27,472 research outputs found

    An Optimal Linear Time Algorithm for Quasi-Monotonic Segmentation

    Get PDF
    Monotonicity is a simple yet significant qualitative characteristic. We consider the problem of segmenting a sequence in up to K segments. We want segments to be as monotonic as possible and to alternate signs. We propose a quality metric for this problem using the l_inf norm, and we present an optimal linear time algorithm based on novel formalism. Moreover, given a precomputation in time O(n log n) consisting of a labeling of all extrema, we compute any optimal segmentation in constant time. We compare experimentally its performance to two piecewise linear segmentation heuristics (top-down and bottom-up). We show that our algorithm is faster and more accurate. Applications include pattern recognition and qualitative modeling.Comment: This is the extended version of our ICDM'05 paper (arXiv:cs/0702142

    Principal component and Voronoi skeleton alternatives for curve reconstruction from noisy point sets

    Get PDF
    Surface reconstruction from noisy point samples must take into consideration the stochastic nature of the sample -- In other words, geometric algorithms reconstructing the surface or curve should not insist in following in a literal way each sampled point -- Instead, they must interpret the sample as a “point cloud” and try to build the surface as passing through the best possible (in the statistical sense) geometric locus that represents the sample -- This work presents two new methods to find a Piecewise Linear approximation from a Nyquist-compliant stochastic sampling of a quasi-planar C1 curve C(u) : R → R3, whose velocity vector never vanishes -- One of the methods articulates in an entirely new way Principal Component Analysis (statistical) and Voronoi-Delaunay (deterministic) approaches -- It uses these two methods to calculate the best possible tape-shaped polygon covering the planarised point set, and then approximates the manifold by the medial axis of such a polygon -- The other method applies Principal Component Analysis to find a direct Piecewise Linear approximation of C(u) -- A complexity comparison of these two methods is presented along with a qualitative comparison with previously developed ones -- It turns out that the method solely based on Principal Component Analysis is simpler and more robust for non self-intersecting curves -- For self-intersecting curves the Voronoi-Delaunay based Medial Axis approach is more robust, at the price of higher computational complexity -- An application is presented in Integration of meshes originated in range images of an art piece -- Such an application reaches the point of complete reconstruction of a unified mes

    Monotone Pieces Analysis for Qualitative Modeling

    Get PDF
    It is a crucial task to build qualitative models of industrial applications for model-based diagnosis. A Model Abstraction procedure is designed to automatically transform a quantitative model into qualitative model. If the data is monotone, the behavior can be easily abstracted using the corners of the bounding rectangle. Hence, many existing model abstraction approaches rely on monotonicity. But it is not a trivial problem to robustly detect monotone pieces from scattered data obtained by numerical simulation or experiments. This paper introduces an approach based on scale-dependent monotonicity: the notion that monotonicity can be defined relative to a scale. Real-valued functions defined on a finite set of reals e.g. simulation results, can be partitioned into quasi-monotone segments. The end points for the monotone segments are used as the initial set of landmarks for qualitative model abstraction. The qualitative model abstraction works as an iteratively refining process starting from the initial landmarks. The monotonicity analysis presented here can be used in constructing many other kinds of qualitative models; it is robust and computationally efficient

    Scale-Based Monotonicity Analysis in Qualitative Modelling with Flat Segments

    Get PDF
    Qualitative models are often more suitable than classical quantitative models in tasks such as Model-based Diagnosis (MBD), explaining system behavior, and designing novel devices from first principles. Monotonicity is an important feature to leverage when constructing qualitative models. Detecting monotonic pieces robustly and efficiently from sensor or simulation data remains an open problem. This paper presents scale-based monotonicity: the notion that monotonicity can be defined relative to a scale. Real-valued functions defined on a finite set of reals e.g. sensor data or simulation results, can be partitioned into quasi-monotonic segments, i.e. segments monotonic with respect to a scale, in linear time. A novel segmentation algorithm is introduced along with a scale-based definition of "flatness"
    • 

    corecore