlying the
variation in disease risk and the most plausible drivers of
parasite dispersion [37–43].
This review aims to describe the potential applications

of landscape epidemiological studies to establish, quan-
tify and predict the geographical distribution of human
echinococcoses and as a decision-making tool to

Table 1 The 10 principles of landscape epidemiology proposed by Lambin and colleagues

Principle Description

1 Landscape attributes may influence the level of transmission of an infection

2 Spatial variations in disease risk depend not only on the presence and area of critical habitats but also on their spatial configuration

3 Disease risk depends on the connectivity of habitats for vectors and hosts

4 The landscape is a proxy for specific associations of reservoir hosts and vectors linked with the emergence of multi-host disease

5 To understand ecological factors influencing spatial variations of disease risk, one needs to take into account the pathways of pathogen
transmission between vectors, hosts, and the physical environment

6 The emergence and distribution of infection through time and space is controlled by different factors acting at multiple scales

7 Landscape and meteorological factors control not just the emergence but also the spatial concentration and spatial diffusion of infection
risk

8 Spatial variation in disease risk depends not only on land cover but also on land use, via the probability of contact between, on one hand,
human hosts and, on the other hand, infectious vectors, animal hosts or their infected habitats

9 The relationship between land use and the probability of contact between vectors and animal hosts and human hosts is influenced by
land ownership

10 Human behaviour is a crucial controlling factor of vector-human contacts, and of infection.
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enhance the implementation of spatially targeted inter-
ventions against the disease. First, the review describes
important epidemiological features of the parasite and
discusses some of the most relevant biophysical environ-
mental factors that may affect the distribution of echino-
coccosis risk at different spatial scales. Next, the review
describes how landscape epidemiology may use geospa-
tial resources and techniques to improve the under-
standing of the transmission dynamics of Echinococcus
spp., and facilitate the strategic allocation of resources
for interventions to the appropriate geographic loca-
tions. Finally, challenges and gaps in the current evi-
dence are identified and research priorities to support
the surveillance and control of human echinococcoses
are proposed.

Search strategy
A search was conducted of literature including all rele-
vant articles that were published until September 2015,
identified from Medline, Google Scholar, PubMED and
Web of Knowledge. The key terms used in the search
strategy included one word and/or phrase from each of
the following three categories: first, terms related to the
disease, including zoonoses, parasitic disease, helminth
infections, human hydatidosis, hydatid cyst, cystic echi-
nococcosis and alveolar echinococcosis; second, terms
related to risk factors for parasite transmission, including
environmental influences, climate change, anthropogenic
environmental factors, and landscape; and third, terms
related to the analytical approach, including landscape
epidemiology, risk mapping, geographic information sys-
tems, remote sensing, Bayesian analysis, geostatistics and
geospatial techniques and/or methods. Additionally, sec-
ondary searches were conducted in reference lists of
peer-reviewed studies. The language of the literature was
restricted to English.

Environmental determinants of the multi-spatial variation
in human echinococcosis risk
Echinococcus spp. have complex domestic and sylvatic
life cycles that involve a wide range of intermediate and
definitive hosts. Therefore, echinococcosis transmission
can take place in different landscape types in which a
variety of physical and biological factors combine to de-
termine the transmission intensity of the parasite [25].
Although these factors remain poorly understood, it is
apparent that the environment plays an important role
in the life cycle of Echinococcus spp. Climate and land-
scape structure influence particularly human behaviour,
animal population dynamics, spatial and temporal over-
lap of intermediate and definitive hosts and the survival
of the parasite eggs [41, 44–47]. Humans, who become
infected by ingesting the parasite eggs directly through
contact with definitive hosts or indirectly from a

contaminated environment, are regarded as accidental
intermediate hosts who do not usually contribute to the
developmental cycle of the parasite. However, reports
from hyperendemic areas in north-western Kenya indi-
cate that humans may act as intermediate hosts in the
life cycle of the parasite under unique circumstances.
The close human-dog relationship and the absence of
burial customs among the Turkana people in this region,
seem to have made possible the transmission of E. gran-
ulosus from tribesmen to dogs or wild carnivores which
are able to access and scavenge potentially infected hu-
man remains [48]. Comprehensive reviews of the para-
site life cycle, environmental factors influencing parasite
transmission, clinical manifestations, diagnosis and man-
agement of the disease are available [22, 25, 44, 49].
There is an important spatial dimension in the rela-

tionship between the risk of echinococcosis infection
and environmental factors that influence both the distri-
bution of the hosts and the rate of development of the
parasite [45, 50]. Despite the extent of epidemiological
variations within the genus Echinococcus, a general
framework may be used to describe factors driving the
transmission of the parasite at the continental, sub-
continental and local spatial scales. At the continental
level, echinococcosis risk may be related to the philogeo-
graphy (biogeography) of animal communities and to
variations in climatic conditions that control the pres-
ence/absence of host species within a particular land-
scape type [41]. At the sub-continental level, the
spatiotemporal patterns of echinococcosis risk depend
upon animal population dynamics, predator–prey inter-
actions and parasite free living stage survival. Thus, at
this spatial scale, the infection is likely to be associated
with landscape characteristics, such as composition (variety
and abundance of patch types in the landscape), and
configuration (spatial arrangement and complexity of
patches present in the landscape) that together with cli-
matic factors determine the seasonal and interannual
variation in population density of the hosts, parasite
free stage survival, and subsequently the geographical
distribution of Echinococcus spp. [50].
To date, most studies conducted at sub-continental

spatial scale have focused on describing the role of land-
scape composition in determining the risk of infection
with E. multilocularis in wildlife [41–43, 51–55]. In east-
ern France, high population densities of Microtus arvalis
and Arvicola terrestris, vole species that are key inter-
mediate hosts for E. multilocularis, were identified in
areas where ploughed fields were converted into per-
manent grassland as a result of the local specialisation in
milk production in the 1960s and 1970s [41, 56]. In
addition, significant positive relationships between per-
centage of area covered by grassland and E. multilocu-
laris infection in humans and foxes have also been

Cadavid Restrepo et al. Infectious Diseases of Poverty  (2016) 5:13 Page 3 of 13

33 



reported in the same region [39, 41, 57]. Studies con-
ducted in Zhang County, Gansu Province, China, indi-
cated that the transmission of E. multilocularis may be
related to the transient augmentation of grassland/
shrubland following a period of deforestation. In this hy-
perendemic area for AE, land cover change favoured the
creation of optimal peri-domestic habitats for AE inter-
mediate host species, and the development of a peri-
domestic cycles involving dogs [41, 58]. In AE-endemic
areas from the north-western part of Sichuan Province
on the Tibetan Plateau, private partial fencing has been
common among Tibetan pastoral communities since the
1980s. This practice allows the creation of private graz-
ing areas to support livestock during the winter period
and early spring. Although fenced pasture has reduced
grazing pressure in private areas, it has also exacerbated
overgrazing in common lands and has improved suitabil-
ity of habitats for various rodent species that are vulner-
able to the parasite. As a result, the risk of AE has also
increased in the region [54, 59, 60]. By contrast, in
northern Japan, grey-sided voles form large populations
in dense bamboo undergrowth of forest. Since this land
cover is natural vegetation, AE prevalence in this part of
the country appears to be not related to anthropogenic
landscape changes [61, 62].
Despite compelling evidence supports the association

of the environment with the spatial variation of E. multi-
locularis infection in sylvatic systems [41, 43, 51–55, 63],
little is known about the host-environment interactions
that take place at sub-continental levels to regulate the
transmission of E. granulosus in domestic settings, where
dogs are identified as typical definitive hosts, and sheep
and other ungulates, as intermediate hosts [25]. Live-
stock like any other animal system can be influenced by
climate and landscape resources that shape animal feed-
ing behaviour, growing rates, reproductive efficiency and
immunological mechanisms that protect against patho-
logical and non-pathological stressors [64]. Heat stress,
particularly, declines feeding intake, conception rates
and the immune response to infectious diseases in sheep
and cattle [64, 65]. Therefore, climate change and land-
scape transformation, together with high level of envir-
onmental contamination with parasite eggs have the
potential to affect parasite transmission intensity not
only in wildlife but also in urban settings, and conse-
quently increase the risk of human CE. Reports from ab-
attoir meat inspections suggested seasonal variations in
the prevalence of E. granulosus infection in Iran and
Saudi Arabia [66, 67]. Additionally, high altitudes and
annual rainfall were associated with high infection rates
of CE in livestock from hyperendemic regions for this
infection in north-central Chile and Ethiopia [68, 69].
The observations from these countries were explained
by factors such as sources of slaughtered animals,

different animal age-structures among seasons, changes
in agricultural management practices and environmental
factors. The geographical location of livestock farms and
the animal spatial structure also appeared to have an im-
portant effect on the prevalence of CE in the Campania
region of southern Italy. Using geo-referenced data, a
survey conducted in this region suggested that the sig-
nificantly higher prevalence of CE on cattle farms com-
pared to water buffalo farms was associated with their
closer distance to potentially infected sheep [70].
At local or community spatial scales, microclimate is

one of the most significant factors underlying the vari-
ation in the risk of echinococcosis infection [46, 47].
Temperature and moisture/humidity, particularly, are
major determinants of the survival and longevity of the
parasite eggs in the external environment [46, 47]. Al-
though the optimal temperature range for egg survival
has been estimated to be between 0 and 10 °C, the toler-
ance of the eggs to external environmental conditions
varies between parasite species and strains [46, 47]. For
E. multilocularis eggs, temperatures of 4 and of −18 °C
were found to be well tolerated, with survival times of
478 and 240 days, respectively [46]. In addition, a recent
study showed that E. multilocularis eggs are more resist-
ant to heat if suspended in water compared to eggs ex-
posed to heat on a filter paper at 70 % relative humidity.
Eggs suspended in water can remain infectious for up to
120 min if expose to temperatures of 65 °C [71]. In vivo
studies also revealed that the eggs of E. granulosus re-
main viable and infective after 41 months of exposure to
an inferior arid climate, which is characterised by large
thermal amplitude (from −3 to 37 °C), with warm sum-
mers, cold winters and low precipitation (under
300 mm/year) [47].
At the local level, human behavioural changes, driven

in large part by population growth and economic and
technological development, have been associated with
the creation of novel interactions between humans, domes-
tic animals and wildlife [72]. This new human-environment
interplay also appears to be altering human exposure to
Echinococcus spp. by facilitating the establishment and
introduction of competent intermediate and definitive hosts
in the life cycle of the parasite [73, 74]. Foxes, the primary
definitive host of E. multilocularis, take advantage of the
most accessible and abundant resources of water and food.
Therefore, the reported movement of foxes towards urban
areas, where the transformed landscapes provide optimal
conditions for surges of small mammal species, have ex-
plained the observed higher circulation of the parasite
within local urban landscapes [73]. In addition, the role of
dogs in semi-domestic life cycles of E. multilocularis ap-
pears to be the result of human-related activities in certain
communities where dog ownership and close association
between humans and dogs were identified as significant
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predictors of human AE risk. [75–77]. Similarly, reports
have revealed that urban coyotes are currently playing a key
role in the maintenance of the life-cycle of E. multilocularis
within North American urban settings [78].
Genetic factors and immunological interactions be-

tween the parasite and hosts are also associated with
echinococcosis risk at local and community levels. These
factors affect the development of the adult parasite in
the intestine of definitive hosts and determine the time
course of the production and viability of the eggs [79].
Genetic and immunological factors also govern differ-
ences in the reproductive potential of the hosts and in-
fluence the susceptibility/resistance of humans and
animals to the infection [80]. Patients with impaired im-
mune response appear to have increased susceptibility to
E. granulosus and E. multilocularis infections, and are
more prone to develop severe disease [81–83]. Similarly,
an increase risk of infection with E. multilocularis has
been observed in experimental immunosuppressed ani-
mals [80]. Figures 1 and 2 show a conceptual diagram of
the environmental factors influencing the transmission
dynamics of E. granulosus and E. multilocularis, respect-
ively, at different spatial scales.

The use of landscape epidemiological approaches to
understand the transmission dynamics of Echinococcus
spp.
The inherently multi-scale nature of the life cycle of
Echinococcus spp. has represented a challenge to com-
prehensively understand the mechanisms that govern
parasite transmission and the subsequent variation in
disease risk [79, 84]. However, over the past decade, ad-
vances in EO, that have led to the increased availability
of high-quality environmental data, and developments in
GIS and methods for spatial analysis have improved the
ability of investigators to explore and predict the spatio-
temporal dynamics of echinococcosis infections.
Much progress has been made in the use of geospatial

technologies to map the prevalence of infection with
Echinococcus spp. and identify space-time clusters of hu-
man disease in various settings [58, 70, 85–88]. With
global environmental change, there has been a growing
interest in determining the role of climatic factors and
the process of landscape transformation in the recent
observed patterns of parasite transmission. Thus, defor-
estation, grazing practices, climate variability and direct
or indirect control of intermediate and definitive hosts

Fig. 1 Conceptual diagram of the environmental factors influencing the transmission dynamics of Echinococcus granulosus at different spatial scales
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are currently being studied as potential environmental
factors that have favoured the persistence and geograph-
ical expansion of the parasite [41, 43, 61, 75].
Landscape epidemiology uses a wide variety of data

and statistical techniques [5]. Accurate data, both in
space and time, are required to develop statistical
models that describe the complex associations between
the environment and the transmission of the parasite
[89]. Data collected at a specific geographic location can
be geo-referenced using spatial coordinates, such as
those obtained from global positioning systems (GPS).
By contrast, data collected from a defined spatial region,
such as clinical surveillance data for an administrative
area, are geo-referenced by specifying the administrative
boundaries, with some associated limitations for subse-
quent spatial analysis [89]. Because reporting of echino-
coccosis infections is not mandatory in most countries,
epidemiological data are usually fragmented and scarce.
In most endemic areas, human cases are primarily iden-
tified through clinical case reports, hospital records or
mass screening surveys that usually combine question-
naires based-interviews, abdominal ultrasound and spe-
cific serology tests [90–93]. These initiatives have

resulted in a valuable source of geospatial data for the
estimation of echinococcosis risk at local and regional
spatial scales, and at certain points in time in several en-
demic regions. However, these represent inefficient mea-
sures that are difficult to sustain in the long term [43].
The European Echinococcosis Registry (EurEchinoReg)
Project was the first attempt to establish a continent-
wide database for echinococcosis, with the aim being to
estimate the impact of AE in western and central
Europe. However, the routine collection of data by indi-
vidual countries has been heterogeneous in terms of
completeness and reliability across regions [94]. Since
the beginning of the project, Austria, France, Germany
and Switzerland are among the few countries that have
maintained population-based human AE data registries
that can be used to analyse patterns of this form of dis-
ease at various spatial scales [94–96].
In addition to data on human echinococcosis cases,

data on environmental factors and survey data to deter-
mine the presence of echinococcosis host species and
their infection status may also be combined in landscape
epidemiological studies [45]. Although infection in de-
finitive and intermediate hosts are key indicators of the

Fig. 2 Conceptual diagram of the environmental factors influencing the transmission dynamics of Echinococcus multilocularis at different spatial scales
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presence of the parasite in the environment, the identifi-
cation of infected animals does not directly reflect trans-
mission pressures of Echinococcus spp. to human
populations. Nevertheless, it can be assumed that envir-
onmental processes that support variation in host popu-
lation densities are also likely to influence the risk of
human infection [31, 41]. Sources of EO for environ-
mental data include satellite remote sensing and spatially
distributed in situ sensors, such as meteorological stations
[97]. EO and its derived products provide extensive cover-
age of vast areas of the earth at periodic intervals. In the
case of in situ data, interpolation methods can be ap-
plied to obtain data for those locations where there
are no meteorological observations locally available
[98, 99]. Currently, a wide range of high-quality envir-
onmental datasets are freely available and can be used
to identify continental, sub-continental or local envir-
onmental variability [97]. The International Union for
Conservation of Nature has also created databases for
mapping the distribution of animal species, including
most definitive and intermediate hosts of Echinococcus
spp. [100]. The environmental variables most com-
monly used in echinococcosis research include alti-
tude, temperature, precipitation, land cover, land use,
vegetation indices and geographical distribution of the
hosts [44, 75].
The characterisation and prediction of echinococcosis

risk using landscape epidemiology can be achieved by
using geospatial resources and spatial analysis methods
that allow visualisation, exploration and modelling of
multi-source geo-referenced data. Among them, GIS
mapping and cluster detection techniques are useful
tools that have been widely applied in echinococcosis re-
search to prioritise areas for further studies and plan
preventive and control interventions [70, 95, 101–103].
In general, these methods have indicated that echinococ-
cosis infections have a focal spatial distribution, with de-
fined areas at high risk for parasite transmission
between definitive and intermediate hosts, in which the
prevalence or incidence of human disease may be higher
than in surrounding areas. Examples include studies
undertaken in France, Japan and China, countries heavily
affected by AE. In these countries, the evidence has sug-
gested that the number of human cases of AE is a nested
hierarchy of spatial aggregates in the eastern part of
France. Aggregative distribution has also been shown in
the northern island of Hokkaido, Japan, and in provinces
located in the central and western part of China, where
the Qinghai-Tibetan plateau has been identified as the
geographic area with the highest rates of human AE re-
corded globally [41, 104, 105]. Similarly, epidemiological
studies in north-western China revealed much higher
prevalence of CE among local communities from the
Tibet Autonomous Region, Xinjiang Uygur Autonomous

Region, Ningxia Hui Autonomous Region (NHAR), and
Sichuan and Qinghai Provinces [106]. Demographic,
socio-economic and human behavioural factors are also
variables that have been commonly explored as potential
factors interacting with the environment to determine
the heterogeneous spatial distribution of echinococcoses
in several endemic regions. The Buddhist doctrine
among pastoral communities that allows old livestock to
die naturally, coupled with the practice of unrestricted
disposal of animal viscera and the presence of free ran-
ging dogs have been identified as factors influencing the
high prevalence of human CE in Tibetan communities
in China [106]. Significant difference in prevalence rates
of human infection has also been observed between
males and females. Women are more likely to be ex-
posed to E. granulosus and E. multilocularis as a result
of their daily family activities such as feeding dogs, herd-
ing livestock and collecting yak dung for fuel [85, 107,
108]. Additional risk factors found to be related to high
risk of exposure to both parasite species include dog
ownership, poor hygienic practices, low income and lim-
ited education. In contrast, the use of tap water has been
identified as a factor that can protect against the disease
[85, 93, 101, 107–109].
As a result of the apparently expanding geographical

distribution of Echinococcus spp. [29–35], particular em-
phasis has recently been placed on the implementation
of landscape epidemiological approaches that use spatial
statistical techniques to identify environmental condi-
tions that may be affecting the habitat suitability for sus-
taining the sylvatic life cycle of the parasite [42, 43, 53,
75, 110]. Spatial statistics are statistical methods that can
be applied to explore geographically referenced data and
investigate associations between the observed number of
human cases and the most plausible factors that underlie
the transmission dynamics of the parasite. On the basis
of the information provided by this approach, traditional
or spatially explicit statistical models can also be con-
structed to predict the spatial distribution of disease
based on environmental variables. Of note, the statistical
methods applied in epidemiology that fail to account for
spatial autocorrelation in the variables used to model
and predict disease risk, may possibly lead to erroneous
statistical inference [111]. Thus, spatially explicit models
that incorporate information on spatial autocorrelation,
obtained using Bayesian methods are increasingly incor-
porated in landscape epidemiological research. Bayesian
methods are sufficiently flexible to allow the develop-
ment of complex hierarchical spatio-temporal models
that quantify uncertainty in the analysis of disease risk
by assuming that parameter values, including spatial
predictions, vary as random quantities [112]. Predictive
risk maps of echinococcoses that account for uncertainty
estimates can be essential to inform decision-makers
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about the uncertainty and implications of the inter-
ventions against these infections [14, 113]. A Bayesian
statistical framework was used in Xiji County, NHAR,
China, for risk mapping and transmission modelling of
human AE [43]. The study indicated that the land-
scape characteristics favouring E. multilocularis trans-
mission in Xiji County differed from the previous
observations in Zhang County located in the neigh-
bouring Gansu Province. While grassland around vil-
lages did not correlate with the prevalence of human
AE, abundance of degraded lowland pastures was associ-
ated with higher prevalence of the disease in Xiji County.
From the results, it was possible to infer that E. multilocu-
laris can sustain transmission through a diversity of host
communities in China [43]. A similar Bayesian approach
was carried out in Tibetan plateau communities, which led
to confirm and predict human disease hotspots over a
200,000 km2 region and showed that human AE risk was
better predicted from landscape features [75].

Applications to surveillance, prevention and control
programmes
Landscape epidemiology has been applied progressively
in echinococcosis research, particularly AE research, in
order to identify the environmental determinants of
echinococcosis risk. However, there is still limited guid-
ance on the practical implementation of this approach
to improve echinococcosis surveillance and maximise
the impact of prevention and control efforts.
Most of the evidence in the use of landscape epidemi-

ology to support the effective implementation of inter-
ventions against infectious diseases has been obtained
from studies of mosquito-borne diseases [10, 11, 13],
and non-mosquito-borne helminth infections, particu-
larly schistosomiasis and soil-transmitted helminthiases
[17–19]. At the global scale, atlases have been devel-
oped that may potentially guide international priority
setting for investments in disease control and elimin-
ation [114–116].
In the context of echinococcosis surveillance and

control, mass screening surveys of echinococcoses
have provided valuable data to help reduce the med-
ical, social and economic burden of the infection by
ensuring early detection and prompt treatment of hu-
man cases. However, this measure may be inefficient
and resource intensive if implemented in areas of low
prevalence of the disease. Echinococcoses affect par-
ticularly remote pastoral communities with low socio-
economic development that may have limited access
to health care [108, 117]. Therefore, landscape epi-
demiological studies have the potential to assist local
and national initiatives against echinococcoses such as
the one launched by the Chinese government to re-
duce the impact of these infections in 217 endemic

counties in western China [23, 118]. Such studies gen-
erate both quantitative evidence and visual representa-
tion of the geographical distribution of these diseases
and allow a more precise estimation of populations at
high risk. Updated maps of echinococcoses and accur-
ate information about individuals and households at
high risk may allow decision makers to optimally tar-
get resources and interventions for prevention and
control.
In China, particularly, the current measures adopted

against echinococcoses include community-based epi-
demiological surveys, patient treatment and monitoring,
health education campaigns, and regular antihelmintic
treatment for dog deworming [23, 118]. Under the stra-
tegic and operational context of these interventions and
other potential strategies that may help reduce the bur-
den of these infections in endemic regions, landscape
epidemiological approaches represent a cost-effective
measure not only to prioritise geographical areas at high
risk, but also to identify the type of parasite control ac-
tivity that is most required in specific locations.
Deworming of wild foxes using baits with antihelmintic
treatment is being established in some countries as a
preventive technique against environmental contamin-
ation with E. multilocularis eggs [119–121]. In order to
improve the cost-benefit performance of these efforts,
spatial models were developed in Hokkaido, Japan, and
in eastern France to identify the environmental factors
that determine the most suitable micro-habitats for de-
livering the baits. The outcomes of these studies sug-
gested that baiting programmes should be adapted to
the local environmental characteristics of domestic and
urban settings [119, 122].
Many of the relationships that have been explored in

the studies outlined above have provided compelling evi-
dence about the environmental conditions that together
with socio-economic and demographic factors support
the transmission of Echinococcus spp. in endemic re-
gions. However, they fall short of allowing resource man-
agers and policy makers to understand and anticipate
the real impact of the infections, and the economic and
medical implications of their decisions. Thus, ap-
proaches that incorporate the use of geospatial resources
and spatial analysis to identify environmental drivers of
echinococcoses can be applied as decision-making tools
for the design of effective surveillance and response sys-
tems. In this way, landscape epidemiological studies may
help monitor and predict parasite transmission based on
changing environmental factors, and in response to the
implementation of interventions for disease control.
Most importantly, these approaches have the potential
to guide echinococcosis control programmes in those re-
gions with limited availability of surveillance data on
echinococcoses [123].
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The understanding of the landscape epidemiological
aspects of echinococcoses may also provide scientific evi-
dence that can be used to support environmental policy-
making and landscape planning processes in hyperendemic
areas for these diseases. Thus landscape epidemiology may
also prove useful to promote environmentally-based strat-
egies that have minimal impact on the transmission dynam-
ics of the different Echinococcus spp. This is particularly
relevant in regions where climate variability and landscape
transformation may be facilitating the transmission of the
parasite.
Previous studies conducted in echinococcosis-endemic

regions have provided valuable insight into the landscape
processes underlying the transmission of E. multilocularis
at various spatial scales. However, most of these analyses in-
volved environmental data collected at a single point in
time and did not capture major environmental changes
over time [50]. Because human echinococcoses may be the
result of cumulative events that occurred over many years
prior to the detection of the disease, the use of multi-
temporal Earth observation datasets to identify environ-
mental change will be necessary in order to conduct a
meaningful landscape epidemiological analysis of the forms
of human echinococcosis infections. Therefore, we advo-
cate future research that incorporates time-series analyses
of environmental data for the identification of the long-
term trends in climatic and landscape conditions that may
be facilitating the persistence and spread of Echinococcus
spp. across heterogeneous landscapes.
Despite the potential applications of landscape epi-

demiology in echinococcosis research, it is evident that
work is still necessary to address the limited availability
of human echinococcosis data. Thus, further advances
are required to improve long-term and multi-scale mon-
itoring of these infections. We believe that the design
and implementation of systematic and standardised pro-
tocols for the diagnosis, collection and recording of hu-
man cases may help to better estimate and monitor the
prevalence of these infections in endemic areas, and also
to increase awareness among all actors involved in the
control of these infections. In addition, we also recom-
mend the development of national and sub-national data
collection systems to record all confirmed cases of echi-
nococcoses identified through mass screening surveys or
clinical and laboratory reports. Systematic surveillance
systems may be used as efficient, reliable and secure data
sources for the implementation of clinical and landscape
epidemiological studies. Because echinococcoses are
complex diseases that involve animal and human hosts,
as well as ecological and environmental factors, inte-
grated multisectoral efforts are clearly required to moni-
tor the interactions between the landscape and parasite,
hosts and human diseases. The availability of data on
annual infection rates in humans, definitive and

intermediate hosts in hyperendemic areas combined
with annual averages of climate data and land cover
change may be particularly useful to improve cost-
effectiveness of small-scale campaigns and reduce local
risk. These data are essential to establish pre-
intervention baseline, monitor the efficacy of interven-
tions and inform the strategic planning of future control
measures.
Factors that need to be considered for the routinely

implementation of these approaches include the avail-
ability of resources for collecting, processing, and
modelling geospatial data at various spatial scales,
training of personnel on the use of these technologies
and the proper interpretation of results, and the con-
tinuous availability of high quality environmental data.
It should be emphasized that the allocation of re-
sources for the implementation of these novel tech-
niques should not come at the cost of preventive and
control efforts against the infections. Co-endemicity
and polyparasitism are common in several regions of
the world [124]. Therefore, initiatives to combine con-
trol strategies against human echinococcoses with
other zoonotic diseases could potentially help to opti-
mise resources, ensure sustainability of interventions
and improve awareness among local people [124].
Major integrated programmes to map the distribution
and enhance control strategies against some neglected
tropical diseases such as onchocerciasis, lymphatic fil-
ariasis, soil-transmitted helminthiases and schistosom-
iasis are currently being implemented successfully in
various regions [125]. In the context of echinococco-
ses, integrated dog control/deworming and health pro-
motion may be proposed as a cost-effective measure
to reduce the impact of these infections in highly en-
demic areas.

Conclusion
This review demonstrates the potential of landscape
epidemiology to explore the complex life cycle of Echi-
nococcus spp. that involves time-dependent interactions
of multiple definitive and intermediate hosts at differ-
ent spatial scales. Landscape epidemiology has also
proven helpful in characterising the geographical distri-
bution of human AE risk and in determining the asso-
ciation between the geographical patterns of infection
and environmental factors. Therefore, the implementa-
tion of this approach together with the recent advances
in geospatial technologies and spatial analysis tech-
niques provide a unique opportunity to explore the
causes of persistence, emergence and re-emergence of
some parasite species in several regions, and a better
guidance for the design, implementation and monitor-
ing of preventive and control interventions.
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CHAPTER 3 ENVIRONMENTAL CHANGE IN NINGXIA HUI 

AUTONOMOUS REGION, CHINA 

3.1 Context 

Climate and land cover are important components of the environment that play a key role 

in the transmission of Echinococcus spp, as outlined in Chapter 2. Climatic and land 

cover factors can act independently or synergistically to influence: 1) the dynamics of 

definitive host populations; 2) the dynamics of the intermediate host populations; 3) 

predator–prey interactions between definitive and intermediate hosts; and 4) the viability 

and longevity of parasite eggs in the external environment.  

China is currently implementing a series of landscape regeneration projects that 

have significant potential impact on ecosystems, agriculture and public health. Previous 

spatially explicit models of E. multilocularis, developed in highly endemic areas in the 

country, have indicated that the spatial aggregation of this parasite is partially explained 

by the structure and composition of the landscape. Therefore, it is essential to establish 

evidence for the impact of landscape regeneration projects on the local environment, not 

only to facilitate future landscape planning and ecosystem management and protection, 

but also for a better understanding and effective response to the risk of human 

echinococcoses for the local population. 

In addition to the direct effects of the implementation of landscape regeneration 

projects on land cover, in NHAR, these initiatives have also helped farmers to shift their 

income structure. In the Autonomous Region, the young population particularly, has 

moved from agricultural and livestock production practices to other economic activities 

such as industry, construction and transportation. The number of labourers who migrate 

to the cities has risen with urban population increasing more rapidly than the rural 
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population. As in many other areas in China, in NHAR, population growth and 

urbanization are identified as major sources of landscape transformation 

This Chapter focuses on describing the results of an analysis that was conducted 

to examine and quantify land cover change in NHAR over the past decades. In this 

Chapter, I describe the process of land cover classification and validation of the first land 

cover maps created for NHAR for the period 1990 to 2015 at five-year intervals. Also, I 

report and discuss the main changes in land cover at six different time intervals 1991–

1996, 1996–2000, 2000–2005, 2005–2010, 2010–2015 and 1991–2015. The results 

suggest that land cover transformation in NHAR from 1991 to 2015 concur with the main 

goals of a national policy implemented in China to recover degraded landscapes. Previous 

evidence on the association of echinococcoses and the environment, and the findings 

presented in this Chapter suggest that anthropogenic land cover change in NHAR may 

have been affecting the transmission dynamics of Echinococcus spp. in NHAR in past 

decades.  

As part of the study of environmental change in NHAR, an analysis of 

meteorological data that were provided by the Chinese Academy of Sciences was 

conducted to quantify and map temperature and precipitation trends for the period 1980 

to 2013. The analysis is provided in Appendix A. The findings were presented in the 

context of the Grain for Green Project (GGP), also called the Sloping Land Conversion 

Program, the largest ecosystem service payment project that has been implemented in 

China. The outputs of this Chapter (including Appendix A) provided variables that were 

used as covariates in Chapters 4–6. 
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3.2 Land cover change during a period of extensive landscape 

restoration in Ningxia Hui Autonomous Region, China 

 

Cadavid Restrepo, A.M.; Yang, Y.R.; Hamm, N.A.S.; Gray, D.J.; Barnes, T.S.; 

Williams, G.M.; Magalhães, R.J.S.; McManus, D.P.; Guo, D.; Clements, A.C.A. Land 

cover change during a period of extensive landscape restoration in Ningxia Hui 

Autonomous Region, China. Science of The Total Environment. 2017; 598:669-79. 

 

Supplementary material for this paper is provided in Appendix B. 
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• We found an increase in forest, herba-
ceous vegetation and in regenerating
bareland.

• The largest relative change for the peri-
od 1991–2015 was observed in the
area covered by forest.

• The increase in forest resulted mainly
from conversion of cultivated land and
herbaceous vegetation.

• Forest growth primarily occurred in the
north and south of the province.
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protection. Spatially explicit information on land cover changemay also help decision makers to understand and
respond appropriately to emerging environmental risks for the local population.

© 2017 Elsevier B.V. All rights reserved.

Remote sensing
Earth observations

1. Introduction

Changes in land use and land cover (LULC) are fundamental compo-
nents of environmental change, and are major determinants of sustain-
able development andhumanadaptation to global change (Turner et al.,
2007; Turner et al., 1993). Land cover (biophysical cover of the Earth's
surface) and land use (description of how humans use the land) are of
great significance in maintaining the structure and productivity of eco-
logical systems (Lambin et al., 2001). LULC change influences the cli-
mate system through effects on the Earth's surface albedo (the
fraction of incident electromagnetic radiation reflected by the land sur-
face) and the exchange of greenhouse gases between the soil and the at-
mosphere (Foley et al., 2005; Pielke et al., 2002). Thus, land cover
change has the potential to impact on climate change at local and re-
gional scales (de Noblet-Ducoudré et al., 2012; Kalnay and Cai, 2003)
and also at a global scale (Foley et al., 2005). Some extensive LULC
changes may also contribute to diminish or accelerate soil erosion, ho-
mogenization of the agricultural landscape and subsequent loss or frag-
mentation of natural habitats (Blaikie and Brookfield, 2015; Bommarco
et al., 2013). These effects have the potential to alter biodiversity
(Newbold et al., 2015; Sala et al., 2000) to such an extent that the
well-being and vulnerability of humans to social and environmental
stressors may be positively or negatively affected (Carpenter et al.,
2006).

Human population growth and economic expansion are widely
recognised as major anthropogenic drivers of LULC change (Vitousek
et al., 1997). Approximately one-third to one-half of the Earth's land
surface has already been modified considerably by human activities
(Vitousek et al., 1997), and the extent of this transformation may in-
crease to compensate for the growing demand for food and natural re-
sources (Bommarco et al., 2013). In response to the concerns about
human capability to adapt to a changing environment, interdisciplinary
assessments of LULC status and change have become increasingly im-
portant subjects of environmental change research (Verburg et al.,
2009).

