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Singularities and qualitative study in LQC

Abstract

We will perform a detailed analysis of singularities in Einstein Cosmology and in LQC (Loop Quantum
Cosmology). We will obtain explicit analytical expressions for the energy density and the Hubble constant
for a given set of possible Equations of State. We will also consider the case when the background is driven
by a single scalar field, obtaining analytical expressions for the corresponding potential. And, in a given
particular case, we will perform a qualitative study of the orbits in the associated phase space of the scalar
field.
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Singularities and qualitative study in LQC

1. Introduction

In 1915, Albert Einstein published his field equations of General Relativity [1], giving birth to a new
conception of gravity, which would now be understood as the curvature of space-time. Among the different
exact solutions that would be found throughout the following years, Alexander Friedmann [2] and Georges
Lemâıtre [3] independently described a homogeneous, isotropic expanding or contracting universe. Howard
P. Robertson [4] and Arthur Geoffrey Walker [5] proved that this metric is the only one on a spacetime that
is spatially homogeneous and isotropic. Thus, it was named after Friedmann-Lemâıtre-Robertson-Walker.
The so-called Friedmann equations, which come from this metric, are the ones that describe the Big Bang
model.

In the second half of the 20th century, physicists started to realize that the recent Big Bang model led
to some problems that needed to be solved. The “horizon problem” [6] appeared since, although the Big
Bang theory predicted that certain regions of the universe were not causally connected, they actually had
the same temperature, as shown by the Cosmic Microwave Background Radiation (CMB). The flatness
problem [7] emerged because of the need of extreme fine-tuning of the density of matter and energy in the
universe. The magnetic monopole problem [8] arose because the high temperature of the early universe
predicted by the Big Bang implied the existence of magnetic monopoles, which would have persisted until
nowadays.

As a solution to these problems of the Big Bang cosmology, Alan Guth introduced in 1981 [9] the cosmic
inflation, which predicted an exponential expansion of space. This model was improved by Linde [10] and
by Albrecht and Steindhardt [11], proposing the so-called new inflation or slow-roll inflation. Later on, it
was understood that this inflation could be used to explain the inhomogeneities of the universe from the
quantum vacuum fluctuations. These fluctuations were first calculated by Mukhanov and Chibisov [12,13]
and then also by Hawking [14], Starobinsky [15], Guth and S-Young Pi [16], and Bardeen, Steinhardt and
Turner [17].

Throughout this period, a quantum theory of gravity was also being built. We know that General
Relativity is incomplete because it is a classical theory that ignores quantum effects. It is thought that
these effects should become really dominant when, going backwards in time, we find huge matter densities
and curvatures. Hence, the existence of a Big Bang should not be taken for granted because it is a
prediction of a theory that might fail at high scales.

The so-called Wheeler-DeWitt equation was the first step towards quantum gravity in the 1960s, when
Wheeler, Misner and DeWitt [18–20] used quantum geometrodynamics with the aim to resolve classical
singularities through the quantum fluctuations of geometry. Later on, in 1986 Abbay Ashtekar developed
the connection formulation of General Relativity [21], known as the “new variables” formulation, which
laid as the basis for Loop Quantum Gravity (LQG). Thanks to this new formulation, Ted Jacobson and Lee
Smolin found loop-like solutions to the Wheeler-DeWitt equation [22], thus giving birth to loop quantum
gravity.
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The application of Loop Quantum Gravity to cosmology is known as Loop Quantum Cosmology (LQC),
which arose with the aim to solve the problems of the Big Bang model already stated. Abbay Ashtekar
and Martin Bojowald [23–27] proved the avoidance in LQC of the future singularities classified in [28].
Parampreet Singh studied the holonomy correction in LQC [29] that leads to ρ2 correction in the Friedmann
equation at high energies. Thus, the Big Bang is replaced by a Big Bounce and the Friedmann equation
describes an ellipse in the plane (ρ, H). Hence, the values of H and ρ are bounded [30–32].

The aim of this thesis is to study singularities both in Einstein Cosmology (EC) and in Loop Quantum
Cosmology (LQC) when the universe is filled with a fluid with Equation of State P = −ρ− Aρα. And we
will also qualitatively study when we have a scalar field ϕ which mimicks this fluid. Among the infinite
solutions that arise from the conservation equation, which can be plotted in the phase space (ϕ, ϕ̇), there
is only one which gives the same background as the fluid. We are going to study whether this solution is
an attractor or a repeller of the dynamical system that comes from the conservation equation.

The thesis will be organised as follows:

In section 2, we are going to derive the Friedmann equations for a flat homogeneous and isotropic
space-time from Einstein’s field equations of General Relativity, analysing its singularities for an Equation
of State P = −ρ − Aρα, as done in [33]. Then, we are going to reconstruct the scalar field that fills
the space-time with its corresponding potential. Finally, we will perform a qualitative study for a linear
Equation of State, as in [34], obtaining some phase portraits.

In section 3, we are going to proceed analogously as with Einstein Cosmology, but now including in
the Friedmann equations holonomic corrections that come from LQC. Since the equations become more
complicated, when analysing singularities and reconstructing the scalar field, we will not be able to obtain
analytical results for every value of α in the Equation of State, but only for certain particular values, treating
some further cases than the ones in [34] and [35].

However, we will be able to do a detailed classification of the singularities, both stating which types
can be avoided in comparison to Einstein Cosmology and which values of α lead to the types that persist.
We will verify that the ρ2 correction origins a bounce, preventing the existence of Big Rip singularities,
that will be explained later in a more detailed way. Finally, we are going to do as well a qualitative study
for a linear Equation of State, obtaining similar phase portraits as the one shown in [36] for a particular
case of the ones we are going to study.

A version in form of paper of this thesis has been submitted in arXiv and can be found at arXiv:1612.05480.
It has been sent to the journal Physics Letter B so as to be considered for publication.

