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Abstract. There has been a resurgence of interest in non-equilibrium stochastic
processes in recent years, driven in part by the observation that the number
of molecules (genes, mRNA, proteins) involved in gene expression are often of
order 1-1000. This means that deterministic mass-action kinetics tends to break
down, and one needs to take into account the discrete, stochastic nature of
biochemical reactions. One of the major consequences of molecular noise is the
occurrence of stochastic biological switching at both the genotypic and phenotypic
levels. For example, individual gene regulatory networks can switch between
graded and binary responses, exhibit translational/transcriptional bursting, and
support metastability (noise-induced switching between states that are stable in
the deterministic limit). If random switching persists at the phenotypic level
then this can confer certain advantages to cell populations growing in a changing
environment, as exemplified by bacterial persistence in response to antibiotics.
Gene expression at the single-cell level can also be regulated by changes in cell
density at the population level, a process known as quorum sensing. In contrast
to noise-driven phenotypic switching, the switching mechanism in quorum sensing
is stimulus-driven and thus noise tends to have a detrimental effect. A common
approach to modeling stochastic gene expression is to assume a large but finite
system and to approximate the discrete processes by continuous processes using a
system-size expansion. However, there is a growing need to have some familiarity
with the theory of stochastic processes that goes beyond the standard topics
of chemical master equations, the system-size expansion, Langevin equations
and the Fokker-Planck equation. Examples include stochastic hybrid systems
(piecewise deterministic Markov processes), large deviations and the Wentzel-
Kramers–Brillouin (WKB) method, adiabatic reductions, and queuing/renewal
theory. The major aim of this review is to provide a self-contained survey of
these mathematical methods, mainly within the context of biological switching
processes at both the genotypic and phenotypic levels. However, applications
to other examples of biological switching are also discussed, including stochastic
ion channels, diffusion in randomly switching environments, bacterial chemotaxis,
and stochastic neural networks.
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1. Introduction

Intrinsic variability in gene expression due to small numbers of molecules (low copy
numbers) is prevalent in many cellular processes. Hence, genetically identical cells
exposed to the same environmental conditions can show significant variation in
molecular content and significant differences in phenotypic characteristics. Although
intrinsic variability was originally viewed as being detrimental to cellular function,
and a potential cause of certain diseases, it has now been realized that intrinsic
noise may provide the flexibility needed by cells to adapt to fluctuating environments
or respond to sudden stresses, and could also be a mechanism whereby population
heterogeneity is established during cell differentiation and development. Following
the discovery of a functional role for stochastic gene expression in λ-phage [14], there
has been an explosion of studies on the molecular mechanisms of noise generation
at the single gene level, and its effects on larger regulatory networks, see the reviews
[145,173,202,211,220,241]. Gene regulation refers to the cellular processes that control
the expression of proteins, dictating under what conditions specific proteins should
be produced from their parent DNA. This is particularly crucial for multicellular
organisms, where all cells share the same genomic DNA, yet do not all express the
same proteins. That is, selective gene expression allows the cells to specialize into
different phenotypes (cell differentiation), resulting in the development of different
tissues and organs with distinct functional roles.

One of the major features of stochasticity in gene expression at the molecular
level are various forms of noise-induced switching, including metastability in nonlinear
feedback networks, translational and transcriptional bursting, and binary responses
to external stimuli. Switching at the genotypic level is also thought to play a role at
the phenotypic level, as exemplified by bacterial persistence in randomly switching
environments, and quorum sensing. In order to model these phenomena, there
is a growing requirement to have some familiarity with the theory of stochastic
processes that goes beyond the standard topics of chemical master equations, the
system-size expansion, stochastic differential equations (SDEs) and the Fokker-
Planck (FP) equation. Examples include stochastic hybrid systems, large deviation
theory, the Wentzel-Kramers–Brillouin (WKB) method, adiabatic reductions, singular
perturbation theory, and queuing theory. The aim of this review is to provide a self-
contained survey of these methods within the context of genetically-based biological
switching.† In the remainder of this introduction, we provide a brief biological

† There are some obvious parallels with neuroscience [161, 232], since individual neurons can act as
binary switches, exhibit various forms of bursting [64], and contribute to stochastic dynamics at the
population level [41, 42, 57, 58]. There is also a distinction between intrinsic noise (driven mainly by
the stochastic opening and closing of ion channels) and extrinsic noise (synaptic inputs from other
neurons). However, since including such topics would double the length of the review, we have decided
to focus on genetic-based switching. Nevertheless, we touch on some of the connections with other
areas of biology in section 8.
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background and summarize the contents of the review.

1.1. Biological background

We begin by summarizing the central dogma of molecular biology, which describes the
fundamental process whereby proteins are synthesized from DNA [69]. There are two
main stages involved in the expression of a single gene, see Fig. 1(a).

(i) Transcription: synthesis of a messenger RNA molecule (mRNA) with a
nucleotide sequence complementary to the DNA strand from which it is copied - this
serves as the template for protein synthesis. Transcription is mediated by a molecular
machine known as RNA polymerase. In the case of eukaryotes, transcription takes
place in the cell nucleus, whereas subsequent protein synthesis takes place in the
cytoplasm, which means that the mRNA has to be exported from the nucleus as an
intermediate step. (Prokaryotes such a bacteria do not have a cell nucleus.) The key
steps in transcription are binding of RNA polymerase (P ) to the relevant promoter
region of DNA (D) to form a closed complex (PDc), the unzipping of the two strands
of DNA to form an open complex (PDo), and finally promoter escape, when RNA
polymerase reads one of the exposed strands. These steps can be represented by the
reaction scheme

P +D
k+


k−
PDc

kopen−→ PD0
kescape−→ transcription.

The binding and unbinding of polymerase is very fast, k± � kopen so that the first
step happens many times before formation of an open complex. Hence, one can treat
the RNA polymerase as in quasi-equilibrium with the promoter characterized by an
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Figure 1. Transcriptional regulation due to the binding of a repressor or activator
protein to a promoter region along the DNA. (a) Unregulated transcription of
a gene Y following binding of RNA polymerase to the promoter region. The
resulting mRNA exits the nucleus and is then translated by ribosomes to form
protein Y. (b) Increased transcription due to the binding of an activator protein
X to the promoter. An activator typically transitions between inactive and active
forms; the active form X∗ has a high affinity to the promoter binding site. An
external chemical signal can regulate transitions between the active and inactive
states. (c) Transcription can stopped by a repressor protein X binding to the
promoter and blocking the binding of RNA polymerase.
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equilibrium constant KP = k+/k−. The rate of transcription will thus be proportional
to the fraction of bound RNA polymerase, k+/(k+ + k−).

(ii) Translation: synthesis of a protein from mRNA. Translation is mediated
by a macromolecule known as a ribosome, which produces a string of amino acids
(polypeptide chains), each specified by a codon (represented by three letters) on
the mRNA molecule. Since there are four nucleotides (A, U, C, G), there are
64 distinct codons, e.g., AUG, CGG, most of which code for a single amino acid.
The process of translation consists of ribosomes moving along the mRNA without
backtracking (from one end to the other, technically known as the 5’ end to the 3’ end)
and is conceptually divided into three major stages (as is transcription): initiation,
elongation and termination. Each elongation step invokes translating or ‘reading’ of
a codon and the binding of a freely diffusing transfer RNA (tRNA) molecule that
carries the specific amino acid corresponding to that codon. Once the chain of amino
acids has been generated a number of further processes occur in order to generate a
correctly folded protein. (Note that there are also non-protein coding genes such as
small nuclear RNA (snRNA) whose products are functional RNA.)

A major requirement of cellular organisms is the ability to increase or decrease
the level of particular gene products (protein or RNA) at different times and spatial
locations, a process known as gene regulation. Almost every step of gene expression
can be regulated, including the initiation and termination of transcription, RNA
processing, and the post-translational modification of a protein. The control of
transcription (switching on or off a gene) is mediated by DNA-binding proteins
known as transcription factors, see Fig. 1(b,c). Positive control (activation) is
mediated by activators that increase the probability of RNA polymerase binding to the
promoter, whereas negative control (repression) is mediated by repressors that bind
to a promoter region along the DNA where RNA polymerase has to bind in order to
initiate transcription - it thus inhibits transcription. The presence of transcription
factors means that cellular processes can be controlled by extremely complex gene
networks with multiple negative and positive feedback loops. Identifying functional
modules and motifs within such networks is a major component of systems biology [2].
Gene regulation plays an essential role in viruses and bacteria, since it increases the
versatility and adaptability of an organism within an environment. In multicellular
organisms, gene regulation drives cellular differentiation and morphogenesis in the
embryo, producing different cell types with different gene expression profiles from the
same genome sequence.

Whenever the number of molecules (genes, mRNA, proteins) is large, one can
represent the dynamics of a gene regulatory network in terms of a system of coupled
ordinary differential equations (ODEs). The resulting dynamical system, which
describes the evolution of the associated molecular concentrations based on mass-
action reaction kinetics, can exhibit multistability (genetic switches) and limit cycle
oscillations (genetic oscillators) in the presence of nonlinear feedback, both of which
are thought to play an important role in cell function. However, one typically finds
low copy numbers of at least some of the molecular players, so that the discrete and
stochastic nature of the dynamics needs to be taken into account. For example, the
production of mRNA from a typical gene in E. coli occurs at a rate around 10 per
minute, while the average lifetime of mRNA due to degradation is around a minute.
This means that on average there are 10 mRNA molecules per cell. Generation
of the mRNA molecule occurs at a rate of 50 nucleotides per second. Hence, a
typical gene of around 1000 nucleotides will be transcribed in about 20 seconds.



CONTENTS 6

Thus there are around 3 RNA polymerase per gene at any one time, suggesting
the number fluctuations will be significant. A major motivation for the explosion
of interest in stochastic gene expression has been the development of experimental
methods to observe the real-time production of single protein molecules in living cells.
For example Yu et al. [256] used fluorescent imaging to observe the expression of
individual protein molecules in single Escerichia cells under the control of a repressed
lac promotor. They found that proteins were produced in bursts from stochastically
transcribed single mRNA molecules, with the distribution of the protein copy number
per burst following a geometric distribution. This so-called translational bursting is a
consequence of the fact that the lifetime of mRNA is usually much shorter than that
of a protein, and each mRNA produces a random integer number of proteins before
degrading [59, 101, 178]. This results in a broadening of the distribution of proteins
compared to a simple Poisson process. Bursts of transcriptional activity have also been
observed, which can be caused by extrinsic factors such as fluctuations in the number
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Figure 2. Effects of noise in gene expression. (a) Schematic illustration of
the time course of the level of protein in a single cell, which randomly switches
between low- and high-expression states. Time is in units of the inverse protein
degradation rate. (b) Bistable potential for a simple genetic switch. In the
absence of noise, the system evolves to one of the minima x± of the potential,
depending on initial conditions. Intrinsic noise can induce a transition between
the minima (metastability) by crossing over the potential barrier at x∗. (c)
Schematic illustration of translational bursting. Each arrow represents a burst
event where an mRNA transcript releases a burst of proteins of average size b,
and proteins decay between bursts. (d) One source of transcriptional bursting. A
gene randomly switches between an on-state and an off-state at rates k±. In the
on-state proteins are produced at a rate r and degrade at a rate γ.
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of RNA polymerase or intrinsic fluctuations in regulatory proteins. Finally, noise can
also induce transitions between metastable states of a genetic switch [106]; in the
absence of noise, the particular state of the switch is determined by initial conditions.
A simple conceptual framework for understanding metastability is in terms of the
stochastic dynamics of a particle in a double potential well. Various examples of
noise-induced switching at the molecular level are shown in Fig. 2.

Fluctuations arising from low copy numbers are usually identified as a form of
intrinsic noise, whereas fluctuations in cellular environmental factors such as the
activity of ribosomes and polymerases, metabolite concentrations, cell size, cell age and
stage of the cell cycle are typically treated as a form of extrinsic noise [14,86]. Elowitz
et al. [86] developed a two-reporter assay that can discriminate between extrinsic and
intrinsic noise within the context of gene expression. (A biochemical assay is an
experimental procedure for quantitatively measuring the presence or amount of one
or more target molecular constituents.) In this particular assay, two almost identical
fluorescent proteins are simultaneously expressed from two genes that are controlled
by identical regulatory sequences (the same promoter). Cells with the same amount
of each protein appear yellow, whereas cells expressing more of one fluorescent protein
than the other appear green or red, see Fig. 3a,b. In the absence of intrinsic noise,
the expression of the two reporter proteins should be strongly correlated. On the
other hand, since the expression of the two reporters are independent, any intrinsic
stochasticity in gene expression will be manifested as differences in expression levels
within the same cell. By considering the spread of the expression levels across a
population of cells, it is possible to separate out the noise contribution generated by
the biochemical reaction steps that are intrinsic to the process of gene expression
from extrinsic environmental noise. There are, however, some potential limitations

environment
x1

x2 int

int+ext

(a) (b)

Figure 3. Measuring intrinsic and extrinsic noise in gene expression. (a) Two
almost identical genes, which encode red and green fluorescent proteins, are
expressed from identical promoters, and are influenced identically by cell-specific
factors, such as gene-regulatory signals. Cells with equal amounts of the two
proteins appear yellow, indicating that the level of intrinsic noise is low. If intrinsic
noise is significant then the expression of the two genes becomes uncorrelated in
individual cells, giving rise to a cell population in which some cells express more
of one fluorescent protein than the other. (b) Scatter plot of fluorescence in a
population. Each point represents the mean fluorescence intensities from one cell.
Spread of points perpendicular to the diagonal line on which the two fluorescent
intensities are equal corresponds to intrinsic noise, whereas the spread parallel to
this line corresponds to extrinsic noise.
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antibiotic

Figure 4. Stochastic genetic switching at the single cell level can lead to
phenotypic switching at the population level. This is one mechanism for bacterial
persistence, where a slow-growing drug resistant phenotype (green) coexists with
a fast-growing phenotype (blue) that is susceptible to the antibiotic.

of the experimental protocol. For example, contributions from extrinsic factors,
such as imperfect timing in replication and intracellular heterogeneity might be
measured as gene-intrinsic noise. Moreover, because increased variability in regulatory
signals might cause cells to adapt distinct expression states, the measured population-
average gene-intrinsic noise and the extrinsic regulatory noise might not always be
independent.

Stochasticity in gene expression is generally believed to be detrimental to
cell function, because fluctuations in protein levels can corrupt the quality of
intracellular signals, negatively affecting cellular regulation. One possible benefit of
randomness, however, is that it can provide a mechanism for phenotypic and cell-
type diversification. For example, switching between phenotypic states with different
growth rates might be an important factor in the phenomenon of persistent bacterial
infections after treatment with antibiotics, see Fig. 4. Although most of the population
is rapidly killed by the treatment, a small genetically identical subset of dormant
persister cells can survive an extended period of exposure. When the drug treatment
is removed, the surviving persisters randomly transition out of the dormant state,
causing the infection to reemerge.

Another example of switching at the population level is quorum sensing, which
is a form of system stimulus and response that is correlated to population density.
Many species of bacteria use quorum sensing to coordinate various types of behavior
including bioluminescence, biofilm formation, virulence, and antibiotic resistance,
based on the local density of the bacterial population [71,80,102,163,181,233,250,252].
In an analogous fashion, some social insects use quorum sensing to determine where to
nest [66]. Roughly speaking, quorum sensing can function as a decision-making process
in any decentralized system, provided that individual components have (i) some
mechanism for determining the number or density of other components they interact
with and (ii) a stereotypical response once some threshold has been reached. In the
case of bacteria, quorum sensing involves the production and extracellular secretion of
certain signaling molecules called autoinducers. Each cell also has receptors that can
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Figure 5. A schematic illustration of quorum sensing at the single-cell level.

specifically detect the signaling molecule (inducer) via ligand-receptor binding, which
then activates transcription of certain genes, including those for inducer synthesis.
However, since the concentration of autoinducer produced by a single cell is likely to be
below the threshold for detection, the cell must encounter signaling molecules secreted
by other cells in its environment in order for gene transcription to be activated. When
only a few other bacteria of the same kind are in the vicinity (low bacterial population
density), diffusion reduces the concentration of the inducer in the surrounding medium
to almost zero, resulting in small amounts of inducer being produced. On the other
hand, as the population grows, the concentration of the inducer passes a threshold,
causing more inducer to be synthesized. This generates a positive feedback loop that
fully activates the receptor, and induces the up-regulation of other specific genes.
Hence, all of the cells initiate transcription at approximately the same time, resulting
in some form of coordinated behavior. The basic process at the single-cell level is
shown in Fig. 5.