Since the start of economic reforms in China in 1978, the country has
sustained accelerated economic growth and urban expansion. The total
population grew from about 980 million people in 1980 to 1.36 billion
people in 2013 (National Bureau of Statistics of China, 2014). Resultant
social restructuring processes have led to an environmental transforma-
tion of unprecedented proportions (Liu and Diamond, 2005). Projects
such as the Three-Gorges Dam across the Yangtze River, designed to
promote infrastructure and economic development in the country,
have been associated with alterations to biodiversity and ecosystem
properties in several regions (Xu et al., 2013). To mitigate the adverse
impacts of socio-economic and demographic changes, the Chinese
government has responded by implementing a series of land re-
form policies and incentive programs to reduce land degradation
and promote sustainable development in rural China (The University
of Nottingham, 2010).

The Grain for Green Project (GGP), also called the Sloping Land Con-
version Program, implemented since 2002 after a short pilot between
1999 and 2001, is the largest ecosystem service payment project in
the country (Liu et al., 2008;Wang et al., 2007). Under theGGP, the gov-
ernment offers farmers annual grain and cash subsidies as well as free
seeds or seedlings per area of converted land to reduce soil erosion
(Yin and Yin, 2010). The project focuses primarily on the reduction of
cropland on steep slopes by promoting three types of land conversions:
cropland to forest, cropland to grassland, and sandy land that cannot be
used for arable production to forest (The University of Nottingham,

2010; Zhou et al., 2012). The GGP also advocates for prohibition of en-
closures for grazing, and sand storm prevention and control (Wang
et al., 2007). Some of the immediate ecological benefits of the land res-
toration program include increased forest coverage, control of soil ero-
sion, and reduced water surface runoff and spread of wind-blown dust
(Fan et al., 2015). However, work is still required to explore the addi-
tional ecological, climatic and public health consequences that can re-
sult from the long-term implementation of the GGP and other similar
environmental initiatives (Liu et al., 2008; Pielke, 2005). NHAR is a prov-
ince located in arid and semi-arid areas across the Loess Plateau and the
YellowRiver plainswhich are priority regions for the implementation of
the GGP (Liu et al., 2008; The University of Nottingham, 2010). The high
local poverty rates, the difficult natural environmental conditions and
the over-exploitation of natural resources in NHAR have contributed
to the deterioration of the local ecological environment in past decades.

Earth observation (EO) data collected using satellite remote sensing
and in situ observations, have been used extensively to characterize and
monitor LULC change (Broich et al., 2014; Carreiras et al., 2014; Hamm
et al., 2015; Shalaby and Tateishi, 2007; Turner et al., 2007; Yuan et al.,
2005). Recently, the wide availability of very fine- (b10 m) and fine-
(10 to 100m) resolution imagery from satellite sensors such as Landsat,
QuickBird and IKONOS, have provided new opportunities to represent
more accurately LULC at finer spatial resolutions (J. Chen et al., 2015;
Hamm et al., 2015; Raj et al., 2013; Sawaya et al., 2003). EO data and
geographic information systems (GIS) have been applied in China to
guide scientific activities that focus on the assessment and monitoring
of the short- and long-term effects of different land use and manage-
ment practices implemented at various administrative levels (Fan
et al., 2015; Liu et al., 2014; Weng, 2002).

This study aims to quantify and describe the spatial and temporal
patterns of land cover change in NHAR during a period of extensive
landscape restoration.Maps that document accurately the local patterns
of land cover change in this province can form the basis for future
landscape planning and ecosystem management and protection.
This spatially explicit information on land cover change may also
help to understand and respond rapidly and effectively to emerging
environmental risks such as natural disasters, infectious diseases
and food insecurity for the local population.

2. Materials and methods

2.1. Study area

NHAR is a small province located on the upper reaches of the Yellow
River in northwest China between latitudes 35°26′ N and 39°30′ N, and
between longitudes 104°50′ E and 107°40′ E. NHAR shares borders with
the InnerMongolia Autonomous Region in the north, Gansu Province in
the south and west and Shaanxi Province in the east. From north to
south, the provincial territory stretches 465 km, and from east to west
between 45 km and 250 km,with a total area is 66,400 km2. NHAR con-
sists of five prefectures that are subsequently subdivided into counties,
townships and villages. By the end of 2014, the total population
amounted to 6.6 million people of which 53.6% were living in urban
areas and 46.4% in rural areas (Li et al., 2008; Statistical Bureau of
Ningxia Hui Autonomous Region, 2014).

NHAR lies at ~1000mabove sea level. The territory is geographically
diverse and consists of threemajor natural regions that have distinct ag-
ricultural production systems: the northern Yellow River Irrigated Dis-
trict (irrigated agricultural system), the central desertified district (a
mix of rainfed and irrigated areas with extensive grazing) and the
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southernmountainous and loess hilly district (with a rainfed agricultur-
al system). These regions cover 23.7%, 45% and 31.3% of the NHAR terri-
tory, respectively (Li et al., 2008; Li et al., 2013). Elevation increases
from north to south with the highest peak at 3556 m. In general, the
province has a temperate continentalmonsoon climate and four distinct
seasons. Temperature varies from 24 °C in July to−9 °C in January with
an annual average of 9.5 °C. Rainfall varies from 180 to 800 mm year−1

increasing from north to south. Most rainfall occurs during the summer
and autumnmonths (80% of the total precipitation in the entire region).
The annual average rainfall is 289 mm year−1 (Li et al., 2008) (Fig. 1).

2.2. Environmental data

2.2.1. Remotely sensed data
The Landsat Surface Reflectance Climate Data Record (Landsat CDR)

was the main source of the data used for land cover classification and
change detection analyses. Landsat CDR data sets, also called Landsat
level 2A products, are high-level data products that were generated by
applying atmospheric correction routines to Landsat Level 1 scenes
(Department of the Interior - The United States Geological Survey
(USGS), 2016a; Department of the Interior - The United States Geologi-
cal Survey (USGS), 2016b). The Landsat CDR uses the Universal Trans-
verse Mercator (UTM) projection (48N for NHAR). For the study, time
series of Landsat CDR data sets processed from Landsat 4–5 Thematic
Mapper (Landsat 4–5 TM) and Landsat 8 Operational Land Imager and
Thermal Infrared Sensor (Landsat-8 OLI/TIRS) were downloaded for
the period 1990 to 2015 at five-year intervals. This time period was se-
lected due to the increased availability of cloud-free data. Images were
acquired from the Earth Explorer website (The United States Geological

Survey (USGS)). For most years, four scenes were required to cover the
entire territory. However, due to the presence of clouds in most of the
available images from 1990 and 1995, Landsat data from the years
1991 and 1996 were obtained and used for classification (Table 1).
Also for the years 1996 and 2000, a fifth scene was required to fill the
missing data. The primary scene selection criteria were based on acqui-
sition dates. To the extent possible, images were collected from the pe-
riod June toNovember each yearwhich corresponds to the summer and
autumn growing seasons in NHAR. However, actual image acquisition
dates varied depending on the availability of the data. When there
were no scenes available for the selected months, the closest-in-time
andmost cloud-free scenes available were downloaded for the analyses
(Table 1).

2.2.2. Elevation data
Topographic correction was performed to reduce terrain illumina-

tion effects on the retrieved data. To apply the topographic correction
algorithm, information on solar position according to the acquisition
time of the images, and on the slope and aspect of the terrain are re-
quired. Therefore, in addition to the Landsat metadata files, the Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) version 2 was
downloaded from the USGS Earth Explorer website (The National
Aeronautics and Space Administration (NASA) and Ministry of
Economy Trade and Industry (METI), 2011; The United States Geologi-
cal Survey (USGS)). It was necessary to project the ASTER DEM to
match the Landsat imagery. Using nearest-neighbour resampling, the
GDEM data were projected to the Universal Transverse Mercator
(UTM) coordinate system zone 48N and resampled to a 30 m spatial
resolution using ArcGIS software version 10.3.1 (ESRI, 2015).

2.2.3. Reference data for image classification
Due to the lack of reference information on land cover information

for NHAR during the study period, multiple data sources were required
to produce reference data sets for land cover classification (training).
Training data for the years 2000 and 2010 were obtained from random
sampling of a combination of relatively fine-scale global maps, the
GlobeLand30 and the global forest/non-forest maps (FNF) (Japan

Fig. 1.Map and elevation of NHAR and location of the province within China (inset).

Table 1
Specifications for the Landsat scenes used for land cover classification and change detec-
tion analyses in Ningxia Hui Autonomous Region from 1991 to 2015.

Year Data type Landsat scene Path/row Date
acquired

1991 Landsat 4–5
Thematic Mapper

LT51290331989236BJC00 129/033 24/08/1989
LT51290341991242BJC00 129/034 30/08/1991
LT51290351991242BJC00 129/035 30/08/1991
LT51300341993158CLT00 130/034 07/06/1993

1996 Landsat 4–5
Thematic Mapper

LT51290331995253CLT00 129/033 10/09/1995
LT51290341996128CLT00 129/034 07/05/1996
LT51290351996112CLT00 129/035 21/04/1996
LT51300341996215BJC00 130/034 02/08/1996
LT51300341996023CLT00 130/034 23/01/1996

2000 Landsat 4–5
Thematic Mapper

LT51290332000235BJC00 129/033 22/08/2000
LT51290342000235BJC00 129/034 22/08/2000
LT51290352001141BJC00 129/035 21/05/2001
LT51300332000258BJC00 130/033 14/09/2000
LT51300342000242BJC00 130/034 29/08/2000

2005 Landsat 4–5
Thematic Mapper

LT51290332005296BJC00 129/033 23/10/2005
LT51290342005280BJC00 129/034 07/10/2005
LT51290352005280BJC00 129/035 07/10/2005
LT51300342005303BJC00 130/034 30/10/2005

2010 Landsat 4–5
Thematic Mapper

LT51290332010182IKR00 129/033 01/07/2010
LT51290342010198IKR00 129/034 17/07/2010
LT51290352010198IKR00 129/035 17/07/2010
LT51300342010253IKR00 130/034 10/09/2010

2015 Landsat 8
Operational Land
Imager and Thermal
Infrared Sensor

LC81290332015244LGN00 129/033 01/09/2015
LC81290342015244LGN00 129/034 01/09/2015
LC81290352015196LGN00 129/035 15/07/2015
LC81300342015187LGN00 130/034 06/07/2015
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Aerospace Exploration Agency (JAXA); National Geomatics Center of
China, 2014). Although GlobeLand30 was only released in 2014 it has
been applied extensively at national and regional levels in various coun-
tries with high levels of accuracy (Brovelli et al., 2015; Jokar Arsanjani
et al., 2016a; Jokar Arsanjani et al., 2016b; Manakos et al., 2014; Shi
et al., 2016; Walker et al., 2010) and evaluation is ongoing. The
GlobeLand30 is a Landsat-based product generated by the National
Geomatics Center of China (NGCC) (J. Chen et al., 2015). This product
represents the first attempt to create global land cover maps for the
years 2000 and 2010 at 30 m resolution (J. Chen et al., 2015). The
Japan Aerospace Exploration Agency (JAXA) produced the FNF data
sets by classifying 25 m resolution satellite images into forest and
non-forest areas. FNF data sets are available for the years 2007, 2008,
2009 and 2010 (Japan Aerospace Exploration Agency (JAXA) and
Earth Observation Research Center (EORC)).

The ArcGIS software (ESRI, 2015)was used to generate random sam-
ples of training points from the GlobeLand30 and FNF data sets for the
years 2000 and 2010. A total of approximately 500 training sites were
selected for each year. In this way, it was possible to ensure that all
land cover categories were adequately represented in the training sta-
tistics. Training data for these two years were not limited to the global
land cover and FNF products. All the selected training points were
cross-checked against historical imagery from Google Earth Pro (GEP)
version 7.1.5.1557 (Google Inc., 2015). Google Earth archives display
different forms of imagery obtained from multiple sources such as
Landsat and QuickBird satellite sensors and various providers of digital
photographs (Lemmens, 2011). GEP software is a widely-used platform
for the collection of high resolution geo-referenced information on land
cover, and also for the validation of land cover classification maps (Cha
and Park, 2007; H. Chen et al., 2015; Q. Hu et al., 2013; Lu et al., 2015).
GEP images from 2001, which is the earliest time point from which
data are available for NHAR, and 2010 were used to evaluate the refer-
ence data. Training points that were located in indistinct areas in the
GEP imagery or in areas that were covered by clouds were removed
from the reference data sets.

The training data for 2000 and 2010 were also checked against GEP
historical images from 2005 and 2015, respectively. Both, data sets and
images were used to determine visually if land cover had changed be-
tween the periods 2000–2005 and 2010–2015. Training points from
land areas that changed were discarded to locate and define training
signatures for 2005 and 2015.

There were no historical records available for NHAR for the years
1991 and 1996 in GEP. Therefore, training data points for these years
were derived from the reference data collected for 2000. Training sites
from areas that were likely to remain unchanged based on previous vi-
sual interpretation of the GEP historical imagery were selected. In addi-
tion, the 1 km spatial resolution land use maps of China produced and
provided by the Chinese Academy of Sciences for the 1980s, 1995 and
2000 served as supplementary information to define land cover features
in the region.

For all images, visual interpretation of the Landsat data was also im-
plemented to improve image classification. Visual comparisons of mul-
tiple sets of three spectral band combinations were conducted using
ENVI software version 5.3 (Exelis Visual Information Solutions, 2015).
This approach was used to better distinguish the different categories
of the land cover scheme.

2.2.4. Reference data for validation
Reference validation data sets for accuracy assessment were created

by collecting space- and time-referenced data uploaded to the website
Panoramio (Google Inc.). The website is a photo-sharing service that
contains geo-tagged photos from around the world. Web-based
photo-sharing platforms, like Panoramio, are becoming an important
data source with potential applications in multiple research contexts
(Dong et al., 2014; Yu et al., 2014; Zhou et al., 2012).

Sets of photos for each year were downloaded and labelled man-
ually based on visual interpretation and using the GlobeLand30 land
cover classification scheme. Data were imported into ArcGIS to be
projected to the same UTM zone used for the satellite images
(ESRI, 2015). Reference points were buffered by 15 m to generate
the training site polygons that were used to assess classification ac-
curacy. Although most polygons were effective in distinguishing
among different land cover types, the use of this type of data may
introduce a level of uncertainty into the analyses (Fonte et al.,
2015). Therefore, all polygons of each validation class were checked
against historical satellite imagery from GEP. Reference data located
in areas where land cover type was questionable were excluded
from the analyses.

Although different data sources were used to create data sets for
training and validation, from the total number of reference points se-
lected, 425 (89.4%), 451 (90.0%), 486 (90.6%), 478 (90.5%), 500
(90.9%), 456 (90.1%) reference sites were used for training for the
years 1996, 2001, 2005, 2010 and 2015, respectively. The reference
data sets used for accuracy assessments included 50 polygons with ap-
proximately 2–3 pixels each.

2.3. Data analysis

2.3.1. Image classification
Pre-processing of the Landsat data was performed using the Landsat

package (version 1.08) (Goslee, 2011) in the R language and environ-
ment for statistical computing (R Core Team, 2016). TheMinnaert topo-
graphic correction method was applied independently to each spectral
band to improve image comparability between dates. The spectral
bands were stacked together and saved as a multiband image in TIFF
format. To reduce the effects of clouds, cloud and cloud shadow removal
were performed. The Landsat scenes for each date were mosaicked to-
gether and classified using ENVI version 5.3 (Exelis Visual Information
Solutions, 2015). The maximum likelihood algorithm was the selected
method for the process of supervised classification (Supplementaryma-
terial Table A.1). Assuming a normal distribution of the data, this algo-
rithm considers both the variance and covariance of class signatures to
assign unknown pixels to a specific land cover class (Lillesand et al.,
2014; Strahler, 1980).

The land cover classes were grouped into seven categories ac-
cording to the spectral reflectance values and the objectives of the
study. Because the reference data for classification was derived pri-
marily from GlobeLand30, the classification scheme adopted was
based on the land cover classification system established by the
NGCC (Table 2).

Post-classification refinements were applied to reduce errors in the
process of classification. Due to significant spectral confusion among
the classes, artificial surfaces and bare or sparsely vegetated areas,
these two classes were merged and represented as a single category in
the maps and subsequent analyses.

Using the ENVI software, confusion matrices were calculated to as-
sess the accuracy of the land cover classification maps. A confusion ma-
trix is a simple cross-tabulation of each mapped class vs. the reference
information (Foody, 2002; Lillesand et al., 2014). The overall accuracy
of the classification, Kappa coefficient and user's and producer's accura-
cy were derived from the confusion matrices. The Kappa statistic re-
flects the difference between actual agreement between reference
data and the classified maps and the agreement expected by chance. A
Kappa value of 1 indicates perfect agreement, while a value of 0 indi-
cates no agreement (Foody, 2002). User's accuracy provides an estimate
of the probability that a pixel from the land cover map matches the
same category in the reference data (it measures errors of commission),
whereas the producer's accuracy estimates the probability that a refer-
ence pixel has been mapped correctly (it measures errors of omission)
(Foody, 2002; Lillesand et al., 2014).
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2.3.2. Land cover change detection analysis
A post-classification change detection technique was performed

using ENVI software (Exelis Visual Information Solutions, 2015).
Cross-tabulation analyses were conducted to identify changes in land
cover between 6 different time intervals 1991–1996, 1996–2000,
2000–2005, 2005–2010, 2010–2015 and 1991–2015. These tables indi-
cate the number of pixels of a given class at time t1 that are classified as
the same or different class at time t2 (from–to). This supports identifica-
tion of changes in land cover as well as the identification of areas that
have not changed.

3. Results

3.1. Land cover classification and change detection analysis

Confusion matrices showed that the overall classification accuracies
were higher or equal to 80% and the total Kappa coefficients were N0.7.
These results represent a substantial agreement between the reference
data sets and the classified maps (Landis and Koch, 1977). The Kappa
coefficients for 1991, 1996, 2000, 2005, 2010 and 2015 were 0.83,
0.83, 0.78, 0.72, 0.74 and 0.80, respectively. Most user's and producer's
accuracies of individual classes were also generally high, ranging from
60% to 100% (Table 3).

Single date land cover maps were produced for each study year to
show the spatial distribution of six land cover types in NHAR (Fig. 2).
The geographic area covered by each individual class for all data prod-
ucts and the change statistics for 1991 and 2015, which were the tem-
poral extremes of the project were calculated (Table 4 and Fig. 3).

From 1991 to 2015, herbaceous vegetation, cultivated land and for-
est increased by approximately 708,600 ha (12.2% of the study area),
164,300 ha (2.9%) and 410,200 ha (7.1%), respectively. Shrubland de-
creased by 22,000 ha (0.4%) and water decreased by 10,300 ha (0.2%).
The largest relative change for the period 1991–2015 was observed in
the area covered by forest, which increased by 273.1%. Forest expanded
consistently in all periods, with the greatest increase occurring between
2010 and 2015. The change in forest was followed by the increase in
herbaceous vegetation, 49.8%, and in cultivated land, 12.3%. Shrubland
andwater decreased, respectively, 66.7% and 22.2%. Although the extent
of water and shrubland may have changed from year to year due to an-
nual variability in precipitation and temperature, theminor changes ob-
served in this category are likely to be partially explained by
classification errors. Because artificial surfaces and bareland were
merged into one a single class, it is difficult to interpret the changes ob-
served in this land cover category over time.

To further evaluate the results of the different types of land cover
conversions, cross-tabulation of the pair of maps 1991 and 1996, 1996
and 2000, 2005 and 2010, 2010 and 2015 were created (Table 5). In
Table 5, the categories of the first map (vertical) are compared with
those of the secondmap (horizontal) and tabulation is kept of the num-
ber of cells in each combination.

The results suggest that the area covered by herbaceous vegetation
increased in all periods except in the interval 1996–2000 when it de-
creased by 88,900 ha. Although cultivated land increased over the
whole study period, it experienced a decrease in the first five years of
the study and between 2000 and 2010.

In 1991, forest, herbaceous vegetation and cultivated land covered
an area of approximately 147,600 ha, 1,409,200 ha and 1,356,100 ha, re-
spectively. In 2000, prior to the implementation of the GGP, the extent
of land covered by these land cover types was 1,455,755 ha and
1,628,894 ha, respectively. By 2015, forest and herbaceous vegetation
extended to 557,807 ha and 2,117,812 ha, while cultivated land was re-
duced to 1,520,435 ha.

The increase in forest resulted mainly from conversion of cultivated
land and herbaceous vegetation in the twenty-five-year period. Of the
410,200 ha of total growth in forest between 1991 and 2015, 53.8%
was converted from herbaceous vegetation and 30.8% from cultivated
land. Although it is not possible to estimate the amount of land conver-
sion, the increase in herbaceous vegetation camemainly from bareland
and artificial surfaces.

The matrix created to show the land cover changes in NHAR during
the whole study period (1990 to 2015) indicates that the decrease in
water bodies (9300 ha) resulted mainly from conversion of cultivated
land (Table 5f). This finding was also observed in the matrices devel-
oped for the 5-year periods. In NHAR, wetlands are mainly distributed
in the irrigated plains of cultivated land. Therefore, the magnitude and
location of the changes in the Yellow River Irrigated District suggest

Table 2
Land cover classification scheme and definitions.

Land cover
type

Description Content

Water
bodies

All areas of water Streams and canals, lakes,
reservoirs, bays and estuaries

Artificial
surfaces

Land modified by human
activities

Residential areas, industrial and
commercial complexes,
transport infrastructure,
communications and utilities,
mixed urban or built-up land
and other built-up land

Bare or
sparsely
vegetated
areas

Areas with little or no “green”
vegetation present

Dry salt flats, sandy areas, bared
exposed rock and mixed barren
land

Herbaceous
vegetation

Areas characterized by natural or
semi-natural vegetation

Grasses and forbs

Cultivated
land

Areas where the natural
vegetation has been
removed/modified and replaced
by other types of vegetative
cover that have been planted for
specific purposes such as food,
feed and gardening

Cropland and pasture, orchards,
groves, vineyards, nurseries and
ornamental horticultural, other
cultivated land

Shrubland Natural or semi-natural woody
vegetation with aerial stems
b6 m tall

Evergreen and deciduous
species of true shrubs and trees
or shrubs that are small or
stunted

Forest Areas characterized by tree cover
or semi-natural woody
vegetation N6 m tall

Deciduous forest, evergreen
forest and mixed forest

Table 3
Summary of Landsat classification accuracies (%) for 1991, 1996, 2000, 2005, 2010 and 2015.

Land cover class 1991 1996 2000 2005 2010 2015

Producer's User's Producer's User's Producer's User's Producer's User's Producer's User's Producer's User's

Bareland and artificial surfaces 100.0 85.7 100.0 60.1 66.6 100.0 84.4 84.4 89.2 60.1 100.0 82.6
Cultivated land 100.0 66.7 100.0 100.0 100.0 60.0 71.4 74.1 74.1 78.4 77.2 89.4
Herbaceous vegetation 66.6 100.0 60.0 100.0 100.0 60.1 66.7 69.7 75.0 85.7 80.0 92.3
Shrubland 100.0 80.0 100.0 100.0 100.0 100.0 – – – – – –
Forest – – – – – – 66.6 60.2 80.0 88.8 100.0 61.5
Water 81.3 100.0 81.2 100.0 83.3 100.0 100.0 100.0 100.0 100.0 66.7 100
Overall accuracy 87.7 84.8 85.3 80.0 80.0 84.2
Kappa statistic 0.8 0.7 0.7 0.7 0.7 0.8
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that the results aremost likely to be related to omission and commission
errors in the Landsat classifications change map.

The changes in land cover that occurred in NHAR between 1991 and
2015 were not spatially homogeneous. The six land cover maps pro-
duced in the study reveal that land cover changes varied among the
three different geographical regions. In general, the central desertified
district and the southern mountainous and loess hilly district were the
most transformed. Forest growth primarily occurred in the north and
south of the province, in areas of the Helan and Liupan mountains in
the north and south, respectively. The increase in herbaceous vegetation
was mainly distributed in the central arid area of the province, and
around the margin of forestland. Cultivated land dominated the land-
scape on the big plains of the northern Yellow River Irrigated District
with a progressive linear expansion in the central area.

4. Discussion

The results of the present study are consistent with previous envi-
ronmental assessments conducted in western China to describe the
land cover changes that have occurred in regions where ecological res-
toration policies were adopted (Cao et al., 2009; Fan et al., 2015; Zhao
et al., 2010). According to national estimates, by 2006, the GGP policy
was responsible for the conversion of almost 9 million ha of cultivated

land into forest and herbaceous vegetation, and the afforestation of
11.7 million ha of barren land (Liu et al., 2008). In the Loess Plateau, a
region commonly characterized by drought, desertification and soil ero-
sion, a rapid increase in vegetation cover was reported in the early
2000s after the implementation of the pilot phase of the program (Fan
et al., 2015; Xin et al., 2008). The land cover changes observed in
NHAR are in agreement with the key environmental goals of the GGP
and previous short-term (ten years or less) land cover assessments con-
ducted in the province using remote sensing or official national reports
(Li et al., 2008; Qi et al., 2003; Wang et al., 2014; Zhang et al., 2008). In
this study, forest, herbaceous vegetation and cultivated land coverages
increased between 1991 and 2015. Similar findings were reported in
other provinces such as Shaanxi located at the middle reaches of the
Yellow River Basin (H. Chen et al., 2015), and Sichuan Province, located
at the upper reaches of the Yangtze River (Yan-qiong et al., 2003). Re-
duction of surface runoff and soil erosion as a result of the implantation
of the GGP in Hunan Province (2000–2005) was also reported (Li et al.,
2006). However, these land cover changeswere reported by researchers
as positive or negative effects on the local environment based on the en-
vironmental needs of these regions.

As a consequence of rapid human population growth in NHAR, ex-
tensive areas of natural grassland were converted to cultivated land
(Zhang et al., 2008). The overexploitation of land, together with

Fig. 2. Land cover classification maps for NHAR from (a) 1991, (b) 1996, (c) 2000, (d) 2005, (e) 2010, (f) 2015 and map of the location of the province in China.

Table 4
Summary statistics of land cover maps from Ningxia Hui Autonomous Region by area (1000 ha).

Land cover class 1991 1996 2000 2005 2010 2015 Relative change
1991–2015 (%)Area (%) Area (%) Area (%) Area (%) Area (%) Area (%)

Water bodies 53.1 (0.9) 84.6 (1.5) 59.3 (1.0) 47.9 (0.8) 43.6 (0.8) 42.8 (0.7) −22.2
Herbaceous vegetation 1409.2 (24.5) 1543.2 (26.8) 1455.7 (25.2) 1687.7 (29.3) 2022.3 (35.1) 2117.8 (36.7) +49.8
Cultivated land 1356.1 (23.5) 1257.7 (21.9) 1628.8 (28.3) 1543.3 (26.8) 1504.4 (26.1) 1520.4 (26.4) +12.3
Shrubland 35.4 (0.6) 27.0 (0.5) 0.3 (0.004) 33.9 (0.6) 7.8 (0.1) 13.4 (0.2) −66.7
Forest 147.6 (2.6) 227.8 (4) 290.4 (5.1) 380.4 (6.6) 455.1 (7.9) 557.8 (9.7) +273.1
Bareland and artificial surfaces 2757.9 (47.8) 2611.7 (45.4) 2321.9 (40.3) 2066.1 (35.9) 1726.1 (30) 1507.1 (26.2) −45.2
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intensive grazing of domestic animals contributed to the degradation of
the local environment (Zhang et al., 2008). As part of the efforts to re-
cover the landscape, including the implementation of the GGP, growth
of artificial grass was promoted in the province while fencing natural
grassland and applying grazing bans (Wang et al., 2014). Therefore, it
may be possible that some of the policies implemented to improve eco-
logical conditions may have led to the expansion of herbaceous vegeta-
tion and the more discrete increase in cultivated land.

The spatial variation in the distribution of the six land cover types
and changes in NHAR between 1991 and 2015 can be explained partial-
ly by the contrasting climatic and topographic characteristics of the
three geographical regions of the province. However, there are also
other local environmental and socio-economic factors that may influ-
ence the local land use practices and lead to land cover change. NHAR
is vulnerable to numerous meteorological hazards that have the poten-
tial to damage the land surface (Li et al., 2013). Drought, floods, torren-
tial rain and high and low temperature stresses are particularly frequent
in the region (Li et al., 2013). Between 2004 and 2006, a severe drought
affected the region causing an important reduction in the availability of
water for industrial and agricultural purposes (Li et al., 2013; Yang et al.,
2015). This meteorological event had important environmental and
economic consequences for the province, some of which were evident
in this study. Decreases of 126,200 ha of cultivated land and 15,800 ha
of water were observed between 2000 and 2010, particularly in the
northern and the central part of the province, where irrigation water
is mainly diverted from the Yellow River. These findings are in agree-
ment with thosementioned previously in a report that promotes better
adaptation strategies to minimise the effects of future environmental
hazards (Yang et al., 2015).

NHAR is currently undergoing economic transition processes that
also affect the use of land directly and indirectly (Wang et al., 2011).
Land conversion is linked directly to socioeconomic development due
to the effects of economic growth on urban expansion and exploitation
of natural resources (Wang et al., 2011). Economic growth also influ-
ences positively the spatial structure of land use patterns by improving
income opportunities from non-agricultural sectors, causing income di-
versification and promoting rural-urban migration (Peng, 2011). Popu-
lation growth in NHAR has also been a dominant factor driving urban
development processes, particularly in the north (Wu, 2002). Conse-
quently, some cultivated land has been transformed rapidly into rural
and urbanbuilt-up areas such as cities, roads, factories andmining infra-
structure in past decades (Wu, 2002). Therefore, it is reasonable to con-
clude that most of the decrease in land area covered by themerged land
cover class “bare or sparsely vegetated areas” and “artificial surfaces”
corresponded to a reduction in bare and sparely vegetated areas. In
the present study important changes in land cover were identified in
NHAR between 1991 and 2015. These findings raise the need for further
studies to determine the association of the GGP and other potential
drivers of land cover change with the observed increases in forest

cover, herbaceous vegetation and cultivated land. While current evi-
dence recognises the role of national ecological rehabilitation projects
in China, there is still a need for more holistic and rational approaches
that examine the contributions of other economic and social factors in
the process of landscape restoration in the country.

Ecological restoration policies, if implemented appropriately, can be
effective measures to address pressing environmental concerns (Liu
et al., 2008;Melillo et al., 2016; Nepstad et al., 2014). However, themix-
ture of natural and artificially modified landscapes has also important
implications for the structure and function of ecosystems and human
health. Environmental change has the potential to compromise food se-
curity by influencing food availability, accessibility, utilization and sys-
tems stability (Ingram et al., 2012). In addition, alterations to the
climate and landscape features have been increasingly associated with
variations in human disease patterns. This is particularly important for
infectious diseases, where environmental change impacts on the geo-
graphic range of various mosquito-borne diseases such as malaria, den-
gue and leishmaniasis (Caminade et al., 2014; Colón-González et al.,
2013; González et al., 2014) and non-mosquito-borne helminth infec-
tions, such as schistosomiasis and echinococcosis (Giraudoux et al.,
2013; Gomes et al., 2012; Y. Hu et al., 2013). Quality evaluated land
cover maps derived from remote sensing are important for such studies
(Danson et al., 2004; Hamm et al., 2015; Navas et al., 2016; Pleydell
et al., 2008). In hyper-endemic areas for echinococcosis in western
China the geographical patterns of alveolar echinococcosis infection
have been associated with the recent implementation of land reform
policies in the region (Giraudoux et al., 2013; Pleydell et al., 2008).
Land cover transformations that result from land reforms are likely to
alter the transmission of Echinococcus spp. by influencinghuman behav-
iour, animal population dynamics, spatial and temporal overlap of inter-
mediate and definitive hosts and the survival of the parasite eggs in the
external environment (Cadavid Restrepo et al., 2015). Further studies
may need to be conducted to test the association between land cover
change and infection patterns of human echinococcosis.

Although some effects of global environmental change can be antic-
ipated, most of the impacts depend on local vulnerabilities and the im-
plementation of effective strategies for adaptation (McCarthy, 2001).
Accurate predictions of LULC can only be estimatedwhen there is an ad-
equate availability of local socio-economic and baseline data (Lambin
and Geist, 2008). This study allowed us to identify spatial and temporal
patterns in land cover change trends in NHAR in the last 30 years. The
findings provide accurate information, in space and time, and visual
representations of the areas that aremost affected by land cover change.
Therefore, these results are a reasonable starting point from which to
conduct future research in NHAR to explore, monitor and predict future
environmental change and its short- and long-term effects on the well-
being of the population.

