16,876 research outputs found

    Coupling problem in thermal systems simulations

    Get PDF
    Building energy simulation is playing a key role in building design in order to reduce the energy consumption and, consequently, the CO2 emissions. An object-oriented tool called NEST is used to simulate all the phenomena that appear in a building. In the case of energy and momentum conservation and species transport, the current solver behaves well, but in the case of mass conservation it takes a lot of time to reach a solution. For this reason, in this work, instead of solving the continuity equations explicitly, an implicit method based on the Trust Region algorithm is proposed. Previously, a study of the properties of the model used by NEST-Building software has been done in order to simplify the requirements of the solver. For a building with only 9 rooms the new solver is a thousand times faster than the current method

    Generalized Rank Pooling for Activity Recognition

    Full text link
    Most popular deep models for action recognition split video sequences into short sub-sequences consisting of a few frames; frame-based features are then pooled for recognizing the activity. Usually, this pooling step discards the temporal order of the frames, which could otherwise be used for better recognition. Towards this end, we propose a novel pooling method, generalized rank pooling (GRP), that takes as input, features from the intermediate layers of a CNN that is trained on tiny sub-sequences, and produces as output the parameters of a subspace which (i) provides a low-rank approximation to the features and (ii) preserves their temporal order. We propose to use these parameters as a compact representation for the video sequence, which is then used in a classification setup. We formulate an objective for computing this subspace as a Riemannian optimization problem on the Grassmann manifold, and propose an efficient conjugate gradient scheme for solving it. Experiments on several activity recognition datasets show that our scheme leads to state-of-the-art performance.Comment: Accepted at IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs

    Get PDF
    In this work we propose a structured prediction technique that combines the virtues of Gaussian Conditional Random Fields (G-CRF) with Deep Learning: (a) our structured prediction task has a unique global optimum that is obtained exactly from the solution of a linear system (b) the gradients of our model parameters are analytically computed using closed form expressions, in contrast to the memory-demanding contemporary deep structured prediction approaches that rely on back-propagation-through-time, (c) our pairwise terms do not have to be simple hand-crafted expressions, as in the line of works building on the DenseCRF, but can rather be `discovered' from data through deep architectures, and (d) out system can trained in an end-to-end manner. Building on standard tools from numerical analysis we develop very efficient algorithms for inference and learning, as well as a customized technique adapted to the semantic segmentation task. This efficiency allows us to explore more sophisticated architectures for structured prediction in deep learning: we introduce multi-resolution architectures to couple information across scales in a joint optimization framework, yielding systematic improvements. We demonstrate the utility of our approach on the challenging VOC PASCAL 2012 image segmentation benchmark, showing substantial improvements over strong baselines. We make all of our code and experiments available at {https://github.com/siddharthachandra/gcrf}Comment: Our code is available at https://github.com/siddharthachandra/gcr

    Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization

    Full text link
    In this paper we combine concepts from Riemannian Optimization and the theory of Sobolev gradients to derive a new conjugate gradient method for direct minimization of the Gross-Pitaevskii energy functional with rotation. The conservation of the number of particles constrains the minimizers to lie on a manifold corresponding to the unit L2L^2 norm. The idea developed here is to transform the original constrained optimization problem to an unconstrained problem on this (spherical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent definition of an H1H^1 inner product which takes into account rotation. Then, the Riemannian gradient (RG) steepest descent method is derived based on projected gradients and retraction of an intermediate solution back to the constraint manifold. Finally, we use the concept of the Riemannian vector transport to propose a Riemannian conjugate gradient (RCG) method for this problem. It is derived at the continuous level based on the "optimize-then-discretize" paradigm instead of the usual "discretize-then-optimize" approach, as this ensures robustness of the method when adaptive mesh refinement is performed in computations. We evaluate various design choices inherent in the formulation of the method and conclude with recommendations concerning selection of the best options. Numerical tests demonstrate that the proposed RCG method outperforms the simple gradient descent (RG) method in terms of rate of convergence. While on simple problems a Newton-type method implemented in the {\tt Ipopt} library exhibits a faster convergence than the (RCG) approach, the two methods perform similarly on more complex problems requiring the use of mesh adaptation. At the same time the (RCG) approach has far fewer tunable parameters.Comment: 28 pages, 13 figure

    A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks

    Get PDF
    Research Report UPC-DEIO DR 2018-01. November 2018The computation of the Newton direction is the most time consuming step of interior-point methods. This direction was efficiently computed by a combination of Cholesky factorizations and conjugate gradients in a specialized interior-point method for block-angular structured problems. In this work we apply this algorithmic approach to solve very large instances of minimum cost flows problems in bipartite networks, for convex objective functions with diagonal Hessians (i.e., either linear, quadratic or separable nonlinear objectives). After analyzing the theoretical properties of the interior-point method for this kind of problems, we provide extensive computational experiments with linear and quadratic instances of up to one billion arcs and 200 and five million nodes in each subset of the node partition. For linear and quadratic instances our approach is compared with the barriers algorithms of CPLEX (both standard path-following and homogeneous-self-dual); for linear instances it is also compared with the different algorithms of the state-of-the-art network flow solver LEMON (namely: network simplex, capacity scaling, cost scaling and cycle canceling). The specialized interior-point approach significantly outperformed the other approaches in most of the linear and quadratic transportation instances tested. In particular, it always provided a solution within the time limit and it never exhausted the 192 Gigabytes of memory of the server used for the runs. For assignment problems the network algorithms in LEMON were the most efficient option.Peer ReviewedPreprin
    • …
    corecore