We will use natural units (~ = 8πG = c = 1) and the Latin indices will refer to spatial coordinates
{x , y , z} ≡ {1, 2, 3} while Greek indices will be used when we include as well the temporal coordinate
t ≡ {0}.
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2. Einstein Cosmology

2.1 Friedmann Equations

Assuming homogeneity and isotropy of the universe, which is valid at sufficiently large scales, it can be
shown that a suitable change of coordinates leads to the so-called Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric [37]:

ds2 = dt2 − a2(t)

(
dr 2

1− κr 2
+ r 2dθ2 + r 2 sin2 θdϕ2

)
(1)

where a(t) is a scale factor that parametrizes the relative expansion of the universe and the curvature
κ is -1,0 or 1 if we are dealing respectively with an open, flat or closed universe.

We will perform all our calculations [38] in the flat FLRW space-time, in which the metric in Cartesian
coordinates becomes:

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) (2)

Now, we want to obtain the relations that will eventually follow from Einstein equation (Rµν− 1
2 gµνR =

Tµν) for this particular metric [39]. First, we are going to calculate the Christoffel symbols with Levi-Civita
connection (Γk

ij = 1
2 g kr (gri ,j +grj ,i−gij ,r )). Since we are in a synchronous frame (i.e. g00 = 1 and g0i = 0),

with a diagonal metric such that its components only depend on time, the only non-null coefficients are:

Γ0
ii = −1

2 g 00gii ,0 = aȧ
Γi

i0 = Γi
0i = 1

2 g ii gii ,0 = H
(3)

where H = ȧ
a is the Hubble constant.

Let us proceed to compute the Ricci tensor, Rµν = Γρνµ,ρ − Γρρµ,ν + ΓρρλΓλνµ − ΓρνλΓλρµ:

R00 = Γρ00,ρ − Γρρ0,0 + ΓρρλΓλ00 − Γρ0λΓλρ0 = −Γρρ0,0 − Γρ0ρΓρρ0 = −3(Ḣ + H2) = −3
ä

a
(4)

Rii = Γρii ,ρ − Γρρi ,i + ΓρρλΓλii − ΓρiλΓλρi = Γ0
ii ,0 + Γρρ0Γ0

ii − Γρi0Γ0
ρi − Γ0

iλΓλ0i =

∂t(aȧ) + 3Haȧ− Haȧ− Haȧ = 2ȧ2 + aä
(5)

And the scalar curvature is:

R = gµνRµν = − 6

a2
(ȧ2 + aä) = −6

(
H2 +

ä

a

)
(6)
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We consider that the FLRW space-time is filled with a perfect fluid, only characterized by its pressure
P and energy density ρ, with no shear stresses, viscosity or heat conduction. It fulfills the equation of
state P = −ρ − f (ρ). Therefore, the stress-energy-momentum tensor of this perfect fluid is Tµν =
(ρ + p)uµuν − pgµν , with uµ = (1, 0, 0, 0) being the quadrivelocity in a reference system at rest relative
to matter [40]. Hence, calculating the components of Tµν , we obtain:

T 00 = ρ , T ii =
P

a2
(7)

Thus, using Einstein equation for both the R00 component and the scalar curvature (R = −T ), we
obtain Friedmann equations: {

H2 = ρ
3

−6 ä
a = ρ+ 3P

(8)

So, it is straightforward to compute Raychaudhuri equation:

Ḣ =
äa− ȧ2

a2
=
−ρ− 3P

6
− ρ

3
= −ρ+ P

2
=

f (ρ)

2
(9)

Finally, conservation equation comes from differentiating Friedmann equation:

ρ̇ = −3H(ρ+ P) = 3Hf (ρ) (10)

In next section we will particularize with the EoS given by f (ρ) = Aρα [33]. Firstly we analyze the
singularities and then we will introduce a scalar field with its corresponding potential. Finally we will
qualitatively study the dynamical system for the linear case (α = 1).
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2.2 Analysis of the singularities

Solving equation (10) for f (ρ) = Aρα, we have to differ whether we are in the expanding phase
(H = H+ > 0) or contracting phase (H = H− < 0):

ρ̇± = ±
√

3Aρ
α+ 1

2
±

ρ±(t) =


(
ρ

1/2−α
0 ±

√
3
(

1
2 − α

)
At
)1/(1−2α)

α 6= 1
2

ρ0e±A
√

3t α = 1
2

(11)

where ρ0 is the energy density at t = 0.

The case α = 1/2, corresponding to H = H0e±A
√

3t/2 leads, in the expanding phase, to the so-called
“Little Rip” singularity [41] for a phantom fluid and a “Little Bang” [33] -there are not singularities at finite
cosmic time and the effective EoS parameter tends asymptotically to −1 at early times- for a standard
fluid. Thus, we suppose α 6= 1

2 . In this case,{
H+(t) =

(
H1−2α

0 + 3α

2 (1− 2α)At
)1/(1−2α)

H−(t) = −
(
(−H0)1−2α − 3α

2 (1− 2α)At
)1/(1−2α) (12)

If A = 0, (ρ(t), H(t)) = (ρ0, H0) and a(t) = a0eH0(t−t0). Therefore, from now on, we will consider the

more interesting case A 6= 0. If we define t±s = ± 2|H0|1−2α

3α(2α−1)A , that for A < 0 is positive for α < 1/2 and

negative for α > 1/2 in the expanding phase and vice-versa in the contracting phase. Then, the Hubble
parameter is given by:

H±(t) = ±
(
±3α

2
(1− 2α)A(t − t±s )

)1/(1−2α)

:= ±(k±(t − t±s ))1/(1−2α) (13)

and the scale factor by{
ln
(

a±(t)
as

)
= 1

(1−α)·3αA (k±(t − t±s ))2(1−α)/(1−2α) α 6= 1

a±(t) = as |t − t±s |±1/k± α = 1
(14)

From these expressions it is rather easy to analyze all the singularities, but first of all, we will classify
them in the following types, as done in [28]:

FUTURE SINGULARITIES:

• Type I (Big Rip): t → ts , a→∞, ρ→∞ and |P| → ∞.

• Type II (Sudden): t → ts , a→ as , ρ→ ρs and |P| → ∞.

• Type III (Big Freeze): t → ts , a→ as , ρ→∞ and |P| → ∞.
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• Type IV (Generalized Sudden): t → ts , a→ as , ρ→ 0, |P| → 0 and derivatives of H diverge.