The main challenges of the study include the limited availability of
historical satellite and reference data to train the classifier and validate

Fig. 3. Summary statistics of land cover maps from Ningxia Hui Autonomous Region by area (1000 ha).
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Table 5
Matrices of land cover changes (1000 ha) from 1991 to 2015.

a. Period 1991–1996

1996
1991 1996 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces

Water bodies 40.0 3.1 33.8 0.3 0.1 7.0 84.3
Herbaceous vegetation 0.8 1104.5 211.6 17.5 10.8 198.0 1542.0
Cultivated land 6.7 92.5 1024.5 0.6 5.1 128.2 1257.6
Shrubland 0.2 10.5 0.4 10.1 0.0 5.7 27.0
Forest 3.8 54.1 35.8 1.7 131.0 0.6 227.0
Bareland and artificial surfaces 0.8 142.7 49.9 5.1 0.1 2411.9 2610.5
Difference 32.0 134.6 −98.4 −8.4 80.0 −140.9
1991 total 52.3 1407.4 1356.0 35.4 147.0 2751.4 5748.0

b. Period 1996–2000

2000
1996 2000 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces

Water bodies 33.6 2.4 15.2 0.4 1.7 5.8 59.3
Herbaceous vegetation 18.6 634.7 226.9 15.5 44.4 513.1 1453.1
Cultivated land 21.1 387.3 685.5 0.2 43.6 490.8 1628.4
Shrubland 0.0 0.1 0.0 0.1 0.0 0.1 0.3
Forest 3.7 59.8 77.1 5.3 133.6 10.9 290.3
Bareland and artificial surfaces 7.5 457.8 252.8 5.5 3.7 1589.7 2317.1
Difference −25.2 −88.9 370.8 −26.7 63.3 −293.3
1996 total 84.5 1542.0 1257.6 27.0 227.0 2610.4 5748.0

c. Period 2000–2005

2005
2000 2005 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces

Water bodies 27.5 8.1 5.7 0.0 2.2 4.0 47.5
Herbaceous vegetation 10.3 687.5 373.8 0.1 47.7 566.0 1685.4
Cultivated land 7.8 326.1 786.9 0.005 83.3 338.0 1542.1
Shrubland 1.0 17.9 1.7 0.1 9.9 3.2 33.8
Forest 5.8 82.8 133.3 0.0 139.6 17.5 379.0
Bareland and artificial surfaces 6.9 330.0 327.0 0.0 7.5 1389.0 2060.4
Difference −11.8 233.0 −88.3 33.6 88.8 −257.3
2000 total 59.3 1452.4 1628.4 0.2 290.2 2317.7 5748.0

d. Period 2005–2010

2010
2005 2010 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces

Water bodies 25.5 5.3 5.4 0.1 1.7 5.5 43.5
Herbaceous vegetation 2.1 922.0 460.8 21.8 72.9 542.7 2022.3
Cultivated land 9.9 386.1 753.8 2.1 95.5 257.2 1504.6
Shrubland 0.2 1.4 0.2 3.4 0.7 1.8 7.7
Forest 3.8 82.2 168.3 1.0 193.0 6.8 455.1
Bareland and artificial surfaces 6.0 289.0 154.0 5.5 15.0 1245.0 1714.5
Difference −4.0 1100.3 −37.9 −26.2 76.1 −345.5
2005 total 47.5 1686.0 1542.5 33.9 379.0 2060.0 5748.0

e. Period 2010–2015

2015
2010 Total 2015 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces

Water bodies 26.8 1.4 5.6 0.3 3.1 5.5 42.8
Herbaceous vegetation 1.0 1294.2 276.6 0.4 45.7 500.0 2117.2
Cultivated land 10.8 235.5 963.9 0.2 129.5 180.0 1519.0
Shrubland 0.0 6.7 0.3 2.8 0.3 3.3 13.4
Forest 0.8 123.9 152.4 1.2 271.0 8.4 557.7
Bareland and artificial surfaces 3.9 360.5 105.5 2.9 5.6 1017.5 1496.0
Difference −0.6 95.2 15.0 5.6 102.5 −218.7
2010 total 43.4 2022.0 1504.3 7.8 455.2 1714.7 5748.0

f. Period 1991–2015

2015
1991 2015 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces

Water bodies 15.9 2.9 14.7 0.1 0.3 8.9 42.8
Herbaceous vegetation 2.4 689.4 307.0 12.5 9.9 1096.0 2117.2
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the land cover maps. When analysing time-series data sets, quality and
consistency in the data are essential to identify the real changes that
occur in the environment (Hamm et al., 2015; Stehman, 2009). In this
study, part of the disagreement between the Landsat scenes and the ref-
erence training data sets may be attributed to the fact that there were
no images for the specified period in some locations. For some years it
was necessary to derive data from different growing seasons. In addition,
the use of Globeland30 and the FNFmapsmay have introduced some un-
certainty into the analysis because they are also land cover products that
may contain classification errors that bydefaultwere included in the anal-
yses. Although the reference training data obtained from these maps
allowed us to classify the satellite images with good accuracy, amore tra-
ditional approach that incorporates different data sources and a combina-
tion of field studies would be preferred (Stehman, 2009). The land cover
classification scheme used in the study was derived from the land cover
classification system established by the NGCC. Although the use of this
legend allowed comparability between land cover datasets, the interpre-
tation of the land cover changes found in the study with respect to the
GGP goals also represented a challenge (Fritz and See, 2008; Tchuenté
et al., 2011). Based on similarities of definitions, the changes found in her-
baceous vegetation and cultivated land were compared to the project
goals with respect to grasslands and croplands, respectively.

5. Conclusions

The present study explores and quantifies the changes in land cover
that occurred in NHAR during a period of extensive landscape regener-
ation. The results of the analysis of land cover change conducted in this
study concur with the large-scale impact of the GGP in increasing forest
and herbaceous vegetation coverage and in regenerating bareland area.
These results provide evidence that may help facilitate future landscape
planning, management and decision making in the province. In addi-
tion, this assessment of land cover change may help to explain and re-
spond effectively to emerging environmental risks in NHAR.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.04.124.
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Table 5 (continued)

f. Period 1991–2015

2015
1991 2015 total

Water bodies Herbaceous vegetation Cultivated land Shrubland Forest Bareland/artificial surfaces
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Difference −9.3 710.2 163.7 −22.0 410.1 −1253.2
1991 total 52.1 1407.0 1356.1 35.4 147.6 2750.0 5748.0
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CHAPTER 4 HUMAN ECHINOCOCCOSES IN NINGXIA HUI 

AUTONOMOUS REGION, CHINA 

4.1 Context 

Evidence of E. granulosus and E. multilocularis emergence and re-emergence in several 

regions of the world creates an increasing need to monitor and map the risk that CE and 

AE pose for human populations. Land cover change and climatic variations have been 

identified as potential environmental processes determining the emergence or re-

emergence of these parasites in areas that were not previously endemic.  

The process of landscape transformation in NHAR over the past decades may 

have led to an increasing human disease burden. Therefore, there was a need to identify 

highly endemic areas for human echinococcoses in NHAR and establish evidence on the 

association of local human echinococcosis risk with environmental change to facilitate 

the surveillance and targeting of essential control strategies. 

Spatial epidemiological studies conducted in echinococcosis-endemic regions in 

Western China, including NHAR, have provided valuable insight into the landscape 

processes underlying echinococcosis transmission at local spatial scales. However, most 

of those previous approaches involved environmental data collected at a single time-point 

that did not allow capture of major environmental changes over time. In this Chapter, I 

present the result of a retrospective study of clinical records conducted in NHAR to assess 

the relationship between the changes in local environmental features (described in 

Chapter 3) and the spatiotemporal variation in CE and AE risk at the township level 

between January 1994 and December 2013.  
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4.2 Spatiotemporal patterns and environmental drivers of human 

echinococcoses over a twenty-year period in Ningxia Hui Autonomous 

Region, China 

 

Cadavid Restrepo, A.M.; Yang, Y.R.; McManus, D.P.; Gray, D.J.; Barnes, T.S.; 

Williams, G.M.; Magalhães, R.J.S.; Hamm, N.A.S; Clements, A.C.A. Spatiotemporal 

patterns and environmental drivers of human echinococcoses over a twenty-year period 

in Ningxia Hui Autonomous Region, China. Parasites & Vectors. 2018; 11:108. 

 

Supplementary material for this paper is provided in Appendix C. 
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Abstract 

Background: Human cystic (CE) and alveolar (AE) echinococcoses are zoonotic 

parasitic diseases that can be influenced by environmental variability and change through 

effects on the parasites, animal intermediate and definitive hosts, and human 

populations.We aimed to assess and quantify the spatiotemporal patterns of human 

echinococcoses in Ningxia Hui Autonomous Region (NHAR), China between January 

1994 and December 2013, and examine associations between these infections and 

indicators of environmental variability and change, including large-scale landscape 

regeneration undertaken by the Chinese authorities.  

Methods: Data on the number of human echinococcosis cases were obtained from a 

hospital-based retrospective survey conducted in NHAR for the period 1 January 1994 

through 31 December 2013. High-resolution imagery from Landsat 4/5-TM and 8-OLI 

was used to create single date land cover maps. Meteorological data were also collected 

for the period January 1980 to December 2013 to derive time series of bioclimatic 

variables. A Bayesian spatio-temporal conditional autoregressive model was used to 

quantify the relationship between annual cases of CE and AE and environmental 

variables 

Results: Annual CE incidence demonstrated a negative temporal trend and was positively 

associated with winter mean temperature at a 10-year lag. There was also a significant, 

nonlinear effect of annual mean temperature at 13-year lag. The findings also revealed a 

negative association between AE incidence with temporal moving averages of 

bareland/artificial surface coverage and annual mean temperature calculated for the 

period 11–15 years before diagnosis and winter mean temperature for the period 0–4 

years. Unlike CE risk, the selected environmental covariates accounted for some of the 

spatial variation in the risk of AE.  
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Conclusions: The present study contributes towards efforts to understand the role of 

environmental factors in determining the spatial heterogeneity of human echinococcoses. 

The identification of areas with high incidence of CE and AE may assist in the 

development and refinement of interventions for these diseases, and enhanced 

environmental change risk assessment.  

Keywords: Echinococcosis, Cystic echinococcosis, Alveolar echinococcosis, Spatial 

analysis, Environmental change, Remote sensing 
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Background 

Cystic (CE) and alveolar (AE) echinococcoses, caused by Echinococcus granulosus and 

E. multilocularis, respectively, are the two forms of human echinococcosis of major 

public health importance worldwide [1]. Both diseases are distributed widely and 

potentially life threatening if left untreated [2–4]. Within China, E. granulosus and E. 

multilocularis are responsible for approximately 0.6–1.3 million human cases, with 

transmission occurring predominantly in central and western areas. Based on reports from 

the Chinese Ministry of Health, more than 98% of patients with human echinococcoses 

originate from Gansu, Qinghai and Sichuan Provinces and from Xinjiang Uygur, Ningxia 

Hui and Inner Mongolia Autonomous Regions [5]. Although these regions constitute 

highly endemic areas for these diseases in East Asia, significant differences in parasite 

prevalences have been demonstrated at regional and local levels [6–8]. On the Qinghai-

Tibet Plateau, where there is high transmission of Echinococcus spp., the prevalence of 

both CE and AE ranges between 0.4–9.5%, being higher in communities where 

pastoralism and poor socio-economic conditions are predominant [9, 10]. The patchy AE 

endemicity distribution has been associated with landscape characteristics and climatic 

factors that determine habitat suitability for the definitive and intermediate hosts [11–17]. 

Hence, understanding how environmental and social factors interact to determine parasite 

transmission is essential for the design and implementation of effective strategies against 

echinococcosis, and to target resources to the communities most in need. 

Echinococcus spp. are maintained primarily through complex domestic and 

sylvatic life-cycles that involve a wide range of intermediate and definitive hosts and a 

free-living egg stage. Humans are accidental hosts, that acquire the infection through 

direct contact with definitive hosts or through a contaminated environment [2]. In the 

sylvatic and semi-domestic (E. multilocularis) and domestic (E. granulosus) life-cycles 
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of the parasites, distinct socio-demographic and environmental factors modulate the 

parasite-host-human interplay at different spatial scales [18, 19]. Therefore, different 

processes of environmental change have the potential to modify the transmission 

pathways of these parasites [18]. 

Various land reform policies and incentive programmes have been developed in 

China to recover degraded lands and promote sustainable development in rural areas [20]. 

The Grain for Green Project (GGP), also called the Sloping Land Conversion 

Programme, implemented since 1999, is one of the largest payment for ecosystems 

services schemes in China [21]. The main focus of the programme is to rehabilitate the 

ecological environment by promoting three different types of land conversion on steep 

slopes: cropland to grasslands, cropland to forest and wasteland to forest [21]. The GGP 

also advocates for small ruminant enclosure and grazing prohibition. In highly endemic 

areas for echinococcoses, the anthropogenic-driven land cover modifications that resulted 

apparently from the implementation of the GGP and other reforestation programmes 

might have favoured the transmission of E. multilocularis. Evidence on the impact of 

deforestation [13, 22], afforestation [11] and fencing/agricultural practices [23–25] on 

the population density and distribution of small mammals is increasing. 

Recognizing the public health and economic significance of human 

echinococcoses, and the potential risk of parasite range expansion, the National Health 

and Family Planning Commission (NHFPC) launched a national action plan for 

echinococcosis control in 2005 [26]. This initiative aims to decrease the seropositivity 

rate in children aged < 12 years and to reduce infestation rates in dogs. To achieve these 

goals, five interventions were designed to reduce the impacts of these infections in 217 

endemic counties: community-based epidemiological surveys involving serological, 

abdominal ultrasound and chest X-ray screening for early detection of cases; treatment 
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and surveillance of patients diagnosed with the disease; education campaigns to enhance 

awareness among local people and health officials; regular anti-helmintic treatment for 

deworming of dogs; and improved control of slaughter practices [27]. In general, the 

coordination of these efforts has proven difficult, especially in rural areas [26, 27]. In 

order to improve the establishment and monitoring of realistic targets for control, it is 

necessary to estimate the real impact of these infections and the permissive factors for 

transmission at local and regional scales [28].  

Using geographical information systems (GIS), Earth observation data and a 

Bayesian statistical framework, the present study describes the spatio-temporal patterns 

of CE and AE in NHAR between January 1994 and December 2013. The aims were to 

identify highly endemic areas for these infections in the autonomous region, and to 

determine the environmental covariates that are shaping their local geographical 

distributions, in particular those that may be indicators of the potential impact of the GGP 

on the NHAR land cover profile. The findings may help the targeting of resources to 

communities most in need of echinococcosis control, and by contributing to 

environmental risk assessments of major landscape regeneration programmes such as the 

GGP.  

 

Methods 

Study area 

NHAR is a province-level autonomous region located in Northwest China between 

latitudes 35°26'N and 39°30'N, and between longitudes 104°50'E and 107°40'E. The 

provincial territory covers an area of 66,400 km2 and is bordered by the Inner Mongolia 

Autonomous Region to the North, Gansu Province to the South and West and Shaanxi 

Province to the East. Administratively, NHAR is divided into 5 prefectures that are 
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subsequently subdivided into counties/districts/county-level cities, townships and 

villages (Additional file 1). The population reached about 6.6 million people in 2014, of 

whom the majority were living in urban areas (53.6%) compared to rural areas (46.4%) 

[29]. From those living in rural areas, 54.7% belonged to the Hui minority ethnic group 

and 45.3% were Han Chinese [29]. Internal migration, movement of people from one 

area (a province, prefecture, county or township) to another within one country [30], is 

particularly high in NHAR with 54.6% of households reporting at least one migrant in 

2001 [31]. Also, a report from the Beijing Normal University and Hitotsubashi University 

in 2009 indicated that internal migration in NHAR increased from 17.2% in 2002 to 

28.3% in 2008, among the working-age population (aged between 16 and 65 years) who 

participated in the GGP (participation period between 3 and 6 years), and decreased from 

24% in 2002 to 17.6% in 2008 among people who did not participate in the programme 

[32]. The report also demonstrated that migration decision depends on various 

demographic and socioeconomic factors. In NHAR, most migrants are young men with 

an education level of about 6–9 years, which coincides with the population with high 

tendency towards migration in China [33]. Variations in migration propensity between 

Han and Hui nationality groups or between married and non-married people were not 

found [32]. 

NHAR lies in a temperate continental monsoon climate zone that is characterized 

by large seasonal variation in temperature, rainfall and humidity. About 80% of the 

annual rainfall occurs during the summer and autumn months and generally increases 

from North to South. Elevation increases from North to South with the highest peak at 

3556 meters (Fig. 1) [16].  
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Fig. 1 Map and elevation of NHAR and location of the province within China 

 (insert). The blue lines divide the three major natural regions 
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Data on human CE and AE  

Data on the number of human CE and AE cases were derived from a hospital-based 

retrospective survey. Hospital medical records for the period between January 1 1992 and 

December 31 2013 were reviewed in 25 public hospitals in NHAR: 1 hospital from each 

county (n = 21), three hospitals from the capital city, Yinchuan, and 1 hospital from 

Guyuan Prefecture. Data collection was conducted during two different time periods, 

2002–2003 and 2012–2013 and both involved the same number of hospitals. These 

hospitals were selected because they provide clinical and surgical care for most 

echinococcosis patients from rural and urban areas in the province. When patients with a 

presumptive echinococcosis diagnosis are admitted to local rural medical centres, they 

are usually referred to the county hospital for confirmation, treatment and follow-up 

examination. All patients whose diagnoses of CE and AE infection were established 

during the study period were included in the analysis. Inclusion criteria required that the 

diagnosis of a CE or AE case was confirmed based on imaging, serological, surgical 

and/or histopathologic findings. The classification scheme proposed by the World Health 

Organization was used to diagnose and categorise CE and AE [73]. A standard form was 

used to extract individual information on relevant clinical, pathological and demographic 

data for all confirmed cases. Data were geo-referenced to the township in which each 

patient resided: this was assumed to be the geographical area where the infection 

occurred. The day of diagnosis was considered to be the date of primary surgical and 

confirmatory procedures. If a confirmed case was readmitted to hospital with the same 

diagnosis, only the initial admission was included in the analysis. The design and methods 

of the hospital survey for the period 1992–2002 have been described in detail elsewhere 

[34, 35]. The review of medical records for the period 2003–2013 followed the same 

protocol. 
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Because the data collected between 1992 and 1993 had considerable gaps, the CE 

and AE cases derived from these years were excluded from the analysis. For the purpose 

of our analyses the time period for the study was set from January 1 1994 to December 

31 2013. To conduct the analysis, CE and AE cases were aggregated by township and 

year. 

 

Population data 

Data on population for the year 2010 were downloaded from the WorldPop Project 

website [36]. A grid (i.e. raster surface) was available for the area of China at the 

resolution of 100 m. Population counts were extracted for each township using the 

ArcGIS software [37] and an administrative map of NHAR. In addition, data on 

population at the prefecture level were also obtained for the years 1990 and 2000 from 

the national censuses [38]. These data were used to calculate an average annual 

population growth rate for each prefecture between the years as follows: r = (P2-P1/P1)/t; 

where r is the average rate of growth, P1 and P2 are the population totals for the first and 

second reference years, respectively, and t is the number of years between the two census 

counts. Applying a Taylor series approximation to remove non-linear terms [39], the 

growth rate estimates were then used to calculate population counts for each township 

and year based on the 2010 population values derived from the WorldPop grid, (P2= 

P1e
(rt)) [40]. However, it should be noted that the approximation becomes increasingly 

erroneous as t increases (Additional file 2) [39]. 

 

Climate and physical environment data 

The independent variables included in the analysis were derived from the following 

datasets: land cover maps, elevation, monthly mean temperature and precipitation. 
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Because data on human echinococcoses were collected for the period 1994–2013, the 

environmental datasets were derived from 1980 to 2013 to investigate different lag 

periods of environmental variables between exposure and disease (the incubation period 

of echinococcosis infections is 5–15 years) [41]. 

Single date land cover maps were created for the years 1991, 1996, 2000, 2005, 

2010 and 2015. The scientific background and processing steps have already been 

published [9] so are only outlined in brief here. These maps were produced using images 

retrieved from the Landsat Surface Reflectance Climate Data Record available in Earth 

Explorer [42]. Four scenes processed from Landsat 4-5 Thematic Mapper and Landsat 8 

Operational Land Imager and Thermal Infrared Sensor were collected for each year. Most 

scenes were retrieved from the summer and autumn season that correspond to the period 

June to November [43, 44]. When there were no scenes available for the selected months, 

the closest-in-time and most cloud-free scenes available were downloaded for the 

analyses. Minnaert topographic correction, cloud and cloud shadow removal were 

performed using the Landsat package in the R language and environment for statistical 

computing [45, 46]. Images were mosaicked and classified by applying the maximum 

likelihood algorithm in ENVI version 5.3 [47]. Reference datasets for land cover 

classification (training) were produced by random sampling of a combination of 

relatively fine-scale global maps, the GlobeLand30 and the global forest/non-forest maps 

(FNF) [48, 49] using the ArcGIS software version 10.3.1 [37]. Six land cover classes 

were identified: water bodies, artificial surfaces, bare or sparsely vegetated areas, 

herbaceous vegetation, cultivated land, shrubland and forest. Due to substantial 

similarities between the spectral values of artificial surfaces and bare or sparsely 

vegetated areas, these two classes were merged and represented as a single land cover 

category called bareland/artificial surfaces (Table 1). 
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Table 1 Land cover classification scheme and definitions 

 

 

 

Land cover 

type 

Description Content 

Water bodies All areas of water Streams and canals, lakes, 

reservoirs, bays and estuaries 

Artificial 

surfaces 

Land modified by human activities Residential areas, industrial and 

commercial complexes, transport 

infrastructure, communications 

and utilities, mixed urban or 

built-up land and other built-up 

land 

Bare or 

sparsely 

vegetated 

areas 

Areas with little or no ‘green’ 

vegetation present 

Dry salt flats, sandy areas, bared 

exposed rock and mixed barren 

land 

Herbaceous 

vegetation 

Areas characterized by natural or 

semi-natural vegetation 

Grasses and forbs 

Cultivated 

land 

Areas where the natural vegetation 

has been removed/modified and 

replaced by other types of vegetative 

cover that have been planted for 

specific purposes such as food, feed 

and gardening 

Cropland and pasture, orchards, 

groves, vineyards, nurseries and 

ornamental horticultural, other 

cultivated land 

Shrubland Natural or semi-natural woody 

vegetation with aerial stems less than 

6 m tall 

Evergreen and deciduous species 

of true shrubs and trees or shrubs 

that are small or stunted 

Forest Areas characterized by tree cover or 

semi-natural woody vegetation 

greater than 6 m tall 

Deciduous forest, evergreen 

forest and mixed forest 



Chapter 4 human echinococcoses in NHAR 

74 

 

Sets of space- and time-referenced photographs from the website Panoramio [50] 

were downloaded for each year to produce datasets for accuracy assessments of the land 

cover classes. In order to reduce the level of uncertainty due to the use of this type of data 

[51], all selected photographs were labelled manually based on visual interpretation, and 

cross-checked against historical imagery from Google Earth Pro (GEP) version 

7.1.5.1557 [52]. The overall classification accuracies of all maps were higher or equal to 

80% and the total Kappa coefficients were greater than 0.7. These results represent a 

substantial agreement between the reference datasets and the classified maps. The six 

land cover maps and more specific and detailed information about the process of land 

cover classification and validation is available elsewhere [53].  

Monthly averages of temperature and precipitation data for the period January 1 

1980 to December 31 2013 were provided by the Chinese Academy of Sciences. Data 

were first collected from 16 local weather stations and interpolated using the Inverse 

Distance Weighting (IDW) method. ESRI grids including the monthly data were obtained 

at the resolution of 1 km (approximately 30 arc-seconds) grid (Additional files 3–5). 

Elevation data from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 were 

downloaded from the USGS Earth Explorer website [54]. The ASTER GDEM is 

available globally in GeoTIFF format at the resolution of 1 arcsecond (approximately 30 

m) (Fig. 1). 

 

Data analysis 

A township-level shapefile (boundary map) of NHAR was produced using MapInfo Pro 

software version 15.0 [55] and a scanned and geo-referenced administrative map of 

NHAR provided by the Bureau of Geology and Mineral Resource. The administrative 
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boundary map included 227 township-level areas. The small area of the townships 

(median 154 km2, interquartile range 73.5–297.5 km2) permitted an analysis of human 

echinococcoses at a high level of spatial disaggregation. 

The spatial datasets including human echinococcosis cases, demographic and 

environmental data were imported into the ArcGIS software [37] and projected to the 

Universal Transverse Mercator (UTM) coordinate system zone 48N. The datasets were 

linked according to location to the administrative boundary map of NHAR to summarise 

and extract the data by township area and define parameters for subsequent statistical 

analyses. 

The spatial mean values of elevation (average elevation calculated from pixel 

values) and the spatial extent (as percentage of area) of each land cover class for the years 

1991, 1996, 2000, 2005, 2010 and 2015 were calculated for all the townships. Because 

there were only six land cover maps, data extracted by class were then used to impute 

change rates at the township level for the periods 1991–1996, 1996–2000, 2000–2005, 

2005–2010, and 2010–2015. In this way, it was possible to estimate the spatial extent of 

all land cover classes in each township for all years between 1980 and 2015. 

Annual series of bioclimatic variables were calculated at the township level from 

the climate datasets. Monthly temperature and precipitation records were summed in the 

GIS to provide annual, summer (June-August) and winter (December-February) 

averages. Other variables that were calculated include maximum, minimum, standard 

deviation, range values and precipitation of the driest and wettest quarters of each year. 

Crude standardised morbidity ratios (SMRs) for each administrative area were 

calculated for the periods 1994–1998, 1999–2003, 2004–2008 and 2009–2013. SMRs 

were computed by dividing the observed number of cases by the expected number of 
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cases in the study population (overall incidence rate of human echinococcoses for the 

whole province from 1994 to 2013 multiplied by the population of each township). 

To account for the long incubation period of CE and AE, temporal lags in the 

effects of land cover and bioclimatic variables were incorporated in the analysis by 

calculating cross-correlation coefficients between the CE and AE counts in a given year 

and the value of each environmental predictor at time t (t–0, t–1, t–2… t–34 years). From 

each bivariate time-lagged correlation, only the lag with the highest correlation value was 

selected for the analysis. A moving average (MA) technique was also applied to generate 

temporally smoothed estimates of the land cover and climate data. In this way, it was 

possible to capture the interplay between the parasite, hosts and the environment over 

an extended period of time rather than at a single point in time. In order to examine 

different short-, intermediate-and long-term exposure windows, the MAs were calculated 

by aggregating the environmental data in 5-year lagged periods as follows:  

 

• MA 1 (t–0, t–1, t–2, t–3, t–4) 

• MA 2 (t–1, t–2, t–3, t–4, t–5) 

• MA 3 (t–5, t–6, t–7, t–8, t–9) 

• MA 4 (t–10, t–11, t–12, t–13, t–14) 

• MA 5 (t–6, t–7, t–8, t–9, t–10)  

• MA 6 (t–11, t–12, t–13, t–14, t–15) 

 

Univariate Zero-inflated negative binomial regression models were developed 

using the R software version 3.2.2. [45]. In this way, it was possible to assess separately 

the association of the response variables, CE and AE counts, with the environmental 

factors with the highest lagged correlation and all MAs. Zero-inflated negative binomial 
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regression models were preferred over Poisson, negative binomial and zero-inflated 

Poisson models based on the results of the Vuong test [56]. Pearson correlation analyses 

were applied to assess collinearity among all environmental predictors. If the correlation 

coefficient between a pair of variables was > 0.9, the variable with the highest value of 

the Akaike information criterion (AIC) in the univariate regression model was excluded 

from the multivariate analysis. Nonlinear associations between all environmental 

covariates and CE/AE counts were also examined using quadratic terms (Fig. 2). 
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Fig. 2 Environmental variables and variable selection process for the spatiotemporal analysis of human echinococcosis in NHAR for the 

period 1 January 1994 to 31 December 2013 
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 A Bayesian framework was used to construct three different Poisson regression 

models of the observed incidence data of CE and AE using the OpenBUGS software 3.2.3 

rev 1012 [57]. The first model (Model I) was based on the assumption that spatial 

autocorrelation was not present in the relative risk of these infections. This model was 

developed incorporating time in years, the selected explanatory variables and an 

unstructured random effect for township; the second model (Model II) included the 

explanatory variables and a spatially structured random effect; the third model (Model 

III) was constructed without explanatory variables and incorporating only a spatially 

structured random effect (enabling an assessment of the degree to which the explanatory 

variables characterised spatial clustering of infections). 

The mathematical notation for Model II is provided below, and contains all of the 

components of Model I and Model III. Model II, assumed that the observed counts of the 

infection (CE or AE), Y, for the ith township (i = 1. . .227) in the jth year (1994–2013) 

followed a Poisson distribution with mean (µij), that is, 

𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) 

log(𝜇𝑖𝑗) = log(𝐸𝑥𝑝𝑖𝑗) + 𝜃𝑖𝑗 

𝜃𝑖𝑗 = 𝛼 + Year𝑗 𝗑 𝛾 +  ∑ 𝛽𝑧

𝑧

𝑧=1

 𝗑 λ𝑧𝑖𝑗 + 𝑠𝑖 

where Expij is the expected number of cases in township i in year j (acting as an offset to 

control for population size) and 𝜃ij is the mean log relative risk (RR); α is the intercept, γ 

is the coefficient for temporal trend, β is a vector of z coefficients, λ is a matrix of z 

environmental covariates, and si is the spatially structured random effect with mean zero 

and variance σs
2. Standardization of environmental variables was used to allow 

comparability of the effects and provide a more meaningful interpretation on the results. 

Standardization, involved subtracting the mean from each environmental variable and the 
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difference was divided by the standard deviation, which resulted in a standard deviation 

of one.  

The spatially structured random effect (Models II and III) was modelled using a 

conditional autoregressive (CAR) prior structure [58]. This approach uses an adjacency 

weights matrix to determine spatial relationships between townships. If two townships 

share a border, it was assumed the weight = 1 and if they do not, the weight = 0. The 

adjacency matrix was constructed using the ‘Adjacency Tool’ of the OpenBUGS 

software 3.2.3 rev 1012 [57]. A flat prior distribution was specified for the intercept, 

whereas a normal prior distribution was used for the coefficients (with a mean = 0 and a 

precision = 0.001). The priors for the precision (1/σt
2) of spatially structured random 

effects were specified using non-informative gamma distributions (0.5, 0.0005) 

(Additional files 6 and 7). 

The first 1000 iterations were run as a burn-in period and discarded. Subsequent 

sets of 20,000 iterations were run and examined for convergence. Convergence was 

determined by visual inspection of posterior density and history plots and by examining 

autocorrelation plots of model parameters. Convergence occurred at approximately 

100,000 iterations for each model. The last 20,000 values from the posterior distributions 

of each model parameters were stored and summarised for the analysis. The deviance 

information criterion (DIC) was used to compare the goodness-of-fit between models, 

where lower DIC indicates a better model fit. An α-level of 0.05 was used in all analyses 

to indicate statistical significance (as indicated by 95% credible intervals (95% CrI) for 

relative risks (RR) that excluded 1).  

Choropleth maps were created using the ArcGIS software [37] to visualise the 

geographical distribution of crude SMRs for the 227 townships in NHAR. The relative 
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risks of infection were expressed as a percentage by multiplying by 100. The posterior 

means of the random effects obtained from the models were also mapped. 

 

Results  

Descriptive analysis  

Summary statistics for annual mean numbers of human echinococcoses in NHAR for the 

period 1 January 1994–31 December 2013 were calculated (Table 2). A total of 4472 

cases were diagnosed in the hospitals during the study period. From the total number of 

cases, 4402 cases (98.4%) were CE and 72 (1.6%) were AE. Two patients were diagnosed 

with both diseases. The number of annual cases of CE increased slightly from 1994 to 

2013 (Additional file 8). Apart from the peak in the annual number of AE cases in 2007 

and 2008, the annual human echinococcosis cases remained relatively stable during the 

study period (Additional file 9). While the number of annual CE cases by township 

ranged between 0–32 with a mean of 0.9 (standard deviation (SD), 2.1), the annual 

number of AE cases ranged between 0–5 with a mean of 0.02 (SD, 0.2). Annual 

maximum and minimum temperatures for the townships in NHAR were 26.3 °C and -

13.9 °C, respectively, with a mean of 8.7 °C (SD, 0.98 °C) between 1980 and 2013. In 

the same period, annual maximum precipitation was 19,981.3 mm and annual minimum 

precipitation was 0.01 mm with a mean of 255.6 mm (SD, 131.1 mm) (Additional files 

10, 11). The mean elevation of the administrative areas was 1506.3 m above sea level 

(SD, 374.9 m). Township area covered by each land cover class in NHAR for the period 

1 January 1980 to 31 December 2013 is presented in Additional file 12.  
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Table 2 Numbers of total echinococcosis cases in Ningxia Hui Autonomous Region 

by year from 1994 to 2013 

 

 

Year Frequency 

total (CE/AE) 

Percent of total 

cases (CE/AE) in 

the period (%) 

Cumulative 

frequency total 

(CE/AE) 

Cumulative 

percent total 

(CE/AE) 

1994 141 (139/2) 3.2 (3.1/2.8) 141(139/2) 3.2 (3.1/2.8) 

1995 208 (205/3) 4.7 (4.6/4.2) 349 (344/5) 7.8 (7.7/7.0) 

1996 244 (240/4) 5.5 (5.4/5.5) 593 (584/9) 13.3 (13.1/12.5) 

1997 270 (266/4) 6.0 (6.0/5.5) 863 (850/13) 19.3 (19.1/18.0 

1998 244 (239/5) 5.5 (5.4/6.9) 1107 (1089/18) 24.8 (24.6/24.9) 

1999 249 (243/6) 5.6 (5.5/8.3) 1356 (1332/24) 30.3 (30.1/33.2) 

2000 275 (268/7) 6.1(6.1/9.7) 1631 (1600/31) 36.5 (36.2/42.9) 

2001 195 (192/3) 4.4 (4.3/4.2) 1826 (1792/34) 40.8 (40.5/47.1) 

2002 215 (214/2) 4.5 (4.8/2.8) 2041 (2006/36) 45.6 (45.3/49.9 

2003 186 (184/2) 4.2 (4.2/2.8) 2227 (2190/38) 49.8 (49.5/52.7) 

2004 213 (211/2) 4.8 (4.8/2.8) 2440 (2401/40) 54.6 (54.3/55.5) 

2005 223 (221/2) 5.0 (5.0/2.8) 2663 (2622/42) 59.5 (59.3/58.3) 

2006 189 (188/1) 4.2 (4.3/1.4) 2852 (2810/43) 63.8 (63.6/59.7) 

2007 214 (201/13) 4.8 (4.6/18.1) 3066 (3011/56) 68.6 (68.2/77.8) 

2008 255 (246/9) 5.7 (5.6/12.5) 3321(3257/65) 74.3 (73.8/90.3) 

2009 283 (279/5) 6.3 (6.3/6.9) 3604 (3536/70) 80.6 (80.1/97.2) 

2010 218 (218/0) 4.9 (4.9/0.0) 3822 (3754/70) 85.5 (85.0/97.2) 

2011 205 (204/1) 4.6 (4.6/1.4) 4027 (3958/71) 90.0 (89.6/98.6) 

2012 249 (249/0) 5.6 (5.6/0.0) 4276 (4207/71) 95.6 (95.2/98.6) 

2013 196 (195/1) 4.4 (4.4/1.4) 4472 (4402/72) 100 (100/100) 

Total 4472 

(4402/72) 

100 (100/100) – – 
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The maps of SMRs for the number of CE infections by township in the four time 

periods show some degree of spatial variability across the province (Fig. 3). In general, 

higher incidence rates of CE were observed in townships located in the northern Yellow 

River Irrigated District and the southern mountainous and loess hilly district, whereas 

lower incidence rates were recorded in the central desertified district of NHAR. The maps 

of AE incidence show that this infection was mainly distributed in the South with 

occasional foci identified in the North (Fig. 4). 

