30,363 research outputs found

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Tweets as impact indicators: Examining the implications of automated bot accounts on Twitter

    Get PDF
    This brief communication presents preliminary findings on automated Twitter accounts distributing links to scientific papers deposited on the preprint repository arXiv. It discusses the implication of the presence of such bots from the perspective of social media metrics (altmetrics), where mentions of scholarly documents on Twitter have been suggested as a means of measuring impact that is both broader and timelier than citations. We present preliminary findings that automated Twitter accounts create a considerable amount of tweets to scientific papers and that they behave differently than common social bots, which has critical implications for the use of raw tweet counts in research evaluation and assessment. We discuss some definitions of Twitter cyborgs and bots in scholarly communication and propose differentiating between different levels of engagement from tweeting only bibliographic information to discussing or commenting on the content of a paper.Comment: 9 pages, 4 figures, 1 tabl

    Virtual Astronomy, Information Technology, and the New Scientific Methodology

    Get PDF
    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for information technology and applied computer science. Challenges broadly fall into two categories: data handling (or "data farming"), including issues such as archives, intelligent storage, databases, interoperability, fast networks, etc., and data mining, data understanding, and knowledge discovery, which include issues such as automated clustering and classification, multivariate correlation searches, pattern recognition, visualization in highly hyperdimensional parameter spaces, etc., as well as various applications of machine learning in these contexts. Such techniques are forming a methodological foundation for science with massive and complex data sets in general, and are likely to have a much broather impact on the modern society, commerce, information economy, security, etc. There is a powerful emerging synergy between the computationally enabled science and the science-driven computing, which will drive the progress in science, scholarship, and many other venues in the 21st century

    The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications

    Get PDF
    The principle goal of computational mechanics is to define pattern and structure so that the organization of complex systems can be detected and quantified. Computational mechanics developed from efforts in the 1970s and early 1980s to identify strange attractors as the mechanism driving weak fluid turbulence via the method of reconstructing attractor geometry from measurement time series and in the mid-1980s to estimate equations of motion directly from complex time series. In providing a mathematical and operational definition of structure it addressed weaknesses of these early approaches to discovering patterns in natural systems. Since then, computational mechanics has led to a range of results from theoretical physics and nonlinear mathematics to diverse applications---from closed-form analysis of Markov and non-Markov stochastic processes that are ergodic or nonergodic and their measures of information and intrinsic computation to complex materials and deterministic chaos and intelligence in Maxwellian demons to quantum compression of classical processes and the evolution of computation and language. This brief review clarifies several misunderstandings and addresses concerns recently raised regarding early works in the field (1980s). We show that misguided evaluations of the contributions of computational mechanics are groundless and stem from a lack of familiarity with its basic goals and from a failure to consider its historical context. For all practical purposes, its modern methods and results largely supersede the early works. This not only renders recent criticism moot and shows the solid ground on which computational mechanics stands but, most importantly, shows the significant progress achieved over three decades and points to the many intriguing and outstanding challenges in understanding the computational nature of complex dynamic systems.Comment: 11 pages, 123 citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/cmr.ht

    A Physics-Based Approach to Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems

    Full text link
    Given that observational and numerical climate data are being produced at ever more prodigious rates, increasingly sophisticated and automated analysis techniques have become essential. Deep learning is quickly becoming a standard approach for such analyses and, while great progress is being made, major challenges remain. Unlike commercial applications in which deep learning has led to surprising successes, scientific data is highly complex and typically unlabeled. Moreover, interpretability and detecting new mechanisms are key to scientific discovery. To enhance discovery we present a complementary physics-based, data-driven approach that exploits the causal nature of spatiotemporal data sets generated by local dynamics (e.g. hydrodynamic flows). We illustrate how novel patterns and coherent structures can be discovered in cellular automata and outline the path from them to climate data.Comment: 4 pages, 1 figure; http://csc.ucdavis.edu/~cmg/compmech/pubs/ci2017_Rupe_et_al.ht

    Analysis of responses to Hefce HEFCE 2007/34, the Research Excellence Framework consultation

    Get PDF

    Something for everyone? The different approaches of academic disciplines to Open Educational Resources and the effect on widening participation

    Get PDF
    This article explores the relationship between academic disciplines‘ representation in the United Kingdom Open University‘s (OU) OpenLearn open educational resources (OER) repository and in the OU‘s fee-paying curriculum. Becher‘s (1989) typology was used to subdivide the OpenLearn and OU fee-paying curriculum content into four disciplinary categories: Hard Pure (e.g., Science), Hard Applied (e.g., Technology), Soft Pure (e.g., Arts) and Soft Applied (e.g., Education). It was found that while Hard Pure and Hard Applied disciplines enjoy an increased share of the OER curriculum, Soft Applied disciplines are under-represented as OER. Possible reasons for this disparity are proposed and Becher‘s typology is adapted to be more appropriate to 21st-century higher education

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    Agent-Based Modeling: The Right Mathematics for the Social Sciences?

    Get PDF
    This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research.ďż˝ The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the duality of ABM: Real-world systems can not only be simulated with verisimilitude using ABM; they can also be efficiently and robustly designed and constructed on the basis of ABM principles. ďż˝
    • …
    corecore