PAST SINGULARITIES (defined analogously as the future ones, as in [33]):

• Type I (Big Bang): t → ts , a→ 0, ρ→∞ and |P| → ∞.

• Type II (Past Sudden): t → ts , a→ as , ρ→ ρs and |P| → ∞.

• Type III (Big Hottest): t → ts , a→ as , ρ→∞ and |P| → ∞.

• Type IV (Generalized Past Sudden): t → ts , a→ as , ρ→ 0, |P| → 0 and derivatives of H diverge.

According to the different possible values of α, we are going to particularize for the expanding phase
and A < 0, using equations (13) and (14):

• If α > 1/2, H is defined for t > ts and t = ts is a past singularity where H →∞, Ḣ → −∞ and

a→


as , α > 1
0(polynomially), α = 1
0(exponentially), 1

2 < α < 1
(15)

Thus, α > 1 corresponds to a Type III singularity, while 1
2 < α ≤ 1 is a Type I singularity.

• If α < 1/2, H is defined for t < ts and, in t → ts , H → 0 and, hence, a→ as . From P = −ρ−Aρα,
it is trivial to see that, when t → ts , for α < 0, P → −∞ (corresponding to a Type II future
singularity). For α = 0, when t → ts , Ḣ = Aρα

2 is constant, and so for this case we have no

singularities. Regarding the values 0 < α < 1/2, we see that, given k ∈ N, dHk

dtk = Ck · ραk− 1
2

(k−1),
where Ck is independent on ρ. Then, we can easily verify that when ρ→ 0,

dHk

dtk
→


constant, if α = k−1

2k

±∞, if α < k−1
2k and α 6= r−1

2r ∀r ∈ N
0, otherwise.

(16)

Hence, in the first and third case there are no singularities, while the second case corresponds to
Type IV future singularities.

Finally, we would lite to remark that, for the cases not treated, the analysis would be analogous and
yield the same types of singularities.
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2.3 Reconstruction method

The perfect fluid which fills FLRW space-time could be mimicked by a scalar field defined in all space-
time with a kinetic and a potential term. By reconstruction we mean that we are going to obtain the
potential to which this scalar field is submitted as a function of the parameters that define the Equation
of State.

We will start treating the case A < 0. With the corresponding scalar canonical field ϕ subject to a
potential V (ϕ), the associated Lagrangian and stress-energy-momentum tensor are [42]:

L =
1

2
∂µ∂

µϕ− V (ϕ) Tµν = ∂µϕ∂νϕ− gµνL (17)

Thus, assuming the scalar field is spatially homogeneous, the energy density and the pressure have the
following expressions:

ρ =
ϕ̇2

2
+ V (ϕ) , P =

ϕ̇2

2
− V (ϕ) (18)

From conservation equation ρ̇ = −3H(ρ+ P) = −3Hϕ̇2, differentiating ρ = ϕ̇2

2 + V (ϕ) we obtain

ϕ̈+ 3H±(ϕ, ϕ̇)ϕ̇+ Vϕ = 0 (19)

where H±(ϕ, ϕ̇) = ± 1√
3

√
ϕ̇2

2 + V (ϕ) with H+ (resp. H−) referring to the expanding (resp. contracting)

phase.

Now, from equation (13) and Raychaudhuri equation Ḣ = −ρ+P
2 = − ϕ̇2

2 , choosing the scalar field ϕ
to be an increasing function, we obtain for α 6= 1/2

ϕ̇±(t) =
√
−3αA

(
k±(t − t±s )

)α/(1−2α)
(20)

So, if α 6= 1:

ϕ±(t) = ϕ0 ±
2√
−A3α

1

α− 1

(
k±(t − t±s )

)(1−α)/(1−2α)
(21)

Hence, from this relation between ϕ and t and using equation (13), we obtain:

H±(ϕ) = ±
(
±
√
−A3α

2
(α− 1)(ϕ− ϕ0)

)1/(1−α)

(22)
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So as to compute the potential, we use that

ρ =
ϕ̇2

2
+ V (ϕ) = − f (ρ)

2
+ V (ϕ) = −A

2
ρα + V (ϕ)

obtaining

V±(ϕ) = 3

(
±
√
−A3α

2
(α− 1)(ϕ− ϕ0)

)2/(1−α)

+
A3α

2

(
±
√
−A3α

2
(α− 1)(ϕ− ϕ0)

)2α/(1−α)

(23)

We consider now the case α = 1, which corresponds to the Equation of State P = ωρ, that is,
f (ρ) = −(ω + 1)ρ. Thus, if A < 0 we are considering ω > −1. The scalar field will have the following
expression:

ϕ̇±(t) =
2√

3(1 + ω)

1

|t − t±s |

which can be integrated as:

ϕ±(t) = ± 1√
3(1 + ω)

ln

((
t − t±s

t0

)2
)

(24)

And the potential will be such that:

(ω + 1)

(
ϕ̇2

2
+ V (ϕ)

)
= ϕ̇2 =⇒ V (ϕ) =

1− ω
1 + ω

ϕ̇2

2

Hence, from relation (24), its expression turns out to be:

V±(t) =
2(1− ω)

3(1 + ω)2

1

(t − t±s )2

V±(ϕ) =
2(1− ω)

3(1 + ω)2

1

t2
0

e∓
√

3(1+ω)ϕ ≡ V0e∓
√

3(1+ω)ϕ (25)

where we have taken t2
0 = 2(1−ω)

3(1+ω)2V0
.