 

Fig. 3 Crude standardised morbidity ratios for cystic echinococcosis by township in 

NHAR for four different periods: a 1994–1998; b 1999–2003; c 2004–2008; d 2009–

2013 
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Fig. 4 Crude standardised morbidity ratios for alveolar echinococcosis by township 

in NHAR for four different periods: a 1994–1998; b 1999–2003; c 2004–

2008; d 2009–2013 

 

 

Bayesian spatio-temporal models of human CE and AE 

Based on the DIC estimates, Models II of CE and AE had the best parsimonious 

characterization of the data among all the models examined (Tables 3, 4). The higher DIC 

for Model I and III than Model II indicates that the addition of spatial structure to the 

random effects improved model fit. In model II of CE, winter mean temperature at 10-

year lag had a statistically significant association with the incidence of cases (Additional 
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file 13). There was an estimated increase of 15.0% (95% CrI: 10.8–19.3%) in the risk of 

CE for a 1 °C increase in winter mean temperature 10 years prior to the diagnosis of the 

infection. Conversely, there was a decrease of 2.2% (95% CrI: 1.2–3.4%) in the risk of 

CE for every year during the study period. The quadratic term for annual mean 

temperature was also significant, indicating that the association between this variable and 

the outcome was nonlinear (Additional file 14). The MA2 of annual mean temperature, 

the MA4 of annual mean precipitation and the MAs calculated for the percentage of 

township area covered by the land cover types were not significant. The difference in the 

variance of the spatially structured random effect between Model III (9.1; 95% CrI: 7.4–

11.6) and Model II (8.9; 95% CrI: 7.1–11.1) indicates that the covariates accounted for 

only a small proportion of the spatial variability in the data (Table 3 and Fig. 5a, b).  

Model II of AE showed that the MA1 of winter mean temperature (Additional file 

15), the MA6s of annual mean temperature (Additional file 16) and the percentage of 

township area covered by bareland/artificial surfaces, had a significant negative 

association with AE cases. There was a decrease of 65.7% (95% CrI: 19.6–85.4%) in the 

risk of AE for a 1 °C increase in the average of winter temperature calculated for the 5-

year period previous to the diagnosis of the disease (0–4 years). Also, the decrease in the 

risk of AE was 97.4% (95% CrI: 70.8–99.8%) and 5.0% (95% CrI: 0.9–9.3%) for an 

increase of 1 °C in annual mean temperature and 1% increase in MA6 of township area 

covered by bareland/artificial surfaces, respectively. There was a statistically significant 

increasing temporal trend in the risk of AE. The difference between the DIC of Model II, 

184.8, and that of model III, 486.7, indicates that the inclusion of the environmental 

covariates improved model parsimony. The variance of the spatially structured random 

effect decreased from 10.6 (95% CrI: 5.5–25.0) in Model III to 9.5 (95% CrI: 4.6–23.8) 

in Model II. These results may suggest that, unlike the findings in the model of CE, the 



Chapter 4 human echinococcoses in NHAR 

86 

 

selected environmental covariates characterised a higher proportion of the spatial 

variation in the risk of AE (Fig. 5c, d). 

 

The maps of the residual spatial variation of CE, before (Model III) and after 

(Model II) accounting for the environmental covariates, show almost identical spatial 

patterns without clear evidence of disease clustering (Fig. 5a, b). Conversely, the maps 

of the distribution of the residual spatial variation of AE risk demonstrated evidence of 

clustering when the model did not incorporate the environmental covariates (Model III). 

The degree of clustering decreased when the effect of these variables was included 

(Model II), suggesting that the covariates contributed to clustering in the south of NHAR 

(Fig. 5c, d). Maps of the raw relative risks were generated for CE and AE by township 

and year (Additional files 17, 18). These maps show that the risk of CE was distributed 

across all geographic regions in NHAR during the entire study period, while the risk of 

AE was confined to the south. However, based on the environmental factors associated 

with AE risk in NHAR, it was also possible to identify an area at high risk of AE in the 

northeastern part of the central desertified district (Additional file 18). 
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Fig. 5 Spatial distribution of the posterior means of random effects for cystic and 

alveolar echinococcoses in NHAR. Spatially structured random effects of Models II 

(a) and III (b) of cystic echinococcosis, and spatially structured random effects of 

Models II (c) and III (d) of alveolar echinococcosis 
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Table 3 

Regression coefficients, RRs and 95% CrI from Bayesian spatial and non-spatial models for cystic echinococcosis in NHAR from 1 

January 1994 to 31 December 2013 

 

  Model I Model II Model II 

Variable Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, 

posterior mean 

(95% CrI) 

α (Intercept) -0.38 (− 0.01– -0.38) – -0.40 (-0.56– -0.25) – -0.67 (-0.78– -

0.60) 

1. Annual mean temperature 

(°C) lag-13 years 

0.04 (4.55 × 10-4–0.04) 1.04 (1.00–1.04) 0.04 (-0.03–0.11) 1.04 (0.97–1.12) – 

2. Annual mean 

temperature2 (°C) lag-13 years 

-0.05 (-0.05–1.56 × 10-4) 0.95 (0.95–1.00) -0.05 (-0.08– -0.02) 0.95 (0.92–0.98) – 

3. Winter mean temperature 

(°C) lag-10 years 

0.14 (1.93 × 10-4–0.14) 1.15 (1.00–1.15) 0.14 (0.10–0.18) 1.15 (1.11–1.19) – 

4. Herbaceous vegetation lag-

13 years 

-0.01 (-0.01–7.08 × 10-5) 0.99 (0.99–1.00) -0.01 (-0.01–2.86 × 10-4) 0.99 (0.98–1.00) – 
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  Model I Model II Model II 

Variable Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, 

posterior mean 

(95% CrI) 

5. Bareland/artificial surfaces 

(%) MA5 

0.01 (6.21 × 10-5–0.01) 1.01(1.00–1.01) 4.89 × 10-3(-1.31 × 10-3–

0.01) 

1.00 (0.99–1.01) – 

6. Cultivated land (%) MA5 2.79 × 10-3 (5.02 × 10-5–

2.79 × 10-3) 

1.01 (1.00–1.01) 2.83 × 10-3(-2.38 × 10-3–

8.08 × 10-3) 

1.00 (0.99–1.01) – 

7. Forest (%) MA5 4.09 × 10-4 (5.26 × 10-5–

4.4 × 10-4) 

1.01 (1.00–1.01) 5.52 × 10-3(-3.93 × 10-3–

0.01) 

1.00 (0.99–.01) – 

8. Shrubland (%) MA5 -0.02 (-0.02–9.85 × 10-5) 0.98 (0.98–1.00) -0.02 (-0.05–0.01) 0.98 (0.95–1.01) – 

9. Water bodies (%) MA6 -1.84 × 10-3(-1.81 × 10-3–

2.72 × 10-5) 

0.99 (0.99–1.00) -2.06 × 10-3(-0.01–

4.71 × 10-3) 

0.99 (0.99–1.00) – 

10. Annual mean temperature 

(°C) MA2 

-0.01 (-0.01–8.81 × 10-5) 0.99 (0.99–1.00) -0.01 (-0.02–8.15 × 10-3) 0.99 (0.98–1.01) – 

11. Annual minimum 

precipitation (mm) MA4 

-0.07 (-0.07–5.3 × 10-4) 0.93 (0.93–1.00) -0.06 (-0.15–0.03) 0.94 (0.86–1.03) – 
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  Model I Model II Model II 

Variable Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, 

posterior mean 

(95% CrI) 

12. Time (year) -0.02 (-0.02–1.13 × 10-4) 0.98 (0.98–1.00) -0.02 (-0.03– -0.01) 0.97 (0.96–0.98) – 

Heterogeneity unstructured 2.77 (2.79–2694.70) – – – – 

Heterogeneity structured – – 8.98 (7.14–11.11) – 9.14 (7.37–11.59) 

DIC 9610 – 9396 – 9529 

Abbreviations: RRs relative risks, 95% CrI 95% credible interval 
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Table 4 

Regression coefficients, RRs and 95% CrI from Bayesian spatial and non-spatial models for alveolar echinococcosis in NHAR from 1 

January 1994 to 31 December 2013 

 

  Model I Model II Model III 

Variable Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% 

CrI) 

Coefficient, 

posterior mean 

(95% CrI) 

α (Intercept) -4.9 (-7.78– -2.81) – -5.33 (-7.97– -3.08) – -2.83 (-4.36– -

1.76) 

1. Bareland/artificial surfaces 

(%) MA6 

-0.03 (-0.07–1.3 × 10-3) 0.97 (0.93–1.00) -0.05 (-0.09– -0.01) 0.95 (0.91–0.99) – 

2. Forest (%) MA4 -0.04 (-0.11–0.03) 0.96 (0.89–1.03) -0.06 (-0.14–0.01) 0.94 (0.87–1.01) – 

3. Winter mean precipitation 

(mm) MA1 

-0.01 (-0.05–0.02) 0.99 (0.95–1.02) -0.01 (-0.06–0.02) 0.99 (0.94–1.02) – 

4. Annual mean temperature 

(°C) MA2 

1.18 (-0.31–2.65) 3.26 (0.73–14.18) 1.33 (-0.23–2.91) 3.79 (0.80–

18.45) 

– 

5. Annual mean temperature 

(°C) MA6 

-3.63 (-6.07– -1.36) 0.02 (2.31 × 10-3–

0.26) 

-3.63 (-6.20– -1.23) 0.03 (2.03 × 10-

3–0.29) 

– 
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  Model I Model II Model III 

Variable Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% CrI) 

Coefficient, posterior 

mean (95% CrI) 

RRs, posterior 

mean (95% 

CrI) 

Coefficient, 

posterior mean 

(95% CrI) 

6. Annual temperature range 

(°C) MA2 

-0.34 (-1.04–0.40) 0.71 (0.35–1.49) -0.20 (-0.98–0.60) 0.82 (0.37–1.81) – 

7. Winter mean temperature 

(°C) MA1 

-1.03 (-1.86– -0.18) 0.36 (0.16–0.84) -1.07 (-1.92– -0.22) 0.34 (0.15–0.80) – 

8. Winter mean temperature 

(°C) MA6 

0.42 (-0.68–1.51) 1.52 (0.51–4.52) 0.32 (-0.92–1.53) 1.38 (0.40–4.62) – 

9. Winter mean 

temperature2 (°C) MA6 

-0.47 (-1.14–0.11) 0.62 (0.32–1.12) -0.50 (-1.18–0.11) 0.61 (0.30–1.12) – 

10. Time (year) 0.17 (0.05–0.30) 1.20 (1.06–1.35) 0.18 (0.05–0.32) 1.20 (1.05–1.37) – 

Heterogeneity unstructured 3.51 (1.66–9.27) – – – – 

Heterogeneity structured – – 9.47 (4.60–23.82) – 10.63 (5.54–25.01) 

DIC 485.2 – 184.8 – 486.7 

Abbreviations: RRs relative risks, 95% CrI 95% credible interval 

 



Chapter 4 human echinococcoses in NHAR 

93 

 

Discussion 

The results indicate that winter mean temperature and annual mean temperature, 10 and 

13 years prior to diagnosis, respectively are associated with the incidence of E. 

granulosus at the township level in NHAR. Temperature is a major determinant of the 

survival and longevity of Echinococcus spp. eggs in the external environment [59, 60]. 

In vivo studies have concluded that the eggs of E. granulosus remain viable and infective 

after 41 months of exposure to an inferior arid climate, which is characterised by large 

thermal amplitude (from -3 to 37 °C) and low precipitation (under 300 mm/year) [59]. 

The present study revealed a positive association of CE cases with winter temperature at 

10-year lag and a non-linear association with annual mean temperature at 13-year lag. 

These findings indicate that the number of CE cases may have increased progressively 

when eggs were exposed to optimal temperatures but decreased with extreme 

temperatures that fell outside the optimal range. The relationship between E. granulosus 

infection and these two variables was significant after a time lag of more than 10 years. 

This is in agreement with the long incubation period of this parasite that has been reported 

to be between 5 and 15 years [41]. Of note, we do not suggest that the specific lag periods 

for each variable are important, but that the general pattern of lags indicate environmental 

conditions in the range of 10 to 15 years previously influence current patterns of disease.  

CE cases were distributed across all the three biogeographical areas of NHAR: 

the northern Yellow River Irrigated District, the central desertified district and the 

southern mountainous and loess hilly district (Fig. 1). A higher risk of infection was 

observed in townships located in the North in close geographical proximity to Yinchuan. 

Urban areas may provide better job prospects and higher salaries for rural migrants who 

were exposed in their home township. In the cities, people who contracted the infection 

in their rural areas of origin may have had an improved access to healthcare services and 
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the confirmation of the diagnosis of echinococcosis and management [61]. These findings 

raise the need for further studies to determine how access to healthcare may affect the 

incidence of the infection. The risk of CE was found to be higher in townships from the 

southern mountainous and loess hill district. This part of NHAR is one of the three poorest 

areas in China where almost half the population belong to the Hui minority ethnic group 

[16]. Livestock and arable farming, which are common practices among these 

communities, represent higher risk of exposure to Echinococcus spp. [62, 63]. The 

Provincial technical standards for livestock slaughtering and antemortem and post-

mortem meat inspection in NHAR are in agreement with the recommendations proposed 

by Food and Agriculture Organization of the United Nations [64, 65]. However, 

government-run abattoirs in NHAR are scarce, particularly in the South, where livestock 

slaughter is carried out mostly at rural market places or in domestic environments that 

are not legally compliant [66]. Unrestricted post-slaughter offal disposal is common in 

the region and has been identified as a potential local factor increasing the risk of CE 

[67]. Under similar circumstances in Qinghai Province, previous studies have suggested 

that domestic dogs may have a higher probability of access to livestock viscera in early 

winter and spring [68]. The prevalence of CE in sheep was estimated to be 52% in NHAR 

in 2008, and between 0–9% according to more recent reports of studies conducted at 

small spatial scale (no larger than county level) [66, 69, 70]. The variance in these 

prevalence estimates may be related to local or individual conditions that favour hotspots 

of high transmission within discrete patches of CE endemicity. Also, in the Autonomous 

Region, 3% of goats, 81% of cattle, 24% of pigs and 19% of camels were reported 

infected with E. granulosus in 2008 [71]. Although there is evidence of spatial clustering 

within the central desertified district, lower risk of CE was observed in this 

biogeographical area where communities are more scattered in isolated settlements.  
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The environmental covariates accounted for a relatively small proportion of the 

spatiotemporal variation in CE risk in NHAR. These findings suggest that there may be 

other local unmeasured factors that are associated with the spatial distribution of E. 

granulosus in the province. Some local socio-economic and behavioural drivers that have 

also been found to be positively related to CE in this hyperendemic area include low 

income, limited education, poor hygiene practices, female gender and Hui ethnicity. In 

contrast, tap water consumption has been identified as a factor that can protect against E. 

granulosus infection [35]. Although infection control in dogs has been identified as a key 

measure against echinococcoses in China, dog ownership still remains as an important 

risk factor for the infection in NHAR [35, 72]. The western China echinococcosis control 

programme recommends supervised treatment of all owned dogs four to eight times a 

year with praziquantel [73]. However, this is a measure that has been hard to apply, 

monitor and sustain in the remote-settled communities of the Autonomous Region [74]. 

The findings of the model of AE concur with previous studies conducted in 

different regions in echinococcosis-endemic countries that indicated that E. 

multilocularis has a focal spatial distribution [6–8]. The study also concurs with previous 

evidence that indicates that land cover and temperature are associated with AE incidence 

[22, 60, 75]. AE risk was spatially clustered in an area covered by Xiji, Guyuan and 

Haiyuan Counties, located in the southern mountainous and loess hill district (Fig. 1). 

This part of NHAR has been greatly transformed by the implementation of the GGP. 

Forest growth has primarily occurred in the northern and southern parts, in the Helan and 

Liupan mountains in the North and South, respectively (Fig. 1) [76, 77]. An increase in 

herbaceous vegetation has also been described in the central arid area of NHAR, and 

around the margin of the forestland [76, 77]. Hence, the distribution of AE risk observed 
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in the current study concurs with the spatial patterns of the GGP land conversion 

processes that have been described in this autonomous region.  

Echinococcus multilocularis is transmitted in semi-domestic and sylvatic life 

cycles that involve dogs and foxes as main definitive hosts, respectively, and small 

mammals as intermediate hosts [6, 78]. It has been demonstrated that landscape structure 

may influence the transmission patterns of this parasite by influencing the suitability and 

location of ecological habitats for its hosts [11]. With regards to land cover, it was found 

that the merged category of bareland/artificial surfaces was not associated with the 

transmission of E. multilocularis at the township level in NHAR. This observation 

suggests that the life-cycle of the parasite is supported in vegetated areas (i.e. forest, 

shrubland and cropland). These findings raise the need for further studies to determine 

the association of the GGP and other potential drivers of land cover change with the risk 

of human AE. 

The impact of forest fragmentation on small mammals assemblages has now been 

demonstrated and explained by the interaction between forest patch metrics and small 

mammal species richness, abundance and composition [21, 31, 79–81]. In Xiji County, 

in the South of NHAR, a previous study indicated that the abundance of degraded lowland 

pasture was related to higher prevalence of AE in humans [14]. In the same area, a small-

mammal survey conducted in relation to different land cover types at the community level 

revealed the presence of 16 species of small mammals [11]. That study indicated that in 

areas that experienced afforestation, the diversity of assemblages was lower than that of 

assemblages in areas where deforestation occurred [11]. However, species richness did 

not seem to be affected by these land conversion processes [11]. Trapping success of 

potential E. multilocularis intermediate hosts such as, Cricetulus longicaudatus and 

Ochotona daurica, was higher in recently afforested set-aside fields and abandoned 
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grasslands, and Spermophilus alashanicus/dauricus in young plantations [11]. Therefore, 

it can be assumed that landscape transformation process that is taking place in NHAR 

may have disturbed rodent assemblages, and therefore affect the risk of E. multilocularis 

transmission. In Zhang County, Gansu Province, a study revealed that the process of land 

cover change that occurred in this endemic area affected the transmission dynamics of 

the parasite. There, the increase in grassland/shrubland that followed a process of 

deforestation favoured the creation of peri-domestic habitats of intermediate host species, 

and the development of peri-domestic cycles involving dogs [13, 82]. Similarly, the 

percentage of area covered by grassland and E. multilocularis infection in humans and 

foxes had a positive relationship in Eastern France [13, 83, 84]. In this area various studies 

also reported regular outbreaks of Microtus arvalis and Arvicola terrestris, key 

intermediate hosts for E. multilocularis [13, 17]. However, the picture is complex, given 

that in Sichuan Province, a negative cross-sectional association was observed between 

Ochonta spp. and Enhanced Vegetation Index, and previous evidence showed that this 

recognised intermediate host of E. multilocularis is more common in areas with low 

vegetation cover [16, 85, 86].  

The negative association between AE cases and winter temperatures may be due 

to the influence of temperature exposure on eggs of E. multilocularis, and potentially the 

influence of temperature on small mammal population dynamics and fox/dog/small 

mammal predator-prey relationships [60, 87]. Evidence indicates that temperature affects 

the geographical range and changes the composition of small mammal communities [88, 

89]. Also, climate has been identified as a factor contributing to changes in the 

distribution and abundance of the red and Arctic foxes, which are sylvatic definitive hosts 

for E. multilocularis in Arctic Canada [90, 91]. Reports of infection with E. multilocularis 

in red foxes in NHAR are only available for the mid-1980s [92]. At that time, 15% of 
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trapped red foxes were infected with E. multilocularis in Xiji and Guyuan Counties [92]. 

Although there is not current evidence on how the local environment fluctuations 

influence the ecology of this type of vertebrates in the Autonomous Region, it can be 

thought that variations in climate and land cover have the potential to affect the dynamics 

and predator-prey interactions of potential hosts for E. multilocularis in NHAR. Also, 

climate and the landscape may favour the presence of other potential definitive hosts for 

this parasite in NHAR. Infection with E. multilocularis has also been detected in wolves 

(Canis lupus) and corsac foxes (Vulpes corsac) in other parts of the P.R. China [82]. 

Since the latent phase of AE in humans has been estimated to be between 5–15 

years, the associations between AE incidence and land cover and temperature are 

plausible [93]. However, in this study there was also a significant association between 

AE cases with the average of winter temperature for the years 0, 1, 2, 3 and 4 prior to 

diagnosis. This finding may suggest other effects of temperature on the health-seeking 

behaviour of the inhabitants of NHAR, rather than on exposure to, or infection with the 

parasite. The high cost of medical care and the lack of health insurance have been 

identified previously as primary factors for the under-utilization of health care services 

in China [94, 95]. Therefore, seasonal rural-urban migration and temporary employment 

in NHAR could be related to this association between winter temperature and the risk of 

human AE.  

As initiatives to address the high burden of human echinococcoses in China have 

already been established [27], there is a current need to identify high-risk areas for 

undetected infection to provide guidance to local authorities in implementation of the 

surveillance and control interventions [27]. The present study provides important 

evidence that indicates that populations living in southern mountainous and loess hilly 

district of NHAR were at greatest risk of acquiring CE or AE during the study period. 
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Hence, these findings can be used to inform a decision to prioritise screening surveys in 

communities from Xiji, Guyuan and Haiyuan Counties which areas heavily affected by 

both forms of the infection. In this way, it will be possible to provide better estimates of 

the real impact of human echinococcoses in the autonomous region and to monitor the 

patterns of E. granulosus and E. multilocularis transmission [96]. To further improve the 

predictive performance of our models, particularly in remote areas with limited access to 

health services, the surveillance data should be analysed with other socio-demographic 

data [18]. The use of GIS technologies, Earth observation data and spatial statistical 

analysis for the study of the spatio-temporal dynamics of CE and AE cases may help to 

monitor trends in echinococcosis occurrence in hyperendemic regions. This information 

is relevant particularly in areas where ecological projects that alter local ecosystems are 

currently being implemented. Therefore, these technologies may be used to estimate 

future requirements for scaling up and targeting of essential control strategies, and to 

provide risk assessments for future landscape planning and ecosystem management and 

protection initiatives [19]. 

The limitations of this study include that it relied mainly on data collected from 

selected county hospitals, which overlooks the contribution of CE and AE cases that were 

not referred to these health care institutions for confirmation of diagnosis treatment and 

follow-up. Human echinococcoses are not legally notifiable diseases in China. Most 

patients are commonly identified in clinical records and mass screening surveys 

conducted in the most affected areas to help reduce the medical, social and economic 

burden of the infections. Therefore, further work needs to be carried out to evaluate and 

improve the surveillance and provide real estimates of the number echinococcosis cases 

in the country. Also, in this study, data on the number of patients who were 

immunosuppressed at the time of diagnosis were not available. Among these patients, CE 



Chapter 4 human echinococcoses in NHAR 

100 

 

and AE behave differently and may develop during a relatively short period of time [97]. 

Therefore, it is recommended that future studies to identify environmental risk factors for 

transmission also involve indices of individual biological condition that may be 

associated with progression and times of infection and diagnosis of the disease. In the 

study, the township in which patients resided at the time of diagnosis was assumed as the 

place where acquisition of infection occurred. Although the patient’s place of residence 

may be a reliable indicator for establishing the geographical origin of the infections, this 

may not apply for all cases. The human labour migration that has characterised NHAR in 

past decades may have had an impact on the observed trends of infection and results need 

to be interpreted with caution. Here, we explored the spatio-temporal patterns of 

echinococcosis infection in NHAR, and the association of environmental variables with 

the transmission of Echinococcus spp. at the township level. Hence, the results do not 

allow for inferences to be made about the risk of human echinococcoses at the commune 

or individual levels. More detailed information about the local structure of these 

infections may be further included to improve the CE and AE models. The impact of the 

GGP and other ecological restoration projects was not formally tested in this study. 

Therefore, it is necessary to establish evidence for the impact of such projects to facilitate 

environmental risk assessments of future ecosystem management and protection 

programmes. [98]. The use of interpolated surfaces for the estimation of climatic and land 

cover variables also represented a challenge for the interpretation of the findings. The 

precision of the interpolated values at point locations may vary considerably over time 

and over the entire study area. Also, the IDW interpolation method used by the Chinese 

Academy of Sciences is a simple and intuitive deterministic method based on the 

assumption that sample values closer to the prediction location have more influence on 

prediction value than sample values farther apart. However, IDW has sensitivity to 
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outliers or sampling configuration and does not allow the incorporation of ancillary data 

[99, 100]. We believe that a meaningful assessment of the associations between human 

echinococcosis risk and the environment can only be achieved with the use of consistent 

and long-term climate and land cover records that allow to capture significant spatial 

variability.  

 

Conclusions 

In this study, maps of the geographical distribution of CE and AE for a highly endemic 

area of China (NHAR) have been produced, and some of the environmental factors that 

are associated with the transmission patterns of E. granulosus and E. multilocularis at the 

township level were quantified. Selected environmental covariates characterised a large 

proportion of the spatiotemporal variation in the risk of AE. However, the CE appears to 

be less spatially variable and the geographical distribution is likely determined by other 

unmeasured factors. Evidence on the potential effects of the GGP on the risk of AE was 

presented due to the association with vegetated areas and a decrease in bareland. By 

mapping the distribution of the risk of these infections, we provide evidence that can be 

used to scale-up and target essential control strategies, and to inform risk assessment of 

large-scale landscape regeneration initiatives. 
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CHAPTER 5 HUMAN ECHINOCOCCOSES IN XIJI COUNTY, 

NHAR 

5.1 Context 

Evidence is accumulating that the geographical distribution of Echinococcus spp., 

particularly E. multilocularis, is associated with environmental factors that may be 

favouring the establishment of the life cycles of these parasites in certain areas of NHAR. 

Following the findings described previously in Chapter 3 and 4, the southern part of 

NHAR was identified as a hyper-endemic area for both CE and AE, and a region that has 

experienced substantial environmental transformation. Therefore, the study presented in 

this Chapter was conducted to characterise the spatiotemporal distribution of human 

exposure to Echinococcus spp. in Xiji County, which is a heavily echinococcosis-affected 

area in the south of NHAR, over a decade during which environmental transformation 

has been ongoing; and identify communities where targeted prevention and control 

efforts are required.  

The study reported in this Chapter involved data that were collected prospectively 

using three cross-sectional surveys of school children aged 6–18 years. In this way, it was 

possible to ensure that the population sample provided data indicative of recent exposure 

to E. granulosus and E. multilocularis. Here, I developed Bayesian geostatistical models 

with environmental and demographic covariates to predict the evolving geographical 

distribution of the seroprevalence of each of these parasites at three different time points 

during the last decade.  

Screening surveys for human echinococcoses use ultrasound as the method of 

choice for the diagnosis of human echinococcoses. However, this diagnostic technique 

has low sensitivity to detect small cysts. Serological-based screening surveys using 

specific antibody testing by enzyme linked immunosorbent assay have also a useful role 
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in the detection of cases in epidemiological settings.  However, serological tests have 

specificity and may cross react with other helminthic infections and gastrointestinal 

malignancies. In this study, I used both, abdominal ultrasound to screen schoolchildren 

and detect and classify early CE and/or AE cyst using the World Health Organization 

classification scheme, and E. granulosus cyst fluid antigen B and E. multilocularis crude 

protoscolex extract to determine human seropositivity for the parasites. Due to the young 

age of the survey participants and the slow growth of the cysts, limited of number of 

ultrasounds showed undefined hepatic changes. The abdominal ultrasound reports are 

described in this Chapter; however, the findings were not included in the geostatistical 

models. 

The conclusion indicates that CE risk expanded across Xiji during the study 

period, while AE risk became more confined in communities located in the south of the 

county. These changes were partially explained by selected climatic and land cover 

factors.  

 

Supplementary material for this paper is provided in Appendix D. 
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5.2 Environmental risk factors and changing spatial patterns of human 

exposure to Echinococcus spp. in Xiji County, Ningxia Hui Autonomous 

Region, China  

 

Cadavid Restrepo, A.M.; Yang, Y.R.; McManus, D.P.; Gray, D.J.; Barnes, T.S.; 

Williams, G.M.; Magalhães, R.J.S.; Clements, A.C.A. Environmental risk factors and 

changing spatial patterns of human seropositivity for Echinococcus spp. in Xiji County, 

Ningxia Hui Autonomous Region, China. Parasites & Vectors. 2018; 11:159 
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Abstract 

Background: Human echinococcoses are parasitic helminth infections that constitute a 

serious public health concern in several regions across the world. Cystic (CE) and 

alveolar echinococcosis (AE) in China represent a high proportion of the total global 

burden of these infections. This study was conducted to predict the spatial distribution of 

human seropositivity for Echinococcus species in Xiji County, Ningxia Hui Autonomous 

Region (NHAR), with the aim of identifying communities where targeted prevention and 

control efforts are required.  

Methods: Bayesian geostatistical models with environmental and demographic 

covariates were developed to predict spatial variation in the risk of human seropositivity 

for Echinococcus granulosus (the cause of CE) and E. multilocularis (the cause of AE). 

Data were collected from three cross-sectional surveys of school children conducted in 

Xiji County in 2002–2003, 2006–2007 and 2012–2013. Environmental data were derived 

from high-resolution satellite images and meteorological data.  

Results: The overall seroprevalence of E. granulosus and E. multilocularis was 33.4 and 

12.2%, respectively, across the three surveys. Seropositivity for E. granulosus was 

significantly associated with summer and winter precipitation, landscape fragmentation 

variables and the extent of areas covered by forest, shrubland, water and 

bareland/artificial surfaces. Seropositivity for E. multilocularis was significantly 

associated with summer and winter precipitations, landscape fragmentation variables and 

the extent of shrubland and water bodies. Spatial correlation occurred over greater 

distances for E. granulosus than for E. multilocularis. The predictive maps showed that 

the risk of seropositivity for E. granulosus expanded across Xiji during the three surveys, 

while the risk of seropositivity for E. multilocularis became more confined in 

communities located in the south.  
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Conclusions: The identification of high-risk areas for seropositivity for these parasites, 

and a better understanding of the role of the environment in determining the transmission 

dynamics of Echinococcus spp. may help to guide and monitor improvements in human 

echinococcosis control strategies by allowing targeted allocation of resources. 

Keywords: Human echinococcoses, Echinococcus granulosus, E. multilocularis, 

Environment, Geographical information systems, Remote sensing, Xiji County, Ningxia 

Hui Autonomous Region 
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Background 

Cystic echinococcosis (CE), caused mainly by infection with Echinococcus granulosus, 

and alveolar echinococcosis (AE), caused by infection with E. multilocularis, are chronic 

and potentially fatal diseases that have a wide geographical distribution across the world. 

According to global estimates, the number of new cases of CE is 188,000 every 

year, which represents a human health burden of 184,000 disability adjusted life years 

(DALYs) [1]. There are 18,235 new AE cases annually, which result in approximately 

666,433 DALYs lost [2].  

China is a country affected heavily by human echinococcoses [3]. In China, the 

nationally estimated numbers of CE and AE cases explain 40 and 95% of the total global 

burden of the infections, respectively [2, 4]. The second survey of parasitic diseases 

conducted in China in 2001–2004 found that approximately 380,000 people were affected 

by these two types of echinococcoses, and 50 million were at risk of infection nationwide 

[5]. Prevalence of CE and AE was particularly high in seven provinces/autonomous 

regions located in Western China: Qinghai, Gansu, Sichuan, Xinjiang Uighur 

Autonomous Region (AR), Tibet AR, Ningxia Hui AR and Inner Mongolia AR [6, 7]. 

However, regional and local variation in echinococcosis risk is high, with the diseases 

being particularly prevalent among poor pastoral minority groups [2, 8, 9].  

The National Control Programme to prevent and cure echinococcoses in China 

was developed by the National Health and Family Planning Commission (formerly the 

Ministry of Health) in 2005 [6]. To date, applying and sustaining the programme has 

proven difficult in most endemic regions due to the lack of effective surveillance data, 

dispersed populations and movement of people and livestock to summer pastures [10]. 

Screening surveys to detect early cases are primarily conducted in the most-affected 

regions of China [6, 11]. Therefore, the national prevalence reports may be biased [10, 



 Chapter 5 Human exposure to Echinococcus spp. in Xiji County 
 

120 

 

11]. Because human echinococcoses are characterised by long incubation periods that 

precede clinical diagnoses, current epidemiological estimates may be overlooking the 

relative contribution of asymptomatic or undiagnosed/untreated CE and AE cases [10]. 

Consequently, better surveillance and response tools are required to estimate and predict 

the real impact of these two diseases in China, and to strengthen the implementation of 

prevention and control interventions in targeted high-risk areas [12].  

Echinococcus granulosus is primarily maintained in life-cycles that involve 

domestic animals, while E. multilocularis is typically a wildlife parasite [13]. Both 

species are transmitted in multi-host systems that are determined by factors that govern 

the presence/absence and infectivity of the parasites and also the population dynamics 

and interactions of the hosts [13]. Thus, special emphasis is currently being placed on 

identifying the role of environment factors in influencing the transmission patterns of E. 

granulosus and E. multilocularis and explaining the apparent emergence and re-

emergence of human infections in several regions of the world [14–18]. The Chinese 

government is implementing a series of extensive landscape regeneration projects to 

restore the country’s degraded ecological landscape [19, 20]. Studies conducted in 

various echinococcosis-endemic regions have documented that land cover 

transformations are related to higher population densities of key intermediate hosts for E. 

multilocularis, which has increased the risk of human AE infection [21–28]. Hence, 

research also needs to be conducted to better describe the ecological processes that may 

lead to variations in the transmission patterns of E. granulosus and E. multilocularis 

based on shifting environmental factors [29]. This information will be essential to 

monitor emergence or re-emergence of the transmission of both parasites [29].  

Bayesian model-based geostatistical approaches have been increasingly used in 

research focused on characterising the geographical patterns of infectious diseases and 

file:///J:/1.Writing%20manunscript/d.%20fourth%20paper/Submission/5.%20Parasites%20and%20Vectors/Publication/PARV-D-17-01059_R1%20EDIT%20ACB%20AMCR.docx%23_ENREF_18
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quantifying their associations with potential risk factors [1, 30–33]. Model-based 

geostatistics incorporates a model of the spatial correlation structure of the data with the 

effect of covariates to predict a variable of interest (e.g. seropositivity for Echinococcus 

spp.) in unsampled locations, and to quantify the associated uncertainty in the estimated 

parameter values [34]. These methods provide a valuable and flexible framework that can 

be used to support the process of decision-making during the implementation of a control 

programme [34].  

