51,781 research outputs found

    The Ricci flow approach to homogeneous Einstein metrics on flag manifolds

    Full text link
    We give the global picture of the normalized Ricci flow on generalized flag manifolds with two or three isotropy summands. The normalized Ricci flow for these spaces descents to a parameter depending system of two or three ordinary differential equations, respectively. We present here the qualitative study of these system's global phase portrait, by using techniques of Dynamical Systems theory. This study allows us to draw conclusions about the existence and the analytical form of invariant Einstein metrics on such manifolds, and seems to offer a better insight to the classification problem of invariant Einstein metrics on compact homogeneous spaces.Comment: 17 pages, 2 figure

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    Particle-Like Description in Quintessential Cosmology

    Full text link
    Assuming equation of state for quintessential matter: p=w(z)ρp=w(z)\rho, we analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown that its dynamics is formally equivalent to that of a classical particle under the action of 1D potential V(a)V(a). It is shown that Hamiltonian method can be easily implemented to obtain a classification of all cosmological solutions in the phase space as well as in the configurational space. Examples taken from modern cosmology illustrate the effectiveness of the presented approach. Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis of acceleration and horizon problems, are presented. The inverse problem of reconstructing the Hamiltonian dynamics (i.e. potential function) from the luminosity distance function dL(z)d_{L}(z) for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to investigation of quintessence models were adde

    Anisotropic cosmological models with spinor and scalar fields and viscous fluid in presence of a Λ\Lambda term: qualitative solutions

    Full text link
    The study of a self-consistent system of interacting spinor and scalar fields within the scope of a Bianchi type I (BI) gravitational field in presence of a viscous fluid and Λ\Lambda term has been carried out. The system of equations defining the evolution of the volume scale of BI universe, energy density and corresponding Hubble constant has been derived. The system in question has been thoroughly studied qualitatively. Corresponding solutions are graphically illustrated. The system in question is also studied from the view point of blow up. It has been shown that the blow up takes place only in presence of viscosity.Comment: 18 pages, 14 figures, 12 Tables, section "Basic equations" has been rewritte

    Solutions Classification to the Extended Reduced Ostrovsky Equation

    Get PDF
    An alternative to the Parkes' approach [SIGMA 4 (2008) 053, arXiv:0806.3155] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations which includes a mechanical analogy with the point particle motion in a potential field, the phase plane method, analysis of homoclinic trajectories and the like. Such an approach is seemed more vivid and free of some restrictions contained in the above mentioned Parkes' paper.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Singularities and qualitative study in LQC

    Get PDF
    We will perform a detailed analysis of singularities in Einstein Cosmology and in LQC (Loop Quantum Cosmology). We will obtain explicit analytical expressions for the energy density and the Hubble constant for a given set of possible Equations of State. We will also consider the case when the background is driven by a single scalar field, obtaining analytical expressions for the corresponding potential. And, in a given particular case, we will perform a qualitative study of the orbits in the associated phase space of the scalar. eld

    Polynomial normal forms of Constrained Differential Equations with three parameters

    Get PDF
    We study generic constrained differential equations (CDEs) with three parameters, thereby extending Takens's classification of singularities of such equations. In this approach, the singularities analyzed are the Swallowtail, the Hyperbolic, and the Elliptic Umbilics. We provide polynomial local normal forms of CDEs under topological equivalence. Generic CDEs are important in the study of slow-fast (SF) systems. Many properties and the characteristic behavior of the solutions of SF systems can be inferred from the corresponding CDE. Therefore, the results of this paper show a first approximation of the flow of generic SF systems with three slow variables.Comment: This is an updated and revised version. Minor modifications mad
    corecore