Finally, we will analyse the case α = 1/2. From the expression obtained in equation (12), we see that
there is a Little Bang singularity. In this case the scalar field results being:

ϕ̇±(t) =

√
−
√

3A|H0|e±
√

3
4

At (26)
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Thus,

ϕ±(t) = ϕ0 ± 4

√
−
√

3A|H0|
√

3A
e±
√

3
4

At (27)

From this relation and using the case α = 1/2 in equation (11), we obtain:

V (ϕ) =
A

2
ρ1/2 + ρ =

−3A2

32
(ϕ− ϕ0)2

(
1− 3

8
(ϕ− ϕ0)2

)
(28)

Regarding the case A > 0, all the results are very similar. The only difference is that we need to
consider a phantom scalar field, i.e, such that:

L = −1

2
∂µ∂

µϕ− V (ϕ) Tµν = −∂µϕ∂νϕ− gµνL (29)

Therefore, again under the assumption of spatial homogeneity, energy density and pressure are:

ρ = − ϕ̇
2

2
+ V (ϕ) , P = − ϕ̇

2

2
− V (ϕ) (30)

11
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2.4 Dynamics for the linear case

In the case of the Equation of State P = ωρ for ω > −1, we want to study the behaviour of the
analytical solution, finding out if it is either an attractor or a repeller [34] and comparing its behaviour with
that of other solutions of the system. We are going to analyse the dynamics in the contracting phase from
this dynamical system:

ϕ̈+ 3H−(ϕ, ϕ̇) + Vϕ = 0 (31)

where H−(ϕ, ϕ̇) = −
√
ϕ̇2

2
+ V (ϕ) , V (ϕ) = V0e

√
3(1+ω)ϕ

With the following change of variable

ϕ =
−2√

3(1 + ω)
lnψ (32)

we can obtain this system:

dψ̇

dϕ
= F−(ψ̇) := −3

2

√
1 + ω

√ 2ψ̇2

3(1 + ω)
+ V0 +

√
3(1 + ω)

2ψ̇

(
2ψ̇2

3(1 + ω)
+ V0

) (33)

The different cases to distinguish are the following ones:

• ω = 1: This case is known as a kination (or deflationary) phase [43, 44].

dψ̇

dϕ
= −

√
3

2
(|ψ̇|+ ψ̇) (34)

In the semiplane ψ̇ > 0 (ϕ̇ < 0), the solution is given by:

ψ(t) = −|C |(t − ts) t < ts

(ϕ(t), ϕ̇(t)) =

(
−
√

2

3
ln(−|C |(t − ts)),−

√
2

3

1

t − ts

)
t < ts (35)

which is a stable orbit coinciding with the obtained result in equation (24), with the sign corresponding
to the contracting phase. Therefore, this solution corresponds all the time to a universe with Equation
of State P = ωρ in the contracting phase, with H(t) = 1

3(t−ts ) .

Regarding the semiplane ψ̇ > 0 (ϕ̇ < 0), the solution becomes:

(ϕ(t), ϕ̇(t)) =

(√
2

3
ln(−|C |(t − ts)),

√
2

3

1

t − ts

)
t < ts (36)

12
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which is stable analogously to the former case.

Finally, the case ψ̇ = 0, i.e. (ϕ(t), ϕ̇(t)) = (C , 0), corresponds to H = 0.

In the following figure, we have represented two possible orbits for ϕ̇(t) > 0 and ϕ̇(t) < 0, having
taken in both cases |C | = 1.

Figure 1: Orbits for ω = 1.

• −1 < ω < 1: Given that F−(ψ̇) can only vanish for ψ̇ < 0, we have a single critical point for ψ̇:

ψ̇− = −(1 + ω)

√
3V0

2(1− ω)
(37)

which is a global repeller, given that F−(ψ̇) > 0 ∀ψ̇− < ψ̇ < 0 and F−(ψ̇) < 0 ∀ψ̇ < ψ̇−, as we
can see in the phase portrait in Figure 2.

We point out that the blue horizontal line in Figure 2 corresponds to:

ϕ(t) = − 1√
3(1 + ω)

ln

(
3V0(1 + ω2)

2(1− ω)
(t − ts)2

)
(38)

which again coincides with equation (24), depicting a universe with Equation of State P = ωρ.

13
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Figure 2: Phase portrait for ω = 1/2 and V0 = 1. We note that for ψ̇ < 0, ϕ̇ > 0 and, thus, throughout
the evolution of time ϕ increases.

• ω > 1: This case is known as an ekpyrotic phase or regime [45] and the system is only defined for

|ψ̇| ≥
√

3(1+ω)|V0|
2 . We have three critical points:

ψ̇− = −(1 + ω)

√
3|V0|

2|1− ω|
ψ̇±0 = ±

√
3(1 + ω)|V0|

2
(39)

where ψ̇±0 are repellers corresponding to H = 0. On the other hand, ψ̇− is an attractor for ψ̇ < ψ̇−0 ,
solution that leads to a universe that all the time behaves as P = ωρ in the contracting phase.

Figure 3: Phase portrait for ω = 10 and V0 = −1.

14
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In the plot on the left-hand side, the upper horizontal line represents ψ̇−0 , corresponding to H = 0,
while the lower horizontal line is the analytical solution. On the right-hand side, for the semiplane
ψ̇ > 0, the blue horizontal line is ψ̇+

0 , which corresponds to H = 0. In both plots, we appreciate that
the orbits behave as we have already explained.

An analogous analysis for the expanding phase [34] would show that for ω = 1 there are as well
solutions coinciding with (24) and others with H = 0. The solution that depicts a fluid with EoS
P = ωρ is an attractor for |ω| < 1 and a repeller for ω > 1, which also coincides with equation (24).
And for ω > 1, we would also find critical points corresponding to H = 0, as the ones found in the
contracting phase, that are in this case attractors.
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3. Loop Quantum Cosmology

3.1 Modified Friedmann equations

The general formula of loop gravity, which takes into account the discrete nature of space-time, expresses

the Hamiltonian in terms of holonomies hj (λ) ≡ e−i λβ
2
σj , where σj are the Pauli matrices [29, 35]:

HLQC = − 2V

γ3λ3

∑
i ,j ,k

εijk Tr[hi (λ)hj (λ)h−1
i (λ)h−1

j (λ){h−1
k (λ), V }+ ρV (40)

where γ ≈ 0.2375 is the Barbero-Immirzi parameter and λ =

√√
3

4 γ is a parameter with the dimension
of length, which is determined by invoking the quantum nature of the geometry.