Using Bayesian model-based geostatistics, we aimed to explain the 

spatiotemporal distribution of human seropositivity for E. granulosus and E. 

multilocularis in Xiji County, Ningxia Hui Autonomous Region (NHAR), China, based 

on selected environmental factors. In the study, the term human seropositivity was meant 

to signify that children harboured possibly the metacestode stage of E. granulosus and/or 

E. multilocularis, whether or not they had evidence of active cyst(s) in the abdominal 

ultrasound or any manifestation of disease (following the description of a possible 

echinococcosis case suggested elsewhere [35]. Also, we aimed to produce spatial 

prediction maps to show the evolving geographical distribution of seropositivity for these 

parasites species at three different time points during the last decade. These maps will be 

useful to inform decisions on where communities at high risk of echinococcoses are 

located in China, and to help prioritise and target resources for prevention and control. 

 

Methods 

Study area 

Xiji is a County located in the south of NHAR, between latitudes 35°33' and 36°13'N, 

and between longitudes 105°20' and 106°4'E. Xiji covers an area of approximately 3985 

km2 and shares borders with Haiyuan County to the north, Guyuan County to the east, 

file:///J:/1.Writing%20manunscript/d.%20fourth%20paper/Submission/5.%20Parasites%20and%20Vectors/Publication/PARV-D-17-01059_R1%20EDIT%20ACB%20AMCR.docx%23_ENREF_33
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Longde County to the south, and Huining and Jinning Counties that belong to Gansu 

Province, to the west. Administratively, Xiji is divided into 3 towns and 16 townships, 

which are then subdivided into 306 villages. In 2015, the total population was 344,045 

inhabitants, of whom 58% were of the Hui Islamic ethnic minority and 42% were Han 

Chinese [36] (Fig. 1).  

 

 

Fig. 1 Map and elevation of Xiji County and its location within NHAR, and 

 the location of the Autonomous Region within China 

 

 

Xiji lies in a temperate continental monsoon climate zone that is characterized by four 

distinct seasons. The annual average temperature is 5.37 °C and the average annual 

precipitation is 418.2 mm. Elevation ranges from 1688 to 2633 m. 
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Xiji County was selected as the study area because a previous retrospective survey of 

hospital records conducted in NHAR indicated that high prevalences of human 

echinococcoses, particularly AE, were concentrated mainly in the southern part of the 

Autonomous Region, where Xiji is located [37]. 

 

Data on human seropositivity for E. granulosus and E. multilocularis 

Data were obtained from cross-sectional school-based surveys conducted across Xiji 

County during three distinct time periods: 2002–2003, 2006–2007 and 2012–2013. 

Surveys were carried out at 190, 219 and 25 locations for each time period, respectively, 

and included all children aged 6–18 years who lived in close proximity to the surveyed 

schools and agreed to participate (Fig. 2). This age-group was selected in order to ensure 

that the collected data were representative of recent cases of human exposure.  

Exposure information and demographic data were collected with standardised 

questionnaires that were administered to the students by school teachers. Participants 

were also asked to provide a small blood sample from the ear lobe for specific antibody 

testing by enzyme linked immunosorbent assay (ELISA) using E. granulosus cyst fluid 

antigen B (EgB) and E. multilocularis crude protoscolex extract (EmP) [38]. Sensitivity 

of EgB and EmP ELISA is > 85% for CE and > 90% for AE, respectively [23, 38, 39]. 

Specificity ranges from 70 to 100% for CE [40] and 87% for AE [39]. Finally, abdominal 

ultrasound was used to screen schoolchildren and detect and classify early CE and/or AE 

cysts. The World Health Organization classification scheme of CE and AE was used to 

categorise the hepatic lesions [41–43]. Due to the young age of the study population and 

the slow rate of growth of the echinococcosis cysts, a very limited of number of 

ultrasounds showed undefined hepatic changes. Therefore, the results were not included 

in the statistical models. Participants who were found to be positive for E. granulosus, E. 



 Chapter 5 Human exposure to Echinococcus spp. in Xiji County 
 

124 

 

multilocularis or both were referred to the local health centre for adequate follow-up. 

Data collected previously from hospital records and landscape profiles were used for the 

selection of the schools for the first survey [44]. Details of the survey design from 2002 

to 2003, data collection and acquisition of ethical approval are reported elsewhere [44]. 

The survey conducted in 2006–2007 followed the same protocol. A grid plus close pair 

design was used to select the schools for the survey in 2012–2013 [45]. A 15 × 15 km 

grid was created in a geographical information system, and overlaid on the county 

territory, noting that this survey also covered three other counties (data not presented 

here). The schools lying in closest proximity to the grid nodes were selected. A secondary 

set of schools located in near proximity to a random subset of those selected at the nodes 

of the grid (the close pairs) were also selected. This approach has been identified as the 

most efficient survey design for estimating spatial variability in environmental variables 

(Additional file 1) [45].  

The geographical coordinates of each school were collected using a hand-held 

global positioning system. The locations of surveyed schools are shown in Fig. 2. Data 

collected from the three surveys were combined into a single database.  
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Fig. 2 Distribution of school surveys and observed seropositivity for Echinococcus 

granulosus and E. multilocularis in 2002–2003 (a, d), 2006–2007 (b, e) and 2012–

2013 (c, f) in Xiji County, NHAR, China. A surface of the different land cover types 

in 2000, 2005 and 2010, respectively, is also presented 

Environmental and remotely sensed data 

 

The independent variables included in the analysis were derived from the following data 

sets: monthly mean temperature and precipitation, elevation, enhanced vegetation index 

(EVI) and land cover class. 

Monthly mean temperature and precipitation data records for the period January 

1 1998 to December 31 2013 were provided by the Chinese Academy of Sciences in a 

raster format at the spatial resolution of 1 km. Data were first collected from 16 local 

weather stations and interpolated using the Inverse Distance Weighting (IDW) method, 

but the original weather station data were not available. 

Estimates of elevation were obtained from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) 
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version 2 [46]. The ASTER GDEM is available in the USGS Earth Explorer website in 

GeoTIFF format at the resolution of 1 arcsecond (approximately 30 m). 

Thirty metre resolution Landsat EVI data were obtained from the Earth Resources 

Observation and Science (EROS) Center Science Processing Architecture (ESPA) On 

Demand Interface [47]. Data were downloaded annually for the period 1998–2012. To 

the greatest extent possible, EVI data were acquired from a month between June and 

November each year for the period 1998–2012. These months correspond to the growing 

seasons in NHAR. However, acquisition dates varied depending on the availability of the 

data. When there were no data available for the specified months, the closest-in-time EVI 

estimates were downloaded for the analyses. 

Land cover maps for the years 1996, 2000, 2005, 2010 and 2015 were produced 

using time-series images retrieved from the Landsat Surface Reflectance Climate Data 

Record available in Earth Explorer [48]. Six land cover classes were identified: water 

bodies, artificial surfaces, bare or sparsely vegetated areas, herbaceous vegetation, 

cultivated land, shrubland and forest (Table 1). Artificial surfaces and bare or sparsely 

vegetated areas were merged and represented as a single category in the maps and 

analyses due to significant spectral confusion between them. Details of the original 

images and the process of land cover classification are provided elsewhere [49]. 

An administrative boundary map of Xiji was downloaded from the DIVA-GIS 

website [50]. School survey locations were imported into ArcGIS software version 10.3.1 

[51] and projected to the Universal Transverse Mercator (UTM) coordinate system zone 

48N. Buffer zones of 1 km and 5 km centred on the survey site locations were created 

using ArcGIS software. All data sets were imported into ArcGIS and linked spatially to 

the surveyed schools to extract and summarise the environmental data by buffer area. 
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Table 1 

Land cover classification scheme and definitions 

 

 

Land 

cover type 

Description Content 

Water 

bodies 

All areas of water Streams and canals, 

lakes, reservoirs, bays 

and estuaries 

Artificial 

surfaces 

Land modified by human activities Residential areas, 

industrial and 

commercial complexes, 

transport infrastructure, 

communications and 

utilities, mixed urban or 

built-up land and other 

built-up land 

Bare or 

sparsely 

vegetated 

areas 

Areas with little or no “green” vegetation 

present 

Dry salt flats, sandy 

areas, bared exposed 

rock and mixed barren 

land 

Herbaceous 

vegetation 

Areas characterized by natural or semi-

natural vegetation 

Grasses and forbs 

Cultivated 

land 

Areas where the natural vegetation has 

been removed/modified and replaced by 

other types of vegetative cover that have 

been planted for specific purposes such as 

food, feed and gardening 

Cropland and pasture, 

orchards, groves, 

vineyards, nurseries and 

ornamental horticultural, 

other cultivated land 

Shrubland Natural or semi-natural woody vegetation 

with aerial stems less than 6 m tall 

Evergreen and deciduous 

species of true shrubs 

and trees or shrubs that 

are small or stunted 

Forest Areas characterized by tree cover or semi-

natural woody vegetation greater than 6 m 

tall 

Deciduous forest, 

evergreen forest and 

mixed forest 
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Data analysis  

Summary statistics were calculated at each location at the time of the survey and at a 5-

year lag. A moving 5-year average (MA) was also generated to smooth the estimates of 

the independent variables. The incorporation of a MA into the analyses allowed 

assessment of associations over an extended period of time rather than at a single point 

in time, accounting for the variable latency period of infection. For each location, the 

summary statistics computed were: (i) annual, summer (June, July and August) and 

winter (December, January and February) weighted mean series of temperature and 

precipitation, (ii) spatial mean values of elevation and EVI. The spatial extents (as a 

percentage of buffer areas) of each land cover category for the years 1996, 2000, 2005, 

2010 and 2015 were extracted and used to calculate change rates by buffer area for the 

periods 1996–2000, 2000–2005, 2005–2010, and 2010–2015. In this way, it was possible 

to estimate the spatial extent of all land cover classes by buffer area for all years between 

1998 and 2012.  

The land reform policies and incentive programs to recover degraded land in 

China might have impacted on landscape fragmentation [52], which could impact on 

habitat availability for Echinococcus spp. intermediate hosts. The five landscape 

fragmentation metrics that were selected for the analyses were: number of patches 

(NumP), patch density (PD), mean patch size (MPS), mean shape index (MSI) and edge 

density (ED) (Table 2). These fragmentation metrics were selected because they provide 

information about landscape composition, shape, and configuration [53]. These metrics 

were computed using the Patch Analyst extension of ArcGIS [13]. 
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Table 2 

Description of the landscape fragmentation metrics that were included in the 

analyses of human seropositivity for E. granulosus and E. multilocularis in Xiji 

County 

 

 

Variable selection 

In order to examine separately the association of E. granulosus and E. multilocularis 

seropositivities with the environmental factors, univariate logistic regression models 

were implemented for each parasite exposure using R software version 3.2.2. [54]. 

Collinearity among all independent variables was assessed using Spearman correlation 

analyses. If a pair of covariates had a correlation coefficient > 0.9, the variable with the 

highest value of Akaike Information Criterion (AIC) in the univariate regression models 

was discarded. Multivariate logistic regression models were developed using various 

subsets of available independent variables. The models with the lowest values of AIC 

Metric Description Units 

Composition 

 Number of patches 

(NumP) 

Total number of patches within 

a buffer 

– 

 Patch density (PD) Total number of patches per 

buffer area 

/km2 

 Mean patch size (MPS) Average patch size within a 

buffer 

km 

Shape 

 Mean shape index (MSI) Ratio of perimeter to area 

adjusted by a constant to 

account for a particular patch 

shape 

– 

Configuration 

 Edge density (ED) Amount of edge relative to the 

buffer area 

km/km2(perimeter/area 

ratio) 
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were used to select the variables for the final, spatial models. Nonlinear associations 

between all covariates and E. granulosus and E. multilocularis seropositivities were 

modelled using quadratic terms, and no interactions were considered.  

 

Bayesian geostatistical models 

Model-based geostatistics was implemented in a Bayesian framework [55] using the 

OpenBUGS software 3.2.3 rev 1012 [56]. 

Two distinct models for each of E. granulosus and E. multilocularis serological 

status, including parameters for the environmental variables were constructed. The first 

model (Model I) was developed including the selected explanatory variables for each 

seropositivity, but without considering the spatial dependence structure of the data; the 

second model (Model II) assumed that spatial autocorrelation is present in the relative 

risk of seropositivity. Hence, Model II included the explanatory variables as fixed-effects 

and a spatially structured random effect. Model fit was compared using the deviance 

information criterion (DIC), where low DIC values indicate a better model fit. In all 

analyses, statistical significance was determined with α-levels of 0.05 [as indicated by 

95% credible intervals (95% CrI) for odds ratios (OR) that excluded 1].  

The complete model, Model II, was a logistic regression model that assumed that 

Yi (Yi = 1 for seropositive schoolchildren and 0 for seronegative schoolchildren) followed 

a Bernoulli distribution where Yij was the serological status of the ith child (i = 1. . .5,110) 

in the jth location (j= 1. . .434), and pij was the probability an individual i being exposed 

in location j, that is, 

𝑌𝑖𝑗 ~ 𝐵𝑒𝑟𝑛(𝑝𝑖𝑗)  

logit (𝑝𝑖𝑗) =  𝛼𝜀 + 𝛾 𝗑 age 𝑖
+  δ 𝗑 female 𝑖

+ ∑ 𝛽𝑧

𝑧

𝑧=1

 𝗑 λ𝑧𝑗 + 𝑠𝑗 
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where αε is the survey specific intercept, γ and δ are the coefficients for age and females 

respectively, β is a matrix of z coefficients, λ is a matrix of z environmental covariates, 

and sj a geostatistical random effect. The spatial correlation structure of the geostatistical 

random effect was defined by an exponential function of the distance between points:  

𝑓(𝑑𝑎𝑏; 𝜙) = exp[– 𝜙𝑑𝑎𝑏] 

where dab are the distances between pairs of points a and b, and ϕ is the rate of decline of 

spatial correlation per unit of distance. A normal distribution was specified for the 

intercept and the coefficients (normal prior with mean = 0 and precision, the inverse of 

variance, = 1 × 10-3). The priors distribution of ϕ was uniform with upper and lower 

bounds set at 0.09 and 100 (the lower bound set to ensure spatial correlation at the 

maximum separating distance between survey locations was < 0.5). The priors for the 

precision (1/σt
2) were specified using a non-informative gamma distribution (with shape 

and scale parameter values of 0.001 and 0.001, respectively). 

A burn-in of 1000 iterations was run and discarded. Subsequent sets of 10,000 

iterations were run and examined for convergence. Convergence was determined by 

visual inspection of history and density plots. The runs were also examined for 

autocorrelation by visual inspection of the autocorrelation plots. Because autocorrelation 

was observed for all variables, thinning of simulations was applied for subsequent 

sampling by storing every 10th iteration. Convergence was achieved successfully for all 

variables in each model at approximately 100,000 iterations. The last 10,000 values from 

the posterior distributions of each model parameters were stored for the analysis. The rate 

of decay of correlation between locations (ϕ) with distance and the variance of the spatial 

component (σ2) were also recorded.  

The spatial.unipred function in OpenBUGS was used for spatial prediction at 

non-sample locations (defined using a regular 1 𝗑 1 grid overlying the entire Xiji 
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territory). This function applies the model equation at each prediction location using the 

covariates values extracted for prediction locations and an interpolated value for the 

geostatistical random effects. 

ArcGIS was used to generate maps that represent the posterior distributions of 

predicted seropositivity for E. granulosus and E. multilocularis in Xiji County. 

 

Results 

Sample description 

The final data set consisted of 434 school locations and a total of 5110 schoolchildren 

aged 6–18 years who were screened for human echinococcoses. The surveys involved 

845 students in 2002–2003, 2588 in 2006–2007 and 1677 in 2012–2013. The overall 

seroprevalences of E. granulosus and E. multilocularis were 33.4 and 12.2%, 

respectively, ranging from 0 to 100% by school for both parasites. In the first survey, the 

seroprevalence of E. multilocularis among schoolchildren was higher (18.1%) than the 

seroprevalence of E. granulosus (16.8%). However, seropositivity for E. granulosus 

became more common in the second and third survey with seroprevalences of 30.9 and 

45.6% compared to seroprevalences of E. multilocularis of 12.8% and 8.4%, respectively 

(Table 3). An abnormal hepatic image compatible with a CE case (0.02% of the total 

number of schoolchildren in the study) and a query lesion (0.02%) were observed in two 

different participants in the first survey. Both cases were seropositive for E. granulosus. 

Calcified lesions were also observed in 8 (0.1%) participants in the first survey and 14 

(0.3%) participants in the second survey. Among participants with calcifications, 4 

(0.01%) were seropositive for E. granulosus and 2 (0.03%) were seropositive for E. 

multilocularis. Other asymptomatic liver abnormalities were reported in 4 (0.01%) 

participants, who were seronegative for both parasite species, in the second survey. The 
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mean age of participants with seropositivity for E. granulosus was 12.9 years [median: 

13; standard deviation (SD): 2.9], and the mean age for those with seropositivity for E. 

multilocularis was 13.3 years (median: 14; SD: 2.9). 

Figure 2 displays the observed spatial distributions of the seroprevalence of E. 

granulosus and E. multilocularis by schools for the three surveys. The maps confirm that 

seropositivity for E. granulosus became more widespread in Xiji County over time, while 

the distribution of E. multilocularis seropositivity became more confined.  

 

 

Table 3 

Human seroprevalence of Echinococcus granulosus and E. multilocularis infection 

stratified by gender from three school-based surveys conducted in Xiji County in 

2002–2003 (survey 1), 2006–2007 (survey 2) and 2012–2013 (survey 3) 

 

 

Bayesian geostatistical models 

Based on DIC estimates, the Bayesian spatial models (Models II) of seropositivities for 

E. granulosus and E. multilocularis were the best-fitting models (Tables 4 and 5). In 

Model II of E. granulosus, girls had a 15.0% (95% CrI: 1.7–29.8%) higher risk of 

exposure than boys. Also, within the 1 km buffers, there was a 0.7% increase in the odds 

of seropositivity (95% CrI: 0.4–0.9%) for an increase of 1 mm in summer mean 

  E. granulosus E. multilocularis Total 

n (%) 

  Positive 

n (%) 

Negative 

n (%) 

Positive 

n (%) 

Negative 

n (%) 

  

Survey 1 142 (16.8) 703 (83.2) 153 (18.1) 692 (81.9) 845 (100) 

Survey 2 799 (30.9) 1789 (69.1) 331 (12.8) 2257 (87.2) 2588 (100) 

Survey 3 765 (45.6) 912 (54.4) 141 (8.4) 1536 (91.5) 1677 (100) 

Total 1706 (33.4) 3404 (66.6) 625 (12.2) 4485 (87.8) 5110 (100) 
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precipitation at the time of the survey, and 6.5% increase (95% CrI: 2.0–10.9%) with 1% 

increase in water extent at the five-year lag. Forest, shrubland and water coverage in the 

5 km buffers were also positively associated with the risk of E. granulosus. There were 

estimated increases of 2.2% (95% CrI: 0.5–3.9%), 194.3% (95% CrI: 44.7–523.1%) and 

18.8% (95% CrI: 1.4–38.5%) in the odds of seropositivity for E. granulosus for a 1% 

increase in the extent of forest at the time of the survey, and the extent of shrubland and 

water at five-year lags. There was a decrease of 2.8% (95% CrI: 0.4–4.8%) in the odds 

of seropositivity for every year of age. The odds of seropositivity for E. granulosus 

decreased 1.6% (95% CrI: 0.8–2.6%) with a unit increase in NumP, 64.7% (95% CrI: 

26.1–82.8%), with 1 km increase in MPS, 6.8% (95% CrI: 4.3–9.3%) with a 1 mm 

increase in winter mean precipitation and 1.7% (95% CrI: 0.2–3.2%) with a 1% increase 

in the coverage of bareland/artificial surfaces. In Model II, the variance of the spatially 

structured random effect increased from 8.4 × 104 (1.6 × 104 to 4.1 × 103) in the first 

survey to 1.2 × 103 (2.4 × 104 to 4.4 ×103) in the second survey. From this value, the 

variance decreased to 7.2 × 104 (1.7 × 104 to 2.8× 103) in the final survey. These findings 

imply that the amount of spatial variability in the data changed over time with the 

distribution of seropositive cases becoming more homogeneous at the end of the study 

period (Table 4). 
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Table 4 

Regression coefficients, ORs and 95% CrI from the Bayesian spatial model (Model 

II) for human seropositivity for Echinococcus granulosus in three school-based 

surveys conducted in Xiji County in 2002–2003, 2006–2007 and 2012–2013 

 

Model Coefficient, posterior mean 

(95% CrI) 

OR, posterior 

mean (95% 

CrI) 

α1 (Intercept study 1) -0.23 (-1.79–1.27) – 

α2 (Intercept study2) 0.94 (-0.74–2.56) – 

α3 (Intercept study 3) 0.38 (-1.10–1.76) – 

Femalea 0.14 (0.02–0.26) 1.15 (1.01–1.29) 

Age -0.03 (-0.05– -0.01) 0.97 (0.95–0.99) 

Summer precipitation same year (1 km) 0.01 (0.00–0.01) 1.01 (1.01–1.02) 

EVI same year (1 km) -5.12 × 104 (-5.10 × 104–4.91 × 

104) 

0.99 (0.99–1.00) 

Cultivated land same year (1 km) 3.24 × 103 (-3.22 × 103–9.94 × 

103) 

1.00 (0.99–1.01) 

Water bodies 5 years prior (1 km) 0.06 (0.02–0.10) 1.06 (1.02–1.10) 

Forest same year (1 km) 0.01 (-6.95 × 104–0.02) 1.00 (0.99–1.01) 

NumP 5-year average (1 km) -0.01 (-0.02– -0.01) 0.98 (0.97–0.99) 

PD 5-year average (1 km) 1.08 (-0.23–2.83) 2.95 (0.79–

16.89) 

MPS 5-year average (1 km) -1.04 (-1.76– -0.30) 0.35 (0.17–0.73) 

Winter precipitation same year (5 km) -0.07 (-0.09– -0.04) 0.93 (0.91–0.95) 

Bareland/art surfaces same year (5 km) -0.02 (-0.03– -0.01) 0.98 (0.96–0.99) 

Forest same year (5 km) 0.02 (0.01–0.03) 1.02 (1.01–1.03) 

Water bodies 5 years prior (5 km) 0.17 (0.01–0.32) 1.18 (1.01–1.38) 

Herbaceous vegetation 5 years prior (1 km) 0.01 (-0.01–0.02) 1.01 (0.99–1.02) 

Shrubland 5 years prior (5 km) 1.08 (0.36–1.82) 2.94 (1.44–6.23) 

Cultivated land 5 years prior (5 km) -0.01 (-0.02–0.01) 0.98 (0.97–1.10) 

MPS 5 years prior (5 km) -0.14 (-0.54–0.17) 0.86 (0.58–1.19) 

Heterogeneity structured (survey 1) 8.40 × 104 (1.63 × 104–4.12 × 

103) 

– 

Heterogeneity structured (survey 2) 1.18 × 103 (2.42 × 104–4.42 × 

103) 

– 

Heterogeneity structured (survey 3) 7.18 × 104 (1.75 × 104 –2.79 × 

103) 

– 

ϕ1 (Decay of spatial correlation survey 1) 0.61 (0.04–1.31) – 

ϕ2 (Decay of spatial correlation survey 2) 0.19 (0.03–0.56) – 

ϕ 3 (Decay of spatial correlation survey 3) 0.17 (0.02–0.50) – 



 Chapter 5 Human exposure to Echinococcus spp. in Xiji County 
 

136 

 

 DIC  6197 – 

aReference category: gender (male) 

Abbreviations: ORs, Odds ratios; 95% CrI, 95% credible interval; DIC, deviance information criterion 

 

Model II of E. multilocularis seropositivity showed that, within the 1 km buffers, 

there was an increase of 0.6% (95% CrI: 0.3–0.9%) in the odds of seropositivity for a 1 

mm increase in summer mean precipitation. Also, 82.6% (95% CrI: 27.4–150.5%) and 

0.5% (95% CrI: 0.02–1.00%) increases in the odds of seropositivity for increases of 1% 

in the 5-year average of water coverage and 1 km/km2 of ED, respectively. The odds of 

seropositivity for E. multilocularis decreased 1.5% (95% CrI: 0.7–2.2%) with a unit 

increase in NumP, and by 10.6% (95% CrI: 4.6–16.1%) with a 1 mm increase in winter 

mean precipitation. The odds of seropositivity also decreased 79.4% (95% CrI: 25.8–

94.8%) with a 1% increase in the coverage of shrubland. The variance of the spatial 

random effects decreased from 3.1 × 103 (5.3 × 104 to 9.2 × 103) in survey 1 to 2.3 × 103 

(3.1 × 104 to 5.3 × 103) in survey 2 and to 2.3 × 103 (3.1 × 104 to 5.3 × 103) in survey 3. 

The values of the decay parameter for spatial correlation (ϕ) in the model of E. 

granulosus seropositivity were 0.6 in the first survey, 0.2 in the second survey and 0.2 in 

the third survey. These estimates indicate that after accounting for the effect of covariates, 

the radii of the clusters were approximately 555, 1752 and 1959 km, respectively (ϕ is 

measured in decimal degrees, therefore, the cluster size is calculated dividing 3 by ϕ; at 

the equator, one decimal degree is approximately 111 km). The same values in the model 

of seropositivity for E. multilocularis were 0.07, 0.10 and 0.26, for surveys 1, 2 and 3, 

with cluster sizes of 4757, 3330 and 1280 km, respectively. These results imply that 

spatial correlation in the risk of seropositivities for E. granulosus and E. multilocularis 

was evident between schools with relatively large distances separating them. 
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Table 5 Regression coefficients, ORs and 95% CrI from Bayesian spatial model 

(Model II) for human seropositivity for Echinococcus multilocularis in three school-

based surveys conducted in Xiji County in 2002–2003, 2006–2007 and 2012–2013 

Model/Variable Coefficient, posterior mean (95% 

CrI) 

ORs, posterior 

mean (95% CrI) 

α1 (Intercept study 1) -2.25 (-3.38– -1.39) – 

α2 (Intercept study2) -1.75 (-2.47– -0.94) – 

α3 (Intercept study 3) -2.88 (-3.90– -2.13) – 

Femalea  0.09 (-0.11–0.24) 1.09 (0.89–1.28) 

Age -0.01 (-0.03–0.02) 0.99 (0.96–1.02) 

Summer precipitation same year (1 km) 6.53 × 103 (3.40 × 103–9.31 × 103) 1.01 (1.01–1.02) 

EVI same year (1 km) 4.97 × 106 (7.10 × 104–6.21 × 104) 1.00 (0.99–1.00) 

Bareland/Art surfaces same year (1 km) -0.02 (-0.05–0.01) 0.99 (0.99–1.00) 

Cultivated land 5 years prior (1 km) 0.01 (-0.01–0.02) 1.01 (0.99–1.02) 

Cultivated land same year (1 km) -0.01 (-0.01–0.01) 0.99 (0.98–1.01) 

Herbaceous vegetation 5-year average (1 

km) 

-0.01 (-0.01–0.01) 0.99 (0.98–1.00) 

Water bodies average (1 km) 0.60 (0.24–0.91) 1.82 (1.27–2.50) 

Forest same year (1 km) -0.01 (-0.01–0.01) 1.00 (0.99–1.01) 

NumP 5-year average (1 km) -0.01 (-0.02– -0.01) 0.98 (0.97–0.99) 

MPS 5-year average (1 km) -0.19 (-0.68–0.13) 0.82 (0.50–1.14) 

ED 5-year average (1 km) 5.11 × 103 (2.10 × 104–9.97 × 103) 1.01 (1.01–1.02) 

Elevation (5 km) 3.99 × 104 (1.64 × 103–1.00 × 103) 0.99 (0.99–1.01) 

Winter precipitation 5-year average (5 km) -0.11 (-0.17– -0.04) 0.89 (0.83–0.95) 

Summer temperature 5 years prior (5 km) -0.01 (-0.38–0.35) 0.99 (0.67–1.42) 

Forest 5-year average (5 km) 0.01 (-0.01–0.01) 1.00 (0.99–1.01) 

Water bodies 5 years prior (5 km) 0.02 (-0.16–0.20) 1.02 (0.84–1.23) 

Water bodies 5-year average (5 km) -0.02 (-0.07–0.01) 0.97 (0.92–1.01) 

Shrubland 5 years prior (5 km) -1.58 (-2.95– -0.29) 0.20 (0.05–0.74) 

Shrubland same year (5 km) 0.95 (-0.45–2.10) 2.59 (0.63–8.23) 

Cultivated land same year (5 km) -0.01 (-0.02–0.01) 0.99 (0.97–1.01) 

NumP same year (5 km) 1.66 × 104 (1.25 × 104–4.71 × 104) 1.01 (0.99–1.01) 

Heterogeneity structured (survey 1) 3.09 × 103 (5.33 × 104–9.19 × 103) – 

Heterogeneity structured (survey 2) 2.29 × 103 (3.11 × 104–5.28 × 103) – 

Heterogeneity structured (survey 3) 2.29 × 103 (3.11 × 104–5.28 × 103) – 

ϕ1 (Decay of spatial correlation survey 1) 0.07 (0.01–0.23) – 

ϕ2 (Decay of spatial correlation survey 2) 0.10 (0.02–0.40) – 

ϕ 3 (Decay of spatial correlation survey 3) 0.26 (0.09–0.52) – 

DIC 3697  – 

aReference category: gender (male) 

Abbreviations: OR, odds ratio; 95% CrI, 95% credible interval; DIC, deviance information criterion 



 Chapter 5 Human exposure to Echinococcus spp. in Xiji County 
 

138 

 

Spatial predictions 

Maps of the mean and SD of the posterior distributions of predicted seroprevalence of E. 

granulosus for the years 2002–2003, 2006–2007 and 2012–2013 are shown in Fig. 3. The 

north-central part of the county was an area with persistent high predicted seroprevalence 

during the surveys, with the range of high seroprevalence areas expanding to cover the 

entire county by the time of the third survey. Prediction uncertainty was generally higher 

in the central and eastern parts of the county. 

Maps of the mean and SD of the posterior distributions of predicted 

seroprevalence of E. multilocularis are presented in Fig. 4. Areas of high predicted 

seroprevalence in the north, northeast and centre of the county gradually decreased from 

survey 1 to survey 3, leaving some residual foci of high seroprevalence in the central 

north and southwest parts of the county. Maps of the posterior SDs demonstrate that the 

level of uncertainty increased over time. 
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Fig. 3 Spatial distribution of predicted seropositivity for Echinococcus granulosus 

in schoolchildren aged 6–18 years and standard deviations in 2002–2003 (a, d), 

2006–2007 (b, e) and 2012–2013 (c, f) in Xiji County, NHAR, China 
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Fig. 4 Spatial distribution of predicted seropositivity for Echinococcus multilocularis 

in schoolchildren aged 6–18 years and standard deviations in 2002–2003 (a, d), 

2006–2007 (b, e) and 2012–2013 (c, f) in Xiji County, NHAR, China 

 

 

Discussion 

In this study, we present model-based predictive risk maps of human seropositivities for 

E. granulosus and E. multilocularis for Xiji County, for the years 2002–2003, 2006–2007 

and 2012–2013. Previous epidemiological reports on CE and AE infections in NHAR 

were mostly descriptive, reporting prevalence estimates at specific locations [44, 57, 58]. 

Spatially explicit statistical models were constructed previously to predict the spatial 

distribution of infection with E. multilocularis among the non-student population in Xiji 

County in 2002–2003 [27]. That model showed that the landscape features associated 

with an increased AE risk in Xiji County differed from previous observations in Zhang 

County in the neighbouring Gansu Province [21, 23]. Unlike the findings in Zhang 
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County, where grassland/shrubland favoured the creation of optimal peri-domestic 

habitats for E. multilocularis intermediate host species, and the development of a peri-

domestic cycles involving dogs [21, 23], in Xiji County, abundance of reforested lowland 

pastures was correlated with higher prevalence of human AE risk. This finding supports 

the hypothesis that the transmission of E. multilocularis may occur through a diversity of 

host communities in China [27]. Therefore, extended monitoring of the seroprevalence 

of both, CE and AE, in the context of landscape transformation was suggested for Xiji 

County to assess the potential impact of local environmental factors on the transmission 

dynamics of E. granulosus and E. multilocularis [27]. Also, predictive estimates of the 

prevalence of infections in humans over time are currently required to inform and support 

the ongoing implementation process for prevention and control [10, 29].  

In general, the risk of seropositivity for E. granulosus expanded in Xiji County 

over the study period. In 2002–2003, E. granulosus risk was clustered mainly in the 

north-central part of Xiji, an area that corresponds largely to the Yueliang mountain range 

(2626 m), and where predominant vegetation consist of forest, grassland and cultivated 

land [49]. Echinocuccus granulosus risk expanded towards the east in 2006–2007 and 

decreased in the north-west. Finally, the risk of seropositivity was between 35 and 45% 

in almost the entire county territory in 2012–2013. These findings concur with reports of 

the apparently expanding geographical range of Echinococcus spp. [16, 59–64]. In Xiji 

County, livestock and arable agriculture are common practices among most local 

communities and represent higher risk of Echinococcus spp. exposure. Therefore, 

intensification in livestock production to supply the growing demand for resources may 

have pushed the local human settlements into close proximity with their livestock and the 

habitats of other potential Echinococcus spp. hosts [65]. According to data from the 

Gridded Livestock of the World v.2.0, in 2006, sheep and cattle populations were 

file:///J:/1.Writing%20manunscript/d.%20fourth%20paper/Submission/5.%20Parasites%20and%20Vectors/Publication/PARV-D-17-01059_R1%20EDIT%20ACB%20AMCR.docx%23_ENREF_64
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distributed in the entire territory of Xiji County with higher densities, 20–50 and 10–50 

heads per square kilometre, respectively, in the north-west [65]. The prevalence of CE in 

sheep was estimated to be 52% in NHAR in 2008, and between 0–9% according to more 

recent studies conducted in local areas no larger than counties [66–68]. These prevalence 

estimates may have varied due to local or individual conditions that facilitated high 

transmission within patches of CE endemicity. Also, studies conducted at the provincial 

level have found that 81% of cattle, 3% of goats, 19% of camels and 24% of pigs were 

infected with E. granulosus in 2008 [69]. 