1.2. Organization of the review

In the following sections, we survey various topics in stochastic processes that are
currently being used to investigate various aspects of genetically-based biological
switching. We begin by reviewing discrete Markov processes and stochastic hybrid
systems, which provide the mathematical underpinning of stochastic models of gene
expression (section 2). We consider two important examples of discrete Markov
processes, namely Poisson processes and chemical reaction networks. In the latter
case we describe how to reduce the corresponding discrete Markov process to a
continuous one using some form of perturbation expansion (diffusion approximation),
which exploits either a system-size expansion or a separation of time scales. We
also describe the stochastic simulation algorithm (SSA) introduced by Gillespie to
simulate sample trajectories of a gene or biochemical network, and discuss various
extensions, including a numerical scheme for stochastic hybrid systems. Some simple
examples of switching in gene regulatory networks are presented in section 3. We first
consider in some detail the behavior of a feedforward regulatory network operating
in a switching environment, and show how it can exhibit both graded and binary
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responses. We show how the correlated statistics of a population of such networks
operating in the same environment can be determined in terms of moments of a
piecewise deterministic partial differential equation (PDE). We then consider a few
simple examples of bistability in nonlinear feedback regulatory networks, including
an autoregulatory network and a mutual repressor network. We also discuss some
spatial aspects of gene regulation. In section 4 we consider various mathematical
models of translational and transcriptional bursting, and provide a brief introduction
to queuing theory. In section 5 we provide an introduction to WKB methods and
large deviations for analyzing escape problems in SDEs. We then illustrate how
to extend these methods to metastability in a simple autoregulatory gene network.
The latter is either modeled in terms of a discrete Markov process or a stochastic
hybrid system. We turn to stochastic switching at the phenotypic level in section
6, where we explore mathematical models of how bacterial populations adapt to
randomly fluctuating environments by stochastic phenotype-switching mechanisms.
In section 7 we consider models of bacterial quorum sensing, and introduce another
switching mechanism based on ultrasensitivity in phosphorylation-dephosphorylation
cycles. We describe how ultrasensitivity can lead to noise amplification, which is
then mitigated by population averaging within a quorum sensing system. Finally,
in section 8, we present some other examples of stochastic switching in biology that
share the same basic mathematical structures as highlighted in this review. Examples
include stochastic ion channels and spontaneous neuronal firing, diffusion in randomly
switching environments, bacterial chemotaxis, and stochastic neural networks.

We have tried to make the review as self-contained as possible. However, we do
assume some working knowledge of continuous Markov processes [105], in particular
the interplay between Fokker-Planck equations and stochastic differential equations.
We also only consider very simple gene networks, in order to develop the basic
mathematical and conceptual tools. One of the outstanding challenges is finding ways
to apply these methods to more complicated gene regulatory networks with multiple
feedback loops. This will require combining various model reduction schemes with
efficient numerical algorithms. One important aspect of biological switching that we
do not consider is its potential computational role [56,126]. For once one has a genetic
switch, one can start constructing synthetic gene circuits out of logic gates, by analogy
with binary neural switches and silicon-chip computers. Finally, for a very readable
introduction to biological aspects of genetic switches, as exemplified by the λ-phage,
see the book by Ptashne [206].

2. Discrete Markov processes and stochastic hybrid systems.

One of the driving forces for developing stochastic models of gene expression has
been the observation that the number of molecules (genes, mRNAs, proteins) can
be small so that the discrete nature of the underlying processes must be taken into
account. This naturally leads to the theory of discrete Markov processes and chemical
master equations. Sometimes, at least one component can be treated as a continuous
variable (eg. the concentration of proteins), which is coupled to the remaining set
of discrete processes, resulting in a so-called piecewise deterministic Markov process
(PDMP). The continuous variable evolves deterministically according to mass-action
kinetics except at discrete times where there is a jump in one of the discrete variables
resulting in a modified kinetic equation. However, the continuous process could also
be a stochastic differential equation (SDE) or a partial differential equation (PDE), so
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we will refer to the general class of models as stochastic hybrid systems (SSHs), a term
also found in the control theory literature. In this section we provide a mathematical
introduction to discrete Markov processes and stochastic hybrid systems, which will
serve as a useful background in the remainder of the review. For a much more extensive
discussion of discrete Markov processes see the book by Grimmett and Stirzaker [121].
A rigorous introduction to PDMPs can be found in Refs. [70, 153], whereas a wide
range of applications of hybrid systems to cell biology can be found in Ref. [45].

2.1. Markov chains

We start with discrete-time processes. Let {X0, X1, . . .} be a sequence of discrete
random variables that take one of N0 values in some countable set Γ with N0 = |Γ|.
(Note that it is possible for N0 = ∞.) Without loss of generality, we take Γ =
{0, 1, . . . , N0− 1}. The stochastic process X is said to be a Markov chain if it satisfies
the Markov property

P[Xl = n|X0, . . . , Xl−1] = P[Xl = n|Xl−1]

for all discrete times l ≥ 1 and n ∈ Γ. The evolution of the chain is described by its
transition probabilities

Knm = P[Xl+1 = n|Xl = m]

for all n,m, l.† For simplicity, we assume that the Markov chain X is homogeneous,
that is, Knm is independent of discrete time l. K is a stochastic matrix, since it
satisfies the following two properties:

(i) K has non-negative entries, Knm ≥ 0
(ii)

∑
nKnm = 1.

Introduce the l-step transition matrix K(l) with components

Knm(l) = P[Xl0+l = n|Xl0 = m].

Clearly K(1) = K. We can now derive a discrete version of the Chapman-Kolomogorov
equations:

Knm(l + l′) = P[Xl+l′ = n|X0 = m] =
∑
k

P[Xl+l′ = n,Xl = k|X0 = m]

=
∑
k

P[Xl+l′ = n|Xl = k,X0 = m]P[Xl = k|X0 = m]

=
∑
k

P[Xl+l′ = n|Xl = k]P[Xl = k|X0 = m].

from the Markov property, and hence

Knm(l + l′) =
∑
k

Knk(l′)Kkm(l). (2.1)

In matrix form, the Chapman-Kolomogorov equations (2.1) imply that K(l + l′) =
K(l)K(l′) and hence K(l) = Kl. Finally, introducing the l-dependent probability
Pl(n) = P[Xl = n], we have

Pl(n) = P[Xl = n] =
∑
m

P[Xl = n|X0 = m]P0(m)

=
∑
m

Knm(l)P0(m) =
∑
m

[Kl]nmP0(m).

† Probabilists usually write the transition matrix in the adjoint form, that is, Kmn = P[Xl+1 =
n|Xl = m].
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This establishes that the probability vector Pl = (Pl(1), . . . Pl(N)) can be determined
from the initial probability vector P0 according to Pl = KlP0.

Recurrent and transient states. A state n of a Markov chain is called recurrent or
persistent if

P[Xl = n for some l ≥ 1|X0 = n] = 1.

That is, the probability of eventual return to n, having started from n is unity. If the
probability of return is strictly less than one, then n is called transient. Let

fnm(l) = P[X1 6= n,X2 6= n, . . . ,Xl−1 6= n,Xl = n|X0 = m]

be the probability that the first visit to state n, starting from m, occurs at the lth
step. This is analogous to the first passage time distribution. It follows that

fnm =

∞∑
l=1

fnm(l)

is the probability that the chain ever visits n starting from m. We see that the state
n is persistent if and only if fnn = 1. In order to derive a criterion for persistence, it
is useful to introduce the generating functions

Gnm(z) =

∞∑
l=0

zlKnm(l), Fnm =

∞∑
l=1

zlfnm(l).

Here Gnm(0) = δnm and Fnm(0) = 0 for all n,m. Clearly fnm = Fnm(1). We now
derive an important relationship between the two generating functions. Let A be the
event that Xl = n given X0 = m, and let Bnm(s) be the event that the first arrival at
n occurs at the sth step. Then

P[A] =

l∑
s=1

P[A|Bnm(s)]P[Bnm(s)].

Since P[Bnm(s)] = fnm(s) and P[A|Bnm(s)] = Knn(l − s), we have

Knm(l) =
∑
s

fnm(s)Knn(l − s).

Multiplying both sides by zl and summing over l shows that

∞∑
l=1

zlKnm(l) =

∞∑
l=1

l∑
s=1

(zsfnm(s))(zl−sKnn(l − s))

=

∞∑
s=1

∞∑
l=s

(zsfnm(s))(zl−sKnn(l − s)),

that is,

Gnm(z) = δnm + Fnm(z)Gnn(z). (2.2)

Equation (2.2) allows us to derive a condition for persistence of a state n. If
|z| < 1, then Gnn(z) = (1 − Fnn(z))−1. Hence, if fnn = Fnn(1) = 1 (persistence),
then as z → 1−, we have Gnn(z)→∞. We now use a well known theorem from power
series known as Abel’s Theorem.
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Theorem 1 Let {ak} be a sequence of real or complex numbers and let

G(z) =

∞∑
k=0

akz
k,

with z real (or in a restricted region of the complex plane). If the series
∑
k ak is

convergent, then

lim
z→1−

G(z) =

∞∑
k=0

ak.

An application of Abels’ Theorem establishes that n is persistent if
∑
lKnn(l) = ∞.

It then follows from equation (2.2) for m 6= n that
∑
lKnm(l) = ∞ for all m such

that fnm > 0. An immediate consequence of this result is that n is transient if∑
lKnn(l) < ∞ and if this holds then

∑
lKnm(l) < ∞ for all m. Moreover, if n is

transient then Knm(l)→ 0 as l→∞.

Mean recurrence time. Given that X0 = m, let

Tnm = min{l ≥ 1 : Xl = n}
be the time of the first visit to n, with the convention that Tnm =∞ if the visit never
occurs. Define the mean recurrence time µn of the state n as

µn = E[Tnn] =

{ ∑
l lfnn(l) if n is persistent
∞ if n is transient

.

Note that µn may be infinite even when i is persistent, so a persistent state n is called
null if µn =∞ and non-null or positive if µn <∞. It can be shown that a persistent
state is null if and only if Knn(l)→ 0 as l→∞ [121]. One final definition is useful: a
state n is said to be periodic if there exists an integer d(n) > 1 such that Knn(l) = 0
unless l is a multiple of d(n). If d(n) = 1 then the state n is said to be aperiodic.

Irreducible Markov chains. Consider a set C of states. The set C is said to be closed
if Knm = 0 for all m ∈ C and n /∈ C. A closed set containing exactly one state is
said to be absorbing, that is, if the Markov chain reaches the absorbing state then
it stays there. The set C is said to be irreducible if any two states m,n ∈ C can
be connected together in a finite number of steps. That is, there exist l, l ≥ 0 for
which Knm(l)Kmn(l) > 0. If the whole state space Γ is irreducible, then the Markov
chain is said to be irreducible. Any state space Γ can be partitioned uniquely as
Γ = T ∪ C1 ∪ C2 ∪ . . . , where T is a set of transient states and the Cr are irreducible
closed sets of persistent states. In the case of a finite state space, not all states can be
transient. For if they were, then

∑
nKnm(l) = 1 but Knm(l) → 0 as l → ∞ leading

to the contradiction

1 = lim
l→∞

∑
n

Knm(l) = 0!.

A similar argument shows that all persistent states are non-null.
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Stationary distributions and the limit theorem. An important issue is whether or not
a Markov chain converges to a unique stationary distribution, assuming the latter
exists. A stationary distribution of a Markov chain is a vector p∗ whose components
satisfy

(i) p∗(n) ≥ 0 for all n,
∑
n p
∗(n) = 1

(ii) p∗(n) =
∑
mKnmp

∗(m) for all n.
It is stationary since p∗ = Knp∗. Note that in the case of an irreducible chain,
p∗(n) > 0 for all n. We then have the following theorem [121]:

Theorem 2 An irreducible Markov chain has a stationary distribution p∗ if and only
if all the states are non-null persistent: p∗ is the unique stationary distribution and
p∗(n) = µ−1

n for each in ∈ Γ, where µn is the mean recurrence time of n.

In the case of a finite state space irreducibility is sufficient to establish existence of a
unique stationary state. The next theorem establishes the link between the existence
of a stationary distribution and the limiting behavior of Knm(l).

Theorem 3 For an irreducible, aperiodic Markov chain (all states n have period
d(n) = 1), we have that

Knm(l)→ 1

µn
as l→∞ for all m,n.

In the case of a transient or null persistent chain, the theorem is satisfied, since
Knm(l) → 0 for all n,m and µn = ∞. In the case of a non-null persistent Markov
chain, we have

lim
l→∞

Knm(l)→ p∗(n) =
1

µn
,

where p∗ is the unique stationary distribution. It immediately follows that the limiting
transition probability does not depend on its starting point X0 = m and

Pl(n) = P[Xl = n] =
∑
m

Knm(l)P0(m)→ 1

µn
as l→∞.

Theorem 3 is an example of an ergodic theorem for Markov chains.

Perron-Frobenius Theorem. The theory of Markov chains is considerably simplified
if Γ is finite. For if Γ is irreducible then it is necessarily non-null persistent, and
the probability distribution converges to a unique stationary distribution when it
is aperiodic. This can also be established using the well-known Perron-Frobenius
Theorem for finite square matrices.

Theorem 4 If K is the transition matrix of a finite, irreducible chain with period d
then

(i) λ1 = 1 is an eigenvalue of K

(ii) the d complex roots of unity, λk = e2πik/d for k = 0, 1, . . . , d− 1, are eigenvalues
of K

(iii) the remaining eigenvalues λd+1, . . . , λN satisfy |λj | < 1.

The left eigenvector corresponding to λ1 is ψ = (1, 1, . . . , 1), whereas the right-
eigenvector is a stationary state p∗. In the aperiodic case, there exists a simple real
eigenvalue λ1 = 1 and all other eigenvalues satisfy |λj | < 1. One can thus establish
that the probability distribution converges to p∗ in the large-n limit.
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Continuous-time Markov chains. Let us now turn to continuous-time Markov chains
whose probability distributions evolve according to a master equation. Let X =
{X(t); t ≥ 0} be a family of random variables taking values in some subset Γ of the
integers. X is called a continuous-time Markov chain if it satisfies the Markov property

P[X(tl) = n|X(t1), . . . , X(tl−1)] = P[X(tl) = n|X(tl−1)]

for any n ∈ Γ and any sequence t1 < t2 < . . . < tl of times. Introduce the transition
probability (assuming a homogeneous chain)

Knm(t) = P[X(t+ s) = n|X(s) = m],

which is independent of the initial time s. Let Kt denote denote the N × N matrix
with entries Knm(t). The family of matrices {Kt : t ≥ 0} satisfies the following:

(i) K0 = I, the identity matrix;
(ii) Kt is stochastic, that is, it has non-negative entries and each column sums to

unity, that is,
∑
nKnm(t) = 1 for all t ≥ 0 and m;

(iii) the Chapman-Kolmogorov equation

Ks+t = KsKt if s, t ≥ 0.

The family {Kt : t ≥ 0} is called a stochastic semigroup. We will restrict our discussion
to standard semigroups, for which lim

t→0+
Kt = I, which holds if and only if the elements

Knm(t) are continuous functions of t.
Suppose that the chain is in state X(t) = m at time t. One of two distinct events

can then occur in the small time interval (t, t+ ∆t):

(i) The chain is in the same state at time t+ ∆t with probability Kmm(∆t) + o(∆t);

(ii) The chain jumps to a new state n with probability Knm(∆t);

It can be shown that the probability of two or more transitions in the small time
interval is o(∆t).

Introduce the transition rates Anm according to

Knm(∆t) = Anm∆t+ o(∆t) for m 6= n, Kmm(∆t) = 1 +Amm∆t+ o(∆t). (2.3)

We are assuming that the transition probabilities are differentiable at t = 0. From
properties of the transition matrix K we see that Anm ≥ 0 for m 6= n, Amm ≤ 0 for
all m, and

∑
nAnm = 0 for all m. The matrix −A is known as the generator of the

Markov process†. Introducing the probability distribution

P (n, t) = P[X(t) = n],

we then have

P (n, t+ ∆t) =
∑
m 6=n

Anm∆tP (m, t) + (1 +Ann∆t)P (n, t).

Rearranging this equation, dividing through by ∆t and taking the limit ∆t→ 0 yields
the master equation for the continuous-time Markov chain:

dP

dt
=
∑
m

AnmP (m, t). (2.4)

† Note that probabilists define the generator in terms of the adjoint operator −A†.



CONTENTS 16

Using the fact that Amm = −
∑
n 6=mAnm and setting Wnm = Anm for n 6= m, we can

rewrite the master equation as

dP (n, t)

dt
=
∑
m 6=n

WnmP (m, t)−

∑
k 6=n

Wkn

P (n, t). (2.5)

This version of the master equation can be interpreted as follows: the first sum on
the right-hand side involves all transitions m → n, whereas the second sum involves
all transitions n→ k for k 6= n.

