1,871 research outputs found

    Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model

    Get PDF
    We construct a model of innovation diffusion that incorporates a spatial component into a classical imitation-innovation dynamics first introduced by F. Bass. Relevant for situations where the imitation process explicitly depends on the spatial proximity between agents, the resulting nonlinear field dynamics is exactly solvable. As expected for nonlinear collective dynamics, the imitation mechanism generates spatio-temporal patterns, possessing here the remarkable feature that they can be explicitly and analytically discussed. The simplicity of the model, its intimate connection with the original Bass' modeling framework and the exact transient solutions offer a rather unique theoretical stylized framework to describe how innovation jointly develops in space and time.Comment: 20 pages, 4 figure

    Stochastic hybrid system : modelling and verification

    Get PDF
    Hybrid systems now form a classical computational paradigm unifying discrete and continuous system aspects. The modelling, analysis and verification of these systems are very difficult. One way to reduce the complexity of hybrid system models is to consider randomization. The need for stochastic models has actually multiple motivations. Usually, when building models complete information is not available and we have to consider stochastic versions. Moreover, non-determinism and uncertainty are inherent to complex systems. The stochastic approach can be thought of as a way of quantifying non-determinism (by assigning a probability to each possible execution branch) and managing uncertainty. This is built upon to the - now classical - approach in algorithmics that provides polynomial complexity algorithms via randomization. In this thesis we investigate the stochastic hybrid systems, focused on modelling and analysis. We propose a powerful unifying paradigm that combines analytical and formal methods. Its applications vary from air traffic control to communication networks and healthcare systems. The stochastic hybrid system paradigm has an explosive development. This is because of its very powerful expressivity and the great variety of possible applications. Each hybrid system model can be randomized in different ways, giving rise to many classes of stochastic hybrid systems. Moreover, randomization can change profoundly the mathematical properties of discrete and continuous aspects and also can influence their interaction. Beyond the profound foundational and semantics issues, there is the possibility to combine and cross-fertilize techniques from analytic mathematics (like optimization, control, adaptivity, stability, existence and uniqueness of trajectories, sensitivity analysis) and formal methods (like bisimulation, specification, reachability analysis, model checking). These constitute the major motivations of our research. We investigate new models of stochastic hybrid systems and their associated problems. The main difference from the existing approaches is that we do not follow one way (based only on continuous or discrete mathematics), but their cross-fertilization. For stochastic hybrid systems we introduce concepts that have been defined only for discrete transition systems. Then, techniques that have been used in discrete automata now come in a new analytical fashion. This is partly explained by the fact that popular verification methods (like theorem proving) can hardly work even on probabilistic extensions of discrete systems. When the continuous dimension is added, the idea to use continuous mathematics methods for verification purposes comes in a natural way. The concrete contribution of this thesis has four major milestones: 1. A new and a very general model for stochastic hybrid systems; 2. Stochastic reachability for stochastic hybrid systems is introduced together with an approximating method to compute reach set probabilities; 3. Bisimulation for stochastic hybrid systems is introduced and relationship with reachability analysis is investigated. 4. Considering the communication issue, we extend the modelling paradigm

    Markov and Semi-markov Chains, Processes, Systems and Emerging Related Fields

    Get PDF
    This book covers a broad range of research results in the field of Markov and Semi-Markov chains, processes, systems and related emerging fields. The authors of the included research papers are well-known researchers in their field. The book presents the state-of-the-art and ideas for further research for theorists in the fields. Nonetheless, it also provides straightforwardly applicable results for diverse areas of practitioners

    Stochastic switching in biology: from genotype to phenotype

    Get PDF
    There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1–1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker–Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel–Kramers–Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of this review is to provide a self-contained survey of these mathematical methods, mainly within the context of biological switching processes at both the genotypic and phenotypic levels. However, applications to other examples of biological switching are also discussed, including stochastic ion channels, diffusion in randomly switching environments, bacterial chemotaxis, and stochastic neural networks

    Unreliable Retrial Queues in a Random Environment

    Get PDF
    This dissertation investigates stability conditions and approximate steady-state performance measures for unreliable, single-server retrial queues operating in a randomly evolving environment. In such systems, arriving customers that find the server busy or failed join a retrial queue from which they attempt to regain access to the server at random intervals. Such models are useful for the performance evaluation of communications and computer networks which are characterized by time-varying arrival, service and failure rates. To model this time-varying behavior, we study systems whose parameters are modulated by a finite Markov process. Two distinct cases are analyzed. The first considers systems with Markov-modulated arrival, service, retrial, failure and repair rates assuming all interevent and service times are exponentially distributed. The joint process of the orbit size, environment state, and server status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD) process, and we provide a necessary and sufficient condition for the positive recurrence of LDQBDs using classical techniques. Moreover, we apply efficient numerical algorithms, designed to exploit the matrix-geometric structure of the model, to compute the approximate steady-state orbit size distribution and mean congestion and delay measures. The second case assumes that customers bring generally distributed service requirements while all other processes are identical to the first case. We show that the joint process of orbit size, environment state and server status is a level-dependent, M/G/1-type stochastic process. By employing regenerative theory, and exploiting the M/G/1-type structure, we derive a necessary and sufficient condition for stability of the system. Finally, for the exponential model, we illustrate how the main results may be used to simultaneously select mean time customers spend in orbit, subject to bound and stability constraints
    • …
    corecore