The land cover in NHAR has been modified considerably in recent decades [49, 

70]. Because landscape characteristics may determine directly or indirectly the feeding 

behaviour, growth rates, reproductive efficiency and immunological mechanisms of 

domestic animals [71], it was not surprising to find that the extent of various vegetation 

types were associated with the risk of seropositivity for E. granulosus. A reduction of 

bareland and the increases of woody vegetation types such as forest and shrubland may 

have sustained the E. granulosus life-cycle by facilitating the geographical expansion and 

interactions of competent hosts that move in response to available food sources [8, 72]. 

The movement of domestic animals and changes in their feeding practices can also be 

explained by land cover changes that contributed to loss or fragmentation of natural 

habitats indicated by metrics such as, NumP and MPS, that were significantly associated 

with the risk of seropositivity for E. granulosus [73–75]. The positive association 

between the seroprevalence of E. granulosus and the extent of area covered by water was 

unexpected and deserves further investigation. However, this relationship may be 

explained partially by the same mechanism that associates positively and negatively E. 

granulosus risk with summer and winter precipitation, respectively, at the time of the 

survey. Sufficient ground moisture is an important determinant of the survival and 
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infectivity of Echinococcus spp. eggs in the external environment [76, 77]. Also, due to 

the lack of piped water in some areas in the south of NHAR in past decades, the 

inhabitants had to rely mainly on natural drinking water supplies such as seasonal rivulets 

and temporary wells dug in dry-river beds [78]. Domestic dogs had also free access to 

these water supplies, which may have led to water contamination with the parasite eggs 

and increased risk of Echinococcus spp. transmission to the human population [78]. 

Increased annual rainfall has been shown to be associated with high infection rates 

of E. granulosus in livestock from hyperendemic regions for CE in Ethiopia and north-

central Chile [79, 80]. Also, studies conducted in Iran and Saudi Arabia reported seasonal 

variations in the prevalence of E. granulosus infection during abattoir meat inspections 

[81, 82].  

The observed differences of E. granulosus risk among females and males and the 

negative association with age may be exposure-related [44, 83, 84]. However, it has also 

been suggested that immunological and hormonal gender differences may account for 

higher infection rates in females than males [44]. 

In contrast to the high seroprevalence and geographical expansion of the 

seropositivity for E. granulosus, the seropositivity for E. multilocularis was lower and 

decreased during the three surveys. In 2002–2003, most areas in the county had estimated 

seroprevalences of E. multilocularis between 10 and 30%, with higher risk in those 

communities located in the north-east and central part. An important reduction was 

observed in the north-western area of Xiji in 2006–2007, and in north-eastern Xiji in 

2012–2013. Seroprevalences of E. multilocularis remained highest in the south-west 

throughout the surveys. Overall, the findings of this study do not support the evidence 

from Europe and other regions in Asia that indicates the spreading of E. multilocularis 

[2, 85, 86]. This discrepancy could be due to different local transmission dynamics of the 
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parasite in Xiji County and to novel interactions between the recently transformed local 

landscape, the parasite and its hosts [27]. However, issues related to the inherent 

limitations of sampling variation and different methodological approaches should also be 

considered.  

Landscape change and fragmentation have been identified as important 

determinants of the population dynamics of several species of wild mammals that are 

common intermediate host of E. multilocularis [87–90]. In eastern France, population 

outbreaks of Microtus arvalis and Arvicola terrestris were reported in areas where 

ploughed fields were converted into permanent grassland [21, 22]. Significant positive 

associations of E. multilocularis infection in humans and foxes with the extent of 

grassland were also reported in the same region [21, 91, 92]. The distribution of small 

mammals also varied in response to the transient augmentation of grassland/shrubland 

that followed a period of deforestation in Gansu Province [21, 23], and to overgrazing 

and fencing practices in the north-western part of Sichuan Province on the Tibetan 

Plateau [24, 25, 26]. Recently, it was demonstrated that low-biomass degraded grassland 

habitats influence the presence of Ochotona spp. in Serxu County, Sichuan Province [28]. 

In NHAR, the diversity of small mammal assemblages was related to afforestation and 

was lower than that of assemblages in areas where deforestation occurred [93]. Lowland 

pastures that were described as heavily grazed grassland interspersed with forest or shrub 

cover were associated with higher prevalence of human AE [27]. The results of this study 

showed significant associations with fragmentation metrics and seropositivity for E. 

multilocularis. It was also found that shrubland did not provide an optimal habitat for the 

transmission of E. multilocularis. Because different classification methods and 

definitions were used in relation to the previous study in Xiji County, the results need to 

be interpreted with caution. However, the results support the hypothesis that the land 
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cover characteristics facilitating E. multilocularis transmission in Xiji County are 

different from those favouring the transmission of the parasite in the south of Gansu 

Province [27]. Despite many epidemiological differences between E. granulosus and E. 

multilocularis, the significant positive associations between E. granulosus risk and the 

extent of water and summer precipitation, and the negative association with winter 

precipitation, were also found for E. multilocularis risk in Xiji County. Examination of 

the viability of E. multilocularis eggs particularly, has revealed that the eggs are sensitive 

to microclimatic conditions such as moisture levels or humidity [76].  Laboratory studies 

indicated that E. multilocularis eggs are more resistant to heat if suspended in water [94]. 

Interventions to reduce the risk of human infection in NHAR are in line with the 

guidelines of the National Control Programme [6]. Mass-community screening surveys, 

health education campaigns, regular dog treatment with praziquantel, patient treatment 

and animal offal inspection and control in slaughterhouses have been taking place across 

the NHAR since 2005 [6, 7]. Due to the lack of surveillance data and an incomplete 

understanding of the factors influencing parasite transmission, it has been difficult to 

forecast the impacts of the control measures [10]. The results of the current study are 

important for estimating the burden of CE and AE in Xiji County. In addition, 

considerable small-scale spatial variation in seropositivities for E. granulosus and E. 

multilocularis was observed which indicates that there is scope for predictive risk maps 

to help inform spatially targeted control measures in Xiji County. Areas of priority for 

AE control include the north and south-western part of the county, whereas CE control is 

required throughout. 

Important limitations of the study were the different survey designs used between 

periods, affecting comparability of the data, and the use of schools to geolocate children, 

which might not reflect where exposure occurred. Also, children seropositivity for E. 
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granulosus and/or E. multilocularis was defined using specific antibody testing by 

ELISA using EgB and EmP. The poor diagnostic performance of these current serological 

tests and cross-reaction with other helminthic infections, including other types of human 

echinococcoses [95], and gastrointestinal malignancies remain a critical issue for the 

diagnosis of CE and AE and represent a source of misinterpretation in areas where both 

infections co-exist [35, 90]. Nevertheless, the analyses revealed that E. granulosus risk 

has increased and become more widespread across Xiji County during the study period. 

The patterns of E. multilocularis risk did not concur with the reported expansion of E. 

multilocularis in other regions. Clearly, control of CE is a public health priority in Xiji 

County, whereas further research is required to explore in more detail the potential factors 

that may be influencing the changing burden of AE. 

 

Conclusions 

This work provides detailed geographical information regarding the changes in the 

predicted prevalence of human seropositivities for E. granulosus and E. multilocularis in 

Xiji County, a highly endemic area for human echinococcoses. The study period was 

from 2002 to 2013, during which extensive landscape restoration projects were 

implemented in NHAR and other parts of China. The different models developed in this 

study indicate that the human seropositivity for E. granulosus expanded across Xiji 

during the study period, while seropositivity for E. multilocularis became more confined 

in communities located in the south of the county. These results help to identify priority 

areas where targeted prevention and control efforts are most required.  
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CHAPTER 6 HUMAN AND DOG EXPOSURE TO 

ECHINOCOCCUS SPP. IN SOUTHERN NHAR 

6.1 Context 

E. granulosus and E. multilocularis are transmitted in domestic and sylvatic life cycles, 

respectively. These life cycles are maintained by a wide range of intermediate and 

definitive hosts (140). Domestic dogs are susceptible to infection with both parasites, and 

are currently regarded as important sources of human CE and AE in China (117, 181). 

Therefore, major goals of the national prevention and control initiative against 

echinococcoses in China are to decrease the seropositivity rate in children aged <12 years 

and reduce infestation rates in dogs. However, strategies to control echinococcosis 

infections implemented at the county level in NHAR are being guided primarily by 

provincial estimates of the prevalence of these infections. Consequently, to date, it is 

difficult to provide evidence on the local impact and effectiveness of the National Control 

Programme to prevent and cure echinococcoses. 

The study presented here extends the work reported in Chapter 5 by incorporating 

into the analysis data not only collected in Xiji County between 2012 and 2013, but also 

data collected in the same years in Haiyuan, Guyuan and Tongxin Counties, which are 

counties located in the southern mountainous area of NHAR. In addition, this study 

includes data on E. granulosus and E. multilocularis infection status in domestic dogs 

which are the presumed local definitive host for both parasites in Western China. 

Therefore, this study is the first of its kind to predict and compare the spatial distribution 

of human exposure to E. granulosus and E. multilocularis and infections with these 

parasites in dogs. 

 

Supplementary material for this paper is provided in Appendix E 
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6.2 Spatial prediction of the risk of exposure to Echinococcus spp. 

among schoolchildren and dogs in Ningxia Hui Autonomous Region, 
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Abstract 

The geographical distribution of Echinococcus spp. infections in Ningxia Hui 

Autonomous Region (NHAR) has been reported to be expanding in response to 

environmental change. The aim of the present study was to predict and compare the 

spatial distribution of human seropositivity for E. granulosus and E. multilocularis and 

infections with these parasites in dogs in four counties in the south of NHAR, to identify 

communities where targeted prevention and control efforts are required. Predicted 

seroprevalence of E. granulosus in schoolchildren and E. granulosus infections in dogs 

concurred spatially, whereas predicted seroprevalence of E. multilocularis in 

schoolchildren and E. multilocularis infections in dogs differed spatially. Enhanced 

vegetation index was significantly associated with E. multilocularis seropositivity among 

schoolchildren, and infections with E. granulosus and E. multilocularis in dogs. A 

positive association was also found between dog infection with E. granulosus and 

cultivated land, and a negative association between human seropositivity for E. 

granulosus and bareland/artificial surfaces. The findings of this study support the 

importance of land cover and climatic variables in determining habitat suitability for 

Echinococcus spp. infections, and suggest that definitive hosts other than dogs (e.g. 

foxes) are important in defining the geographical risk of human seropositivity for E. 

multilocularis in NHAR. 

 

Key words: Echinococcus granulosus; Echinococcus multilocularis; environment; 

geographic information systems; Ningxia Hui Autonomous region 
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Introduction 

Cystic echinococcosis (CE), caused predominantly by infection with Echinococcus 

granulosus, and alveolar echinococcosis (AE), due to infection with E. multilocularis, 

have long incubation periods (5–15 years) that delay diagnosis and treatment (Ammann 

and Eckert 1996), and require long-term monitoring and medical care for most patients 

(Brunetti et al. 2011; Kern et al. 2017). It is estimated that 188,000 people are infected 

with E. granulosus globally every year which represents a human health burden of 

184,000 disability-adjusted life years (DALYs) lost (Torgerson et al. 2015). An estimate 

of 18,235 cases of AE occur annually resulting in a loss of approximately 666,433 

DALYs (Torgerson et al. 2010). From these figures, 91% of the total number of cases 

and 95% of the disease burden of AE are estimated to be in the People’s Republic (P.R.) 

of China (Torgerson et al. 2010).  

The transmission of E. granulosus and E. multilocularis in domestic and sylvatic 

life cycles, respectively, is maintained by a wide range of intermediate and definitive 

hosts (Romig et al. 2017). The transmission of E. granulosus involves domestic dogs and 

other canids as typical definitive hosts, and sheep and other ungulates as intermediate 

hosts(Eckert and Deplazes 2004). E. multilocularis is transmitted within predator-prey 

cycles that involve different species of foxes as main definitive hosts and small mammals 

as intermediate hosts (Eckert and Deplazes 2004; Kapel et al. 2006). Domestic dogs are 

susceptible to infection with both parasites, and are currently regarded as significant hosts 

for E. granulosus and E. multilocularis (Moss et al. 2013; Rausch 1995). In Gansu 

Province and the eastern Tibetan plateau, P.R. China, particularly, domestic dogs have 

been identified as the main transmission source of both parasites to the local human 

population (Craig et al. 2000; Wang et al. 2010). Comprehensive reviews of the life 

cycles of E. granulosus and E. multilocularis, clinical manifestations of human 
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echinococcoses, diagnosis, treatment, prevention and control are available (Craig et al. 

2017; Kern et al. 2017; Romig et al. 2017). 

CE and AE are characterised by great variation in their geographical distributions, 

with important differences at regional and local spatial scales (Cringoli et al. 2007; Eckert 

2001; Giraudoux et al. 2006; Giraudoux et al. 2013a; Mastin et al. 2011). CE has a 

widespread global distribution with the highest disease burden in poor pastoralist 

communities, whilst AE occurs within defined areas of temperate and subarctic regions 

of the northern hemisphere (Deplazes et al. 2017). Various socio-demographic, economic 

and environmental factors that act at different spatial scales have been found to be 

associated with the distributions of CE and AE risk (Atkinson et al. 2013; Cadavid 

Restrepo et al. 2015; Danson et al. 2003; Giraudoux et al. 2007). These factors determine 

the population dynamics and behaviour of the hosts, predator-prey interactions and the 

survival and development of the parasites.  

Land cover change factors have been found to be linked to the distribution and 

dynamics of E. multilocularis intermediate hosts (Raoul et al. 2008; Silva et al. 2005). 

Deforestation (Giraudoux et al. 1998; Giraudoux et al. 2003), afforestation (Raoul et al. 

2008), and specific farming and fencing practices (Raoul et al. 2006; Wang et al. 2004) 

have been shown to modify the distribution of various species of small mammals. 

Overgrazing and low grass height were also linked positively to the presence and 

abundance of intermediate hosts for E. multilocularis in highly endemic areas on the 

Tibetan Plateau (Raoul et al. 2006; Wang et al. 2010), while enhanced vegetation index 

(EVI) had a negative association with the presence of Ochotona curzoniae (plateau pika) 

and Ochotona cansus (Gansu pika), key intermediate hosts for the parasite in Serxu 

County, Sichuan Province (Marston et al. 2016). To date, surprisingly few studies have 
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been conducted to investigate the host-environment interactions that regulate the 

domestic life cycle of E. granulosus (Eckert and Deplazes 2004). 

Spatial epidemiological approaches that integrate the use of geographical 

information systems (GIS), remote sensing and model-based geostatistics serve as 

valuable analytical tools to quantify and predict the spatial heterogeneities in the risk of 

echinococcoses across different spatial scales (Cadavid Restrepo et al. 2015). Because 

control interventions against CE and AE require a long period of implementation in order 

to be successful, the outcome of spatial epidemiological approaches may help define 

national and regional policies to reduce the burden of these diseases, and also to prioritise 

areas where interventions are required (Cadavid Restrepo et al. 2015; Craig et al. 2017). 

Nine valid species are currently recognised within the genus Echinococcus:  E. 

granulosus, E. multilocularis, E. ortleppi, E. canadensis, E. oligarthrus, E. vogeli, E. 

shiquicus, E. felidis, E. equinus. E. granulosus and E. multilocularis are the species found 

in Ningxia Hui Autonomous Region (NHAR) (McManus et al. 1994; Yang et al. 2005). 

A spatial prediction study of E. multilocularis in Xiji county, south of NHAR found that 

E. multilocularis transmission was determined by landscape factors, such as presence of 

lowland pasture (Pleydell et al. 2008). It was also suggested that the infection did not 

occur primarily through arvicolines species which are key intermediate hosts for this 

parasite in other areas (Pleydell et al. 2008). In this study, we extend the previous work 

that was undertaken in Xiji County to encompass three additional neighbouring counties, 

Haiyuan, Guyuan and Tongxin, located in the south of NHAR. Using Bayesian model-

based geostatistics, we aimed to create spatial predictions of the risk of human 

seropositivity for E. granulosus and E. multilocularis, and the risk of dog infections with 

these parasites. In the present study, the term human exposure was meant to signify that 

children harboured possibly the metacestode stage of E. granulosus and/or E. 
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multilocularis, whether or not, they had clinical, serological or ultrasound evidence of 

active cysts (based on the description of a possible echinococcosis case suggested 

elsewhere (Brunetti et al. 2010). These maps can guide decision-makers to spatially target 

echinococcosis control interventions. 

  

Material and methods 

The protocol for this study was reviewed and approved by the Human and Animal 

Research Ethics Committees of the Ningxia Medical University, QIMR Berghofer 

Medical Research Institute, and the Human Ethics Committee of The Australian National 

University. After explaining the purpose and procedures of the surveys, parents or adult 

representatives of the students and dog owners who agreed to participate were asked to 

sign an informed written consent form. 

 

Study area 

The surveys were conducted in four contiguous counties of NHAR, Xiji, Haiyuan, 

Guyuan and Tongxin Counties, which are located in the south of the Autonomous Region 

between latitudes 35°33'–36°98' N, and between longitudes 105°64'–106°24 E. The four 

counties together cover an area of approximately 21,557 km2. Based on the estimates of 

the national census in 2015, the total populations were, 344,045 in Xiji, 396,938 in 

Haiyuan, 1,211,789 Guyuan and 325,441 in Tongxin, of whom 58.0%, 70.8%, 46.1% 

and 86.1% were of the Hui Islamic ethnic minority, respectively, while almost all others 

were Han Chinese (National Bureau of Statistics of China 2015) (Figure 1).  
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Figure 1. Map and elevation of Xiji, Haiyuan, Guyuan and Tongxin counties and 

location of NHAR within China. 

 

The counties lie in a temperate continental monsoon climate zone that is characterized by 

four distinct seasons. The annual average temperature is 5.37 ℃ and the average annual 

precipitation is 418.2 mm. Approximately 60% of the precipitation is in the form of 

rainstorms that take place during the rainy season, from June to September. Elevation 

ranges from 1,500 to 2,800 meters above sea level. The geography of this part of NHAR 

include mountainous areas around Mt. Liupan, and the Loess hills. Vegetation varies 
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from forest mainly in the southeast to slope farmland that accounts for most of the 

cultivated land, and to desert in the northeast and northwest.  

 

Data on seroprevalence of E. granulosus and E. multilocularis 

Data on the seroprevalence of E. granulosus and E. multilocularis were obtained from a 

cross-sectional school-based survey conducted across the four counties in 2012–2013. 

Children aged 6–18 years were selected to ensure that the collected data were 

representative of recent exposure risk (as adults might have been exposed over a long 

duration in the past). A geostatistical design (grid plus close pairs) was used to select the 

schools for the survey (Diggle and Ribeiro 2007). A 15×15 km grid was created and 

overlaid on the entire study area using ArcGIS software version 10.3.1 (ESRI 2015). The 

primary set of schools selected for the survey consisted of those schools located in closest 

proximity to the grid nodes. A second set of schools was also selected comprising schools 

located in near proximity to those selected at the nodes of the grid (the close pairs). The 

origin of the grid, the distance and direction of the close pairs from the primary set, and 

the primary subset for which close pairs were selected, were generated using a random 

number generator. This approach was used because it has been identified as the most 

efficient survey design for estimating spatial variability in environmental variables 

(Diggle and Ribeiro 2007).  

All children who agreed to participate in the survey were first assembled and 

asked to provide demographic and exposure information using standardised 

questionnaires that were administered by the school teachers. Then, a blood sample from 

the ear lobe was collected from participants for specific antibody testing by enzyme 

linked immunosorbent assay (ELISA) using E. granulosus cyst fluid antigen B and E. 

multilocularis crude protoscolex extract (Craig et al. 1992; Yang et al. 2008). EgB and 
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EmP ELISA sensitivity is >85% for CE and >90% for AE, respectively (Bartholomot et 

al. 2002; Craig et al. 1992; Craig et al. 2000). Specificity is from 70% to 100% for CE 

(Carmena et al. 2006) and 87% for AE (Bartholomot et al. 2002). Finally, abdominal 

ultrasound was used to screen schoolchildren and detect and classify early CE and/or AE 

cysts. The classification scheme of CE and AE proposed by the World Health 

Organization was used to categorise the hepatic lesions (Kern et al. 2006; WHO Informal 

Working Group 2003; WHO Informal Working Group on Echinococcosis 2001). 

Although ultrasound is the method of choice to confirm human echinococcoses, it has 

low sensitivity to detect small cysts (McManus et al. 2012). Therefore, due to the young 

age of participants and the slow rate of growth of the cysts, the results of the ultrasound 

are not reported here. Schoolchildren, who were screen-positive for one of the infections 

or both, were referred to the local medical centre for free treatment. 

 

Data on dog infection  

Faecal samples were collected from domestic dogs presenting to the veterinary centre 

nearest to the selected schools, including rural and urban locations, between 2012 and 

2013. The faecal samples were initially stored separately for at least 7 days at −80 °C to 

inactivate the parasite eggs, and then transferred to a −20 °C freezer. The processing and 

copro-analysis were conducted at the Zoonoses Laboratory of the Ministry of Agriculture 

in the Lanzhou Veterinary Research Institute, Gansu Province, P.R. China. A Multiplex 

polymerase chain reaction (PCR) assay was used for simultaneous detection of E. 

granulosus and E. multilocularis DNA (Liu et al. 2015). The geographic coordinates of 

each school and veterinary centre were collected using a hand-held global positioning 

system. Maps of the surveyed locations is available (Figure 2).  

 

file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_3
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_3
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_11
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_12
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_10
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_3
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_32
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_73
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_73
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_74
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_42
file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_37


Chapter 6 Human and dog exposure to Echinococcus spp. in southern NHAR 

 

168 

 

 

Figure 2. Distribution of surveys of E. granulosus and E. multilocularis exposure in 

schoolchildren and dogs and observed seroprevalence of (A) E. granulosus, (B) E. 

multilocularis, (C) infection with E. granulosus in dogs and (D) infection with E. 

multilocularis in dogs in 2012–2013 in Xiji, Haiyuan, Guyuan and Tongxin counties, 

NHAR, P.R. China. Locations of the different land cover types are also indicated. 

 

Environmental and remotely sensed data 

Land cover maps at a 30-meter spatial resolution for the years 2005, 2010 and 2015 were 

obtained from a previous study that assessed and quantified land cover change in NHAR 

between 1991 and 2015 (Cadavid Restrepo et al. 2017). The maps were created using 

time series images retrieved from the Landsat Surface Reflectance Climate Data Record 

available in Earth Explorer (The United States Geological Survey (USGS)). Seven land 

cover categories were initially identified: water bodies, artificial surfaces, bare or sparsely 

vegetated areas, herbaceous vegetation, cultivated land, shrubland and forest (Table 1). 

However, due to significant spectral confusion between artificial surfaces and bare or 

sparsely vegetated areas, these land cover classes were merged and represented as a single 
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category in the maps and further analyses. Details of the process of land cover 

classification and accuracy assessment are provided elsewhere (Cadavid Restrepo et al. 

2017). 

Landsat 30-meter enhanced vegetation index (EVI) data were extracted from the 

Earth Resources Observation and Science (EROS) Center Science Processing 

Architecture (ESPA) On Demand Interface (The United States Geological Survey 

(USGS)). Data were downloaded from a month during the growing season in NHAR 

(June–November) for the years 2008 and 2012. However, when there were no data 

available for the specified time period, the closest-in-time EVI estimates were retrieved 

for the analyses. 

Elevation estimates were obtained in a GeoTIFF format at the spatial resolution 

of 1 arc-second (approximately 30 m) from the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 

(The National Aeronautics and Space Administration (NASA) and Ministry of Economy 

Trade and Industry (METI)). The ASTER GDEM was downloaded from the 

Earth Explorer website (The United States Geological Survey (USGS)). 
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Table 1. Land cover classification scheme and definitions 

Code Land cover 

type 

Description Content 

    

1 Water bodies All areas of water Streams and canals, lakes, 

reservoirs, bays and estuaries 

2 Artificial 

surfaces 

Land modified by human 

activities  

Residential areas, industrial 

and commercial complexes, 

transport infrastructure, 

communications and utilities, 

mixed urban or built-up land 

and other built-up land 

3 Bare or 

sparsely 

vegetated 

areas 

Areas with little or no "green" 

vegetation present 

 

Dry salt flats, sandy areas, 

bared exposed rock and mixed 

barren land 

4 Herbaceous 

vegetation 

Areas characterized by 

natural or semi-natural 

vegetation 

Grasses and forbs 

5 Cultivated 

land 

Areas where the natural 

vegetation has been 

removed/modified and 

replaced by other types of 

vegetative cover that have 

been planted for specific 

purposes such as food, feed 

and gardening 

Cropland and pasture, 

orchards, groves, vineyards, 

nurseries and ornamental 

horticultural, other cultivated 

land 

 

6 Shrubland 

 

Natural or semi-natural 

woody vegetation with aerial 

stems less than 6 meters tall 

Evergreen and deciduous 

species of true shrubs and 

trees or shrubs that are small 

or stunted  

 

7 Forest Areas characterized by tree 

cover or semi-natural woody 

vegetation greater than 6 

meters tall 

Deciduous forest, evergreen 

forest and mixed forest 

 

 

 

Average monthly values of temperature and precipitation for the period January 1 2008 

to December 31 2013 were provided by the Chinese Academy of Sciences in a raster 

format at the spatial resolution of 1 km. The monthly climate values had first been 

collected from 16 local weather stations and then interpolated using the Inverse Distance 

Weighting (IDW) method.  
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A boundary map of the four counties was downloaded from the DIVA-GIS website 

(DIVA GIS). The geo-referenced data sets that included the locations of the surveyed 

schools and veterinary centres were imported into ArcGIS and projected to the Universal 

Transverse Mercator (UTM) coordinate system zone 48N. ArcGIS was used to delineate 

1 km and 5 km radii buffer zones around the centres of the survey site locations and all 

covariates were summary estimates extracted from these buffer zones. The buffer sizes 

were selected in order to examine areas of environmental conditions that provide suitable 

habitat for the parasite hosts. Land cover variables were summarized as percentages of 

each land cover type within the buffer zones for the years 2005, 2010 and 2015. The 

extracted estimates were then used to calculate change rates for the periods 2005–2010, 

and 2010–2015. In this way, it was possible to estimate the spatial extent of all land cover 

classes by buffer area for the years 2008 and 2012. For climate, elevation and EVI 

variables, a moving 5-year average (MA) of the values of the independent variables was 

generated for the period 2008–2012 to examine the host/environment interplay over an 

extended period of time rather than at a single point. For each surveyed location, the data 

extracted included: annual, summer (June, July and August) and winter (December, 

January and February) weighted average temperature and precipitation, and spatial mean 

values of EVI and elevation within the buffer zone.  

 

Variable selection 

Using R software version 3.2.2. (R Core Team 2015), non-spatial univariate binomial 

logistic regression models were developed to examine the association between the 

environmental variables with E. granulosus and E. multilocularis infections in humans 

and dogs. Spearman correlation analyses were conducted to assess collinearity among all 

independent variables. If the correlation coefficient between a pair of covariates was > 

file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_19
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0.9, the covariate with the highest value of Akaike Information Criterion (AIC) in the 

univariate regression models was excluded. Various non-spatial binomial multivariate 

logistic regression models were also created to compare differences in model fit. 

Multivariate logistic regression models were also developed for human and dog 

infections and for each species. The models with the lowest AIC were selected for 

subsequent geostatistical analyses. Nonlinear associations between the environmental 

covariates and the infections were modelled using quadratic terms. 

 

Model-based geostatistics 

Separate multivariable geostatistical logistic regression models were created in a 

Bayesian framework for human serological status and dog infections with each parasite 

species using the OpenBUGS software 3.2.3 rev 1012 (Members of OpenBUGS Project 

Management Group 2014). First, Bayesian geostatistical models were developed with the 

explanatory variables as fixed-effects but without considering the spatial dependence 

structure of the data. Then, Bayesian geostatistical models for each infection were created 

including the explanatory variables and a spatially structured random effect.  

The fit of the models was compared using the deviance information criterion 

(DIC), where low DIC values indicate a better fit. Statistical significance of the covariates 

in the models was deemed to be achieved if the 95% credible intervals (95% CrI) of the 

estimated odds ratios (OR) excluded 1.  

For all infections, the best-fit model was a logistic regression model the one that 

included the spatial random effect. Assuming a Bernoulli-distributed dependent variable, 

Yij, corresponding to the serological/infection status (0=seronegative/noninfected, 

1=seropositive/infected) of an individual i in location j, the model structures for 

schoolchildren (formula 1) and dogs, (formula 2), were as follows:  

file:///J:/1.Writing%20manunscript/e.%20Fifth%20paper/5.%20Geospatial%20Health/Review/Revised%20manuscript.docx%23_ENREF_43
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𝑌𝑖𝑗 ~ 𝐵𝑒𝑟𝑛(𝑝𝑖𝑗)  

logit (𝑝𝑖𝑗) =  𝛼 + 𝛾 𝗑 age 𝑖
+ ∑ 𝛽𝑧

𝑧

𝑧=1

 𝗑 λ𝑧𝑗 +  𝑠𝑗 

 

𝑌𝑖𝑗 ~ 𝐵𝑒𝑟𝑛(𝑝𝑖𝑗)  

logit (𝑝𝑖𝑗) =  𝛼 + ∑ 𝛽𝑧

𝑧

𝑧=1

 𝗑 λ𝑧𝑗 +  𝑠𝑗 

 

where α is the intercept, γ is the coefficient for age, β is a matrix of z coefficients, λ is a 

matrix of z environmental variables, and sj a geostatistical random effect. The correlation 

structure of the geostatistical random effect was assumed to be an exponential function 

of the distance between points:  

 

𝑓(𝑑𝑘𝑙; 𝜙) = exp[– 𝜙𝑑𝑘𝑙] 

 

where dkl are the distances between pairs of points k and l, and ϕ is the rate of decline of 

spatial correlation per unit of distance. A normal distribution was used for the priors for 

the intercept and the coefficients (mean = 0 and precision, the inverse of variance, = 1 × 

10–3), whereas a uniform distribution was specified for ϕ (with upper and lower bounds 

s= 0.01 and 100; the lower bound set to ensure spatial correlation at the maximum 

separating distance between survey locations was <0.5). A non-informative gamma 

distribution was used to specify the priors for the precision (shape and scale parameters 

= 0.001, 0.001). 

 

[1] 

[2] 
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A burn-in of 1,000 iterations was run first and discarded. Sets of 20,000 iterations were 

then run and examined for convergence. Convergence was assessed by visual inspection 

of history and density plots and by examining autocorrelation of the model parameters. 

Because autocorrelation was observed for most variables, thinning was applied by storing 

every 10th iteration. In each model, convergence was achieved for all variables at 

approximately 80,000 iterations. The last 10,000 values from the posterior distributions 

of each model parameter were recorded. The rate of decay of spatial correlation between 

locations (ϕ) with distance and the variance of the spatial structured random effect (σ2) 

were also stored.  

To define the prediction locations, a regular 5 km× 5 km grid was overlaid over 

the entire study territory. The risk of human seropositivity and dog infection at the 

prediction locations was estimated using the spatial.unipred function in OpenBUGS. The 

function applies the model equation at each non-sampled location using the covariates 

values extracted for them and the separating distance between those locations and the 

surveyed locations. 

Maps that represent the posterior distributions of predicted seroprevalence of 

these parasite species in humans and predicted prevalence of both infections in dogs were 

created in ArcGIS for the four counties. 

 

Results 

Sample description 

The final data set of the surveyed schools consisted of 106 locations and a total of 7,547 

schoolchildren who were screened for Echinococcus spp. seropositivity. Haiyuan 

(64.5%) and Xiji (54.0%) were the two counties with the highest observed overall 

seroprevalence of both infections, followed by Guyuan (43.3%) and then by Tongxin 
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(24.6%). The seroprevalence of E. granulosus among schoolchildren by county was 

higher (45.6%) in Xiji, while a higher seroprevalence of E. multilocularis was observed 

in Haiyuan (21.1%) (Table 2 and Additional file 1). Co-infection with E. granulosus and 

E. multilocularis was observed in 7.9% of the children being higher in Haiyuan (5.0%) 

and followed by Xiji (1.6%), Guyuan (1.1%) and Tongxin (0.2%). The mean age of 

participants who were seropositive for E. granulosus was 11.4 years (standard deviation 

(SD): 2.6), and the mean age for those who were seropositive for E. multilocularis was 

11.3 years (SD: 2.5). 

The final data set of the survey conducted in the veterinary centres included 111 

locations and a total of 3,324 dogs. The county with the highest overall prevalence of 

dogs infected with each of the parasite species, E. granulosus and E. multilocularis, was 

Xiji County (16.5% and 14.2%, respectively). The prevalences of dog infection with E. 

granulosus in the other three counties were 12.0%, 11.8% and 9.5% in Tongxin, Haiyuan 

and Guyuan, respectively. The prevalence of dog infection with E. multilocularis were 

notably lower in Haiyuan (3.4%), Tongxin (1.6%) and Guyuan (1.5%) compared with 

Xiji (Table 2 and Additional file 1). Co-infections with both parasite spp. were higher in 

Xiji (0.4%) and Tongxin (0.2%) followed by Guyuan (0.06%) and Haiyuan (0.03%). 

Figure 2 shows the observed spatial distributions of the prevalence of the 

infections in humans and dogs by parasite species and locations. From the maps, it is 

difficult to identify a clear geographical pattern. However, the maps confirm that 

seropositivity for E. granulosus was more widespread than the seropositivity for E. 

multilocularis in the study areas. 
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 Table 2. Seroprevalence of human seropositivity for E. granulosus and E. 

multilocularis and dog infections with these parasites in dogs by county in the cross-

sectional surveys conducted in schools and veterinary centres in 2012–2013 

 

 

Models of E. granulosus and E. multilocularis seropositivities in schoolchildren 

The DICs of the models of seropositivity for E. granulosus with and without accounting 

for spatial correlation were 8,699 and 8,903, respectively. In the spatial model, 

bareland/artificial surface land cover class, was the only variable that had a statistically 

significant association with seropositivity. The estimated decrease in seropositivity was 

0.9% (95% CrI: 0.04%–1.8%) for an increase of 1% in the extent of bareland/artificial 

surfaces (Table 3). The E. multilocularis model with the spatial component had a DIC of 

3,575, while the model without the spatial component had a DIC of 3,667. In the spatial 

model, EVI had a significant positive association with seropositivity for E. multilocularis. 