A stationary solution p∗ of the master equation (2.4) is a right null-vector of
A, that is,

∑
iAnmp

∗(m) = 0. We then have the following ergodic theorem for
continuous-time Markov chains:

Theorem 5 Let X be irreducible with a standard semigroup {Kt} of transition
probabilities.

(i) If there exists a stationary distribution p∗ then it is unique and

P (n, t)→ p∗(n) as t→∞
for all n.

(ii) If there is no stationary distribution then P (n, t)→ 0 as t→∞ for all n.

The basic point is that in the case of a continuous-time Markov chain, periodicity is
no longer an issue. For a finite chain, irreducibility is sufficient to guarantee existence
of a unique stationary state.

2.2. Poisson processes

One important example of a continuous-time discrete Markov process is the Poisson
process, which is one of the best-known examples of a so-called counting process. A
random process {N(t), t ∈ [0,∞)} is said to be a counting process if N(t) is the
number of events that have occurred in the interval [0, t] such that

(i) N(0) = 0;

(ii) N(t) ∈ {0, 1, 2, . . .} for all t ≥ 0;

(iii) for 0 ≤ s < t, N(t)−N(s) is the number of events in the interval (s, t].

One example of an event is the random arrival of a customer at some service station
resulting in the formation of a queue. (In section 4.3 queuing theory will be used to
study transcriptional bursting in gene networks. Another example is the firing of an
action potential spike when the membrane voltage of a neuron reaches threshold or
the arrival of that spike at the synapse of another neuron, see section 8.) A counting
process can be characterized in terms of the occurrence or arrival times Ti of the ith
event. This leads to two further definitions useful in characterizing counting processes.
First, let {X(t), t ∈ [0,∞)} be a continuous-time stochastic process. We say that
X(t) has independent increments if, for all 0 ≤ t1 < t2 · · · < tn, the random variables
X(tj)−X(tj−1), j = 2, . . . , n, are independent. In the case of a counting process this
means that the numbers of arrivals in non-overlapping time intervals are independent.
Following on from this, X(t) is said to have stationary increments if, for all t2 > t1 ≥ 0
and all r > 0, the random variables X(t2)−X(t1) and X(t2 + r)−X(t1 + r) have the
same distributions. In particular, a counting process has stationary increments if, for
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all t2 > t1 ≥ 0, N(t2)−N(t1) has the same distribution as N(t2− t1). In other words,
the distribution of the number of events in an interval depends only on the length of
the interval.

We can now give one of the standard definitions of a (homogeneous) Poisson
process. Let λ > 0 be fixed. The counting process {N(t), t ∈ [0,∞)} is called a
Poisson process with rate λ if the following conditions hold:

(i) N(0) = 0;

(ii) N(t) has independent, stationary increments;

(iii) the number n of arrivals in any interval of length τ has the Poisson distribution

Pn(τ) =
(λτ)n

n!
e−λτ . (2.6)

Another classical way to obtain a Poisson process is to consider the occurrence of
arrivals or events in infinitesimal time intervals. That is, suppose we divide a given
time interval τ into M bins of size ∆τ = τ/M and assume that ∆τ is small enough
so that the probability of finding two events within any one bin can be neglected.
Given a rate λ take the probability of finding one event in a given bin to be λ∆τ . The
probability Pn(τ) of finding n independent events in the interval τ is then given by
the Binomial distribution

Pn(τ) = lim
∆τ→0

M !

(M − n)!n!
(λ∆τ)n(1− λ∆τ)M−n.

This consists of the probability (λ∆τ)n of finding n events in n specific bins multiplied
by the probability (1 − λ∆τ)M−n of not finding events in the remaining bins. The
binomial factor is the number of ways of choosing n out of M bins that contain an
event. Using the approximation M − n ≈ M = τ/∆τ and defining ε = −λ∆τ , we
have that

lim
∆τ→0

(1− λ∆τ)M−n = lim
ε→0

(
(1 + ε)1/ε

)−λτ
= e−λτ .

For large M , M !/(M − n)! ≈ Mn = (τ/∆τ)n, so that we recover the Poisson
distribution (2.6).

A simple method for calculating the moments of the Poisson distribution is to
introduce the moment generating function

G(s; τ) =

∞∑
n=0

Pn(τ)esn. (2.7)

Differentiating with respect to s shows that

dkG(s; τ)

dsk

∣∣∣∣
s=0

=

∞∑
n=0

Pn(τ)nk ≡ 〈nk(τ)〉. (2.8)

The generating function for the Poisson process can be evaluated explicitly as

G(s; τ) = exp(−λτ) exp(λτes), (2.9)

from which we deduce that the mean and variance are

〈n(τ)〉 = λτ, σ2
n(τ) = λτ. (2.10)

The ratio of the standard deviation to the mean is called the coefficient of variation
CV = στ/〈n(τ)〉.
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Another useful quantity is the distribution of inter-arrival times τn = Tn − Tn−1,
where Tn is the nth arrival time, which can be defined iteratively according to

Tn = inf{t ≥ 0|N(t+ Tn−1) = n}, T0 = 0.

Suppose that an event last occurred at time Tn. The probability that the next event
occurs in the interval Tn + τ ≤ Tn+1 ≤ Tn + τ + ∆τ is equal to the probability that
no event occurs for a time τ , which is p = e−λτ multiplied by the probability λ∆τ of
an event within the following interval ∆τ :

P[τ ≤ Tn+1 − Tn ≤ τ + ∆τ ] = λ∆τe−λτ .

The inter-arrival time probability density is thus an exponential, ρ(τ) = λe−λτ . It
follows that the mean is

〈τ〉 =

∫ ∞
0

λe−λττdτ =
1

λ

and the variance is

σ2
τ =

∫ ∞
0

λe−λττ2dτ − 〈τ〉2 =
1

λ2
.

Finally, note that the fastest way to generate a Poisson sequence of events for constant
λ is to iterate the arrival times according to Tn+1 = Tn − log(xrand)/λ with xrand
uniformly distributed over [0, 1].

It is possible to generalize the above Poisson model to the case of a time-dependent
rate λ(t). The simplest way to analyze this inhomogeneous Poisson process is to
consider the joint probability density of n arrival times, ρ(T1, . . . Tn). In particular,
ρ(T 1, . . . Tn)(∆t)n is given by the product of the probabilities λ(Tj)∆t that the jth
event occurs in the time interval Tj ≤ t ≤ Tj + ∆t and the probabilities of not firing
during the inter-arrival intervals. The latter is given by

P[no events in (Tj , Tj+1)] =

M∏
m=1

(1− λ(Tj +m∆t)∆t),

where we have partitioned the interval (Tj , Tj+1) into M bins of size ∆t. Taking the
logarithm,

logP[no events in (Tj , Tj+1)] =

M∑
m=1

log(1− λ(Tj +m∆t)∆t) ≈ −
M∑
m=1

λ(Tj +m∆t)∆t.

Taking the limit ∆t→ 0 and exponentiating again shows that

P[no events in (Tj , Tj+1)] = exp

(
−
∫ Tj+1

Tj

λ(t)dt

)
.

Hence, the probability density that during the time interval [0, T ] there are exactly n
events at times T1, . . . , Tn is

ρ(T1, . . . Tn;T ) =

(
n∏
i=1

λ(Ti)

)
exp

(
−
∫ T

0

λ(t)dt

)
. (2.11)

We now note that the probability of n events occurring in [0, T ] in particular time
bins can also be written as

ρ(T1, . . . Tn;T )(∆t)n = n!

∏n
i=1 λ(Ti)∆t∫ T

0
λ(t)dt

Pn[T ],
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which establishes that the distribution for an inhomogeneous Poisson process is given
by

Pn(T ) =
Λ(T )n

n!
e−Λ(T ), Λ(T ) =

∫ T

0

λ(t)dt. (2.12)

2.3. Chemical reaction networks.

Consider a well-mixed system with K chemical species, X = {X1, . . . , XK},
undergoing R single-step chemical reactions labeled a = 1, . . . , R. Let sa be the
vector specifying the number of molecules of each species forming the a-th reactant
complex, and let ra be the corresponding vector of the a-th product complex. The
a-th chemical reaction thus takes the form

s1aX1 + s2aX2 + . . .→ r1aX1 + r2aX2 + . . . ,

where sja, rja are known as stochiometric coefficients. Let nj be the number of
molecules of Xj and set n = (n1, . . . , nK). When one such reaction occurs the state
n is changed according to

n→ n + ra − sa.

The reverse reaction (if it exists)∑
j

rjaXj →
∑
j

sjaXj ,

would then have n→ n− ra + sa. If Xk is a catalyst or enzyme, then it plays the role
of facilitating reactions between other chemical species such that ska = rka 6= 0. More
complicated multi-step reactions can always be decomposed into these fundamental
single-step reactions with appropriate stochiometric coefficients. In practice, most
reactions involve the collisions of a pair of molecules so that

∑
j sja = 1 or 2.

In the case of a large number of molecules, one can describe the dynamics of
a single step chemical reaction in terms of a kinetic or rate equation involving the
concentrations xj = nj/Ω – the law of mass action. Here Ω is a dimensionless
quantity representing the system size, which in gene networks is typically taken to be
the characteristic number of proteins. (Alternatively, it could represent some volume
scale factor.) From basic physical principles, one usually finds that

dxi
dt

=

R∑
a=1

κa(ria−sia)

K∏
j=1

x
sja
j ≡

R∑
a=1

Siafa(x), i = 1, . . . ,K).(2.13)

Here κa is a rate constant that depends on the probability that a collision of the
relevant molecules actually leads to a reaction. The product of concentrations is
motivated by the idea that in a well-mixed container there is a spatially uniform
distribution of each type of molecule, and the probability of a collision depends
on the probability that each of the reactants is in the same local region of space.
Ignoring any statistical correlations, the latter is given by the product of the individual
concentrations. Also note that S is the so-called K × R stochiometric matrix for K
molecular species and R reactions. Thus Sia specifies the change in the number of
molecules of species i in a given reaction a. The functions fa are known as transition
intensities or propensities.



CONTENTS 20

Analyzing a system of nonlinear ODEs is generally a daunting task, even with
regards finding a general set of conditions for the existence and stability of fixed
points. However, in the case of the mass-action kinetic equations (2.13), there is an
underlying network structure that makes the task much easier. This network structure
is associated with a directed graph whose nodes are complexes (sets of chemical species
that occur on the left-hand (reactants) or right-hand (products) side of single-step
reactions, and whose links represent these reactions [93, 131, 132]. One of the most
important theorems regarding deterministic mass action kinetics is the deficiency zero
theorem of Feinberg [94, 95]. Roughly speaking, this theorem states that if certain
easily verifiable properties of the network hold, then within each invariant manifold
of the dynamics (compatibility class) there is exactly one fixed point with strictly
positive components, and the fixed point is locally asymptotically stable. For a review
of deterministic chemical reaction network theory see [122]. Here we briefly summarize
some of the main ideas needed to state the zero deficiency theorem.

Let C = {ra, sa; a = 1, . . . R} and R = {sa → ra; a = 1, . . . R} denote the
sets of complexes and reactions, respectively. (Note that the same complex can act
as a product or reactant in more than one reaction.) The triple {X , C,R} is called
a chemical reaction network. Corresponding to each reaction network is a unique,
directed graph constructed as follows. The nodes of the graph are given by the set
of distinct complexes z ∈ C. A directed edge is then placed from a complex z to a
complex z′ if and only if z → z′ ∈ R. Each connected component of the graph is
called a linkage class of the graph, with the number of linkage classes denoted by l.
A network is said to be reversible if for every forward reaction z → z′ ∈ R there
is a corresponding backward reaction z′ → z ∈ R. A network is said to be weakly
reversible if for any reaction z → z′ ∈ R, there is a sequence of directed reactions
starting with z′ as a reactant complex and ending with z as a product complex. As
an illustration, consider the following set of chemical reactions:

2A 2C

C + D

A B

There areK = 4 chemical species (A,B,C,D), m = 5 complexes (A,B,C+D, 2A, 2C),
and R = 5 reactions. There are two disconnected graphs so the number of linkages
l = 2. The top graph is reversible, whereas the second is weakly reversible.

Another important notion is the span of the stochiometric vectors va = ra − sa,
that is,

S = spana=1,...,R{va} ⊂ RK .

In general, S will be a proper subset of RK so that s ≡ dim[S ] < K. For the above
example,

S = span



−1
1
0
0

 ,


0
−1
1
1

 ,


1
0
−1
−1

 ,

−2
0
2
0

 ,


2
0
−2
0



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= span



−1
1
0
0

 ,


0
−1
1
1

 ,

−2
0
2
0


 ,

so that s = 3. Since the vector space S specifies the possible combinations of changes
in the number of molecules of each species over the set of reactions, it follows that if
the initial concentrations are given by the vector x(0) = x0, then the solution x(t) of
the mass-action kinetic equations (2.13) will lie in the space x0 + S . This invariant
manifold of the dynamics is called a stochiometric compatability class, and since the
concentration (number) of each chemical species is positive, any solution lies in the
positive stochiometric compatability class. We need one final definition to state the
zero deficiency theorem, namely, the deficiency of a chemical reaction network is

δ = m− l − s,
where m is the number of complexes, l is the number of linkage classes, and s is
the dimension of the stochiometric subspace of the network. For example, the above
reaction network has a zero deficiency δ = 0, since m = 5, l = 2, s = 3.

Theorem 6 (The deficiency zero theorem [95]) Consider a weakly reversible,
deficiency zero chemical reaction network (X , C,R) with dynamics given by the mass-
action kinetics (2.13). Then for any choice of rate constants, within each positive
stochiometric compatability class there is precisely one fixed point, which is locally
asymptotically stable with respect to that compatability class.

Note that a crucial step in the proof of the deficiency zero theorem and its
extensions is to reformulate the mass-action kinetics in terms of the space of complexes
Rm rather than the space of chemical species Rn. As a first step, we rewrite equation
(2.13) as

dxi
dt

=
∑
z→z′

κz→z′

 K∏
j=1

x
sj
j

 (z′i − zi).

That is, we specify the reactions in terms of the reactant and product complexes
rather than the reaction label a. We construct a new vector space Rm of complexes
by introducing the set of basis vectors {ωz, z ∈ C} and decomposing any v ∈ Rm as
v =

∑
z∈C vzωz. Let Z : Rm → RK be the linear map defined by Z(ωz) = z. Let

Ψ : RK → Rm be the nonlinear map given by

Ψ(x) =
∑
z∈C

 K∏
j=1

x
zj
j

ωz. (2.14)

Finally, introduce the map Aκ : Rm → Rm,

Aκ(v) =
∑
z→z′

κz→z′vz(ωz′ − ωz). (2.15)

The mass-kinetics can now be written in the form

dx

dt
= Y (Aκ(Ψ(x))). (2.16)

From equation (2.13), a fixed point x∗ exists if and only if
∑
a Siafa(x∗) = 0 for

all i = 1, . . . ,K. In terms of the decomposition (2.16), it is sufficient to show that
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Aκ(Ψ(x∗)) = 0. This is equivalent to the so-called complex balance condition: for each
z ∈ C ∑

a:ra=z

κa

 K∏
j=1

x
sja
j

 =
∑
b:sb=z

κb

 K∏
j=1

x
sjb
j

 . (2.17)

Complex balance corresponds to the condition that for each z ∈ C, the rates of all
reactions into the complex z are balanced by the rates of all reactions out of z. This
is distinct from the standard condition of detailed balance in reversible networks. The
requirement of zero deficiency and weak reversibility establishes that there exists at
least one fixed point for which Aκ(Ψ(x∗)) = 0. One can the establish that this fixed
point is unique and asymptotically stable.

There have been a number of more recent results in chemical reaction network
theory. For example, in the case of deterministic models, mathematical analysis has
been used to investigate conditions for the existence of multiple equilibria [67, 68], as
well as dynamical properties such as persistence and global stability [6,12]; persistence
is the condition that if all chemical species are initially present then none of them
completely disappear during the time-evolution of the network.

2.4. Chemical master equation and the system-size expansion

In the case of gene networks at least some of the reacting species occur with low copy
numbers (see section 3). This means that one can no longer model the dynamics in
terms of a deterministic system of ODEs. Instead, one keeps track of changes in the
number of molecules of each species according to a continuous time Markov chain. The
possible transitions and reaction rates are determined by the stochiometric matrix and
propensities introduced above. The corresponding chemical master equation takes the
form

dP (n, t)

dt
= Ω

R∑
a=1

(
K∏
i=1

E−Sia − 1

)
fa(n/Ω)P (n, t), (2.18)

Here E−Sia is a step or ladder operator such that for any function g(n),

E−Siag(n1, . . . , ni, . . . , nN ) = g(n1, . . . , ni − Sia, . . . , nN ). (2.19)

One point to note is that when the number of molecules is sufficiently small, the
characteristic form of a propensity function f(x) in equation (2.13) has to be modified:(nj

Ω

)sj
→ 1

Ωsj
nj !