The hamiltonian expression in (40) leads to [46, 47]

HLQC = −3V
sin2(λβ)

γ2λ2
+ ρV (41)

Using Hamiltonian equation

V̇ = {V ,HLQC} = −γ
2

∂HLQC

∂β
(42)

by imposing HLQC = 0, i.e., ρ = 3 sin2(λβ)
γ2λ2 , we obtain that

H2 =
sin2(2λβ)

4γ2λ2
=

sin2(λβ)

γ2λ2
(1− sin2(λβ)) =

ρ

3

(
1− ρ

ρc

)
(43)

where ρc = 3
γ2λ2 is the so-called critical energy density (the maximum value that reaches the energy

density).

Equation (43) corresponds to an ellipse in the plane (ρ, H), that we can parametrize in the following
form: {

H =
√

ρc

12 sin η

ρ = ρc cos2 η
2

(44)

The conservation equation does not differ from standard GR, i.e., since the fluid fulfills the relation
d(ρV ) = −PdV , where V = a3, again with Equation of State P = −ρ− f (ρ). Thus,

ρ̇ =
1

V
(−P − ρ)V̇ = 3Hf (ρ)

16
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So as to obtain Raychadhuri equation, we have to differentiate Eq.(43), using conservation equation:

2HḢ =
ρ̇

3

(
1− 2ρ

ρc

)
=⇒ Ḣ =

f (ρ)

2

(
1− 2ρ

ρc

)

Again using conservation equation with the parametrization proposed in (44), it is straightforward that:

−ρc

2
sin η · η̇ = 3

√
ρc

12
sin η · Aραc cos2α η

2∫ η

η0

dx

cos2α x
2

= −A
√

3ρ
α− 1

2
c t := θt (45)

where η0 = arcsin
(

H0

√
12
ρc

)
.

In the expansive phase, 0 < η0 < π, while in the contracting phase π < η0 < 2π.

Therefore, in the cases that it was possible to solve analytically this integral one will obtain an analytic
expression of the evolution of the universe. We will see some examples in next subsection.
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3.2 Analysis of the singularities

In LQC, one never finds singularities of Type I and III because the ellipse is a bounded subset, meaning
that the energy density and the Hubble parameter are always finite quantities. Thus, the only singularities
that we can find in LQC are for finite ρ and H. For our case, i.e. f (ρ) = Aρα, we find:

• Type II singularity: It appears for α < 0, since in this case |P| → ∞ when ρ→ 0.

• Type IV singularity: They can be found with the same analysis that was done in Einstein cosmology,
since the behaviour of modified Friedmann Equation near ρ = 0 is asymptotically the same as without

the holonomic correction. Hence, near ρ = 0 it is satisfied that dHk

dtk = Ck · ραk− 1
2

(k−1), where Ck is

independent on ρ. Therefore, for values 0 < α < 1/2 such that α 6= r−1
2r ∀r ∈ N, there exists m ∈ N

for which dHm

dtm diverges when ρ→ 0, being therefore Type IV singularities.

Analysing the dynamical system coming from Friedmann and Raychaudhuri equations{
ρ̇ = 3HAρα

Ḣ = Aρα

2

(
1− 2ρ

ρc

) (46)

we see that for α > 0 the point (0, 0) will be a fixed point, concretely a saddle point. We observe that the
dynamical system is not Ck for α < k , with k ∈ N. We will consider that A 6= 0, which corresponds as
in GR to (ρ(t), H(t)) = (ρ0, H0) and a(t) = a0eH0(t−t0). In the plane (ρ, H), the evolution in the ellipse
determined by equation (43) will be anticlockwise for A < 0 (non-phantom fluid) and clockwise for A > 0
(phantom fluid). We see, as well, that the time spent to do a complete round in the ellipse starting from

(ε, sgn(A)

√
ε
3

(
1− ε

ρc

)
) with ε→ 0 is:

t = 2

∫ ρc

0

dρ
√

3ρ
√

1− ρ
ρc
|A|ρα

(47)

which diverges for α ≥ 1/2.

We also point out that in all cases there will be a bounce, since the time that the universe lasts to

bounce when it has a energy density ρ0 6= 0 is
∫ ρc/2
−ρc/2

dρ
√

3ρ
√

1− ρ
ρc
|A|ρα

converges ∀α.

Now, having already done the classification of singularities of LQC, we can proceed to find analytical
expressions of (ρ, H) for some values of α, in all cases solving equation (45) and using the parametrization
in (44). We will compute, as well, a(t) from H = ȧ

a .
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• α = 1: It corresponds to the linear equation of state P = ωρ [34]. So

2 tan
η

2
= θ(t − t0)

where t0 = −2
θ tan η0

2 .

Thus,  H(t) = 1+ω
2

ρc (t−t0)
3
4

(1+ω)2ρc (t−t0)2+1

ρ(t) = ρc
3
4

(1+ω)2ρc (t−t0)2+1

(48)

Therefore,

a(t) = a0

(
1 +

3

4
(1 + ω)2ρc (t − t0)2

) 1
3(1+ω)

(49)

The bounce takes place at t = t0.

• α = 0: {
H(t) =

√
ρc

12 sin(θ(t − t0))

ρ(t) = ρc cos2
(
θ
2 (t − t0)

) (50)

where t0 = −η0
θ .

ln
a(t)

a0
= −

√
ρc

12

1

θ
(cos(θ(t − t0))− 1) (51)

The bounce takes place at t = t0.

• α = 1
2 : Solving equation (45), we have:

2 ln
(

tan
η

2
+ sec

η

2

)
= θ(t − t0)

where t0 = −2
θ ln

(
tan η0

2 + sec η0
2

)
. So, we obtain:

cos
η

2
=

2eθ(t−t0)/2

1 + eθ(t−t0)


H(t) = 2

√
3ρc

3
eθ(t−t0)/2(1−eθ(t−t0))

(1+eθ(t−t0))2 = −
√

3ρc

3

sinh
θ(t−t0)

2

cosh2 θ(t−t0)
2

ρ(t) = 4ρc
eθ(t−t0)

(1+eθ(t−t0))2 = ρc

cosh2 θ(t−t0)
2

(52)
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ln
a(t)

a0
= −2

√
3ρc

3θ

(
1

cosh θ(t−t0)
2

− 1

)
(53)

The bounce takes place at t = t0.

