2,745 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Automated Crowdturfing Attacks and Defenses in Online Review Systems

    Full text link
    Malicious crowdsourcing forums are gaining traction as sources of spreading misinformation online, but are limited by the costs of hiring and managing human workers. In this paper, we identify a new class of attacks that leverage deep learning language models (Recurrent Neural Networks or RNNs) to automate the generation of fake online reviews for products and services. Not only are these attacks cheap and therefore more scalable, but they can control rate of content output to eliminate the signature burstiness that makes crowdsourced campaigns easy to detect. Using Yelp reviews as an example platform, we show how a two phased review generation and customization attack can produce reviews that are indistinguishable by state-of-the-art statistical detectors. We conduct a survey-based user study to show these reviews not only evade human detection, but also score high on "usefulness" metrics by users. Finally, we develop novel automated defenses against these attacks, by leveraging the lossy transformation introduced by the RNN training and generation cycle. We consider countermeasures against our mechanisms, show that they produce unattractive cost-benefit tradeoffs for attackers, and that they can be further curtailed by simple constraints imposed by online service providers

    All That Glitters is Gold -- An Attack Scheme on Gold Questions in Crowdsourcing

    Get PDF
    One of the most popular quality assurance mechanisms in paid micro-task crowdsourcing is based on gold questions: the use of a small set of tasks of which the requester knows the correct answer and, thus, is able to directly assess crowd work quality. In this paper, we show that such mechanism is prone to an attack carried out by a group of colluding crowd workers that is easy to implement and deploy: the inherent size limit of the gold set can be exploited by building an inferential system to detect which parts of the job are more likely to be gold questions. The described attack is robust to various forms of randomisation and programmatic generation of gold questions. We present the architecture of the proposed system, composed of a browser plug-in and an external server used to share information, and briefly introduce its potential evolution to a decentralised implementation. We implement and experimentally validate the gold detection system, using real-world data from a popular crowdsourcing platform. Finally, we discuss the economic and sociological implications of this kind of attack

    Adversarial attacks on crowdsourcing quality control

    Get PDF
    Crowdsourcing is a popular methodology to collect manual labels at scale. Such labels are often used to train AI models and, thus, quality control is a key aspect in the process. One of the most popular quality assurance mechanisms in paid micro-task crowdsourcing is based on gold questions: the use of a small set of tasks of which the requester knows the correct answer and, thus, is able to directly assess crowd work quality. In this paper, we show that such mechanism is prone to an attack carried out by a group of colluding crowd workers that is easy to implement and deploy: the inherent size limit of the gold set can be exploited by building an inferential system to detect which parts of the job are more likely to be gold questions. The described attack is robust to various forms of randomisation and programmatic generation of gold questions. We present the architecture of the proposed system, composed of a browser plug-in and an external server used to share information, and briefly introduce its potential evolution to a decentralised implementation. We implement and experimentally validate the gold detection system, using real-world data from a popular crowdsourcing platform. Our experimental results show that crowd workers using the proposed system spend more time on signalled gold questions but do not neglect the others thus achieving an increased overall work quality. Finally, we discuss the economic and sociological implications of this kind of attack
    • …
    corecore