(nj − sj)!
.

In general it is not possible to obtain exact solutions of the master equation (2.18)
even in the case of a stationary solution. (Note, however, that recent progress has been
made by generalizing the theory of deterministic chemical reaction networks briefly
described in section 2.3 to stochastic models, see [5].) Therefore, one often resorts to
some form of approximation scheme. The most common is the diffusion approximation
obtained by carrying out an expansion in the system size Ω [83,105,242]. This yields
a Fokker–Planck (FP) equation describing the evolution of the probability density
of a corresponding continuous stochastic process that is the solution to a stochastic
differential equation (SDE). A rigorous analysis of the diffusion approximation has
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been carried out by Kurtz [158]. The basic idea is to set fa(n/Ω)P (n, t)→ fa(x)p(x, t)
with x = n/Ω treated as a continuous vector so that

K∏
i=1

E−Siah(x) = h(x− Sa/Ω)

= h(x)− Ω−1
K∑
i=1

Sia
∂h

∂xi
+

1

2Ω2

K∑
i,j=1

SiaSja
∂2h(x)

∂xi∂xj
+O(Ω−3)

Carrying out a Taylor expansion of the master equation to second order thus yields
the multivariate FP equation

∂p

∂t
= −

K∑
i=1

∂Vi(x)p(x, t)

∂xi
+

1

2Ω

K∑
i,j=1

∂2Dij(x)p(x, t)

∂xi∂xj
, (2.20)

where

Vi(x) =

R∑
a=1

Siafa(x), Dij(x) =

R∑
a=1

SiaSjafa(x). (2.21)

The FP equation (2.20) corresponds to the multivariate Langevin equation

dXi = Vi(X)dt+
1√
Ω

R∑
a=1

Bia(X)dWa(t), (2.22)

where Wa(t) are independent Wiener processes [105],

〈dWa(t)〉 = 0, 〈dWa(t)dWb(t
′)〉 = δa,bδ(t− t′)dt dt′, (2.23)

and D = BBT , that is,

Bia = Sia
√
fa(x). (2.24)

The system-size expansion has been used extensively to analyze the effects of molecular
noise on protein fluctuations in gene expression [83, 202, 237, 240] as well as other
cellular processes such as the opening/closing of ion channels [63, 97], see section 8.1.
It works particularly well when the underlying deterministic system (2.13) has a unique
stable fixed point since, after a transient phase, the dynamics consists of Gaussian-like
fluctuations about the fixed point (see the linear noise approximation). However, in
the case of bistable molecular switches with weak noise (see section 3), the transitions
between different metastable states typically involve rare transitions that lie in the
tails of the associated probability distributions where the Gaussian approximation no
longer necessarily holds. Therefore, in order to ensure accurate estimates of transition
rates, one has to use alternative approximation schemes based on WKB and large
deviation theory (see section 5).

Linear noise approximation. Now suppose that the deterministic system (2.13),
written as

dxi
dt

= Vi(x),

has a unique stable fixed point x∗ for which Vi(x∗) = 0, and introduce the Jacobian
matrix A with

Aij =
∂Vi
∂xj

∣∣∣∣
x=x∗

(2.25)
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The Langevin equation suggests that, after a transient phase, the stochastic dynamics
is characterized by Gaussian fluctuations about the fixed point. Substituting Xi(t) =
x∗i +Yi(t)/

√
Ω into the Langevin equation (2.22) and keeping only lowest order terms

in Ω−1/2 yields the Ornstein-Uhlenbeck (OU) process [105]

dYi =

K∑
j=1

AijYjdt+

R∑
a=1

Bia(x∗)dWa(t). (2.26)

Writing this equation in matrix form

dY = AYdt+ B dW(t),

and performing the change of variables Z(t) = e−AtY(t) gives dZ = e−AtB dW(t).
Formal integration then shows that

Y(t) = e−AtY(0) +

∫ t

0

eA(t−t′)B dW(t′).

Taking averages then establishes that

Y(t)− 〈Y(t)〉 =

∫ t

0

eA(t−t′)BdW(t′).

Introduce the correlation function C(t, s) = 〈Y(t),YT (s)〉 with components

Cij(t, s) = 〈Yi(t), Yj(s)〉 = 〈[Yi(t)− 〈Yi(t)〉][Yj(s)− 〈Yj(s)〉]〉.
It follows that

C(t, s) =

〈∫ t

0

eA(t−t′)BdW(t′)

∫ s

0

dWT (s′)BT eA
T (s−s′)

〉
=

∫ t

0

∫ s

0

eA(t−t′)B
〈
dW(t′)dWT (s′)

〉
BT eA

T (s−s′)

Now 〈
dW(t′)dWT (s′)

〉
ab

= 〈dWa(t′)dWb(s
′)〉 = δabδ(t

′ − s′)dt′ ds′

Therefore,

C(t, s) =

∫ min(t,s)

0

eA(t−t′)BBT eA
T (s−t′)dt′

Finally, defining the covariance matrix according to Σ(t) = C(t, t) we have

Σ(t) =

∫ t

0

eA(t−t′)BBT eA
T (t−t′)dt′.

Differentiating both sides with respect to t shows that

dΣ

dt
=
[
eA(t−t′)BBT eA

T (t−t′)
]
t′=t

+

∫ t

0

AeA(t−t′)BBT e−A
T (t−t′)dt′

+

∫ t

0

eA(t−t′)BBT eA
T (t−t′)AT dt′

= AΣ(t) + Σ(t)AT + BBT

Stability of the fixed point x∗ means that A has K negative definite eigenvalues
λj . For the sake of illustration, suppose that the eigenvalues are distinct so that A
is diagonalizable, that is, there exists an orthogonal matrix U such that UTAU =
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Ad ≡ diag(λ1, . . . , λK). Left-multiplying both sides of the above equation by UT and
right-multiplying by U gives

dΣ̂

dt
= AdΣ̂(t) + Σ̂(t)AT

d + B̂BT ,

where Σ̂ = UTΣU and B̂BT = UTBBTU. In component form,

dΣ̂jk
dt

= (λj + λk)Σ̂jk(t) + B̂BT
jk,

with λj + λk < 0. Hence, in the limit t→∞ we have Σ̂(t)→ Σ̂0 where

(λj + λk)Σ̂0,jk = −B̂BT
jk.

In the original basis, we thus find that the stationary covariance matrix Σ0 satisfies
the so-called Ricatti equation

AΣ0 + Σ0A
T = −BBT . (2.27)

Equation (2.27), which is a form of fluctuation-dissipation theorem, is often used to
estimate the size of protein fluctuations due to intrinsic noise. We will give an example
in section 3.4.

2.5. The stochastic simulation algorithm (SSA)

The SSA, which was originally developed by Gillespie [110–112], is an efficient
numerical scheme for generating exact sample paths of a continuous-time Markov
process whose probability distribution evolves according to the chemical master
equation (2.18). In the following we eliminate the global factor of Ω by rescaling
time t→ Ωt.

The basic idea underlying the SSA is to introduce a new probability function
p(τ, a|x, t), which is the probability, given X(t) = x, that the next reaction in the
system will occur in the time interval [t+ τ, t+ τ + ∆τ) and will be the reaction a. It
follows that both τ and a are random variables conditioned on X(t) = x. An analytical
expression for p(τ, a|x, t) can be obtained by introducing another probability function
P0(τ |x, t), which is the probability, given X(t) = x, that no reaction of any kind occurs
in the time interval [t, t + τ). From the definitions of P0 and the propensities fa, we
have

P0(τ + dτ |x, t) = P0(τ |x, t)

[
1−

R∑
a=1

fa(x)dτ

]
,

where the right-hand side involves the product of the probability that no reaction
occurs in [t, τ) and the probability that there are no transitions in the infinitesimal
interval [t+ τ, t+ τ + dτ). Rearranging and taking the limit dτ → 0 yields

dP0(τ |x, t)
dτ

= −F (x)P0(τ |x, t), F (x) =

R∑
a=1

fa(x).

Given the initial condition P (0|x, t) = 1, this equation has the solution P0(τ |x, t) =
exp(−F (x)τ) which, when combined with the result p(τ, a|x, t)dτ = P0(τ |x, t)fa(x)dτ ,
implies

p(τ, a|x, t) = F (x) exp(−F (x)τ)
fa(x)

F (x)
. (2.28)
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This establishes that τ is an exponential random variable with mean and standard
deviation 1/F (x), while a is a statistically independent integer random variable with
x-dependent probability fa(x)/F (x).

One exact Monte Carlo method for generating samples of the random variables
τ, a is to draw two random numbers r1, r2 from the uniform distribution on [0, 1] with

τ = − 1

F (x)
ln r1 (2.29a)

a = the smallest integer for which

a∑
s=1

fa(x) > r2F (x). (2.29b)

The direct method of implementing the SSA is as follows:

(i) Initialize the time t = t0 and the chemical state x = x0

(ii) Given the state x at time t, determine the fa(x) for a = 1, . . . , R and their sums
F (x)

(iii) Generate values for τ and a using equations (2.29a) and (2.29b)

(iv) Implement the next reaction by setting t→ t′ = t+ τ and xj → x′j = xj +Sja/Ω.

(v) Return to step 2 with (x, t) replaced by (x′, t′), or else stop.

There have been several modifications of the basic SSA that differ in the
implementation of step 2. These include the next reaction method [109] and the
modified next reaction method [4]. The latter is based on the random time change
representation of Kurtz [7, 159]. Finally, note that SSAs have also been developed
for stochastic hybrid systems, which are defined in the next section, see for example
Ref. [258]

tau-leaping. One of the limitations of the standard SSA is that it is very time
expensive. For example, in many applications the mean time between reactions,
1/F (x), is very small so that simulating every reaction becomes computationally
infeasible. One way to improve efficiency is to sacrifice accuracy for a gain in
computational speed, which is the basis of the tau-leaping method introduced originally
by Gillespie [111]. The basic idea is to “leap” the system forward by a pre-selected
time τ (distinct from the τ of the SSA), which may include several reaction events.
Given X(t) = x, τ is chosen to be large enough for efficient computation but small
enough so that

fa(x) ≈ constant in [t, t+ τ) for all a.

Let N (λ) denote a Poison counting process with mean λ (see section 2.2). During
the interval [t, t + τ) there will be approximately N (λa) reactions of type a with
λa = fa(x)τ . Since each of these reactions increases increases xj by Sja/Ω, the state
at time t+ τ will be

Xj(t+ τ) = x +

R∑
a=1

Na(fa(x)τ)Sja, (2.30)

where the Na are independent Poisson processes. This equation is known as the tau-
leaping formula. One major issue with the original formulation of tau-leaping is that
one has to be careful in choosing an appropriate value of τ at each iteration of the
algorithm. If τ is too large then a sufficiently large change in propensities could cause
one or more components xj to become negative. On the other hand, if τ is too small
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then the algorithm becomes prohibitively expensive. This issue has been addressed
in various modifications of the tau-leaping procedure, see for example Cao et al. [60].
More recently, multi-level methods that couple tau-leaping approximations at different
resolutions have been used to reduce variances in Monte Carlo estimators [8, 9].

Trajectory sampling methods. Another situation where the standard SSA is
computationally expensive is when dealing with rare events, such as transitions
between metastable states in the weak-noise limit (see section 5). That is, the
switching of a bistable switch from one state to another may happen so infrequently
that running a stochastic simulation long enough to see transitions would be
very computationally prohibitive. A number of computational methods have been
developed to address this problem, based on some form of efficient sampling of
trajectories in state space transitioning from a state A to a state B, say [40,127,253].
For example, the weighted sampling method uses a multiple-trajectory strategy,
whereby state space is partitioned into local regions or bins, and individual trajectories
generate multiple daughter trajectories upon reaching a new bin region; the daughters
are suitably weighted to ensure statistical rigor [38, 79, 134, 259]. One finds that
weighted sampling Monte Carlo simulations can yield rigorous rate estimates for
processes that occur on much longer timescales than the simulations themselves.
Another method is umbrella sampling [74, 249]. This also divides state space into a
set of bins but now treats simulations within each bin independently. Any trajectory
that hits the boundary is re-injected into the domain in such a way that it preserves
the distribution of fluxes from neighboring bins.

2.6. Stochastic hybrid systems

Let us now turn to the definition of a stochastic hybrid system and, in particular,
a piecewise deterministic Markov process (PDMP) [70, 96, 153]. For the sake of
illustration, consider a system whose states are described by a pair (x, n) ∈ Σ ×
{0, · · · , N0−1}, where x is a continuous variable in a bounded interval Σ ⊂ R and n a
discrete stochastic variable taking values in the finite set Γ ≡ {0, · · · , N0 − 1}. (Note
that one could easily extend the analysis to higher-dimensions, x ∈ Rd. In this case Σ
is taken to be a connected, bounded domain with a regular boundary ∂Ω. However,
for notational simplicity, we restrict ourselves to the case d = 1. It is also possible
to have a set of discrete variables, but one can always relabel the internal states so
that they are effectively indexed by a single integer.) When the internal state is n,
the system evolves according to the ordinary differential equation (ODE)

ẋ = Fn(x), (2.31)

where the vector field Fn : R→ R is a continuous function, locally Lipschitz. That is,
given a compact subset K of Σ, there exists a positive constant Kn such that

|Fn(x)− Fn(y)| ≤ Kn|x− y|, ∀x, y ∈ Σ (2.32)

for some constant Kn. We assume that the dynamics of x is confined to the domain
Σ so that we have existence and uniqueness of a trajectory for each n. For fixed
x, the discrete stochastic variable evolves according to a homogeneous, continuous-
time Markov chain with generator −A(x). We make the further assumption that the
chain is irreducible for all x ∈ Σ, that is, for fixed x there is a non-zero probability



CONTENTS 28

of transitioning, possibly in more than one step, from any state to any other state
of the Markov chain (section 2.1). This implies the existence of a unique invariant
probability distribution on Γ for fixed x ∈ Σ, denoted by ρ∗(x), such that∑

m∈Γ

Anm(x)ρ∗m(x) = 0, ∀n ∈ Γ. (2.33)

The above stochastic model defines a one-dimensional PDMP. It is also possible
to consider generalizations of the continuous process, in which the ODE (2.31) is
replaced by a stochastic differential equation (SDE) or even a partial differential
equation (PDE). In order to allow for such possibilities we will refer to all of these
processes as examples of a stochastic hybrid system.

Let us decompose the transition matrix of the Markov chain as

Wnm(x) = Pnm(x)λm(x),

with
∑
n 6=m Pnm(x) = 1 for all x. Hence λm(x) determines the jump times from the

state m whereas Pnm(x) determines the probability distribution that when it jumps
the new state is n for n 6= m. The hybrid evolution of the system with respect to x(t)
and n(t) can then be described as follows. Suppose the system starts at time zero in
the state (x0, n0). Call x0(t) the solution of (2.31) with n = n0 such that x0(0) = x0.
Let θ1 be the random variable such that

P(θ1 < t) = 1− exp

(
−
∫ t

0

λn0
(x0(t′))dt′

)
.

Then in the random time interval s ∈ [0, θ1) the state of the system is (x0(s), n0). We
draw a value of θ1 from P(θ1 < t), choose an internal state n1 ∈ Γ with probability
Pn1n0

(x0(θ1)), and call x1(t) the solution of the following Cauchy problem on [θ1,∞):{
ẋ1(t) = Fn1

(x1(t)), t ≥ θ1

x1(θ1) = x0(θ1)

Iterating this procedure, we construct a sequence of increasing jumping times (θk)k≥0

(setting θ0 = 0) and a corresponding sequence of internal states (nk)k≥0. The evolution
(x(t), n(t)) is then defined as

(x(t), n(t)) = (xk(t), nk) if θk ≤ t < θk+1. (2.34)

Note that the path x(t) is continuous and piecewise C1. In order to have a well-defined
dynamics on [0, T ], it is necessary that almost surely the system makes a finite number
of jumps in the time interval [0, T ]. This is guaranteed in our case.

The above formulation is the basis of a simulation algorithm for PDMPs [258]. If
λm(x) = κm is independent of x for all m, then the stochastic jump time from state
m is given by

τ =
1

κm
ln(1/u),

where u ∈ [0, 1] is a realization of a uniform random variable. The simulation of the
PDMP is then very similar to the SSA for a chemical master equation. On the other
hand, in the x-dependent case one has to numerically solve the integral equation∫ τ

0

λnk(xk(t))dt = ln(1/u). (2.35)
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at the k-th iteration. This can be achieved by solving the ODE system

dxk
dt

= Fnk(xk(t))

dRk
dt

= λnk(xk(t))[1−Rk(t)],

and setting Rk(t) = u. In contrast to discrete Markov processes, the time spent in a
discrete state (the sojourn time τ) of a PDMP may become infinite. That is,

P(τ =∞) = c > 0, lim
t→∞

P(τ < τ)→ 1− c.