• α = −1
2 : In this case we obtain the following expressions: H =

√
ρc

12θ(t − t0)

√
1− (θ(t−t0))2

4

ρ = ρc

(
1− (θ(t−t0))2

4

) (54)

defined for |t − t0| ≤ 2ρc

|A|
√

3
, where t0 = −2

θ cos η0
2 .

ln
a(t)

a0
=

2
√

3ρc

9

[
1−

(
1− θ2(t − t0)2

4

)3/2
]

(55)

The bounce takes place at t = t0. And we have a Type II singularity at t±s = t0 ± 2ρc

A
√

3
.
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3.3 Reconstruction method

Now we will proceed, as done with General Relativity, to build the potential from the scalar field ϕ.
We will work in the case A < 0, so the scalar field will be canonical and will satisfy relations in (18). We
analyse separately the different cases that we have studied in the former section, in which we managed to
obtain analytical values of (ρ, H):

• α = 1. It corresponds to Equation of State P = ωρ, with ω > −1. Thus, reminding (18), we obtain:

ϕ̇2 = P + ρ = (1 + ω)ρ =
(1 + ω)ρc

3
4 (1 + ω)2ρc(t − t0)2 + 1

(56)

Hence,

ϕ(t) = ϕ0 +
2√

3(1 + ω)
arcsinh

(√
3ρc

2
(1 + ω)(t − t0)

)
=

2√
3(1 + ω)

ln

 √3ρc

2 (1 + ω)(t − t0) +
√

3ρc

4 (1 + ω)2ρc (t − t0)2 + 1

|ϕ̃0|

 (57)

where ϕ0 = − 2√
3(1+ω)

ln |ϕ̃0|.

So, now we are able to compute the potential as a function of the scalar field. Taking ϕ̃2
0 = V0

2ρc (1−ω) ,

this is done by expressing ρ in equation (48) as a function of ϕ using the relation found in (57):

V (ϕ) =
ρ− P

2
=

1− ω
2

ρ =
(1− ω2)ρc

2 cosh2

(
(ϕ− ϕ0)

√
3(1+ω)

2

) = V0
e
√

3(1+ω)ϕ(
1 + V0

2ρc (1−ω) e
√

3(1+ω)ϕ
)2

(58)

• α = 0: In this case the scalar field is:

ϕ̇ =
√
−A =⇒ ϕ±(t) = ϕ0 +

√
−A(t − t0)

Thus, the corresponding potential is, using (50):

V (ϕ) = ρ+
A

2
= ρc cos2

(√
−3A

ρc

ϕ− ϕ0

2

)
+

A

2
(59)
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Regarding the two left cases, it is not possible to integrate analytically the scalar field ϕ. However,
we can express the potential in the following form:

• α = 1
2 : From equation (52),

V = ρ+
Aρ1/2

2
= ϕ̇2

(
ϕ̇2

A2
− 1

2

)
(60)

where ϕ̇2 = −Aρ1/2 = − Aρ
1/2
c

cosh
(
θ(t−t0)

2

)

• α = −1
2 : From equation (54):

V = ρ+
Aρ1/2

2
=

A2

ϕ̇4
− ϕ̇2

2
(61)

where ϕ̇2 = −Aρ−1/2 = − A

ρ
1/2
c

√
1− θ

2(t−t0)2

4
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3.4 Dynamics for the linear case

We want to analyse the behaviour of the analytical solution corresponding to the Equation of State
P = ωρ with ω > −1. Using the potential found in (58), we are going to study the dynamics of the
equation

ϕ̈+ 3H±(ϕ, ϕ̇)ϕ̇+ Vϕ = 0 (62)

where H±(ϕ, ϕ̇) = ±
√

ρ(ϕ,ϕ̇)
3

(
1− ρ(ϕ,ϕ̇)

ρc

)
, with ρ(ϕ, ϕ̇) = ϕ̇2

2 + V (ϕ)

Firstly, we note that this implies that:

ρ̇ = −3H±(ϕ, ϕ̇)ϕ̇2 (63)

Therefore, the evolution in time will take place in an anticlockwise sense throughout the ellipse, being
(0, 0) a fixed point.

Before proceeding to the analysis of the different cases, we are going to take a glance at the geometry
of the phase space (ϕ, ϕ̇).

Since we are dealing with a bi-valued dynamical system, we need a cover 2:1 (of two sheets) of the
allowed region in the plane of the phase space (ϕ, ϕ̇), which is ramified in the curves H(ϕ, ϕ̇) = 0. Hence,
for the case |ω| < 1, this is a cylinder being projected in the plane, whereas for ω > 1 we have two cylinders,
as we can see in Figure 4. This explains why in the phase portrait that we will later obtain we can have
intersecting orbits, which happens always between an orbit in the expanding phase and another one in the
contracting phase.

Therefore, when solving the dynamical system one option would be to use local coordinates in a cylinder.
However, this appears to be somehow cumbersome and, thus, we have opted for integrating the solution
taking into account whether we are in the expanding or contracting phase, so that we change sign of H
when reaching the curve H = 0. For the numerical results, we will use an RK78 method, that holds in
memory the sign of H and changes it when we switch from the contracting to the expanding phase.
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Figure 4: Top row: there is the phase space (ϕ, ϕ̇, H) for |ω| < 1 (left) and ω > 1 (right). The green (resp.
red) lines recover all the region corresponding to the expanding (resp. contracting) phase. Bottom row:
there is its projection in the plane (ϕ, ϕ̇), in which the white region delimited by the curves H(ϕ, ϕ̇) = 0
is the allowed one.