There was an estimated increase of 0.2% (95% CrI: 0.1%–0.3%) in seropositivity for E. 

 
E. granulosus E. multilocularis 

 

a. Humans 

 
Positive Negative Positive Negative Total 

Xiji  765 (45.6%)  912 (54.4%)  141(8.4%)  1,536 (91.6%)  1,677 (100%)  

Guyuan  601 (36.4%)  1,051 (63.6%)  114 (6.9%)  1,538 (93.1%)  1,652 (100%)  

Haiyuan  842 (43.4%)  1,099 (56.6%)  409 (21.1%)  1,532 (78.9%)  1,941 (100%)  

Tongxin  523 (22.9%)  1,754 (77.1%)  39 (1.7%)  2,238 (98.3%)  2,277 (100%)  

b. Dogs 

Xiji  124 (16.5%)  626 (83.5%)  106 (14.1%)  644 (85.9%)  750 (100%)  

Guyuan  63 (9.5%)  597 (90.5%)  10 (1.5%)  650 (98.5%)  660 (100%) 

Haiyuan   91 (11.8%)  680 (88.2%)  26 (3.4%)  745 (96.6%)  771 (100%)  

Tongxin  137 (12.0%)  1,006 (88%)  18 (1.6%)  1,125 (98.4%) 1,143 (100%)  
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multilocularis for 1-unit increase in EVI within the 5-km buffer area at a 5-year lag. 

Additionally, the quadratic terms for winter and summer temperature in the 5-km buffers 

were statistically significant in the 5 years prior to the survey, indicating a significant 

nonlinear association (Table 4). 

The variance of the spatially structured random effect was 0.6 (0.4 to 1.0) in the 

model of seropositivity for E. granulosus and 1.2 (0.7 to 1.9) in the model of 

seropositivity for E. multilocularis. These estimates imply that, after accounting for the 

effect of the statistically significant variables, the residual spatial variation was higher for 

human seropositivity for E. multilocularis. Phi (ϕ), that is the rate of decay of spatial 

correlation (with bigger ϕ indicating smaller clusters), was 20.9 in the E. granulosus 

model and 45.2 in the E. multilocularis model. This means that, after accounting for the 

effect of covariates, the radii of the clusters were larger for human seropositivity for E. 

multilocularis than for human seropositivity for E. granulosus. 
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Table 3. Regression coefficients, ORs and 95% CrI from Bayesian spatial model for 

seroprevalence of E. granulosus in schoolchildren in Xiji, Haiyuan, Tongxin and 

Guyuan counties in 2012–2013 

 

* 95% CrI, 95% credible interval 

 

 

 

 

 

 

Model Coefficient, posterior mean 

(95% CrI*) 

Odds ratios, 

posterior mean 

(95% CrI) 

Intercept  -0.68 

(-1.07 to -0.31) 

- 

Age -4.2 x 10-3 

(-0.03 to 0.02) 

0.99 

(0.97 to 1.02) 

Summer precipitation same year (5 

km) 

-1.83 x 10-3 

(-7.98 x 10-3 to 4.20 x 10-3) 

0.99 

(0.99 to 1.01) 

Winter temperature 5 years prior 

(1km) 

-0.07 

(-1.32 to 1.23) 

0.93 

(0.26 to 3.43) 

Winter temperature 5 years prior 

(1km) squared 

0.22 

(-0.17 to 0.59) 

1.24 

(0.84 to 1.80) 

Winter temperature same year (5km) -0.71 

(-2.00 to 0.68) 

0.49 

(0.13 to 1.99) 

Winter temperature same year (5km)  

squared 

-0.07 

(-0.27 to 0.13) 

0.92 

(0.76 to 1.14) 

Bareland/Art. surfaces same year (1 

km) 

-0.01 

(-0.01 to -4.02 x 10-4) 

0.99 

(0.98 to 0.99) 

Cultivated land 5 years prior (1 km) -0.01 

(-0.01 to 3.63 x 10-3) 

0.99 

(0.98 to 1.00) 

Forest 5 years prior (1 km) -0.01 

(-0.04 to 0.02) 

0.99 

(0.95 to 1.02) 

Herbaceous vegetation same year (1 

km) 

3.24 x 10-4 

(-0.01 to 0.01) 

0.99 

(0.98 to 1.01) 

Shrubland same year (1 km) -7.36 

(-16.43 to 1.73) 

6.32 x 10-4 

(7.26 x 10-8  to 

5.68) 

Heterogeneity structured  0.58 

(0.36 to 0.99) 

- 

ϕ (Decay of spatial correlation) 20.89 

(5.86 to 71.23) 

- 

 

Deviance information criterion 

 

8,669 

 

 - 
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Table 4. Regression coefficients, ORs and 95% CrI from Bayesian spatial model for 

seroprevalence of E. multilocularis in schoolchildren in Xiji, Haiyuan, Tongxin and 

Guyuan counties in 2012–2013 

 
Model Coefficient, posterior mean 

(95% CrI*) 

Odds ratios, 

posterior mean 

(95% CrI) 

Intercept  -2.69 

(-3.58 to -1.88) 

- 

Age 0.03 

(-0.01 to 0.07) 

1.03 

(0.99 to 1.07) 

Summer precipitation 5 years prior (5 km) 0.01 

(-0.01 to 0.02) 

1.01 

(0.99 to 1.02) 

Summer temperature 5 years prior (5 km) -3.32 

(-6.38 to -0.28) 

0.03 

(0.01 to 0.75) 

Summer temperature 5 years prior (5 km) 

squared 

-1.96 

(-3.07 to -0.81) 

0.14 

(0.04 to 0.44) 

Winter temperature 5 years prior (5 km) 

 

-2.09 

(-5.20 to 1.23) 

0.12 

(0.01 to 3.44) 

Winter temperature 5 years prior (5 km) 

squared 

0.97 

(0.26 to 1.68) 

2.64 

(1.30 to 5.38) 

Bareland/Art. surfaces 5 years prior (5 

km) 

 

0.01 

(-0.02 to 0.03) 

1.00 

(0.98 to 1.03) 

Bareland/Art. surfaces same year (5 km) 

 

-0.01 

(-0.03 to 0.02) 

0.99 

(0.96 to 1.02) 

Cultivated land 5 years prior (5 km) 

 

0.01 

(-0.02 to 0.02) 

1.00 

(0.98 to 1.02) 

Forest 5 years prior (5 km) 

 

-0.01 

(-0.05 to 0.04) 

0.99 

(0.94 to 1.04) 

Shrubland 5 years prior (5 km) 

 

-3.70 

(-8.05 to 0.47) 

0.02 

(3.00 x 10-4 to 1.60) 

Shrubland 5 same year (5 km) -4.28 

(-10.81 to 2.16) 

0.01 

(0.02 x 10-5 to 8.72) 

Water bodies 5 years prior (5 km) 0.89 

(-0.40 to 2.25) 

2.44 

0.66 to 9.52) 

EVI 5 years prior (1 km) -3.39 x 10-4 

(-1.01 x 10-3 to 4.00 x 10-

4) 

0.99 

(0.99 to 1.00) 

EVI 5 years prior (5 km) 1.80 x 10-3 

(5.00 x 10-4 to 3.00 x 10-3) 

1.00 

(1.00 to 1.01) 

Heterogeneity structured  1.18 

(0.71 to 1.91) 

- 

ϕ (Decay of spatial correlation survey 1) 45.17 

(11.74 to 95.22) 

- 

 

Deviance information criterion 

 

3,575 

 

 - 
* 95% CrI, 95% credible interval 
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The models of dog infection with E. granulosus with the spatial component had a lower 

DIC, 2.121, compared with the one without the spatial component, 2,250. There was an 

increase of 2.0% (95% CrI: 0.8–3.3%) in the prevalence of dog infection with E. 

granulosus for a 1% increase in the coverage of cultivated land, and 0.05% (95% CrI: 

0.001–0.1%) for an increase of 1 unit of EVI (Table 5). The spatial model for E. 

multilocularis infection in dogs also had a lower DIC (805.2) compared with the non-

spatial model (963.2) (Table 6). The prevalence of E. multilocularis infection was found 

to increase by 0.1% (95% CrI: 0.04–1.2%) with a 1-unit increase in EVI.   

 In the model of dog infection with E. granulosus, the variance of the spatially 

structured random effect was 0.6 (0.3 to 1.0) and in the model of dog infection with E. 

multilocularis this parameter was 1.6 (0.4 to 5.7), meaning residual spatial variation was 

higher for the model of infection with E. multilocularis. The values of the decay 

parameter for spatial correlation (ϕ) in the models of dog infection with E. granulosus 

and E. multilocularis were 69.4 and 41.2, respectively, indicating that the radii of the 

clusters were larger for dog infection with E. granulosus than infection with E. 

multilocularis. 
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Table 5. Regression coefficients, ORs and 95% CrI from Bayesian spatial model for 

dog infection with E. granulosus in Xiji, Haiyuan, Tongxin and Guyuan counties in 

2012–2013 
 

Model Coefficient, posterior mean 

(95% CrI*) 

Odds ratios, 

posterior mean 

(95% CrI) 

Intercept  -2.38 

(-2.61 to -2.18) 

- 

Winter precipitation 5 years prior (5 km) 

 

-0.04 

(-0.11 to 0.01) 

0.95 

(0.89 to 1.01) 

Winter temperature 5 years prior (1 km) 

 

0.91 

(-4.40 x 10-3 to 1.86) 

2.51 

(0.99 to 6.47) 

Bareland/Art. surfaces 5 years prior (5 

km) 

0.01 

(-4.40 x 10-4 to 0.02) 

1.01 

(0.99 to 1.02) 

Cultivated land 5 years prior (1 km) 

 

0.02 

(0.01 to 0.03) 

1.02 

(1.01 to 1.03) 

Herbaceous vegetation 5 years prior (5 

km) 

 

0.01 

(-3.10 x 10-4 to 0.02) 

1.01 

(0.99 to 1.02) 

Shrubland 5 years prior (5 km) 

 

-1.42 

(-3.68 to 0.87) 

0.24 

(0.02 to 2.41) 

Water bodies same year (5 km) 

 

-0.16 

(-0.57 to 0.23) 

0.84 

(0.56 to 1.25) 

EVI 5 years prior (1 km) -5.51 x 10-4 

(-1.20 x 10-3 to 1.00 x 10-

4) 

0.99 

(0.99 to 1.00) 

EVI 5 years prior (5 km) 5.77 x 10-4 

(1.74 x 10-5 to 1.15 x 10-3) 

1.00 

(1.00 to 1.01) 

Heterogeneity structured  0.59 

(0.29 to 1.00) 

- 

ϕ (Decay of spatial correlation) 69.37 

(25.85 to 98.64) 

- 

 

Deviance information criterion  

 

2,121 

 

 - 
* 95% CrI, 95% credible interval 
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Table 6. Regression coefficients, ORs and 95% CrI from Bayesian spatial model for 

dog infection with E. multilocularis in Xiji, Haiyuan, Tongxin and Guyuan counties 

in 2012–2013 

 

Model Coefficient, posterior mean 

(95% CrI) 

Odds ratios, posterior 

mean 

(95% CrI) 

Intercept  -4.09 

(-4.99 to -2.41) 

- 

Annual temperature 5 years 

prior (1 km) 

-1.57 

(-17.50 to 9.6) 

0.20 

(2.50 x 10-8 to 1.50 x 104) 

Annual temperature same 

year (1 km) 

-4.53 

(-19.58 to 10.08) 

0.01 

(3.10 x 10-9 to 2.24 x 104) 

Summer temperature 5 years 

prior (5 km) 

0.92 

(-9.78 to 14.50) 

2.52 

(5.61 x 10-5 to 1.99 x 106) 

Summer temperature same 

year (5 km) 

2.82 

(-8.75 to 13.49) 

16.89 

(1.57 x 10-4 to 7.26 x 105) 

Winter temperature 5 years 

prior (1 km) 

3.62 

(-12.59 to 21.39) 

37.65 

(3.38 x 10-6 to 1.95 x 109) 

Winter temperature 5 years 

prior (1 km) squared 

0.85 

(-0.66 to 2.14) 

2.34 

(0.51 to 8.56) 

Winter temperature same 

year (1 km) 

28.74 

(-4.27 to 56.02) 

3.02 x 1012 

(0.01 to 2.13 x 1024) 

Winter temperature same 

year (1 km) squared 

4.42 

(-3.54 to 13.70) 

83.49 

(0.02 to 8.95 x 105) 

Winter temperature 5 years 

prior (5 km) 

-0.28 

(-18.58 to 19.62) 

0.75 

(8.44 x 10-9 to 3.33 x 108) 

Winter temperature same 

year (5 km) 

-28.97 

(-56.69 to 0.06) 

2.61 x 10-13   

(2.37 x 10-25 to 1.06) 

Winter temperature same 

year (5 km) squared 

-6.12 

(-16.11 to 2.11) 

2.22 x 10-3 

(1.00 x 10-7 to 8.26) 

Bareland/Art surfaces 5 years 

prior (5 km) 

0.01 

(-0.01 to 0.03) 

1.01 

(0.98 to 1.03) 

Cultivated land 5 years prior 

(5 km) 

-6.01 x 10-3 

(-0.03 to 0.02) 

0.99 

(0.95 to 1.02) 

Forest same year (5 km) -7.61 x 10-3 

(-0.04 to 0.02) 

0.99 

(0.95 to 1.02) 

Herbaceous vegetation 5 

years prior (5 km) 

-8.82 x 10-3 

(-0.01 to 0.03) 

1.01 

(0.98 to 1.03) 

Shrubland 5 years prior (5 

km) 

-4.60 

(-9.88 to 0.17) 

0.01 

(5.10 x 10-5 to 1.19) 

Shrubland same year (5 km) -8.73 

(-26.85 to 3.63) 

1.61 x 10-4 

(2.17 x 10-12 to 37.79) 

Water bodies 5 years prior (5 

km) 

-0.39 

(-2.06 to 1.08) 

0.67 

(0.12 to 2.95) 

Elevation (1km) 1.90 x 10-3 

(-8.37 x 10-4 

4.80 x 10-3) 

1.00 

(0.99 to 1.00) 

EVI 5 years prior (1 km) 6.84 x 10-4 

(1.90 x 10-3 to 5.00 x 10-4) 

0.99 

(0.99 to 1.00) 

EVI 5 years prior (5 km) 1.00 x 10-3 

(4.90 x 10-5 to 1.97 x 10-3) 

1.00 

(1.00 to 1.00) 
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* 95% CrI, 95% credible interval 

 

Spatial predictions of human seroprevalence of E. granulosus and E. multilocularis 

The predictive risk maps of seroprevalences of E. granulosus and E. multilocularis in 

Xiji, Haiyuan, Guyuan and Tongxin Counties in 2012–2013 were created (Figures 3A 

and B). The highest seroprevalence of E. granulosus, >60%, was predicted for west-

central Xiji and Haiyuan. However, E. granulosus seroprevalences between 40% and 

60% were predicted in large areas throughout these two counties and in the central part 

of Guyuan. For most of the northern part of the study area, which corresponds to Tongxin 

county, low seroprevalences were predicted (<40%) (Additional file 2). The highest 

seroprevalence of E. multilocularis, >20%, was found in a large area of the central part 

of Haiyuan county (Additional file 3). In northern Xiji and north-western Guyuan 

seroprevalences were between 8% and 16%, while low seroprevalences of E. 

multilocularis, 0-6%, were predicted for most of Tongxin and the southern part of Xiji 

County. Maps of the SDs of the posterior distributions of predicted seroprevalences of E. 

granulosus and E. multilocularis were also created (Figures 3C and D). The spatial 

distribution of high prediction uncertainty concurs with that of the areas with high 

seroprevalences of E. granulosus and E. multilocularis. 

 

 

 

 

Heterogeneity structured  1.62 

(0.36 to 5.74) 

- 

ϕ (Decay of spatial 

correlation) 

41.23 

(1.14 to 96.61) 

- 

 

Deviance information 

criterion 

 

805.2 

 

 - 
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Figure 3. Spatial distribution of predicted seroprevalences of (A) E. granulosus and 

(B) E. multilocularis in schoolchildren aged 6–18 years and (C and D) standard 

deviations, respectively, in Xiji, Haiyuan, Guyuan and Tongxin counties, NHAR, 

P.R. China in 2012–2013 

 

 

Spatial predictions of prevalence of dog infection with E. granulosus and E. 

multilocularis  

The highest predicted prevalence of dog infection with E. granulosus (>20%) was 

apparent in northern and eastern Haiyuan (Figure 4A). Almost all counties were predicted 

to be affected by this form of the infection except for Tongxin, where most of the 

territorial area had a predicted risk of 0-6%. A large high-risk area of dog infection with 
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E. multilocularis, >0.20%, was found in a region covering most of the south of the study 

area, which corresponds to the eastern part of Xiji and the south of Guyuan. More 

circumscribed areas of high risk of this infection in dogs were observed in the central part 

of Haiyuan. There was a large area of low risk, 0-6%, in northeast Haiyuan and almost 

the entire territory of Tongxin (Figure 4B). The maps of predicted SDs also showed high 

prediction uncertainty in areas with high mean predicted risk (Figures 4C and D). 

 

 

Figure 4. Spatial distribution of predicted prevalences of infection with (A) E. 

granulosus and (B) E. multilocularis in dogs, and (C and D) standard deviations, 

respectively, in Xiji, Haiyuan, Guyuan and Tongxin counties, NHAR, P.R. China in 

2012–2013 
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Discussion 

This study presents detailed information on the predicted geographical distribution of the 

risk of seropositivity for E. granulosus and E. multilocularis among schoolchildren aged 

6–18 years, and infection with these parasites in dogs, in an important endemic area of 

P.R. China. To our knowledge, these are the first species-specific risk maps created for 

the region that concurrently reveal the spatial variation in echinococcosis risk for humans 

and dogs at a local spatial scale. Important climatic and land cover factors associated with 

the observed geographical heterogeneity in the risk of seropositivity were also identified. 

The findings are of current relevance in NHAR due to the ongoing process of landscape 

restoration in the Autonomous Region (Cadavid Restrepo et al. 2017; Li et al. 2013). 

Since 2002, the Grain for Green Project (GGP), a large national initiative to recover the 

degraded landscape, has been implemented in NHAR (Liu et al. 2008; Wang et al. 2007; 

Zhang et al. 2008). With the aim of reducing cropland on steep slopes, the GGP promotes 

three different types of land conversions: cropland to grassland, cropland to forest, and 

wasteland to forest (The University of Nottingham 2010; Zhou et al. 2012). The project 

also advocates for desertification control and  prohibition of enclosures for grazing 

practices (Wang et al. 2007). Studies conducted in other echinococcosis-endemic regions, 

where landscape transformation processes have taken place, indicate that some types of 

land cover change may have had an impact on the transmission patterns of E. 

multilocularis and, consequently, the risk of infection has increased for animals and 

humans (Craig et al. 2000; Giraudoux et al. 1998; Giraudoux et al. 2003). 

This study demonstrated visual similarities in the spatial distribution of the 

predicted seroprevalence of E. granulosus among schoolchildren and infection in 

domestic dogs in the four counties in 2012-2013. Human seropositivity for E. granulosus 

was predicted for most of the study area, and dog infections with E. granulosus was 
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predicted for almost all of Xiji County and in large areas of Haiyuan, Guyuan and 

Tongxin Counties. The north-eastern and central parts of Tongxin were shown to have 

the lowest predicted prevalence of this parasite in humans and dogs. This geographical 

area of Tongxin is covered primarily by dry steppe vegetation and desert grassland (Li et 

al. 2008). These characteristics of the local environment may be providing unfavourable 

ecological conditions for the transmission of E. granulosus, most probably due to the 

effects on the parasite eggs. Soil moisture/humidity and temperature particularly have 

been identified as important determinants of the survival and longevity of the 

Echinococcus spp. eggs in the external environment (Thevenet et al. 2005; Veit et al. 

1995). Notably, the highest predicted prevalence of human seropositivity, unlike the 

highest predicted prevalence of dog infection, was found in areas from Xiji and Haiyuan 

Counties that share borders with the south of Gansu Province. In Gansu, human 

seropositivity and animal infections are also highly prevalent, with current estimates 

indicating that the annual incidence of human CE is between 2 and 10 cases per 105 

inhabitants (Deplazes et al. 2017).  Therefore, the high predicted prevalence of human 

seropositivity for E. granulosus in these areas may be partially explained by the pastoral 

nomadic culture practices and the movement of people and domestic dogs across the 

provincial borders (Miller 2006; Shen 2012) . 

The geographical distribution of the predicted prevalence of E. multilocularis 

among the students did not concur with the distribution of the predicted prevalence of E. 

multilocularis infection in dogs. While high prevalence of human seropositivity for E. 

multilocularis was predicted for almost all Haiyuan County, high prevalence of dog 

infection with this species was predicted for the eastern Xiji and southern Guyuan 

Counties. Although this study involved a different population group, the finding in Xiji 

confirms the prediction of the distribution of human seropositivity for E. multilocularis 
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conducted in the county in 2008, showing a similar geographical pattern (Pleydell et al. 

2008). However, the findings do not support the current hypothesis that domestic dogs 

serve as the primary host of E. multilocularis in south NHAR (Budke et al. 2005a; Budke 

et al. 2005b; Romig et al. 2017). Dog ownership and high levels of interaction between 

domestic dogs and humans are risk factors identified commonly in AE endemic-regions 

in north-western P.R. China (Craig et al. 2000; Craig 2006; Schantz et al. 2003; Tiaoying 

et al. 2005), including NHAR (Yang et al. 2006c). High prevalences of dog infections 

with E. multilocularis have also been reported in highly endemic areas for AE (Budke et 

al. 2005a; Xiao et al. 2006; Ziadinov et al. 2010). Therefore, there is evidence that 

suggests dogs are an important reservoir of infections in humans (Romig et al. 2017). 

However, the observed differences in the geographical distribution of the predicted 

prevalence of the infection in both hosts may suggest greater importance of other 

definitive host species in transmitting the parasite in the south of NHAR. The 

transmission of E. multilocularis through life cycles that involve both Tibetan sand foxes 

(Vulpes ferrilata) and domestic dogs has been reported in Sichuan Province (Vaniscotte 

et al. 2011). Similar transmission patterns have been described in areas of the Altai, Tien 

Shan and Pamir mountains in the south of Kyrgyzstan and Kazakhstan (Ziadinov et al. 

2008; Ziadinov et al. 2010). There, red foxes (Vulpes vulpes) were identified as principal 

definitive hosts, while domestic dogs were identified secondary definitive hosts of E. 

multilocularis (Ziadinov et al. 2008; Ziadinov et al. 2010). Reports of infection with E. 

multilocularis in red foxes in NHAR are only available for the mid-1980's (Li W et al. 

1985). At that time, 15% of trapped red foxes were infected with E. multilocularis in Xiji 

and Guyuan Counties (Li W et al. 1985). Although infection with E. multilocularis has 

also been described in wolves (Canis lupus) and corsac foxes (Vulpes corsac) in other 

parts of P.R. China (Craig et al. 2000), corsac and red foxes are presumed absent in areas 
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of high risk of human AE in Xiji County (Giraudoux et al. 2013a). Hence, there is still a 

need for a more holistic approach that can help identify other important predator-prey 

communities in the area and other potential key definitive host for this parasite species in 

the region. 

The results indicate that differences in vegetation, as indicated by EVI values, 

played a key role in explaining the observed spatial variation in the seropositivity for E. 

multilocularis among children aged 6–18 years, and infections with E. granulosus and E. 

multilocularis in dogs in the four counties. In addition, a positive association was found 

between dog infection with E. granulosus and cultivated land and a negative association 

between human seropositivity for E. granulosus and bareland/artificial surfaces. 

Associations between land cover and the spatial distribution of E. multilocularis 

seropositivity in humans and intermediate hosts are well documented in Eastern France, 

South Gansu, western Sichuan and Qinghai Provinces and in the South of NHAR 

(Giraudoux et al. 2003; Giraudoux et al. 2006; Giraudoux et al. 2013b; Pleydell et al. 

2008; Wang et al. 2004; Wang et al. 2006). The previous study conducted in Xiji County 

indicated that the abundance of degraded lowland pasture was associated with a higher 

prevalence of AE in humans (Pleydell et al. 2008). The presence of 16 species of small 

mammals communities was also revealed in a survey of small-mammal conducted in 

relation to different land cover types in the same area (Raoul et al. 2008). That survey 

also showed that in areas that experienced afforestation, species diversity was lower than 

that in deforested areas (Raoul et al. 2008). However, the richness of the species was not 

affected by land conversion processes (Raoul et al. 2008). In abandoned grasslands and 

recently afforested set-aside fields, there was higher trapping success of potential 

intermediate hosts for E. multilocularis such as Cricetulus longicaudatus and Ochotona 

daurica, while in young plantations the species Spermophilus alashanicus/dauricus were 
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observed (Raoul et al. 2008). Reports of the link between foxes and the landscape in 

France are available (Pleydell et al. 2004). The evidence indicates that these associations 

are based on the influence of specific ecology characteristics on intermediate host 

population dynamics (Giraudoux et al. 2013a). 

With regard to climatic covariates, the observed non-linear relationship between 

human AE prevalence and the values of winter and summer temperatures at the 5 years 

prior to the survey are consistent and interpretable with animal population dynamics, 

predator-prey interactions and the biology of the parasites. Temperature has been 

identified as a contributing factor that affects the geographical range and composition of 

foxes and small mammal communities (Hersteinsson and Macdonald 1992; Moritz et al. 

2008; Zhenghuan et al. 2008). Experimental studies indicate that the Echinococcus spp. 

eggs develop at temperature-dependent rates in the external environment (Veit et al. 

1995). The optimal temperature range for their survival has been established to be 

between 0°C and 10°C (Veit et al. 1995). However, differences have been found between 

species and strains (Thevenet et al. 2005; Veit et al. 1995). Temperatures of 4°C and of -

18°C particularly, are well tolerated by E. multilocularis eggs with  survival times of 478 

and 240 days, respectively (Veit et al. 1995). Also,  the evidence show that these eggs, if 

suspended in water, can remained infectious for a longer time than when exposed to heat 

(Federer et al. 2015). 

Current estimates of the burden of human echinococcoses in NHAR rely primarily 

on data collected from hospital records (Yang et al. 2006b; Yang et al. 2006c). These data 

include primarily symptomatic patients who seek medical care (Yang et al. 2006a; Yang 

et al. 2006b). Therefore, it is assumed that the extent and distribution of human CE and 

AE cases occurring in remote areas and asymptomatic infections may be underestimated 

in current epidemiological reports (Yang et al. 2006b). In 2005, the National Control 
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Programme against echinococcoses was developed by the National Health and Family 

Planning Commission (formerly the Ministry of Health) in P.R. China. The measures that 

are currently being implemented in endemic areas include: community-based 

epidemiological surveys for early detection, treatment and surveillance of the disease, 

education campaigns to increase awareness among local people and health officials, and 

regular antihelmintic treatment for deworming of dogs (World Health Organization and 

World Organisation for Animal Health 2011; Yang et al. 2006c). Prevalence data on these 

infections are essential for enhancing these control activities and monitoring their cost-

effectiveness and sustainability over time. Therefore, the findings of this study indicate 

that there is scope for the predictive maps created here to inform and guide spatially 

targeted interventions in those areas where they are most necessary. An additional benefit 

of this type of approach is that the maps allow monitoring of the transmission patterns of 

E. granulosus and E. multilocularis based on local environmental factors. In this way, it 

is possible to provide detailed information on the potential health effects of anthropogenic 

environmental change factors, including those that are associated with the 

implementation of national policies to recover the degraded landscape. 

An important limitation of the study was the use of specific antibody testing by 

enzyme linked immunosorbent assay using E. granulosus cyst fluid antigen B and E. 

multilocularis crude protoscolex extract to define seropositivity of schoolchildren to E. 

granulosus and/or E. multilocularis. These tests have poor diagnostic performance with 

limited specificity and cross-reactivity with other helminthic infections and 

gastrointestinal malignancies (Brunetti et al. 2010; Torgerson et al. 2009). However, 

serology, although not ideal, is the only diagnostic method available for small 

echinococcosis lesions that are probably asymptomatic. Therefore, follow-up 

examination is recommended to confirm the infections. 
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Conclusions 

This work provides detailed information regarding the geographical distribution of 

echinococcoses in humans and dogs in NHAR. The different models developed in this 

study indicate that human seropositivity for E. granulosus and dog infection with E. 

granulosus are widespread across the southern part of the Autonomous Region. 

Discrepancies in the geographical distribution of human seropositivity for E. 

multilocularis and dog infection with E. multilocularis suggest that further research is 

required to better understand the transmission dynamics of this parasite species. The 

results presented help to identify priority areas for echinococcosis control and may be 

used to target interventions where they have the greatest impact on the transmission of 

the infections. 
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CHAPTER 7 DISCUSSION 

7.1 Introduction 

Previous studies undertaken in China reported and described the heterogeneous 

geographical distribution of human echinococcoses in the country, and highlighted the 

importance of various environmental, demographic and socio-economic factors 

influencing the variation in disease risk across endemic regions (1-8). However, the 

complexities of the life cycles of Echinococcus spp., in which a variety of risk factors 

combine to determine spatial patterns of echinococcosis transmission, require further 

investigation (9). In this research, a combination of multi-spatial landscape 

epidemiological approaches with GIS, EO data and modern spatial analytical techniques, 

provided a unique opportunity for a better assessment of the epidemiology of human 

echinococcoses in NHAR, a highly endemic area for CE and AE in western China.  

The research has important practical implications for the understanding and 

control of these infections in the following ways: firstly, it provides a better insight into 

the local epidemiology of echinococcoses in NHAR, in which the local process of 

landscape transformation and climatic change may have contributed substantially to 

increasing the risk of infection to human populations; secondly, it provides maps of the 

distribution of CE and AE (or exposure to the parasites causing these diseases) at different 

geographical scales, which could be used as operational tools to guide and implement the 

interventions proposed by the National Action Plan for Echinococcosis Control in China; 

and thirdly, it provides comparative mapping approaches that help visualise human 

exposure to E. granulosus and E. multilocularis and dog infections with these parasites, 

showing that definitive hosts other than domestic dogs may be playing an important role 

in defining the geographical risk of E. multilocularis exposure to humans in NHAR.  
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7.2 Key research findings 

The study detailed in Chapter 3 revealed that the process of land conversion in NHAR 

between 1991 and 2015 concurred with the large-scale impact of the GGP in increasing 

forest and herbaceous vegetation coverage and in regenerating bareland areas. The 

findings extended the existing evidence on the process of land conversion in NHAR and 

confirms previous provincial reports of short-term (ten years or less) land cover 

assessments conducted in the autonomous regions (10-13). Additionally, land cover 

change in NHAR from 1991 to 2015 was consistent with environmental assessments 

conducted in other regions in western China, where ecological restoration policies have 

also been adopted (14-16). The observed land cover changes have been reported by 

researchers as positive or negative effects based on the environmental needs of each 

region (17, 18). One of the major concerns of the process of landscape transformation 

was its potential to compromise human health by inducing variations in infectious disease 

patterns, including human echinococcoses (19-23).  

Land cover change in NHAR was not exclusively the result of policies 

implemented to improve ecological conditions in China (12, 24). In addition to the effects 

of the GGP, there are other potential socio-economic, demographic and environmental 

causes of land cover change such as meteorological disasters, economic growth and rural-

urban migration that still need to be considered and explored (24-27). The results of this 

Chapter provide evidence that may help facilitate future landscape planning, management 

and decision making in NHAR. Providing food, energy, housing and other ecosystem 

services while preserving biodiversity and ecosystem functions that maintain their 

sustainable supply, is currently a great challenge (28). The land cover maps created as 

part of this research and the land cover change detection analysis may help the local 

government in NHAR identify optimal locations in which is appropriate to modify the 
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ecological network without affecting local ecosystem processes that determine the human 

and animal well-being. Also, monitoring land cover change may help to develop effective 

responses to local emerging environmental risks, such as rapid budget preparation 

processes, prioritization and allocation of required resources including mobilization of 

personnel to support the implementation of control interventions in areas in risk (29). 

The study presented in Chapter 4 provided a spatio-temporal analysis of land 

cover and climatic factors associated with the number of CE and AE cases by township 

in NHAR between 1994 and 2013. The approach followed a framework that is similar to 

the ones adopted in previous research that explained patterns in human echinococcosis 

prevalence or incidence data in China using spatial statistics, EO data and GIS (4, 5, 30). 

However, a novel component of the study presented in Chapter 4 is the spatial and 

temporal extent of the data being analysed. The study found a negative trend in annual 

CE, a positive association with winter mean temperature at a 10-year lag and a significant 

nonlinear relationship with annual mean temperature at a 13-year lag. The study also 

revealed a negative association between AE incidence and moving averages of 

bareland/artificial surface coverage and annual mean temperature for the period 11–15 

years before diagnosis and winter mean temperature for the period 0-4 years. Unlike CE 

risk, the selected environmental covariates incorporated in the analysis explained most of 

the spatial variation in the risk of AE. The association found between some of the selected 

environmental variables and the risk of human echinococcoses, particularly AE, suggests 

that land cover change and climate variability in past decades may have contributed 

substantially to shape the current spatial patterns of these infections in NHAR by 

influencing the population dynamics of potential Echinococcus spp. hosts and facilitating 

human exposure to the parasite eggs (31, 32).  

 



  Chapter 7 Discussion 

203 

 

The study in Chapter 4 also provided the first echinococcosis incidence maps for NHAR. 

These maps are in line with previous data on human echinococcoses in endemic regions 

which showed that E. granulosus and E. multilocularis are heterogeneously distributed 

across endemic regions (5, 22, 30). Based on these maps, it was possible to identify the 

southern part of the autonomous region as a highly endemic area for both CE and AE. 

NHAR lacks reliable historical incidence estimates, and the mapped outputs presented in 

this study will help support targeted control interventions that include education and 

screening surveys in the southern counties for improving awareness among the 

population and the early detection and treatment of echinococcosis cases.  

The results of Chapter 5 indicate that the risk of exposure to E. granulosus 

expanded across Xiji during the study period (2002-2013), while the risk of exposure to 

E. multilocularis became highly focal in the south-west part. This finding contrasts with 

evidence from Europe and other regions in Asia that indicate E. multilocularis has been 

spreading in those areas (33-35). This difference may be partially explained by different 

local transmission patterns of the parasite in this highly endemic area and to novel 

interactions between the recently transformed local landscape, the parasite and its hosts 

(36). This study found that the observed risk of human exposure to these parasites had 

significant associations with vegetated areas and landscape fragmentation variables. 