Chapman-Kolmogorov equation. Given the above iterative definition of a PDMP, let
X(t) and N(t) denote the stochastic continuous and discrete variables, respectively,
at time t, t > 0, given the initial conditions X(0) = x0, N(0) = n0. Introduce the
probability density ρn(x, t|x0, n0, 0) with

P{X(t) ∈ (x, x+ dx), N(t) = n|x0, n0) = ρn(x, t|x0, n0, 0)dx.

It follows that p evolves according to the forward differential Chapman-Kolmogorov
(CK) equation [45,105]

∂ρn
∂t

= Lρn, (2.36)

with the generator −L (dropping the explicit dependence on initial conditions) defined
according to

Lρn(x, t) = −∂Fn(x)ρn(x, t)

∂x
+

1

ε

∑
m∈Γ

Anm(x)ρm(x, t). (2.37)

The first term on the right-hand side represents the probability flow associated by the
piecewise deterministic dynamics for a given n, whereas the second term represents
jumps in the discrete state n. Note that we have rescaled the matrix A by introducing
the dimensionless parameter ε, ε > 0. This is motivated by the observation that in
gene networks one often finds a separation of time-scales between the relaxation time
for the dynamics of the continuous variable x and the rate of switching between the
different discrete states n. The fast switching limit then corresponds to the case ε→ 0.
Let us now define the averaged vector field F : R→ R by

F (x) =
∑
n∈Γ

ρ∗n(x)Fn(x)

It can be shown [92] that, given the assumptions on the matrix A, the functions ρ∗n(x)
on Σ belong to C1(R) for all n ∈ Γ and that this implies that F (x) is locally Lipschitz.
Hence, for all t ∈ [0, T ], the Cauchy problem{

ẋ(t) = F (x(t))
x(0) = x0

(2.38)

has a unique solution for all n ∈ Γ. Intuitively speaking, one would expect the
stochastic hybrid system (2.31) to reduce to the deterministic dynamical system (2.38)
in the fast switching limit ε → 0. That is, for sufficiently small ε, the Markov chain
undergoes many jumps over a small time interval ∆t during which ∆x ≈ 0, and thus
the relative frequency of each discrete state n is approximately ρ∗n(x). This can be
made precise in terms of a Law of Large Numbers for stochastic hybrid systems proven
in [92,153].
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Boundary conditions. From a PDE perspective the CK equation is an N th
0 -order

quasilinear equation on Σ, which for the sake of concreteness we take to be Σ =
[0, L]. In general, well-posed boundary conditions for a quasilinear PDE have to
be determined using the theory of characteristics. However, for the applications
considered in this review, boundary conditions are relatively straightforward due to
the fact that the drift terms Fn(x) do not change sign in the interval Σ. In particular,
there exists an integer m, 1 ≤ m ≤ N0 − 1, such that for all 0 < x < L we have
Fn(x) < 0 for 0 ≤ n ≤ m− 1 and Fn(x) > 0 for m ≤ n ≤ N0 − 1. Given the fact that
Σ is an invariant manifold, it follows that Fn(0) = 0 for 0 ≤ n ≤ m−1 and Fn(L) = 0
for m ≤ n ≤ N0 − 1. No-flux boundary conditions at the ends x = 0, L take the form
J(0, t) = J(L, t) = 0 with

J(x, t) =

N0−1∑
n=0

Fn(x)ρn(x, t) = 0. (2.39)

It follows that ρn(0, t) = 0 for m ≤ n ≤ N0− 1 and ρn(L, t) = 0 for 0 ≤ n ≤ m− 1. In
our analysis of metastability (section 5.2), it will be necessary to impose an absorbing
boundary condition at some interior point x∗ of the domain Σ, that is,

ρn(x∗, t) = 0, m ≤ n ≤ N0 − 1, ρn(L, t) = 0, 0 ≤ n ≤ m− 1.

In contrast to the no-flux conditions, there are non-zero fluxes through x∗. The nature
of boundary conditions in the case of x-dependent drift terms Fn(x) that switch sign
is more complicated because the partitioning of left and right moving states may differ
at the boundaries x = 0 and x = L. One has to look more closely at the characteristics
of the underlying quasilinear PDE.

Stationary solution of two-state PDMPs. In general it is difficult to obtain an
analytical steady-state solution (assuming it exists) unless N0 = 2. The steady-state
version of Eqs. (2.36) reduces to

0 = − ∂

∂x
(F0(x)ρ0(x)) + β(x)ρ1(x)− α(x)ρ0(x) (2.40)

0 = − ∂

∂x
(F1(x)ρ1(x, t))− β(x)ρ0(x, t) + α(x)ρ1(x), (2.41)

Adding the pair of Eqs. yields

∂

∂x
(F0(x)ρ0(x)) +

∂

∂x
(F1(x)ρ1(x)) = 0, (2.42)

that is,

F0(x)ρ0(x) + F1(x)ρ1(x) = c,

for some constant c. The reflecting boundary conditions imply that c = 0. Since
Fn(x) is non-zero for all x ∈ Σ, we can express ρ1(x) in terms of ρ0(x):

ρ1(x) = −F0(x)ρ0(x)

F1(x)
. (2.43)

Substituting into Eq. (2.40) gives

0 =
∂

∂x
(F0(x)ρ0(x)) +

(
α(x)

F1(x)
− β(x)

F0(x)

)
F0(x)ρ0(x). (2.44)
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This yields the solutions

ρn(x) =
1

Z|Fn(x)|
exp

(
−
∫ x

x∗

(
α(y)

F1(y)
+

β(y)

F0(y)

)
dy

)
.

(2.45)

where x∗ ∈ Σ is arbitrary and assuming that the normalization factor Z exists.

Dichotomous noise. A special case of a two-state PDMP is a so-called velocity jump
process for which F0(x) = −v− < 0 and F1(x) = v+ > 0 with ±v± constant
“velocities.” The piecewise deterministic dynamics takes the simple form

dx

dt
= ξ(t) ≡ [v+ + v−]n(t)− v−.

The discrete state n(t) evolves according to a two-state Markov chain with matrix
generator

A =

(
−k+ k−
k+ −k−

)
.

In the physics literature ξ(t) is called a dichotomous Markov noise process (DMNP),
see the review by Bena [27]. If Pnn0

(t) = P[N(t) = n|N(0) = n0] then the master
equation for n(t) takes the form

dPnn0

dt
=
∑
m=0,1

AnmPmn0

Using the fact that P0n0
(t) + P1n0

(t) = 1 we can solve this pair of equations to give

P0n0
(t) = δ0,n0

e−t/τc +
k−
τc

(1− e−t/τc), τc =
1

k− + k+
.

A number of results follow from this. First τc is the relaxation time of the DMNP
with Pmn0

(t)→ ρm in the limit t→∞ and

ρ0 =
k−

k+ + k−
, ρ1 =

k+

k+ + k−
. (2.46)

In the stationary state, the dichotomous noise term has the mean

〈ξ(t)〉 = (ν+ + ν−)〈n(t)〉 − Γ− = ρ1ν+ − ρ0ν−. (2.47)

Suppose, in particular, that the DMNP is unbiased so that 〈ξ(t)〉 = 0. The stationary
autocorrelation function is then given by

〈ξ(t)ξ(t′)〉 = ν2
− − 2ν−(ν+ + ν−)ρ1

+ (ν+ + ν−)2〈n(t)n(t′)〉

=
D

τc
e−|t−t

′|/τc , (2.48)

with noise amplitude D = k+k−τ
3
c (ν+ + ν−)2. This shows that the DMNP provides

an alternative form of colored noise to an Ornstein-Uhlenbeck process [105].
Given the initial conditions x(0) = x0, n(0) = n0, introduce the probability

density pn(x, t|x0, n0, 0) the forward CK equation reduces to

∂p0

∂t
= v−

∂p0

∂x
+ k+p1 − k−p0 (2.49a)

∂p1

∂t
= − v+

∂p1

∂x
+ k−p0 − k+p1. (2.49b)
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In applications one is typically interested in the marginal density p(x, t) = p0(x, t) +
p1(x, t), which can be used to calculate moments of p such as the mean and variance,

〈X(t)〉 =

∫
xp(x, t)dx, Var[X(t)] =

∫
x2p(x, t)dx− 〈x(t)〉2.

In the unbiased case v± = v, k± = k, the marginal probability density p(x, t) satisfies
the telegrapher’s equation [25,114][

∂2

∂t2
+ 2k

∂

∂t
− v2 ∂

2

∂x2

]
p(x, t) = 0. (2.50)

(The individual densities p0,1 satisfy the same equations.) The telegrapher’s equation
can be solved explicitly for a variety of initial conditions. More generally, the
short-time behavior (for t � τc = 1/2k) is characterized by wave-like propagation
with 〈x(t)〉2 ∼ (V t)2, whereas the long-time behavior (t � τc) is diffusive with
〈x2(t)〉 ∼ 2Dt, D = v2/2k. As an explicit example, the solution for the initial
conditions p(x, 0) = δ(x) and ∂tp(x, 0) = 0 is given by

p(x, t) =
e−kt

2
[δ(x− vt) + δ(x+ vt)]

+
ke−kt

2v

[
I0(k

√
t2 − x2/v2) +

t√
t2 − x2/v2

I0(k
√
t2 − x2/v2)

]
× [Θ(x+ vt)−Θ(x− vt)],

where In is the modified Bessel function of n-th order and Θ is the Heaviside function.
The first two terms clearly represent the ballistic propagation of the initial data
along characteristics x = ±vt, whereas the Bessel function terms asymptotically
approach Gaussians in the large time limit. The steady-state equation for p(x) is
simply p′′(x) = 0, which from integrability means that p(x) = 0 point-wise. This is
consistent with the observation that the above explicit solution satisfies p(x, t)→ 0 as
t→∞. Examples of dichotomous noise processes in biological switching will be given
in section 8.3.

Quasi-steady-state (QSS) diffusion approximation. For small but non-zero ε, one can
use perturbation theory to derive lowest order corrections to the deterministic mean
field equation, which leads to a Langevin equation with noise amplitude O(

√
ε) [188].

More specifically, perturbations of the mean-field equation (2.38) can be analyzed
using a quasi-steady-state (QSS) diffusion or adiabatic approximation, in which the
CK equation (2.36) is approximated by a Fokker-Planck (FP) equation for the total
density C(x, t) =

∑
n ρn(x, t). The QSS approximation was first developed from a

probabilistic perspective by Papanicolaou [201], see also [105]. It has subsequently
been applied to a wide range of problems in biology, including bacterial chemotaxis
[87, 128, 200], wave-like behavior in models of slow axonal transport [99, 100, 212],
molecular motor-based models of random intermittent search [188, 189], and gene
networks [151,191]. The QSS reduction proceeds as follows:

(i) Decompose the probability density as

ρn(x, t) = C(x, t)ρ∗n(x) + εwn(x, t),

where
∑
n ρn(x, t) = C(x, t) and

∑
n wn(x, t) = 0. Substituting into (2.36) yields

ρ∗n(x)
∂C

∂t
+ ε

∂wn
∂t

= −∂Fn(x)[Cρ∗n(x) + εwn]

∂x
+

1

ε

∑
m∈Γ

Anm(x)[Cρ∗m(x) + εwm]
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Summing both sides with respect to n then gives

∂C

∂t
= −∂F (x)C

∂x
− ε

∑
n∈Γ

∂Fn(x)wn
∂x

. (2.51)

(ii) Using the equation for C and the fact that Aρ∗ = 0, we have

ε
∂wn
∂t

=
∑
m∈Γ

Anm(x)wm −
∂[Fn(x)ρ∗n(x)C]

∂x
+ ρ∗n(x)

∂F (x)C

∂x

− ε
∑
m∈Γ

[δm,n − ρ∗n(x)]
∂Fm(x)wm

∂x

(iii) Introduce the asymptotic expansion

w ∼ w(0) + εw(1) + ε2w(2) + . . .

and collect O(1) terms:∑
m∈Γ

Anm(x)w(0)
m =

∂[Fn(x)ρ∗n(x)C(x, t)]

∂x
− ρ∗n(x)

∂F (x)C

∂x
. (2.52)

The Fredholm alternative theorem show that this has a solution, which is unique

on imposing the condition
∑
n w

(0)
n (x, t) = 0.

(iv) Combining equations (2.52) and (2.51) shows that C evolves according to the FP
equation

∂C

∂t
= − ∂

∂x
(F (x)C) + ε

∂

∂x

(
D(x)

∂C

∂x

)
(2.53)

with the diffusion coefficient D(x) given by

D(x) =
∑
n∈Γ

Zn(x)Fn(x), (2.54)

where Zn(x) is the unique solution to∑
m∈Γ

Anm(x)Zm(x) = [F (x)− Fn(x)]ρ∗n(x). (2.55)

with
∑
m Zm(x) = 0. We have dropped O(ε) corrections to the drift term. For

N0 > 2 one typically has to solve equation (2.55) numerically in order to find the
pseudo-inverse of A. However, in the special case of a two-state discrete process
(n = 0, 1), with

A(x) =

(
−α(x) β(x)
α(x) −β(x)

)
,

one has the explicit solution

D(x) =
β(x)[F0(x)− F (x)]F0(x) + α(x)[F1(x)− F (x)]F1(x)

2[α(x) + β(x)]2
. (2.56)

At a fixed point x∗ of the deterministic equation ẋ = F (x), we have F (x) = 0
and β(x∗)F0(x∗) = −α(x∗)F1(x∗). Hence, we have the reduced expression

D(x∗) =
|F0(x∗)F1(x∗)|
α(x∗) + β(x∗)

. (2.57)

This result will be used in our study of metastability in simple gene networks (see
section 5).
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One subtle point is the nature of boundary conditions under the QSS reduction, since
the FP equation is a second-order parabolic PDE and one typically has to specify one
boundary condition at either end. It follows that for N0 > 2, there is a mismatch in
the number of boundary conditions between the CK equation and the FP equation.
This implies that the QSS reduction may break down in a small neighborhood of either
boundary, as reflected by the existence of boundary layers. One way to eliminate the
existence of boundary layers is to ensure that the boundary conditions of the CK
equation are compatible with the QSS reduction. For example at x = L,

ρn(L, t) = ρ∗n(L)C(L, t) +O(ε)

This holds for the particular problems considered in this review.

3. Simple examples of gene regulatory networks

We now turn to some simple stochastic models of gene expression, based on the two
major components of the central dogma, namely, transcription and translation, see
Fig. 1. We begin by considering unregulated gene expression, and then turn to some
simple regulatory networks with or without feedback. In the former case, the resulting
network can act as a bistable switch. We also briefly discuss one of the spatial aspects
of gene regulation, namely, facilitated diffusion underlying DNA-protein interactions.
For a more detailed discussion of modeling gene regulatory networks see the book by
Sneppen [230]

3.1. Unregulated transcription and translation

Suppose that we ignore any regulation of the promoter as in Fig. 1(a), and collapse
the various stages of transcription into a single step with mRNA production rate k.
Letting γ denote the rate of mRNA degradation and m(t) the number of mRNA
molecules at time t, we have the reaction

m
kΩ−→ m+ 1, m

γ−→ m− 1

with corresponding kinetic equation for the concentration x = m/Ω, where Ω is
proportional to cell volume

dx

dt
= k − γx.

Clearly, given that m is of order 10, the law of mass action breaks down and we have
to consider the corresponding birth-death master equation

dP (m, t)

dt
= −kΩP (m, t) + kΩP (m− 1, t)− γmP (m, t) + γ(m+ 1)P (m+ 1, t) (3.1)

for m ≥ 0 and P (−1, t) ≡ 0. Equation (3.1) is a rare example of a master equation
that can be solved exactly, and one finds that Pn(t) is given by a Poisson distribution
(see also section 2.2). The simplest way to see this is to introduce the generating
function†

G(z, t) =
∑
m≥0

zmP (m, t),

† The application of generating functions to determine the probability distribution of more
complicated gene networks has been developed by Swain and collaborators [205,225].
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and use equation (3.1) to show that

∂G

∂t
+ γ(z − 1)

∂G

∂z
= kΩ(z − 1)G.

This is a linear first-order PDE with non-constant coefficients. A standard method
for solving such equations is the method of characteristics [219]. The basic idea is to
construct characteristic curves z = z(t) along which G(t) ≡ G(z(t), t) satisfies

dG

dt
=
∂G

∂t
+
dz

dt

∂G

∂z
.

such that the evolution of G is consistent with the original PDE. This then yields the
characteristic equations

dz

dt
= γ(z − 1),

dG

dt
= kΩ(z − 1)G.