Now, we are going to treat separately the following cases:

• ω = 1: In this case, the potential is zero. Therefore, (62) becomes:

ϕ̈ = ∓
√

3

2
|ϕ̇|ϕ̇

√
1− ϕ̇2

2ρc
(64)

Since ρ ≤ ρc , |ϕ̇| ≤
√

2ρc . So, we can use the change of variables ϕ̇ =
√

2ρc cos(ξ). Assuming that
at t=0 we are in the expanding phase of the semi-plane ϕ̇0 > 0, we will have

tan ξ − tan ξ0 =
√

3ρct (65)

Hence,

ϕ̇(t) =

√
2ρc

1 +
(√

3ρc t + C
)2

, t >
−C√
3ρc

(66)

where C =

√
2ρc

ϕ̇2
0

− 1
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It is easy to see that for the contracting phase (t < −C√
3ρc

), the expression of ϕ̇(t) would be exactly

analogous. Moreover, if t=0 takes place during the contracting phase, the constant C would be

defined as C = −
√

2ρc

ϕ̇2
0
− 1. Therefore, the orbit in the phase portrait is:

(ϕ(t), ϕ̇(t)) =

(
ϕ0 +

√
2

3
ln

(√
3ρc t + C +

√
1 + (

√
3ρc t + C )2

)
,

√
2ρc

1 +
(√

3ρct + C
)2

)
(67)

and, in the semi-plane ϕ̇0 < 0, it is given by

(ϕ(t), ϕ̇(t)) =

(
ϕ0 −

√
2

3
ln

(√
3ρct + C +

√
1 + (

√
3ρct + C )2

)
, −
√

2ρc

1 +
(√

3ρc t + C
)2

)
(68)

Hence, we see that all these are stable orbits that foliate all the space 0 < |ϕ̇| ≤
√

2ρc , corresponding
to the analytical solution found in (57), with the bounce taking place in tb = − C√

3ρc
and such that

H(t) = (t − tb)ρ(t) = ρc (t−tb)
1+3ρc (t−tb)2 .

On the other hand, if ϕ̇0 = 0, the correspondent orbit (ϕ, ϕ̇) = (ϕ0, 0) would correspond to ρ(t) =
H(t) = 0.

In the following figure, we have represented two possible orbits for ϕ̇(t) > 0 and ϕ̇(t) < 0, having
taken in both cases ϕ0 = 0.

Figure 5: Orbits for ω = 1.
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Before analyzing the other cases, we are going to introduce the following change of variables, moti-
vated by the solution (57):

ψ = sinh

(
ϕ
√

3(1 + ω)

2
+

1

2
ln

(
V0

2ρc (1− ω)

))
(69)

where we have taken, as we already did previously, |ϕ̃0|2 = V0
2ρc (1−ω) .

Now, we need to express the equation (62), using the potential found in (58):

ψ̇ = ϕ̇
√

1 + ψ2

√
3(1 + ω)

2

ϕ̈ =
2√

3(1 + ω)

ψ̈
√

1 + ψ2 − ψ̇ ψψ̇√
1+ψ2

1 + ψ2
=

2√
3(1 + ω)

1√
1 + ψ2

(
ψ̈ − ψψ̇2

1 + ψ2

)

V (ψ) =
1− ω

2

ρc

1 + ψ2

Vϕ =
dV (ψ)

dψ

dψ

dϕ
= −1− ω

2

√
3(1 + ω)ρc

ψ

(1 + ψ2)3/2

ρ =
ϕ̇2

2
+ V (ϕ) =

2

3(1 + ω)(1 + ψ2)

(
ψ̇2 +

3(1− ω2)

4
ρc

)
So,

2

3(1 + ω)

1√
1 + ψ2

(
ψ̈ − ψψ̇2

1 + ψ2

)
+3H(ψ, ψ̇)

2√
3(1 + ω)

ψ̇

1 + ψ2
−1− ω

2

√
3(1 + ω)ρc

ψ

(1 + ψ2)3/2
= 0

which becomes in a more compact form:

ψ̈ = −3H±(ψ, ψ̇)ψ̇ + ρ(ψ, ψ̇)ψ
3(1 + ω)

2
(70)

where H±(ψ, ψ̇) = ±
√

ρ(ψ,ψ̇)
3

(
1− ρ(ψ,ψ̇)

ρc

)
So as to analyse this dynamical system, it is useful to see in which set of the plane (ψ, ψ̇) ψ̈ vanishes.

ρ2ψ2(1 + ω)2

4
=
ρ

3

(
1− ρ

ρc

)
ψ̇2
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If ρ 6= 0:

ρ =
ψ̇2/3

ψ2(1+ω)2

4 + ψ̇2

3ρc

=
2

3(1 + ω)(1 + ψ2)

(
ψ̇2 +

3(1− ω2)

4
ρc

)

Hence, if |ψ̇| 6=
√

3ρc

2 (1 + ω),

ψ2 =
4

3ρc (1− ω2)
ψ̇2 (71)

Therefore, ψ̈ vanishes if

ρ = 0 or

{
sgn(Hψ̇) = sgn(ψ) and

(
|ψ̇| =

√
3ρc

2
(1 + ω) or ψ2 =

4

3ρc (1− ω2)
ψ̇2

)}
(72)

Now we can proceed to analyse the rest of cases that are left:

• |ω| < 1: We can distinguish two types of orbits: those that cross the axis ψ = 0 (Type I) and those
that cross the axis ψ̇ = 0 (Type II).

Regarding Type I orbits, we are going to consider that at the initial point t = 0 we are at (ψ, ψ̇) =

(0, ψ̇0), where 0 < ψ̇0 ≤
√

3ρc

2 (1 + ω), which comes from the restriction 0 < ρ0 ≤ ρc . If ρ0 = ρc , at

t=0 we are at the bounce and, by (72), the value of ψ̇ will be the same throughout all the contracting
and expanding phase, coinciding with the analytical solution found in (57). With respect to Type II
orbits, the initial point t = 0 will be at (ψ, ψ̇) = (ψ0, 0) where ψ0 6= 0. This is the corresponding
phase portrait:

Figure 6: Phase portrait for w = −2/3 and ρc = 1.
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In Fig 6, we have represented the set ρ = ρc , which is the discontinuous black line corresponding to

ψ̇ = ±
√

3ρc

2 (1 + ω)
(
ψ2 + 1+ω

2

)
. The pointed diagonal lines refer to the set where ψ̈ = 0, as seen

in (71). The blue horizontal lines are the orbits corresponding to the analytical solution.

With respect to the rest of the curves, we have used the following colour notation: red for the
contracting phase and green for the expanding phase. We have plotted one possible Type I orbit
and one possible Type II orbit. In both we have considered that either ψ̇0 or ψ0 are in the positive
axis and that t = 0 takes place during the contracting phase. We note that applying the symmetry
with respect to the axis ψ̇ = 0 and/or ψ = 0 we would obtain the other possibilities for these orbits,
considering that the initial point is in the negative axis and/or t = 0 takes place during the expanding
phase.