Therefore, the study presented in Chapter 5 provides further evidence that supports the 

potential role of the GGP and other ecological policies implemented to recover the 

landscape in increasing the risk of human exposure to Echinococcus eggs. 

From a public health perspective, the predictive risk maps of human exposure to 

E. granulosus and E. multilocularis created for Xiji County in this study are an important 

resource that will help to guide and monitor improvements in human echinococcosis 

control measures. In general, by mapping and analysing the distribution of the risk of 
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human exposure to E. granulosus in Xiji County, it was clear that the implementation of 

control strategies in order to be successful will need to be applied broadly across the 

whole of Xiji County. 

Domestic dogs have been identified as the main transmission source of E. 

granulosus and E. multilocularis to the local human population in Gansu Province and 

the eastern Tibetan plateau, P.R. China (6, 37). In NHAR, dog ownership and high levels 

of interaction between domestic dogs and humans were identified as risk factors for AE 

infections (38, 39). However, there are no data available on the prevalence of dog 

infections with E. multilocularis in the Autonomous Region. Therefore, the study 

presented in Chapter 6 offers a unique public health insight for the south of NHAR 

because it provides the first species-specific predictive risk maps that allow to compare 

spatial variation in human exposure to Echinococcus spp. and infection with these 

parasites in domestic dogs. The study found that the risks of human exposure and dog 

infection with E. granulosus were widely distributed across the four counties. Human 

exposure to this parasite species was predicted for most of the study area, and dog 

infection with E. granulosus was predicted for almost all Xiji County and in large areas 

of Haiyuan, Guyuan and Tongxin Counties. The risk of human exposure to E. 

multilocularis was higher in Haiyuan County, while the risk of dog infection with this 

parasite species was higher in Xiji County. The findings in Xiji County were consistent 

with a spatial risk prediction study of the distribution of human exposure to E. 

multilocularis conducted in this area in 2008 (4). However, the findings do not support 

the current hypothesis that domestic dogs serve as the primary host of E. multilocularis 

in south NHAR (40-42). The observed differences in the geographical distribution of 

predicted risk of infection in both hosts suggests that data on the infection status of other 

species of definitive hosts should be included in future echinococcosis research. In this 



  Chapter 7 Discussion 

205 

 

way, it will be possible to identify other important predator-prey communities in the area, 

and other potential key definitive host for E. multilocularis in the region. It also suggests 

that interventions targeted at dogs will have limited impact on the burden of AE. 

EVI was identified as a common risk factor explaining the observed spatial 

variation in the exposure to E. multilocularis among children aged 6–18 years, and 

infections with E. granulosus and E. multilocularis in dogs in the four counties. A 

positive association was also found between dog infection with E. granulosus and 

cultivated land and a negative association between human exposure to E. granulosus and 

bareland/artificial surfaces. These findings support evidence that indicates that, unlike 

other echinococcosis endemic areas in China where EVI was negatively associated with 

Ochotona spp. Communities (43, 44), high densities of other potential host species for E. 

multilocularis are present in reforested lowland pasture in NHAR (4, 45). The findings 

presented in this chapter are of current relevance in the Autonomous Region due to the 

ongoing process of landscape restoration that may have favoured the establishment of the 

life cycles of these parasites is areas were land cover was converted to vegetated areas.  

By mapping the distribution of the risk of human exposure to E. granulosus and 

E. multilocularis in the south of NHAR, incorporating environmental factors, I provided 

a means to identify priority areas for echinococcosis control. The risk maps may be used 

to target interventions where they have the greatest impact on the transmission of 

infections. 

 

 

7.3 Limitations  
 

There were some limitations in the analyses encompassed in this thesis. These limitations 

have been outlined in each of the research chapters (Chapters 3 to 6). Some of the 

limitations that need to be highlighted include: in the study presented in part one of 
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Chapter 3, the selection of high-resolution (30 m) imagery from Landsat 4/5-TM and 8-

OLI for the entire region was affected by the limited availability of the data. Comparing 

land cover in different vegetation seasons may have had an impact on the accuracy of the 

results. To address this limitation, a primary criterion for image selection was acquisition 

date whereby, to the extent possible, images were collected from the summer and autumn 

growing seasons in NHAR. When there were no scenes available for the defined period, 

the closest-in-time and most cloud-free scenes available were used for the analyses. An 

inescapable difficulty with classifying Landsat data from rural NHAR was the lack of 

archived data sets suitable for training and validation purposes. Multiple data sources 

were required to produce reference data sets for land cover classification and validation. 

In the study presented in Appendix A, interpolated temperature and precipitation surfaces 

for the estimation of the climate trends were used for the trend detection analysis. The 

lack of a sufficiently dense station network may have affected the accuracy of 

interpolated spatial variability in temperature and precipitation trends across the 

autonomous region. To address this limitation and also to validate the results of the study, 

geo-referenced data on the location of the 16 stations were requested from the Chinese 

Academy of Sciences for the analysis. However, this information was not available due 

to privacy and confidentiality concerns. 

The study presented in Chapter 4 relied mainly on data collected from selected 

county hospitals. Clinical records are the only available source of data on historical 

patterns of these infections in NHAR, but the use of this type of data poses multiple 

challenges. First, these data exclude CE and AE cases that were not referred to health 

care institutions for confirmation of diagnosis, treatment and follow-up. Second, the long 

latency period of echinococcosis results in slow epidemiological shifts in response to 

environmental change that could be difficult to quantify. Third, the township in which 
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patients resided at the time of diagnosis was assumed as the place where acquisition of 

infection occurred. Population movement could obscure or introduce bias in analyses of 

spatiotemporal disease patterns. Fourth, iimmunosuppression can be a source of bias for 

the interpretation of the results due to induction of rapid cyst development and earlier 

diagnosis, but co-morbidities, such as tuberculosis and infection with the human 

immunodeficiency virus, and medication exposures that are known to affect the immune 

response to the infections were not accounted for in the multivariate regression analysis, 

because data on these factors were not available. Therefore, it is recommended that future 

studies conducted to identify risk factors for echinococcosis transmission also involve 

individual biologic conditions that may be associated with progression and time of 

diagnosis of the disease. Finally, some level of uncertainty may have been incorporated 

into this study by using interpolated surfaces for the estimation of climatic and land cover 

variables. The precision of the interpolated values at point locations may vary 

considerably over time and over the entire study area. However, the interpolated land 

cover and climate surfaces were the most consistent long-term records available to 

conduct a meaningful assessment of the associations between human echinococcosis risk 

and the environment. 

Ultrasound is the method of choice for the confirmation of echinococcosis 

diagnoses (46). However, due to the low sensitivity to detect small cysts, this diagnostic 

technique was not used to identify recent cases of human infection with Echinococcus 

spp. In the studies presented in Chapters 5 and 6, human exposure to E. granulosus and 

E. multilocularis was defined using specific antibody testing by enzyme linked 

immunosorbent assay using E. granulosus cyst fluid antigen B and E. multilocularis 

crude protoscolex extract. However, these tests also have poor diagnostic performance, 

limited specificity and cross reactions with other helminthic infections and 



  Chapter 7 Discussion 

208 

 

gastrointestinal malignancies (47, 48). Therefore, follow-up examination is 

recommended to determine development of the infections. 

 

7.4 Future research 

The research presented in this thesis addressed some of the gaps in the knowledge of the 

local epidemiology of human echinococcoses in NHAR and described the process of 

landscape transformation in the autonomous region in the last thirty years. However, 

there are several potential areas for further research that would assist in improving the 

evidence for the impact of national ecological rehabilitation projects in China, and to 

support surveillance and sustainable preventive and control measures against 

Echinococcus spp., and these include: 

 

• The impact of the Grain for Green Project was not formally tested in this study. 

This was not possible due to the lack of adequate and specific data on the design 

and coverage of the programme at the provincial level. Also, the programme is a 

large-scale government-initiated project that was implemented in the entire 

NHAR territory. Therefore, future holistic and rational approaches that examine 

the contributions of ecological restoration projects and other economic and social 

factors in the process of landscape restoration in NHAR, and elsewhere, are 

required. 

 

• Long-term sentinel sites in the south of NHAR should be established for 

surveillance of human and animal exposure to E. granulosus and E. 

multilocularis, and for the accumulation of local environmental data. This 

information will provide considerable opportunities to explore in more detail the 
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mechanisms by which land cover and climate change affect Echinococcus spp. 

transmission. This research created predictive modelling tools capable of 

providing early warning for high risk areas or emergence in transmission patterns. 

Model-based geostatistics as a prediction method has been used successfully in 

early warning systems for infectious diseases such as malaria (49), dengue (50, 

51) and West Nile virus (52). In the context of human echinococcoses, early 

warning predictions, although challenging due to the complex transmission 

systems of Echinococcus spp. (36), also offer a great potential in the efforts 

against the infections. Active early warnings, under the framework of an 

echinococcosis surveillance system, will allow timely decision-making processes 

that can lead to the rapid implementation of interventions tailored to specific local 

settings. Targeted education and screening campaigns within emerging high-

transmission areas, are cost-effective alternatives to mass screening surveys (31). 

 

• Predicted seroprevalence of human exposure to E. multilocularis and dog 

infection with this parasite differed spatially. Further research is required to help 

identify other important predator-prey communities in the area and other potential 

key definitive host for this parasite species in the region. 

 

• Echinococcus spp. transmission models developed to date have focused primarily 

in the life cycles of these parasites in the animal definitive and intermediate hosts, 

and do not include the human transmission pathway (32). The integration of the 

echinococcosis risk maps with mathematical models of Echinococcus spp. 

transmission may lead to the development of spatially explicit disease 

transmission models.  
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• The inclusion of human echinococcosis risk maps in future mathematical models 

would be an advance that would help with the design of optimal public health 

interventions against echinococcosis infections. 

 

 

• The echinococcosis risk maps may be used as inputs in future economic analyses 

to determine and compare spatial variation in cost-effectiveness of different 

competing control interventions, alone and as part of an integrated approach. 

 

7.5 Conclusions 
 

The research included in this thesis explores contemporary landscape epidemiological 

approaches to characterise the spatiotemporal patterns of environmental change in 

NHAR, define the geographical distribution of human echinococcosis risk over time, and 

quantify the role of the physical environment in influencing local patterns of 

Echinococcus spp. exposure and disease in the autonomous region at different spatial 

scales. Based on the findings, it was possible to define communities at higher risk of 

exposure to E. granulosus and E. multilocularis in this highly endemic area for CE and 

AE infections in China. Echinococcosis control strategies could be more efficiently 

targeted to these high-risk communities to yield the greatest public health benefits.  

I used GIS, remotely sensed data and in situ environmental data to quantify land 

cover and climate change in the autonomous region, and in doing so, I provided six land 

cover and climate trend maps that allowed visualisation and quantification of changes in 

the environment that occurred in NHAR during a period of extensive landscape 

regeneration. Although the impact of ecological restoration projects was not formally 

tested in this research, the results serve as evidence for the potential effects of these 

projects on local ecosystems services and may facilitate future ecosystem management 

and protection. Additionally, quantification of environmental change in NHAR is 
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essential for implementing an effective response to emerging local environmental risks 

such as environmentally-influenced infectious diseases including human echinococcoses.  

The comparisons of the spatio-temporal patterns of clinically diagnosed human 

echinococcoses and recent exposure to E. granulosus and E. multilocularis demonstrated 

that human echinococcosis risk has geographically changed in NHAR over the past three 

decades. The risk of exposure to E. granulosus expanded and became more widespread 

across the southern part of NHAR at the end of the research period, while the risk of 

exposure to E. multilocularis became more confined. Vegetation growth and the 

relatively temperate climate in the higher altitudes of the south of NHAR were identified 

as potential factors favouring habitat suitability for Echinococcus spp., and the presence 

and spatial overlap of large populations of potential hosts species. Discrepancies in the 

geographical distribution of human exposure to E. multilocularis and dog infection with 

E. multilocularis suggest that definitive hosts other than dogs are important in defining 

the geographical risk of E. multilocularis exposure to humans in NHAR.  

The epidemiological situation of echinococcosis in villages of southern NHAR 

has been unmonitored. Estimates of the burden of human echinococcoses in NHAR have 

relied primarily on data collected from hospital records. Therefore, the findings of this 

thesis will be essential to track future requirements for scaling up and targeting of control 

strategies proposed by the National Action Plan for Echinococcosis Control in China. 

Additionally, the predictive models developed as part of this research can be used as a 

platform for future monitoring of the prevalence of echinococcosis infections and the 

emergence in Echinococcus spp. transmission in the most affected areas. 
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Appendix A 

  

Temperature and precipitation trends in NHAR for the period 1 

January 1980 to 31 December 2013 
 

2.2.1 Introduction 

The spatial distribution of recent mean temperature trends over NHAR during the period 

1980–2013 at annual and seasonal time scales was estimated in this study by applying 

geostatistical modelling techniques to data collected and interpolated from 16 weather 

stations by the Chinese Academy Sciences. The analysis showed statistically significant 

positive trends in annual, summer and winter temperatures in most of NHAR. Also, 

statistically significant upward trends in annual and summer precipitation in northern and 

central NHAR, whereas significant negative precipitation trends were found in the south. 

Appendix A provides a connection between the processes of land cover and 

climate change by presenting box plots that compare the effect of climate on the most 

relevant land cover changes identified in Chapter 3. 

 

2.2.2 Climate data 

Monthly mean temperature and precipitation data records for the period January 1 1980 

to December 31 2013 were analysed. Data were first collected from 16 local weather 

stations and interpolated by the Chinese Academy of Sciences using the Inverse Distance 

Weighting (IDW) method. The original data were not available for the current study. 

The Chinese Academy of Sciences provided the monthly averages of the climate 

data in a raster format at the spatial resolution of 1 km. An administrative boundary map 

of the province was downloaded from the DIVA-GIS website (59). The climate data sets 

were imported into ArcGIS and linked spatially to the boundary map (60). Monthly 

records were summed in the GIS to provide annual, summer (June, July and August) and 
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winter (December, January and February) weighted mean series. The weights were the 

number of days in a month. Temperature and precipitation anomalies were calculated for 

each pixel and year to define parameters in subsequent statistical models. An anomaly is 

defined as the deviation of a variable of interest at a given location and a particular time 

from the long-term average for that location. The reference period used in the study to 

calculate temperature and precipitation anomalies was January 1 1980 to December 31 

2013. A positive anomaly indicated that the parameter under study was higher than the 

baseline, while a negative value indicated that the parameter was lower than the baseline. 

This anomaly-based approach was used to improve the consistency of the climate data 

for subsequent analyses (61).  

A selection of a random sample of 700 locations from each data set (53,157 

pixels) was used because computationally, it was not possible to use all pixels. 

 

2.2.3 Climate trend analysis 

Precipitation and temperature trend analyses at annual and seasonal (summer/winter) 

temporal resolution were carried out by applying a linear model in a Bayesian 

geostatistical framework. Six separate geostatistical models (annual, summer and winter, 

for temperature and precipitation) were developed using the OpenBUGS software, 

version 3.2.3 (62). 

Each model assumed that the annual and seasonal averages of 

temperature/precipitation measurements, Y, for the ith location, (i = 1. . .700) in the jth 

year (1980–2013) followed a normal distribution with mean (µij) and variance σt
2, that is, 

 

𝑌𝑖𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖𝑗, 𝜎𝑡
2) 

𝜇𝑖𝑗 = 𝛼 +  𝛽𝑖 × 𝑇𝑗 +   𝜆 × 𝑇𝑗  
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where α is the intercept, βi (the main parameters of interest), modelled as a spatially-

smoothed random effect, are the magnitudes of the trends for each location, T is the 

number of years from the baseline year (1980), and λ is the mean trend for the province. 

The spatial correlation in βi was assumed to be an exponential function of the distance 

between points, i.e. σ2 
2exp(-ρdkl), where dkl is the straight-line distance between 

pixels k and l, σ2 
2 is the geographical variability known as the sill and ρ is a smoothing 

parameter that controls the rate of correlation decay with distance.   

A normal prior distribution was specified for α and λ (with a mean=0 and a 

precision=0.001). Precision refers to the inverse of variance (i.e. 1/ σt
2), and the priors for 

this parameter were specified using non-informative gamma distributions with shape and 

scale parameters equal to 1. The prior distribution of phi (rate of decay) was uniform with 

upper and lower bounds set at 0.01 and 100.  

A burn-in of 1000 iterations was run and discarded. Subsequent blocks of 10,000 

iterations were run and examined for convergence. Visual inspection of the posterior 

density and history plots was used to assess convergence, which occurred at 

approximately 20,000 iterations for each model. After convergence, ten thousand 

iterations were run and the values from the posterior distributions of each model 

parameter were stored for analysis. The posterior mean and 95% credible intervals of the 

posterior distributions were used to summarise the parameters. 

ArcGIS software was used to interpolate and generate maps that represent the 

spatial distribution of the relative trend in annual, summer and winter temperature and 

precipitation anomalies in NHAR for the period January 1980–December 2013. These 

maps were created by calculating the posterior means of the trend from the provincial 

average calculated at the 700 randomly selected points and interpolating the values using 
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the inverse distance interpolation technique. Thus, maps produced showed smoothed 

areas where the trend was higher or lower than the overall average. 

Box plots were created using a random sample of 35,000 locations (pixels) to 

depict differences in annual temperature and precipitation trends in NHAR between 1980 

and 2013 among the land cover change types observed in bareland/artificial surfaces and 

cultivated land from 1991 to 2015. In addition, the mean trends for each group were tested 

by using two-way analysis of variance (ANOVA) using the R language and environment 

for statistical computing (63). 

 

2.2.4. Results 

Maps of the spatial distribution of annual, summer and winter temperature and 

precipitation anomaly trends are presented in Figure 1. The overall results found 

statistically significant positive trends in annual, summer and winter temperatures in most 

of Northern, Central and Western NHAR and negative trends in the southern 

mountainous area during the period January 1980–December 2013. The average 

magnitude change in annual temperature was 0.2 °C/decade for the whole period in the 

province. The range of annual temperature location-specific trends varied between -0.8 

°C and 0.2 °C per decade from the provincial average trend. Summer temperature for the 

whole province increased by 0.7°C/decade, with the range of location-specific trends 

differing between -1°C and 0.3°C per decade from the provincial average trend. The 

spatial pattern of annual warming was similar for summer temperature trends but with 

higher magnitude. The greatest trend magnitude in temperature anomalies appeared in 

winter, with an increase of 0.9 °C/decade. The winter temperature location-specific trends 

differed between -0.3°C and 0.08 °C per decade from the provincial average trend. The 

spatial distribution of the winter trend varied slightly from the spatial pattern described 
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for annual and summer temperatures. In winter, temperature rose more rapidly in areas 

located throughout the central part of the province. Similar to annual and summer 

temperatures, a significantly lower trend was found in winter in the southern mountainous 

area. 

The analysis of the time series of annual precipitation anomalies revealed that 

there was a slight positive trend in annual precipitation for NHAR for the period January 

1980–December 2013 (Figure 1d). In general, there was a small magnitude change in 

annual precipitation, 0.11 mm/decade for the whole period, with distinctive spatial and 

seasonal patterns. A statistically significant positive trend was observed in the northern 

and central part of the province, whereas significant negative trends were found in the 

south. The annual precipitation location-specific trend differed between -7 mm and 7 mm 

per decade from the provincial average trend. 

Summer precipitation anomaly for the whole province showed a statistically 

significant decreasing trend. The spatial pattern of the trend was similar to that of annual 

precipitation (Figure 1e). Significant positive trends were mostly found in the north and 

centre of NHAR and significantly negative trends were observed in the south. The range 

of location-specific trends in summer precipitation differed between -25 mm and 30 mm 

per decade from the provincial average trend. 
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Figure 1 Maps of the spatial distribution of (a) annual, (b) summer and (c) winter 

temperature trends, and (d) annual, (e) summer and (f) winter precipitation trends 

in NHAR for the period 1 January 1980 to 31 December 2013. Note, the values 

presented in the figure are relative to the provincial average per decade 

 

The highest increasing precipitation trend for the entire province was observed in the 

winter season, with an increase of 2.4 mm over the study period. However, winter 

precipitation anomaly trends exhibited an opposite spatial distribution when compared to 

that of annual and summer precipitation. Winter precipitation showed negative trends in 

the northern and central part of NHAR and positive trends in the southern mountainous 

and loess hilly district (Figure 1f). The magnitude of this trend differed from -2 mm and 

5 mm per decade from the provincial average trend in specific locations. 
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The mean trends for annual temperature were significantly different among the land cover 

changes experienced in bareland/artificial surfaces (two-way ANOVA, F = 3,543; 

P < 0.05) and cultivated land (two-way ANOVA, F = 2,600.9; P < 0.05). Also, the mean 

trends for annual precipitation were significantly different among the land cover changes 

in bareland/artificial surfaces (two-way ANOVA, F = 4,768; P < 0.05) and cultivated 

land (two-way ANOVA, F = 1,392.7; P < 0.05). Based on the box plots, higher 

variability in temperature trends is observed in areas that converted from 

bareland/artificial surfaces to herbaceous vegetation and areas that converted from 

cultivated land to forest. The highest temperature trends were found in those areas where 

bareland/artificial surfaces converted to forest and in areas that remained unchanged 

(Figure 2a). Also, the largest magnitudes of estimated temperature trends were observed 

in cultivated land that remained unchanged, and in areas that experienced a different type 

of land cover change, not classified as bareland/artificial surfaces, forest or herbaceous 

vegetation (Figure 2c). Areas that converted from bareland/artificial surfaces to 

herbaceous vegetation and from cultivated land to forest are characterized mainly by 

negative temperature trends whereas the majority of the regions that experienced other 

type of land cover changes showed positive temperature trends. 

The lowest precipitation trend occurred in bareland/artificial surface areas 

converted to cultivated land and herbaceous vegetation (Figure 2c). The highest 

precipitation trend occurred in bareland/artificial surface areas and cultivated land that 

remained unchanged, and bareland/artificial surface areas converted to forest (Figures 2c 

and d).  
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2.2.5 Discussion 

Climate in NHAR follows the same long-term warming and drying trend described for 

China (64). From January 1980 – December 2013 the trend in annual, summer and winter 

temperatures showed a significant increase. More rapid warming was observed during 

the winter season. More rapid increases in temperature were observed in areas located in 

the north and central part of the province and a slower warming trend was observed in 

areas near the Liupan Mountains in the south. Similar, statistically significant positive 

temperature trends for NHAR have been reported by other authors (65, 66). Contrasting 

with previous studies that reported a downward trend in annual precipitation, we noted a 

slight increase in the average annual precipitation trends for NHAR.  Winter precipitation 

increased and summer precipitation decreased following the same trends as other local 

reports (65). 

Correlations were found between climate trends and LULC change, as 

represented in the box plots. Areas that changed from cultivated land to forest and 

bareland to herbaceous vegetation were the ones that experienced the lowest trends in 

annual temperature. This is the type of land conversion that was promoted by the GGP in 

the Southern Mountainous region of the province (67). Previous evidence suggested that 

responses in forest growth and productivity are inversely associated with the magnitude 

of temperature increase (68, 69), although this correlation might have been coincidental, 

given that high altitude areas experience lower rates of warming, and these were the areas 

that were also forested. In general, it is difficult to attribute the observed changes in land 

cover in NHAR during the study period to the estimated temperature and precipitation 

trends, or vice versa, due to the relatively short period of time, so the correlations 

presented in the box plots need to be interpreted with caution. 
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The use of interpolated surfaces for the estimation of the climate trends represented a 

challenge for the interpretation of the results. The interpolated surfaces were based on 

only 16 meteorological stations and the precision of the interpolated values at individual 

point locations may vary considerably over the entire study area. This is a particularly 

important point for the interpretation of the trends in those areas where the distribution 

of meteorological stations was sparse. We believe that a meaningful analysis on climate 

change can only be achieved with the utilization of consistent and long-term climate 

records, and networks that are sufficiently dense to capture significant spatial variability. 

The findings from the analysis presented in this section of Chapter 3 are used as 

inputs into the models presented in Chapters 4–6. 
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APPENDIX B  
______________________________________________________________________ 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Cadavid Restrepo, A.M.; Yang, Y.R.; Hamm, N.A.S.; Gray, D.J.; Barnes, T.S.; Williams, 

G.M.; Magalhães, R.J.S.; McManus, D.P.; Guo, D.; Clements, A.C.A. Land cover change 

during a period of extensive landscape restoration in Ningxia Hui Autonomous Region, 

China. Science of The Total Environment. 2017; 598:669-79. 

 

 
 

 

Table A.1 Maximum likelihood parameters to conduct supervised classification in ENVI 

software and create land cover maps for the years 1991, 1996, 2000, 2005, 2010 and 2015 

 

 

Classification parameters 1991 1996 2000 2005 2010 2015 

 

Spectral subset  

(band combinations) 

 

 

2,3,4,5,6 

 

2,3,4,5,6 

 

2,3,4,5,6 

 

1,4,5,6 

 

2,3,4,5,6 

 

2,3,4,5,6 

Number of Regions of interest 

(ROIs) 

 

425 474 486 478 500 456 

  - Class 1: Bareland/artificial 

surfaces 

196 200 200 171 270 266 

  - Class 2: Cultivated land 9 20 25 30 30 30 

  - Class 3: Forest 9 12 18 60 68 33 

  - Class 4: Shrubland 4 4 5 5 5 5 

  - Class 5: Herbaceous 

vegetation 

195 221 221 182 112 110 

  - Class 6: Water bodies 12 17 17 30 15 12 

 

Select classes for region 

 

 

6 

 

6 

 

6 

 

6 

 

6 

 

6 

Probability threshold  

 

Single 

value 

Single 

value 

Single 

value 

Single 

value 

Single 

value 

Single 

value 

Probability threshold value 

 

- - - - - -  

Data scale factor 

 

1 1 1 1 1 1 
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APPENDIX C  
______________________________________________________________________ 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Cadavid Restrepo, A.M.; Yang, Y.R.; McManus, D.P.; Gray, D.J.; Barnes, T.S.; 

Williams, G.M.; Magalhães, R.J.S.; Hamm, N.A.S; Clements, A.C.A. Spatiotemporal 

patterns and environmental drivers of human echinococcoses over a twenty-year period 

in Ningxia Hui Autonomous Region, China. Parasites & Vectors. 2018; 11:108. 
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Additional file 1: Administrative map of NHAR at the (a) township, (b) county and (c) prefectural level. 

 

 

 

 

 

a b c 



   

233 

 

Additional file 2 Percent population change in NHAR for the periods 1980–1990, 1991–2001 and 2002–2013 
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Additional file 3 Spatial distribution of the average annual mean temperature in 

°C in NHAR for the period 1980–2013 
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Additional file 4 Spatial distribution of the average annual mean precipitation in 

mm in NHAR for the period 1980–2013 
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Additional file 5 Maps of the spatial distribution of (a) annual, (b) summer and (c) 

winter temperature trends, and (d) annual, (e) summer and (f) winter 

precipitation trends in NHAR for the period 1 January 1980 to 31 December 2013. 

Note, the values presented in the figure are relative to the provincial average per 

decade 
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Additional file 6 OpenBUGS code used to develop the Bayesian spatial model 

(Model II) for cystic echinococcosis in NHAR from 1 January 1994 to 31 

December 2013 

 

model{ 

 

s[1:227] ~ car.normal(adj[], weights[], num[], tau.s); 

for (k in 1:sumNumNeigh){ 

weights[k] <- 1 

} 

 

for(i in 1:4540){ 

Cases[i]~dpois(mu[i]) 

log(mu[i])<-log.RR[i] + log(Exp[i]) 

log.RR[i]<-alpha +s[Township[i]] + beta[1]*Tmean[i] + beta[2]*T_winmean[i] + 

beta[3]*herb[i] + beta[4]*MA5bare[i] + beta[5]*MA5Cult[i] +beta[6]*MA5Forest[i] + 

beta[7]*MA5Shrub[i] + beta[8]*MA6Water[i] + beta[9]*MA2Tmean[i] + 

beta[10]*MA4Pmin[i] +beta[11]* pow(Tmean[i],2) + beta[12]*Time[i]  

 

RR[i]<-exp(log.RR[i]) 

 

} 

 

for(i in 1:227){ 

 

#u[i]~dnorm(0,tau.u) 

} 

alpha~dflat() 

for(i in 1:12){ 

beta[i]~dnorm(0,0.001) 

} 

 

tau.s~dgamma(0.5,0.0005) 

} 

 

list(alpha=0,beta=c(0,0,0,0,0,0,0,0,0,-0.1,-0.1,-0.1), tau.s=0.5) 
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Additional file 7 OpenBUGS code used to develop the Bayesian spatial model 

(Model II) for alveolar echinococcosis in NHAR from 1 January 1994 to 31 

December 2013 

 

model{ 

 

s[1:227] ~ car.normal(adj[], weights[], num[], tau.s); 

for (k in 1:sumNumNeigh){ 

weights[k] <- 1 

} 

 

for(i in 1:4540){ 

Cases[i]~dpois(mu[i]) 

log(mu[i])<-log.RR[i] + log(Exp[i]) 

log.RR[i]<-alpha +s[Township[i]] + beta[1]*MA6bare[i] + beta[2]*MA4forest[i] + 

beta[3]*MA1pwin[i] + beta[4]*MA2tmean[i] + beta[5]*MA6tmean[i] 

+beta[6]*MA2trange[i] + beta[7]*MA1twin[i] + beta[8]*MA6twin[i] + beta[9]* 

pow(MA6twin[i],2) + beta[10]*Time[i]  

 

RR[i]<-exp(log.RR[i]) 

 

} 

 

for(i in 1:227){ 

 

#u[i]~dnorm(0,tau.u) 

} 

alpha~dflat() 

for(i in 1:10){ 

beta[i]~dnorm(0,0.001) 

} 

 

tau.s~dgamma(0.5,0.0005) 

} 

 

 

list(alpha=0,beta=c(0,0,0,0,0,0,0,0,0,-0.1), tau.s=0.5
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Additional file 8 Number of observed and expected number of CE cases by year (1994–2013) in NHAR for the period 1 January 1994 to 

31 December 2013 
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Additional file 9 Number of observed and expected number of AE cases by year (1994–2013) in NHAR for the period 1 January 1994 to 

31 December 2013 
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Additional file 10 Annual temperature in NHAR for the period 1 January 1980 to 31 December 2013 and number of cases of CE and AE 

for the period 1 January 1994 to 31 December 2013 
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Additional file 11 Annual precipitation in NHAR for the period 1 January 1980 to 31 December 2013 and number of cases of CE and 

AE for the period 1 January 1994 to 31 December 2013 
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Additional file 12 Township area covered by each land cover class in NHAR for the period 1 January 1980 to 31 December 2013 and 

number of cases of CE and AE for the period 1 January 1994 to 31 December 2013 
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Additional file 13 Scatterplots of number of CE cases by township against winter mean temperature at a 10-year lag 
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Additional file 14 Scatterplots of number of CE cases by township against annual mean temperature at 13-year lag 
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Additional file 15 Scatterplots of number of AE cases by township against winter mean temperature for the period 0–4 years before 

diagnosis 
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Additional file 16 Scatterplots of number of AE cases by township against annual mean temperature calculated for the period 11–15 

years before diagnosis 
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Additional file 17 Spatial distribution of annual raw relative risks for CE in NHAR for the period 1994 to 2013 
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Additional file 18 Spatial distribution of annual relative risks for AE in NHAR for the period 1994 to 2013 
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APPENDIX D  
______________________________________________________________________ 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

Cadavid Restrepo, A.M.; Yang, Y.R.; McManus, D.P.; Gray, D.J.; Barnes, T.S.; 

Williams, G.M.; Magalhães, R.J.S.; Clements, A.C.A. Environmental risk factors and 

changing spatial patterns of human seropositivity for Echinococcus spp. in Xiji County, 

Ningxia Hui Autonomous Region, China. Parasites & Vectors. 2018; 11:159 
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Additional file 1 Stylised diagram of the grid plus close-pairs geostatistical sampling 

design 
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APPENDIX E  
______________________________________________________________________ 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

Cadavid Restrepo, A. M., Yang, Y.R.; McManus, D.P.; Gray, D.J.; Barnes, T.S.; 

Williams, G.M.; Magalhães, R.J.S.; Clements, A.C.A. Spatial prediction of the risk of 

exposure to Echinococcus spp. among schoolchildren and dogs in Ningxia Hui 

Autonomous Region, China. Geospatial Health. 2017. In press. 
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Additional file 1. 95% confidence intervals of the prevalence of human 

seropositivity for E. granulosus and E. multilocularis and dog infections with these 

parasites in dogs by county in the cross-sectional surveys conducted in schools and 

veterinary centres in 2012–2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
E. granulosus 

% 

E. multilocularis 

% 

 
Positive Negative Positive Negative 

a. Humans 

Xiji  43.2 – 48.0 51.9 – 56.7 7.1 – 9.7 90.2 – 92.9  

Guyuan  34.1 – 38.7 62.1 – 65.9 5.6 – 8.1 91.8 – 94.3  

Haiyuan  41.1 – 45.5 54.5 – 58.8 19.2 – 22.8 77.1 – 80.7  

Tongxin  21.2 – 24.6 75.3 – 78.7 1.1 – 2.2 97.7 – 98.8  

b. Dogs 

Xiji  13.8 – 19.1 80.8 – 86.1 11.6 – 16.6 83.3 – 88.3 

Guyuan  7.3 – 11.7 88.2 – 92.6 0.5 – 2.4 97.5 – 99.4 

Haiyuan  9.5 – 14.0  85.9 – 90.4 2.1 – 4.6 95.3 – 97.9 

Tongxin  10.1 – 13.8  86.1 – 89.8 0.8 – 2.2 97.7 – 99.1  
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Additional file 2. Areas of high predicted prevalence of human exposure to E. 

granulosus and dog infection with this parasite species in Guyuan, Haiyuan, 

Tongxin and Xiji counties. 
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Additional file 3. Areas of high predicted prevalence of human exposure to E. 

multilocularis and dog infection with this parasite species in Guyuan, Haiyuan, 

Tongxin and Xiji counties. 
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