Solving for z(t), we have z(t) = 1 + seγt, where s parameterizes the initial data. Then

dG

dt
= kΩseγtG, G(t) = F (s) exp

(
kΩseγt/γ

)
for some function F determined by the initial data. In order to obtain the solution
G(z, t) we eliminate s in terms of z, which gives

G(z, t) = F ([z − 1]e−γt) exp (kΩ(z − 1)/γ) . (3.2)

Since G(1, t) = 1, we require F (0) = 1. Moreover, given the initial condition
ρm(0) = δm,0, we have G(z, 0) = 1 and F (z) = e−kΩz/γ . It follows that

G(z, t) = ekΩ(1−e−γt)(z−1)/γ , (3.3)

If we now Taylor expand G(z, t) in powers of z we find that

P (m, t) = e−λ(t)λ(t)m

m!
, λ(t) =

kΩ

γ
(1− e−γt), (3.4)

which is a time-dependent Poisson distribution of rate λ(t). Hence, in the limit t→∞
we obtain a stationary Poisson process (see section 2.2) with

P (m) = e−λ0
λm0
m!

, λ0 = kΩ/γ. (3.5)

It follows that 〈m〉 = λ0 and var[m] = λ0. This is an important result because both the
mean and variance in the number of mRNA molecules can be measured experimentally.
One commonly used measure of the level of noise in a regulatory networks is the so-
called Fano factor:

Fano factor =
〈m2〉 − 〈m〉2

〈m〉
. (3.6)

For the unregulated process, the Fano factor is one. This is a baseline value for
quantifying the effects of gene regulation on the level of noise.
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3.2. Two-state gene regulatory network

We now consider the simple gene regulatory network shown in Fig. 2(d). This consists
of a gene that can be in either an active or inactive state. In the active state the gene
produces protein X at a rate r, which subsequently degrades at a rate γ, whereas no
protein is produced when the gene is inactive. For simplicity, we do not explicitly keep
track of the amount of mRNA, that is, we lump together the stages of transcription
and translation. The resulting reaction scheme is thus

I
k+


k−
A

r−→ X
γ−→ ∅,

where A and I denote the active and inactive states of the gene. Suppose that the
number of X proteins is sufficiently large so the dynamics can be expressed in terms
of a continuous-valued protein concentration x [147, 258]. The latter then evolves
according to the (piecewise) deterministic equation

dx

dt
= Fn(x) ≡ rn(t)− γx, (3.7)

where the discrete random variable n(t) represents the current state of the gene with
n(t) = 1 (active) or n(t) = 0 (inactive). Note that at the single gene level one can
equally well identify n(t) with the state of a randomly switching environment - this
equivalence breaks down at the population level, see section 3.3. It is also possible
to have a nonzero protein production rate in both states with 0 < r0 < r1 [228].
Equation (3.7) is a simple example of a PDMP (see section 2.6), whose corresponding
CK equation is

∂ρ0

∂t
= − ∂

∂x
(−γxρ0(x, t)) + k−ρ1(x, t)− k+ρ0(x, t) (3.8a)

∂ρ1

∂t
= − ∂

∂x
([r − γx]ρ1(x, t)) + k+ρ0(x, t)− k−ρ1(x, t), (3.8b)

The CK equation is supplemented by the no-flux boundary conditions J(x, t) = 0 at
x = 0, r/γ, where J(x, t) = F0(x)ρ0(x, t) + F1(x)ρ1(x, t). That is, ρ1(0, t) = 0 and
ρ0(r/γ, t) = 0. In the limit that the switching between active and inactive states is
much faster than the protein dynamics, the probability that the gene is active rapidly
converges to the steady-state k+/(k+ +k−), and we obtain the deterministic equation

dx

dt
= r〈n〉 − γx =

rk+

k+ + k−
− γx. (3.9)

Following Ref. [147], we will characterize the long-time behavior of the system in
terms of the steady-state solution, which satisfies

d

dx
(−γxρ0(x)) = k−ρ1(x)− k+ρ0(x) (3.10a)

d

dx
([r − γx]ρ1(x)) = k+ρ0(x)− k−ρ1(x). (3.10b)

The no-flux boundary conditions imply that ρ0(r/γ) = 0 and ρ1(0) = 0. First, note
that we can take x ∈ [0, r/γ] and impose the normalization condition∫ r/γ

0

[ρ0(x) + ρ1(x)]dx = 1.
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Figure 6. Sketch of steady-state protein density ρ(x) for a simple regulated
network in which the promoter transitions between an active and inactive state
at rates k±. (a) Case k±/γ > 1: there is a graded density that is biased towards
x = 0, 1 depending on the ratio k+/k−. (b) Case k±/γ < 1: there is a binary
density that is concentrated around x = 0, 1 depending on the ratio k+/k−

Integrating equations (3.10a) and (3.10b) with respect to x then leads to the
constraints ∫ r/γ

0

ρ0(x)dx =
k−

k− + k+
,

∫ r/γ

0

ρ1(x)dx =
k+

k− + k+
.

Adding equations (3.10a) and (3.10b) we can solve for ρ0(x) in terms of ρ1(x) and
then generate a closed differential equation for ρ1(x), see the derivation of equation
(2.45). We thus obtain a solution of the form

ρ0(x) = C (γx)−1+k+/γ(r − γx)k−/γ , ρ1(x) = C (γx)k+/γ(r − γx)−1+k−/γ (3.11)

for some constant C. Imposing the normalization conditions, then determines C as

C = γ
[
r(k++k−)/γB(k+/γ, k−/γ)

]−1

,

where B(α, β) is the Beta function:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

Finally, setting r/γ = 1, the total probability density ρ(x) = ρ0(x) + ρ1(x) is given
by [147]

ρ(x) =
xk+/γ−1(1− x)k−/γ−1

B(k+/γ, k−/γ)
. (3.12)

The steady-state density ρ(x) for various values of K± = k±/γ is sketched in
Fig. 6. When the switching rates k±between the active and inactive gene states
are faster than the rate of degradation γ then the steady-state density is unimodal
(graded). On the other hand, if the rate of degradation is faster then the density
tends to be concentrated around x = 0 or x = 1, consistent with a binary process.
This suggests that if switching between promoter states is much slower than other
processes then one can have a transcriptional contribution to protein bursting [147],
see also section 4. Slow switching is more likely to occur in eukaryotic rather than
prokaryotic gene expression. That is, the presence of nucleosomes and the packing
of DNA-nucleosome complexes into chromatin tends to render promotors inaccessible
to the transcriptional machinery in eukaryotic cells, thus slowing down transitions
between active and repressed promotor states.
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Hufton et al. [135] have recently generalized the two-state environmental switching
model to include the effects of molecular noise and nonlinearities. These can be
included by carrying out a system-size expansion of the master equation for protein
synthesis when the environment is in state n. This leads to modified CK equations
that describe the time evolution of the pdfs for the piecewise stochastic differential
equation

dX(t) = Fn(X)dt+

√
σn(X)

Ω
dW (t) (3.13)

for n(t) = n ∈ {0, 1}, Ω the system size, and

Fn(x) = rn − γx, σn(x) = rn + γx. (3.14)

We now have a combination of discrete environmental noise and continuous intrinsic
molecular noise. Hufton et al. show how to approximate the steady-state densities
by carrying out a linear noise approximation, which can be applied even when Fn, σn
and k± are nonlinear functions of x (see also [237]).

It is important to note that both the PDMP and its extension to include
demographic noise are approximations of the full chemical master equation describing
the stochastic variations in the state of the gene and the number of proteins. Rigorous
error bounds on the accuracy of a PDMP approximation to a chemical master equation
based on a partial thermodynamic limit have been obtained elsewhere [141]. In
particular one finds that under suitable conditions, the PDMP approximates the
marginal distribution of the discrete species (in our case the discrete state n) and
moments of the continuous species (in our case protein concentration) up to an error
of O(Ω−1).

3.3. Population-level correlations in gene expression.

As we have already indicated in section 3.2, there are two distinct mechanisms for
switching (see Fig. 7):

(i) The first is intrinsic switching within a cell that is driven by fluctuations in
the binding and unbinding of a transcription factor Y [147, 151, 258]. The
dynamics of Y is assumed to be independent of protein X, that is, there is no
feedback. Each copy of the gene within a cell or across a population of cells
switches independently. Since the rate of activation k+ will be proportional to
the concentration c of Y in the nucleus, this simple network can be viewed as an
input/output device that converts the input signal c to an output signal given by
the concentration x of protein X. Moreover, if X is a green fluorescent protein
then the output response can be measured.

(ii) The second is extrinsic switching driven by a randomly switching environment
[228]. Whether or not a promoter site is occupied now depends on the state
n(t) of the environment, and will be common to all cells evolving in the same
environment. The discrete environmental states could represent the presence of
some extracellular metabolite or signaling molecule, perhaps arising from changes
in the physiological or hormonal state that a cell experiences in a multicellular
organism. For concreteness, we will assume that each cell carries a single copy of
the gene of interest. However, one could equally well have multiple copies of the
gene in each cell, and a combination of intrinsic and extrinsic switching.
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Figure 7. Diagram illustrating the non-equivalence of population averaging over
many cells evolving in the same switching environment and averaging over trails
of a single cell evolving in multiple realizations of a switching environment. Here
rn(t) denotes the switching protein production rate in a given realization n(t) of
the environment.

These two mechanisms are equivalent at the single cell level, but are significantly
different at the population level, since the common random environment introduces
statistical correlations between the cells.

Numerically speaking, in the case of a single gene one could determine the
stationary density by carrying out many independent realizations of the doubly
stochastic process given by equation (3.13) (after allowing for transients) and
constructing a histogram of the fraction of trials at some given time T � 0 for which
n(T ) = n and X(t) ∈ (xl, xl + ∆x), after partitioning the continuous variable x
into bins labeled by l. In many stochastic models, an equivalent way of determining
the statistics is to consider a large population of identical, independent cells and to
carry out an ensemble average over a single trial. However, the situation is more
complicated in the case of cells evolving in the same randomly switching environment.
That is, for a single realization of the stochastic process for the population, the cells
are not independent. In other words, trial averaging and ensemble averaging are not
equivalent unless one averages the latter over multiple realizations of the environment.
Thus there are additional statistics contained within a single realization of a population
of cells. This issue has recently been explored in a different context, namely, diffusion
processes [50, 53, 54] and random walks [164] in switching environments (see section
8.2). Here we briefly sketch how the mathematical framework for studying diffusion
in random environments can be extended to gene networks.

Consider the piecewise deterministic PDE

∂P (x, t)

∂t
= LnP (x, t) ≡ − ∂

∂x
(Fn(x)P (x, t)) (3.15)

for n(t) = n ∈ {0, 1}. Equation (3.15) is supplemented by no-flux boundary conditions
at x = 0, 1. We are imagining that there is an infinite population of identical cells
all evolving in the same switching environment, such that in between switches, the
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probability density that any one cell has concentration x at time t is P (x, t). (A finite
population of cells would add yet another level of stochasticity.) The important point
to note is that P (x, t) is itself a random variable. In order to analyze equation (3.15),
we follow the approach of [50] by discretizing x using a finite-difference scheme so
that the system is converted to a PDMP. Introduce the lattice spacing a such that
(N + 1)a = r/γ for integer N , and let Pj(t) = P (aj, t) etc., j = 0, . . . ,N + 1. Also

set F
(n)
j = Fn(ja). Then for n(t) = n

dPi
dt

= −
N∑
j=1

K
(n)
ij Pj , i = 1, . . . ,N (3.16)

Away from the boundaries (i 6= 1,N ),

K
(n)
ij =

1

a
[δi,j−1 − δi,j ]F (n)

j . (3.17)

At the boundaries we require P0(t) = 0 when n = 1 and PN+1(t) = 0 when n = 0.
These conditions can be implemented by taking

K
(1)
1j =

1

2a
δj,2F

(1)
j , K

(0)
N j =

1

2a
δj,N −1F

(0)
j .

Let P(t) = (P1(t), . . . , PN (t)) and introduce the probability density

Prob{P(t) ∈ (P,P + dP), n(t) = n} = %n(P, t)dP, (3.18)

where we have dropped the explicit dependence on initial conditions. Following the
analysis of PDMPs in section 2.6, the CK for the discretized piecewise deterministic
PDE is

∂%n
∂t

=

N∑
i=1

∂

∂Pi

 N∑
j=1

K
(n)
ij Pj

 %n(P, t)

+
∑
m=0,1

Anm%m(P, t), (3.19)

with A00 = −A10 = −k+ and A01 = −A11 = k−. Since the Liouville term in the CK
equation is linear in P, we can derive a closed set of equations for the moments of P.
For the sake of illustration, we will calculate the first and second moments. Let

pn,j(t) = E[Pj(t)1n(t)=n] =

∫
%n(P, t)Pj(t)dP, (3.20)

where 1n(t)=n is the indicator function that is equal to one if n(t) = n and is zero
otherwise. Multiplying both sides of the CK equation (3.19) by Pk(t) and integrating
with respect to P gives (after integrating by parts and using %n(P, t)→ 0 as P→∞)

dpn,k
dt

= −
N∑
j=1

K
(n)
kj pn,j +

∑
m=0,1

Anmpm,k.

We have assumed that the initial discrete state is distributed according to the
stationary distribution of the matrix A. If we now retake the continuum limit a→ 0,
we recover the original CK equation (2.36) after making the identification

ρn(x, t) = E[P (x, t))1n(t)=n]. (3.21)

Hence, we can equate the probability density ρn(x, t), obtained by trial averaging
over multiple realizations of the stochastic process (3.7), with the expectation of the
stochastic density P (x, t) of a population averaged over multiple realizations of the
environment such that n(t) = n. However, from the population perspective, there are
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additional higher-order statistics arising from a large population evolving in the same
random environment. In particular, consider the second-order moments

pn,kl(t) = E[Pk(t)Pl(t)1n(t)=n] =

∫
%n(P, t)Pk(t)Pl(t)dP.

Multiplying both sides of the CK equation (3.19) by Pk(t)Pl(t) and integrating with
respect to P gives (after integration by parts)

dpn,kl
dt

= −
N∑
j=1

K
(n)
kj pn,jl −

N∑
j=1

K
(n)
lj pn,jk +

∑
m=0,1

Anmpm,kl.

If we now retake the continuum limit a→ 0, we obtain a system of equations for the
equal-time two-point correlations

Cn(x, y, t) = E[P (x, t)P (y, t)1n(t)=n], (3.22)

given by

∂Cn
∂t

= − ∂

∂x
(Fn(x)Cn)− ∂

∂y
(Fn(y)Cn) +

∑
m=0,1

AnmCm. (3.23)

The boundary conditions are

C1(0, y, t) = C1(x, 0, t) = 0, C0(L, y, t) = C0(x, L, t) = 0,

and we have the marginal densities∫ r/γ

0

Cn(x, y, t)dx =

∫ r/γ

0

Cn(y, x, t)dx = ρn(y.t).

One can interpret Cn(x, y, t) as the joint probability (with respect to trials) that two
cells evolving in the same environment have concentrations x and y at time t when
the environment is in state n [50]. Similarly the r-th moments determine the joint
probability density for r cells, which evolves according to an r-th order quasilinear
system. The latter can be analyzed using the method of characteristics. In the case
of the second-order moments, one finds that the variances σ2

n(x) = Cn(x, x) have the
asymptotic behavior

σ2
0(x) ∼ k−x−2+k+/γ , x ∼ 0,

σ2
1(x) ∼ k+[r − γx]−2+k−/γ , x ∼ r/γ,

Piecewise deterministic PDEs will be explored further in section 8.2, within the context
of diffusion in randomly switching environments.

Note that the above analysis of population-level statistical correlations can be
extended to more complicated systems. First, there could be multiple discrete states
of the environment, n ∈ {0, 1, . . . N0}, with associated functions Fn(x) such that
ẋ = Fn(x) for n(t) = n. Second, the individual gene networks could involve several
interacting genes and protein products resulting in a nonlinear feedback system on
Rm, m > 1 (see section 3.5). Now the piecewise-deterministic dynamics is nonlinear
and could exhibit multistability and limit cycle oscillations. Third, the switching rates
of the environment could depend on the total concentration of proteins produced in a
population of cells, as occurs in quorum sensing (see section 7). In this case, the CK
Eq. (3.19) for the higher-level PDMP would be a nonlinear function of the probability
distribution, resulting in a moment closure problem. Finally, one could include
demographic noise in the protein concentration along the lines of Ref. [135]. The
piecewise-deterministic first-order PDE (3.15) is replaced by a piecewise-deterministic
Fokker-Planck equation. The derivation of the moment equations via finite differences
then involves the discrete Laplacian, see also section 8.2.
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gene X

X

Figure 8. An autoregulatory network. A gene X is repressed by its own protein
product.

