29,268 research outputs found

    Phase quadrature-plural channel data transmission system Patent

    Get PDF
    Plural channel data transmission system with quadrature modulation and complementary demodulatio

    Flexible digital modulation and coding synthesis for satellite communications

    Get PDF
    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts

    Dynamic Channel Allocation Techniques Using Adaptive Modulation and Adaptive Antennas

    No full text
    This contribution studies the impact of adaptive quadrature amplitude modulation (AQAM) on network performance when applied to a cellular network, using adaptive antennas in conjunction with both fixed channel allocation (FCA) and locally distributed dynamic channel allocation (DCA) schemes. The performance advantages of using adaptive modulation are investigated in terms of the overall network performance, mean transmitted power, and the average network throughput. Adaptive modulation allowed an extra 51% of users to be supported by an FCA 4-QAM network, while in conjunction with DCA, an additional 54% user capacity was attained. Index Terms—Adaptive antennas, adaptive modulation, adaptive arrays, beam-steering, DCA, dynamic channel allocation

    Unidimensional continuous-variable quantum key distribution

    Full text link
    We propose the continuous-variable quantum key distribution protocol based on the Gaussian modulation of a single quadrature of the coherent states of light, which is aimed to provide simplified implementation compared to the symmetrically modulated Gaussian coherent-state protocols. The protocol waives the necessity in phase quadrature modulation and the corresponding channel transmittance estimation. The security of the protocol against collective attacks in a generally phase-sensitive Gaussian channels is analyzed and is shown achievable upon certain conditions. Robustness of the protocol to channel imperfections is compared to that of the symmetrical coherent-state protocol. The simplified unidimensional protocol is shown possible at a reasonable quantitative cost in terms of key rate and of tolerable channel excess noise.Comment: 7 pages, 5 figures, close to the published versio

    Multi-user Communication in Difficult Interference

    Full text link
    The co-channel interference (CCI) is one of the major impairments in wireless communication. CCI typically reduces the reliability of wireless communication links, but the difficult CCI which is no more or less strong to the desired signals destroys wireless links despite having myriad of CCI mitigation methods. It is shown in this paper that M-QAM (Quadrature Amplitude Modulation) or similar modulation schemes which modulate information both in in-phase and quadrature-phase are particularly vulnerable to difficult CCI. Despite well-known shortcomings, it is shown in this paper that M-PAM or similar schemes that use a single dimension for modulation provides an important mean for difficult CCI mitigation.Comment: 4 pages, 2 figs and accepted in IEEE ICASSP 2019, Brighton, U

    Upper-Bound Performance of a Wide-Band Adaptive Modem

    No full text
    Adaptive modulation is applied in conjunction with a decision-feedback equalizer (DFE) in order to mitigate the effects of the slowly varying wide-band multipath Rayleigh fading channel in a noise-limited environment. An upper-bound mean bit-error rate and bits per symbol performance is introduced for this scheme by utilizing the pseudo signal-to-noise ratio at the output of the DFE in order to switch the modulation schemes on a burst-by-burst basis. Index Terms—AQAM, QAM, quadrature amplitude modulation, wide-band adaptive modulation

    Jointly optimised iterative source-coding, channel-coding and modulation for transmission over wireless channels

    No full text
    Joint source-coding, channel-coding and modulation schemes based on Variable Length Codes (VLCs), Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) schemes are proposed. A significant coding gain is achieved without bandwidth expansion, when exchanging information between the VLC and the coded modulation decoders with the advent of iterative decoding. With the aid of using independent interleavers for the In-phase and Quadrature phase components of the complex-valued constellation, further diversity gain may be achieved. The performance of the proposed schemes is evaluated over both AWGN and Rayleigh fading channels. Explicitly, at BER = 10-5 most of the proposed schemes have BER curves less than one-dB away from the channel capacity limit

    Multi-rate demodulator architecture

    Get PDF
    A unique digital multi-rate demodulator (MRD) architecture is presented for onboard satellite communications processing. The multi-rate feature enables the same demodulator hardware to process either one wideband channel (WBC), or process up to thirty-two independent narrowband channels (NBC) that are time division multiplexed (TDM). The MRD can process many quadrature modulation format such as offset quadrature phase shift keying (OQPSK). Possible applications include voice and data transmission for commercial or military users

    On the power spectral density of quadrature modulated signals

    Get PDF
    The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered
    • …
    corecore