Finally, in Fig 6 we have drawn as well the invariant curves that come in and out from the saddle
point (0,0), the only critical point of the dynamical system. For clarity, we have only plotted the
invariant curves for ψ̇ < 0. The others could be obtained with the symmetry respect to the axis
ψ̇ = 0.

So, we clearly see in each orbit the bounce at the time in which it touches the curve ρ = ρc . We
observe that ρ = 0 takes place for ψ →∞. The points in which the orbits intersect with the diagonal
lines are where they change the sign of their slope. And finally the horizontal lines corresponding to
the analytical solution are attractors for the expanding phase and repellers for the contracting phase.

We can also characterize orbits with the following value:

ωeff(t) :=
P(t)

ρ(t)
=
ψ̇(t)2 − 3

4 (1− ω2)ρc

ψ̇(t)2 + 3
4 (1− ω2)ρc

(73)

Figure 7: Evolution of ωeff(t) for the orbits represented in the phase portrait for ω = −2/3 and ρc = 1.
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We observe that −1 ≤ ωeff(t) < 1 and that for the analytical value |ψ̇| =
√

3ρc

2 (1 + ω), ωeff(t) = ω.
Regarding the other orbits, the bounce takes place at ωeff(tb) > ω and, when ρ(t)→ 0, it is verified
that ωeff(t)→ ω.

Finally, we also show how the phase portrait would be in the original phase space (ψ, ψ̇, H) with the
same colour notation. Its projection leads to Figure 6.

Figure 8: Phase portrait in (ψ, ψ̇, H) for ω = −2/3 and ρc = 1

• ω > 1: In this case, since the potential is negative we have the lower bound of |ψ̇| ≥
√

3ρc

2

√
ω2 − 1.

Therefore, we only have Type I orbits.

If ρ0 = 0, we are stuck in this value of ρ during all the orbit |ψ̇| =
√

3ρc

2

√
ω2 − 1. If ρ0 = ρc ,

analogously as in the |ω| < 1 case, we stay throughout all the contracting and expanding phase in
the analytical solution. This is the phase portrait obtained:
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Figure 9: Phase portrait for w = 4/3 and ρc = 1.

We have represented as a discontinuous black line the curve corresponding to ρ = ρc . The other
two discontinuous horizontal lines that delimit the forbidden region refer to an orbit with ρ = 0. The
blue horizontal lines correspond to the orbits coming from the analytical solution.

Regarding the other orbits, we have used the same colour notation as before. It is important to note
that, since ω > 1, (71) is never fulfilled. Hence, equation (72) implies that the sign of the slope of the
orbit can never change, i.e., ψ will always be convex or concave. So, we see that the curve reaches

ρ = 0 at ψ → ±∞ with ψ̇ either converging to ±
√

3ρc

2

√
ω2 − 1 or diverging such that ψ̇

ψ → 0. We
also observe a bounce for ρ = ρc . Thus, the analytical solution is a repeller in the expanding phase
and an attractor (though not global) in the contracting phase.

Figure 10: Evolution of ωeff(t) for the orbits represented in the phase portrait for w = 4/3 and ρc = 1.
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In this case, the same equation (73) is valid. We observe that ωeff > 1 and that ωeff = ω for the
analytical orbit. In the other orbits, the bounce takes place at ωeff(tb) < ω and, when ρ(t) → 0,

it is verified that ωeff(t) → ∞ when the orbits converge to ±
√

3ρc

2

√
ω2 − 1 or ωeff(t) → 1 when

|ψ̇| → ∞.

In figure 10, we clearly appreciate the two types of orbits:

– Type A: During the beginning of the contracting phase the orbit comes asymptotically from

|ψ̇| =
√

3ρc

2

√
ω2 − 1 (ωeff →∞), such that the value of |ψ̇| is below the one of the orbit of the

analytic solution. Then it crosses this orbit, bounces and in the expanding phase |ψ̇| → ∞, i.e.
ωeff → 1.

– Type B: During the contracting phase the orbit comes asymptotically from |ψ̇| → ∞ (ωeff → 1),
such that the value of |ψ̇| is above the one of the orbit of the analytic solution. Then it bounces,

crosses this orbit, and in the expanding phase |ψ̇| →
√

3ρc

2

√
ω2 − 1, i.e. ωeff →∞.

Finally, we also show the phase portrait in the phase space (ψ, ψ̇, H).

Figure 11: Phase portrait in (ψ, ψ̇, H) for ω = 4/3 and ρc = 1
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4. Conclusions

We have explored singularities in General Relativity and in Loop Quantum Cosmology (LQC) with the
Equation of State P = −ρ − Aρα. We have observed that in LQC we only have Type II and Type IV
singularities and, in particular, for α ≥ 1/2 there are no singularities. Unlike in GR, in LQC we have only
been able to calculate analytically H(t) and ρ(t) for certain values of α.

We have introduced as well a scalar field ϕ that accounts for the perfect fluid that fills the space-
time. We have computed its corresponding potential V (ϕ) both in GR and for some values of α in LQC.
Moreover, we have observed that for A < 0 in the Equation of State, we need a canonical scalar field, while
for A > 0 it must be a so-called phantom scalar field.

Finally, for the linear equation of state (i.e., α = 1), we have made both in GR and in LQC a qualitative
study of the orbits in the phase space (ϕ, ϕ̇), concluding that, for a canonical scalar field (i.e., ω > −1), in
the expanding (resp. contracting) phase, the analytical solution is an attractor (resp. repeller) for |ω| < 1
both in GR and LQC. For ω > 1, both in GR and in LQC it is a repeller (resp. attractor) in the expanding
(resp. contracting) phase. However, whereas in GR the analytical solution is a global attractor in the
contracting phase and a repeller in the expanding one, in LQC the other solutions do not catch (do not
converge asymptotically) the analytical one because of the bounce, and when they enter in the expanding
phase they move away from the analytical orbit depecting at late times a universe with an effective EoS
parameter equal to 1 or ∞.
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