3.4. Autoregulatory network

One of the simplest examples of a gene network with regulatory feedback is
autoregulation, in which a gene is directly regulated by its own gene product [235],
see Fig. 8. A simple kinetic model of autoregulatory feedback is

dx1

dt
= −γx1 + F (x2),

dx2

dt
= rx1 − γpx2, (3.24)

where x1(t) and x2(t) denote the concentrations (or number) of mRNA and protein
molecules at time t. The parameters γ, γp represent the degradation rates, r represents
the translation rate of proteins, and F (x) represents the nonlinear feedback effect of
the protein on the transcription of mRNA. A typical choice for F in the case of an
activator (a) or repressor (r) is to express it in terms of a Hill function. That is,
F = Fa or F = Fr with

Fa(x) = σ0 +
σ1κx

2

1 + κx2
, Fr(x) =

σr
1 + κx2

(3.25)

One can view the quadratic terms as arising from dimerization. A fixed point (x∗1, x
∗
2)

of the kinetic equations satisfies x∗1 = F (x∗2)/γ with x∗2 a root of the cubic

f(x∗2) ≡ −γpx∗2 +
r

γ
F (x∗2) = 0.

One can thus determine the number of fixed points and their stability using a graphical
construction, see Fig. 9. In the case of negative feedback there is a single stable fixed
point, whereas with positive feedback the network can be monostable or bistable. For
the moment, suppose that there is only one stable fixed point.

Linear noise approximation. In order to take into account the effects of molecular
noise due to finite copy numbers, we need to write down the corresponding master
equation. Let P = P (m,n, t) denote the probability that there are m mRNA and n
proteins at time t. Then (see section 2.4)

dP

dt
= ΩF (n)P (m− 1, n, t) + γ(m+ 1)P (m+ 1, n, t)

+ rmP (m,n− 1, t) + γp(n+ 1)P (m,n+ 1, t)

− [ΩF (n) + γm) + rm+ γpn]P (m,n, t). (3.26)

We will estimate the resulting Fano factor by carrying out a linear noise approximation
as outlined in section 2.4. First, rewrite the kinetic equations in the general form
(2.13) with two chemical species (K = 2) and four single-step reactions (R = 4). For
example, taking a = 1, 2 to be mRNA production and degradation, respectively, we
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have Si,1 = δi,1, Si,2 = −δi,1, f1(x) = F (x2), and f2(x) = γx1. Expressing the master
equation as (2.18) and carrying out a diffusion approximation then leads to the FP
equation (2.20) with drift terms

V1(x) = F (x2)− γx1, V2(x) = rx1 − γpx2. (3.27)

and a diagonal diffusion matrix D with non-zero components

D11 = F (x2) + γx1, D22 = rx1 + γpx2 (3.28)

Linearizing the corresponding Langevin equation about the unique fixed point by
setting Xi(t) = x∗i + Ω−1/2Yi(t) then yields the OU process (2.26) for Yi. Introducing
the stationary covariance matrix

Σij = 〈[Yi(t)− 〈Yi(t)〉][Yj(t)− 〈Yj(t)〉]〉
one sees that Yi(t) is a Gaussian process with zero mean and covariances determined
from the matrix equation

AΣ + ΣAT = −D (3.29)

with

A =

(
−γ µ
r −γp

)
, D =

(
F (x∗2) + γx∗1 0

0 rx∗1 + γpx
∗
2

)
, µ = F ′(x∗2).

Note that µ > 0 for an activator and µ < 0 for a repressor. Solving the matrix
equation (3.29) yields

Σ12 = Σ21 =
η

1 + η

(
1− φ

1 + bφ

)
x∗2, Σ22 = x∗2 +

r

γp
Σ12,

where

b =
r

γ
, η =

γp
γ
, φ = − µ

γp
.

protein concentration x2

+ve feedback

-ve feedback

f(x2)

1 2 3
-0.1

0

0.05

0.1

0.15

0.2

0

-0.05

Figure 9. Fixed points of deterministic autoregulatory network. Network is
monostable in the case of negative feedback (red curve) and weak positive feedback
(dashed blue curve), but can exhibit bistability in the case of strong positive
feedback (solid blue curve).
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Here b is the so-called burst size (see section 4.1), η is the ratio of degradation rates,
and φ describes the strength and sign of the feedback. It follows that the Fano factor
for proteins is

var[n]

〈n〉
= 1 +

b

1 + η

(
1− φ

1 + bφ

)
. (3.30)

In the absence of feedback (φ = 0), the Fano factor is 1 + b/(1 + η), which is larger
than the unregulated model of section 3.1, because we have included the effects of
protein fluctuations. When negative feedback is included, the Fano factor decreases
since φ > 0. This establishes that negative feedback can reduce fluctuations in protein
number.

Promoter noise. Let us assume that the associated gene can exist in two states, an
off state (s = 0) where there is a baseline level σ0 of mRNA transcription and an on
state (s = 1) that produces mRNA at a higher rate σ1. Transitions between the on
and off states of the gene are given by a two-state Markov process

(off)
α(x)


β(x)

(on) α(x) = α0x
2, β(x) = β0, (3.31)

with α0/β0 = κ and x = n/N the (number) concentration of proteins. Here N
is a characteristic number of proteins, say, and acts as a dimensionless system-size
parameter. For simplicity, we will ignore mRNA dynamics by taking the concentration
of mRNA at quasi-equilibrium and absorbing the factor r/γ into the production rates
σ0, σ1. Let Ps(n, t) be the probability that there are n proteins and the gene is in
state s at time t. We then have the pair of equations

dP0(n, t)

dt
= L0P0(n, t)− α(n/N)P0(n, t) + β(n/N)P1(n, t) (3.32a)

dP1(n, t)

dt
= L1P1(n, t) + α(n/N)P0(n, t)− β(n/N)P1(n, t) (3.32b)

where

Ls[f(n)] = N(sσ1 + σ0)[(f(n− 1)− f(n)] + γp[(n+ 1)f(n+ 1)− nf(n)].

Equations (3.32a) and (3.32b) can either be viewed as a master equation for the discrete
variables (s, n) or as a Chapman-Kolmogorov equation for the discrete variables n that
evolves in a switching environment labeled by s = 0, 1. The latter interpretation links
the model to a stochastic hybrid system that is obtained by carrying out a system-size
expansion with respect to N , as detailed below equation (3.26). That is, for large N

∂ρ0(x, t)

dt
= −∂V0(x)ρ0(x, t)

∂x
+

1

2N

∂2D0(x)ρ0(x, t)

∂x2
− α(x)

ε
ρ0(x, t) +

β(x)

ε
ρ1(x, t)

(3.33a)

∂ρ1(x, t)

dt
= −∂V1(x)ρ1(x, t)

∂x
+

1

2N

∂2D1(x)ρ1(x, t)

∂x2
+
α(x)

ε
ρ0(x, t)− β(x)

ε
ρ1(x, t),

(3.33b)

where

Vs(x) = sσ1 + σ0 − γpx, Ds(x) = sσ1 + σ0 + γpx.



CONTENTS 45

We have also performed the rescalings α→ α/ε and β → β/ε such that the transitions
rates are O(1) with respect to γp. Equations (3.33a) and (3.33b) describe the CK
equation for the piecewise Langevin equation

dX = Vs(X)dt+
1√
N

√
Ds(X)dW (t), (3.34)

which reduces to a piecewise deterministic ODE in the limit Ω→ 0.
Another important limit is when the promoter switching rates are much faster

than the other transition rates so that 0 < ε� 1. Applying the adiabatic limit ε→ 0
to (3.33a) and (3.33b) as described in section 2.6 shows that we recover the effective
SDE

dX = V (X)dt+
1√
N

√
D(X)dW (t), (3.35)

with

V (x) =
∑
s=0,1

Vs(x)ρ∗s(x), D =
∑
s=0,1

Ds(x)ρ∗s(x), (3.36)

where ρ∗s is the steady-state distribution of the two-state Markov process (3.31):

ρ∗0(x) =
β(x)

α(x) + β(x)
, ρ∗1(x) = 1− ρ∗0(x) =

α(x)

α(x) + β(x)
. (3.37)

We thus recover equations (3.27) and (3.28) for x1 = F (x)/γ and x2 = x.

3.5. Mutual repressor model of a bistable genetic switch

The idea of a genetic switch was first proposed over 40 years ago by Jacob and
Monod [140], in their study of the lac operon. When there is an abundance of glucose,
E. coli uses glucose exclusively as a food source irrespective of whether or not other
sugars are present. However, when glucose is unavailable, E. coli can feed on other
sugars such as lactose, and this occurs via the lac operon switch that induces the
expression of various genes. Significant insight into genetic switches such as the lac
operon has been obtained by constructing a synthetic version of a switch in E. coli,
in which the gene product of the switch is a fluorescent reporter protein [106]. The
flipping of the switch can thus be observed by measuring the fluorescent level of the
cells. The synthetic gene circuit consists of two repressor proteins whose transcription
is mutually regulated, see Fig. 10. That is, the protein product of one gene binds to
the promoter of the other gene and represses its output - a so-called mutual repressor
model. For simplicity, suppose that the dynamics of transcription and translation are
ignored so that only the mutual effects of the proteins on protein production are taken

gene X

X

Y

gene Y

Figure 10. Mutual repressor model of a genetic switch. A gene X expresses a
protein X that represses the transcription of gene Y and the protein Y represses
the transcription of gene X.
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into account. Denoting the concentrations of the proteins by x(t), y(t), the resulting
kinetic equations are

dx

dt
= −γx+

r

1 +Kyn
,

dy

dt
= −γy +

r

1 +Kxn
. (3.38)

Here γ is the rate of protein degradation, r is the rate of protein production in the
absence of repression, and K is a binding constant for the repressors. As in the model
of auto regulation, negative feedback is modeled in terms of a Hill function with Hill
coefficient n. It is convenient to rewrite the equations in non-dimensional form by
measuring x and y in units of K−1/n and time in units of γ−1:

du

dt
= −u+

α

1 + vn
,

dv

dt
= −v +

α

1 + un
, (3.39)

with α = rK1/n/γ. In order to determine whether or not the mutual repressor model
can act as a bistable switch, it is necessary to investigate the existence and stability
of fixed points. For simplicity, consider the case n = 2 (protein dimerization). The
fixed point equation for u is

u = α

[
1 +

(
α

1 + u2

)2
]−1

,

which can be rearranged to yield a product of two polynomials:

(u2 − αu+ 1)(u3 + u− α) = 0.

The cubic is a monotonically increasing function of u and thus has a single root given
implicitly by u = α/(1 + u2) = v. This solution is guaranteed by the exchange
symmetry of the underlying equations. The roots of the quadratic are given by

u = U± ≡
1

2

[
α±

√
α2 − 4

]
,

with v = U∓. It immediately follows that there is a single fixed point when α < 2
and three fixed points when α > 2. Moreover, linear stability analysis establishes that
the symmetric solution is stable when α < 2, and undergoes a pitchfork bifurcation at
the critical value αc = 2 where it becomes unstable and a pair of stable fixed points
emerge.

So far we have assumed that the number of proteins is sufficiently large so that
deterministic mass action kinetics can be used. In the case of relatively low copy
numbers it is necessary to construct a chemical master equation along similar lines
to the autoregulatory model. For the sake of illustration, we will consider a slightly
simplified mutual repressor model consisting of a single promoter site; if a dimer of one
protein is bound to the site then this represses the expression of the other [151, 191].
Thus the promoter can be in three states Oj , j = 0, 1, 2: no dimer is bound to the
promoter (O0); a dimer of protein X is bound to the promoter (O1); a dimer of protein
Y is bound to the promoter (O2). Suppose that the number of proteins X and Y are
n and m, respectively. The state transition diagram for the three promoter states is
then

O1

βκ



n(n−1)κ
O0

m(m−1)κ


βκ

O2,

where κ is a rate and β is a non-dimensional dissociation constant. Protein X (Y )
is produced at a rate α when the promoter is in the states O0,1 (O0,2), and both
proteins are degraded at a rate γ in all three states. Let Pj(n,m, t), j = 0, 1, 2, be
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the probability that there are n (m) proteins X (Y ) and the promoter is in state j at
time t. The master equation for P = (P0, P1, P2)T is given by

d

dt
Pj(n,m, t) =

∑
k=0,1,2

∑
n′,m′

[
δn,n′δm,m′Ajk + δj,kW

j
nm,n′m′

]
Pk(n′,m′, t), (3.40)

where

A = κ

 −n(n− 1)−m(m− 1) β β
n(n− 1) −β 0
m(m− 1) 0 −β

 , (3.41)

and∑
n′,m′

W 0
nm,n′m′P0(n′,m′, t)

= γ[(n+ 1)P0(n+ 1,m, t) + (m+ 1)P0(n,m+ 1, t)− (n+m)P0(n,m, t)]

+ α(P0(n− 1,m, t) + P0(n,m− 1, t)− 2P0(n,m, t)) (3.42a)∑
n′,m′

W 1
nm,n′m′P1(n′,m′, t)

= γ[(n+ 1)P1(n+ 1,m, t) + (m+ 1)P1(n,m+ 1, t)− (n+m)P1(n,m, t)]

+ α(P1(n− 1,m, t)− P1(n,m, t)) (3.42b)∑
n′,m′

W 2
nm,n′m′P1(n′,m′, t)

= γ[(n+ 1)P2(n+ 1,m, t) + (m+ 1)P2(n,m+ 1, t)− (n+m)P2(n,m, t)]

+ α(P2(n,m− 1, t)− P2(n,m, t)) (3.42c)

Kepler and Elston [151] consider two approximations of the master equation, one
based on a system size expansion of the W j terms with respect to the mean number
N = α/γ of proteins when the promoter is in state O0, and the other based on a
quasi-steady-state (QSS) approximation. The latter assumes that the rates of protein
production and degradation are much slower than the rates of switching between
promoter states. First, introduce the rescaling t → tγ and set x = n/N, y = m/N .
The master equation for the resulting probability densities ρj(x, y, t) takes the form

∂

∂t
ρj(x, y, t) =

∑
k=0,1,2

[
1

ε
Ajk +Nδj,kWj

]
ρk(x, y, t), (3.43)

where ε = γ3/κα2 and b = βγ2/α2 are dimensionless parameters,

A =

 −x(x− 1/N)− y(y − 1/N) b b
x(x− 1/N) −b 0
y(y − 1/N) 0 −b

 , (3.44)

and Wj are differential shift operators

W0 =
(

e∂x/N − 1
)
x+

(
e∂y/N − 1

)
y +

(
e−∂x/N + e−∂y/N − 2

)
(3.45a)

W1 =
(

e∂x/N − 1
)
x+

(
e∂y/N − 1

)
y +

(
e−∂x/N − 1

)
(3.45b)

W2 =
(

e∂x/N − 1
)
x+

(
e∂y/N − 1

)
y +

(
e−∂y/N − 1

)
. (3.45c)
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Figure 11. Phase-plane dynamics of mutual repressor model analyzed by Kepler
and Elston [151] and Newby [191] with b = 0.15. The black curve shows the
y-nullcline and the grey curve shows the x-nullcline. The open circles show the
stable fixed points, the filled circle shows the unstable saddle. The irregular curve
shows a stochastic trajectory leaving the lower basin of attraction to reach the
separatrix.

The latter are a way of representing a Taylor expansion. That is, for any smooth
function f(x),

f(x±∆x) = f(x)± f ′(x)∆x+ f ′′(x)∆x2/2!± . . .

=

(
1±∆x ∂x +

∆x2

2!
∂2
x ± . . .

)
f(x) = e±∆x∂xf(x).

If the promoter transitions are fast and the expected number of protein molecules
is large, then there are two small parameters in the model, ε and 1/N . Taking the
limits ε→ 0 and N →∞ in either order, one obtains the kinetic equations

dx

dt
= f(x, y),

dy

dt
= f(y, x), with f(x, y) =

1

1 + y2

b+x2

− x. (3.46)

One finds that the deterministic system is bistable for 0 < b < bc = 4/9, see Fig. 11. At
the critical point b = bc there is a saddle-node bifurcation in which a stable/unstable
pair annihilate so that for b > bc there is a single stable fixed point. There are
then two approximations of the full master equation that can be used to explore the
effects of noise-induced transitions in the bistable regime, depending on whether one
considers the system size expansion in 1/N for fixed ε or the QSS expansion in ε
for fixed N . For the sake of illustration, we focus on the former. Taylor expanding
the differential operators Wj and keeping only the leading order terms yields the
multivariate differential Chapman-Kolmogorov (CK) equation [151,191]

∂ρj
∂t

= −∂Fj(x)ρj
∂x

− ∂Gj(y)ρj
∂y

+
1

ε

∑
k=0,1,2

Ajk(x, y)ρk (3.47)

with

F0(x) = 1− x, F1(x) = 1− x, F2(x) = −x
G0(y) = 1− y, G1(y) = −y, G2(y) = 1− y,
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and

A =

 −x2 − y2 b b
x2 −b 0
y2 0 −b

 . (3.48)

In a similar fashion to equations (3.33a) and (3.33b), the CK equation (3.47) describes
an effective stochastic hybrid system in which the concentration of proteins X and Y
play the role of the piecewise deterministic continuous variables, and the state of the
promoter is the discrete variable that evolves according to a continuous-time Markov
process. The analysis of metastability in the mutual repressor model can be found
in [151,191].

