570 research outputs found

    Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework

    Get PDF
    The objective of this dissertation study is to conduct a holistic investigation into the elements of executable architectures. Current research in the field of Executable Architectures has provided valuable solution-specific demonstrations and has also shown the value derived from such an endeavor. However, a common theory underlying their applications has been missing. This dissertation develops and explores a method for holistically developing an Executable Architecture Specification (EAS), i.e., a meta-model containing both semantic and syntactic information, using a conceptual framework for guiding data coding, analysis, and validation. Utilization of this method resulted in the description of the elements of executable architecture in terms of a set of nine information interrogatives: an executable architecture information ontology. Once the detail-rich EAS was constructed with this ontology, it became possible to define the potential elements of executable architecture through an intermediate level meta-model. The intermediate level meta-model was further refined into an interrogative level meta-model using only the nine information interrogatives, at a very high level of abstraction

    SysML for embedded automotive Systems: a practical approach

    Get PDF
    International audienceWhile SysML (System Modeling Language) is a leading topic for System Engineering (SE) in all domains, there is no pragmatic implementation of SE for automotive embedded systems and products. In this paper, a proposal is developed to meet the needs of Valeo product lines

    Model-Based Systems Engineering Approach to Distributed and Hybrid Simulation Systems

    Get PDF
    INCOSE defines Model-Based Systems Engineering (MBSE) as the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases. One very important development is the utilization of MBSE to develop distributed and hybrid (discrete-continuous) simulation modeling systems. MBSE can help to describe the systems to be modeled and help make the right decisions and partitions to tame complexity. The ability to embrace conceptual modeling and interoperability techniques during systems specification and design presents a great advantage in distributed and hybrid simulation systems development efforts. Our research is aimed at the definition of a methodological framework that uses MBSE languages, methods and tools for the development of these simulation systems. A model-based composition approach is defined at the initial steps to identify distributed systems interoperability requirements and hybrid simulation systems characteristics. Guidelines are developed to adopt simulation interoperability standards and conceptual modeling techniques using MBSE methods and tools. Domain specific system complexity and behavior can be captured with model-based approaches during the system architecture and functional design requirements definition. MBSE can allow simulation engineers to formally model different aspects of a problem ranging from architectures to corresponding behavioral analysis, to functional decompositions and user requirements (Jobe, 2008)

    Interoperability between a dynamic reliability modeling and a Systems Engineering process – Principles and Case Study

    Get PDF
    International audienceIndustrial systems are often large, and complex, in terms of structure, dynamic interactions between subsystems and components, dynamic operational environment, ageing, etc. The dynamic reliability approach is a convenient framework to model the behavior of such systems. However, there is a price to pay, e.g. in terms of amount of data, size of state graphs, volume of reliability calculations, and combination of various engineering activities. A sound Systems Engineering process, benefiting from the improvement of most recent tools, may be a fruitful approach to decrease these difficulties. Although feasibility demonstrations have been done for conventional, static, approaches of dependability, interoperability between dynamic reliability modeling and Systems Engineering has not the same maturity level. The article explains how, on the basis of Systems Engineering (SE) process definitions, a Meta-model defines a framework for integrating the safety into SE processes. It supports a "hub automaton", that is the key element for interoperability with the tools and activities required for a dynamic reliability assessment. The case study is the dynamic assessment of availability of a feed-water control system in a power plant steam generator, presented in previous articles

    A Model-Based methodology to support the Space System Engineering (MBSSE)

    Get PDF
    International audienceThis paper presents a model based methodology that relies on the sound basis of the most recent and widespread applicable system engineering standards and model based practices, The methodology has been defined to support domain specific space system engineering standards and practices and assessed through the application on industrial case studies. A complementary formal verification approach has also been experimented

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    A Model-based Approach for Designing Cyber-Physical Production Systems

    Get PDF
    The most recent development trend related to manufacturing is called "Industry 4.0". It proposes to transition from "blind" mechatronics systems to Cyber-Physical Production Systems (CPPSs). Such systems are capable of communicating with each other, acquiring and transmitting real-time production data. Their management and control require a structured software architecture, which is tipically referred to as the "Automation Pyramid". The design of both the software architecture and the components (i.e., the CPPSs) is a complex task, where the complexity is induced by the heterogeneity of the required functionalities. In such a context, the target of this thesis is to propose a model-based framework for the analysis and the design of production lines, compliant with the Industry 4.0 paradigm. In particular, this framework exploits the Systems Modeling Language (SysML) as a unified representation for the different viewpoints of a manufacturing system. At the components level, the structural and behavioral diagrams provided by SysML are used to produce a set of logical propositions about the system and components under design. Such an approach is specifically tailored towards constructing Assume-Guarantee contracts. By exploiting reactive synthesis techniques, contracts are used to prototype portions of components' behaviors and to verify whether implementations are consistent with the requirements. At the software level, the framework proposes a particular architecture based on the concept of "service". Such an architecture facilitates the reconfiguration of components and integrates an advanced scheduling technique, taking advantage of the production recipe SysML model. The proposed framework has been built coupled with the construction of the ICE Laboratory, a research facility consisting of a full-fledged production line. Such an approach has been adopted to construct models of the laboratory, to virtual prototype parts of the system and to manage the physical system through the proposed software architecture

    Functional modelling of complex multi‑disciplinary systems using the enhanced sequence diagram

    Get PDF
    YesThis paper introduces an Enhanced Sequence Diagram (ESD) as the basis for a structured framework for the functional analysis of complex multidisciplinary systems. The ESD extends the conventional sequence diagrams (SD) by introducing a rigorous functional flow-based modelling schemata to provide an enhanced basis for model-based functional requirements and architecture analysis in the early systems design stages. The proposed ESD heuristics include the representation of transactional and transformative functions required to deliver the use case sequence, and fork and join nodes to facilitate analysis of combining and bifurcating operations on flows. A case study of a personal mobility device is used to illustrate the deployment of the ESD methodology in relation to three common product development scenarios: (i) reverse engineering, (ii) the introduction of a specific technology to an existent system; and (iii) the introduction of a new feature as user-centric innovation for an existing system, at a logical design level, without reference to any solution. The case study analysis provides further insights into the effectiveness of the ESD to support function modelling and functional requirements capture, and architecture development. The significance of this paper is that it establishes a rigorous ESD-based functional analysis methodology to guide the practitioner with its deployment, facilitating its impact to both the engineering design and systems engineering communities, as well as the design practice in the industry
    • …
    corecore