3.6. Spatial aspects of gene regulation

So far we have assumed that the various molecular players are well mixed within
the cytoplasm of a bacterium or the nucleus of a eukaryotic cell, so that spatial
effects can be ignored. However, there is at least one major step in gene regulation
where spatial affects cannot be ignored. This concerns the mechanism whereby a
protein transcription factor searches for a specific promoter binding site (specific
target sequence of base pairs) on a long DNA molecule.† One of the striking
features of these protein-DNA interactions is that experimentally observed binding
rates (k = 1010M−1s−1 [215]) are several orders of magnitude higher than predicted
from the classical Smoluchowski theory of diffusion–limited reactions [149]. A possible
explanation for this discrepancy was originally proposed by Berg, Winter and von
Hippel (BHW) in their model of facilitated diffusion [33, 246]. The main idea of the
BHW model is to assume that the protein randomly switches between two distinct
phases of motion, 3D diffusion in solution and 1D diffusion along DNA (sliding), see
Fig. 12. The BHW model assumes that there are no correlations between the two
transport phases, so that the main factor in speeding up the search is an effective
reduction in the dimensionality of the protein motion.

A rough estimate of the effective reaction rate of facilitated diffusion in the BHW
model can be obtained as follows [180]. Consider a single protein searching for a
single binding site on a long DNA strand of N base pairs, each of which has length
b. Suppose that on a given search, there are R rounds of switching such that during
the ith round the protein spends a time T3,i diffusing in the cytosol followed by a
period T1,i sliding along the DNA with i = 1, . . . , R. It follows that the total search

time is T =
∑R
i=1(T3,i + T1,i), and the mean search time is τ = r(τ3 + τ1), where

r is the mean number of rounds and τ3, τ1 are the mean durations of each phase of
3D and 1D diffusion. Let n denote the mean number of sites scanned during each
sliding phase with n� N . If the binding site of DNA following a 3D diffusion phase
is distributed uniformly along the DNA, then the probability of finding the specific
promoter site is p = n/N . It follows that the probability of finding the site after
R rounds is (1 − p)R−1p. Hence, the mean number of rounds is r = 1/p = N/n.
Assuming that 1D sliding occurs via normal diffusion, then nb = 2

√
D1τ1 where D1

† In the case of eukaryotic cells one also has to consider the time taken for a newly synthesized
transcription factor to be transported back into the nucleus. This process is thought to be an
important factor in the clock gene underlying circadian rhythms [116].
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is the 1D diffusion coefficient, and we have [180]

τ =
N

n
(τ1 + τ3). (3.49)

Since τ3 depends primarily on the cellular environment, it is unlikely to vary
significantly between different protein molecules. This suggests minimizing the mean
search time with respect to τ1 while keeping τ3 fixed. Setting dτ/dτ1 = 0 implies
that the optimal search time occurs when τ1 = τ3 with τopt = 2Nτ3/n. On the other
hand, the expected search time for pure 3D diffusion gives τ3D = Nτ3, which is the
approximate time to find one out of N sites by randomly binding to a single site of
DNA every τ3 seconds and no sliding (τ1 = 0). Thus facilitated diffusion is faster by
a factor n/2. Additional insights into facilitated diffusion may be obtained by using
the Smoluchowski formula [149] for the rate at which a diffusing protein can find any
one of N binding sites of size b, namely, τ−1

3 = 4πD3Nb[DNA], where [DNA] is the
concentration of DNA and the 3D geometry of DNA is ignored. Using this to eliminate
N shows that the effective reaction rate of facilitated diffusion is [180]

k ≡ 1

τ [DNA]
= 4πD3

(
τ3

τ1 + τ3

)
nb (3.50)

This equation identifies two competing mechanisms in facilitated diffusion. First,
sliding diffusion effectively increases the reaction cross-section from 1 to n base pairs,
thus accelerating the search process compared to standard Smoluchowski theory. This
is also known as the antenna effect [133]. However, the search is also slowed down by a
factor τ3/(τ1+τ3), which is the fraction of the time the protein spends in solution. That
is, a certain amount of time is lost by binding to non-specific sites that are far from
the target. Note that typical experimental values are D3 = 10µm2s−1, b = 0.34nm,
n = 200, and one has to convert k into units of inverse molar per sec. Improvements
in these estimates have been obtained by Coppey et al. [65], who take into account
the fact that diffusion occurs in a bounded domain.

There is some experimental support for the BHW model of facilitated diffusion.
In particular, recent advances in single–molecule spectroscopy have allowed one to
observe the sliding of fluorescently labeled proteins along DNA chains with high
precision, although most of these studies have been performed in vitro. However,

protein 

3D diffusion

sliding

target

DNA

Figure 12. Basic mechanism of facilitated diffusion involving alternating phases
of 3D diffusion and 1 D diffusion (sliding along the DNA). (b) 1D representation
of facilitated diffusion.
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a quantitative comparison of the BHW model with experimental data leads to a
number of discrepancies. For example, it is usually assumed that D1 ≈ D3 in
order to obtain a sufficient level of facilitation. On the other hand, single–molecule
measurements indicate that D1 � D3 [255]. Such experiments have also shown that
τ1 � τ3, which is significantly different from the optimal condition τ1 = τ3. Hence the
intermittent search process could actually result in a slowing down compared to pure
3D diffusion [133]. The BHW model also exhibits unphysical behavior in certain limits.
These issues have motivated a number of alternative models of facilitated diffusion,
as recently highlighted in [155]. One proposed mechanism in bacteria is based on the
observation that genes responsible for producing specific proteins are located close to
the binding sites of these proteins. This colocalization of proteins and binding sites
could significantly speed up the search process by requiring only a small number of
alternating 3D and 1D phases [180, 207]. However, such a mechanism might not be
effective in eukaryote cells, where transcription and translation tend to be spatially
and temporally well separated. Moreover, colocalization breaks down in cases where
proteins have multiple targets on DNA.

Another interesting issue is the so-called speed-stability paradox [180, 226],
which arises from the observation that sequence-dependent protein-DNA interactions
generate a rugged energy landscape during sliding motion of the protein [180]. On the
one hand, fast 1D search requires that the variance σ2 of the protein-DNA binding
energy be sufficiently small, that is, σ ∼ kBT , whereas stability of the protein at
the DNA target site requires σ ∼ 5kBT . One possible resolution of this paradox is
to assume that a protein-DNA complex has two conformational states: a recognition
state with large σ and a search state with small σ [180]. If the transitions between
the states are sufficiently fast then target stability and fast search can be reconciled.
(For a recent review of the speed-stability paradox and its implications for search
mechanisms see [226]). Other effects include changes in the conformational state of
DNA and the possibility of correlated association/dissociation of the protein [133],
and molecular crowding along DNA [166] or within the cytoplasm [139].

4. Transcriptional and translational bursting

We now turn to one important example of stochastic switching at the genetic level,
namely, transcriptional and translational bursting. The latter is a consequence of
the fact that lifetime of mRNA is usually much shorter than the expressed proteins
[32, 59, 178], whereas the former tends to be associated with the switching between
active and inactive states of a gene.

4.1. Translational bursting

Consider a single mRNA molecule with a degradation rate γ, which starts synthesizing
a protein at time t = 0. Let P0(n, t) denote the probability that there are n proteins
at time t and the mRNA has not decayed, and let Pc(n, t) be the corresponding
probability when the mRNA has decayed. If protein degradation is ignored, then the
master equation is

dP0(n, t)

dt
= −γP0(n, t) + r[P0(n− 1, t)− P0(n, t)] (4.1a)

dPc(n, t)

dt
= γP0(n, t), (4.1b)
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where r is the rate of protein production and P0(−1, t) ≡ 0. Let P (n) =
limt→∞ Pc(n, t). Note that limt→∞ P0(n, t) = 0 due to the decay of mRNA.
Integrating (4.1b) with respect to time gives

P (n) = γ

∫ ∞
0

P0(n, t)dt,

since Pc(n, 0) = 0. In order to compute ρ0(n, t), integrate equation (4.1a) with respect
to time using P0(n, 0) = δn,0:

−δn,0 = −P (n) +
r

γ
[P (n− 1)− P (n)].

Setting n = 0 gives P (0) = γ/(r + γ), and for n ≥ 1, we have the recurrence relation

P (n) =
r

r + γ
P (n− 1)→ P (n) =

(
r

r + γ

)n
γ

r + γ
.

One important quantity is the mean number of proteins produced per mRNA, which is
known as the burst size b. The latter can be calculated by introducing the generating
function

G(z) ≡
∑
n≥0

znP (n) =
γ

r + γ

1

1− zr/(r + γ)
=

γ

r + γ − zr
,

such that

b =
∑
n≥0

nP (n) = G′(1) =
rγ

[r + γ − zr]2

∣∣∣∣
z=1

=
r

γ
.

The notion of a translational burst refers to the observation that a single mRNA
generates a burst of protein production before it decays, see Fig. 2(c).

Multiple mRNAs. Now suppose that there are m mRNA molecules, and that
translation of each mRNA proceeds independently. The probability of producing
N proteins due to bursts from each mRNA molecule can be expressed as a multiple
convolution [204]. For example, if m = 2, 3 then

P2(N) =

N∑
n=0

P (n)P (N − n), P3(N) =

N∑
n=0

P (n)

N−n∑
n′=0

P (n′)P (N − n− n′).

Assume that the number of proteins is sufficiently large so that we can approximate
the sums by integrals, for example,

P2(N) =

∫ N

0

P (n)P (N − n)dn.

The integral formulation allows us to use Laplace transforms and the convolution
theorem. In particular,

P̂m(s) ≡
∫ ∞

0

Pm(n)e−sndn =
[
P̂ (s)

]m
,

where

P̂ (s) =

∫ ∞
0

bn

(1 + b)n+1
e−sndn =

1

1 + b

∫ ∞
0

(
b

1 + b
e−s
)n

dn

=
1

1 + b

∫ ∞
0

exp

(
n ln

(
b

1 + b
e−s
))

dn = − 1

1 + b

[
ln

(
b

1 + b

)
− s
]−1

.
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Hence,

P̂m(s) =

(
−1

1 + b

)m [
ln

(
b

1 + b

)
− s
]−m

=

(
1

1 + b

)m
[s− β]

−m
,

where β = ln (b/(1 + b)). Using the Laplace identities

L (eβn) =
1

s− β
,

(
− d

dβ

)k
L (eβn) = (−1)kL (nkeβn) =

k!

[s− β]k+1
,

establishes that

P̂m(s) =

(
1

1 + b

)m
1

(m− 1)!
L (nm−1eβn)

It follows that

Pm(n) =

(
1

1 + b

)m
1

(m− 1)!
nm−1eβn =

(
b

1 + b

)n(
1

1 + b

)m
nm−1

Γ(m)
.

For n, b� 1, we can make the approximation(
b

1 + b

)n
= e−n ln(1+b−1) ≈ e−n/b,

which leads to the gamma distribution for n with m fixed:

Pm(n) ≡ F (n;m, b−1) =
nm−1e−n/b

bmΓ(m)
. (4.2)

It immediately follows from properties of the gamma distribution that, for a given
number m of mRNA molecules, we have 〈n〉 = mb and var(n) = mb2. Thus, under
the various approximations, the Fano factor is of the order of the burst size b. Finally,
an estimate for m is m ≈ k/γ0 where k is the rate of production of mRNAs and γ0

is the frequency of the cell cycle (assuming that it is higher than the rate of protein
degradation).

Chapman-Kolomorov equation for population bursting. An alternative approach to
analyzing protein bursting is to start from the Chapman-Kolmogorov (CK) equation
[101]

∂ρ(x, t)

∂t
=

∂

∂x
[γ0xρ(x)] + k

∫ x

0

w(x− x′)ρ(x′, t)dx′, (4.3)

where ρ(x, t) is the probability density for x protein molecules (treating x as a
continuous variable) at time t, and

w(x) =
1

b
e−x/b − δ(x). (4.4)

The first term on the right-hand side of the CK equation represents protein
degradation, wheres the second term represents the production of proteins from
exponentially distributed bursts. The gamma distribution (4.2) with n→ x is obtained
as the stationary solution of the CK equation, which can be established using Laplace
transforms (see below). It is also possible to incorporate autoregulatory feedback into
the CK equation by allowing the burst rate to depend on the current level of protein
x, which acts as its own transcription factor [101,171,172,257]:

∂ρ(x, t)

∂t
=

∂

∂x
[γ0xρ(x, t)] + k

∫ x

0

w(x− x′)c(x′)ρ(x′, t)dx′. (4.5)
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One possible form of the response function c(x) is a Hill function

c(x) =
ks

ks + xs
,

with s > 0 (s < 0) corresponding to negative (positive) feedback. In this case, the
stationary density takes the form

ρ(x) = Axm(1+ε)−1e−x/b[1 + (x/k)s]−m/s.

Plots of the stationary density show that negative autoregulation sharpens the density
(noise reduction), whereas positive feedback broadens the density and can lead to
bistability, see Fig. 13.

Suppose that c(x) = 1 (no autoregulatory feedback). Laplace transforming with
respect to the protein number x, L (ρ) =

∫∞
0

e−zxρ(x, t)dx = ρ̂(z, t), and using the
convolution theorem gives

∂ρ̂(z, t)

∂t
= γ0zL [xρ](z, t) + kŵ(z)ρ̂(z, t).

Now ∫ ∞
0

e−zxxρ(x, t)dx = − ∂

∂z

∫ ∞
0

e−zxρ(x, t)dx = − ∂

∂z
ρ̂(z, t),

and

ŵ(z) =

∫ ∞
0

e−zx
[

1

b
e−x/b − δ(x)

]
dx =

1

1 + bz
− 1 = − bz

1 + bz
.

Therefore,

∂ρ̂(z, t)

∂t
+ γ0z

∂

∂z
ρ̂(z, t) = kŵ(z)ρ̂(z, t).

This is a quasilinear equation, which can be solved using the method of characteristics
[219]. That is, the corresponding characteristic equations are

dz

dt
= γ0z,

dρ̂

dt
= kŵ(z)ρ̂.

ρ(x)

concentration x (nM)

200 400

ρ(x)

concentration x (nM)

200 400

(a) (b)

A

B

Figure 13. Sketch of typical steady-state probability densities obtained in a
model of protein autoregulation [100]. Parameter values are m = 10, b = 20, k =
70nM . (a) Negative feedback. Curves A and B correspond to the two cases of no
regulation (c ≡ 1) and regulation c = ks/(ks + xs) + ε with s = 1 and ε = 0.05.
(b) Positive feedback with ε = 0.2 and s = −4.
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Solving for z, we have z(t) = z0eγ0t where z0 parameterizes the initial data. Hence

dρ̂

dt
= −k bz0eγ0t

1 + bz0eγ0t
ρ̂,

which can be integrated to give

ρ̂(t) = F (z0) exp

(
−k
∫ t

0

beγ0t
′

1 + beγ0t′
dt′

)
= F (z0) exp

(
− k

γ0
ln

[
1 + bz0eγ0t

1 + bz0

])

= F (z0)

[
1 + bz0eγ0t

1 + bz0

]−k/γ0
Setting z0 = ze−γ0t then yields

ρ̂(z, t) = F (ze−γ0t)

[
1 + bz

1 + bze−γ0t

]−k/γ0
.

Since
∫∞

0
ρ(x, t)dx = 1 for all t > 0, we see that ρ̂(0, t) = 1 for all t > 0. In the limit

t→∞,

ρ̂(z, t)→ ρ̂(z) = F (0) [1 + bz]
−k/γ0 .

Since
∫∞

0
ρ(x)dx = 1, we see that ρ̂(0) = 1, which implies that F (0) = 1. Using the

inverse Laplace transform

L −1(b−1 + z)−m = e−x/b
xm−1

Γ(m)
,

we obtain the result that the stationary density is

ρ(x) =
1

bmΓ(m)
xm−1e−x/b, m =

k

γ0
.

Now suppose that c(x) is given by the Hill function

c(x) =
ks

ks + xs
+ ε.

Laplace transforming the steady-state equation gives

∂ρ̂

∂z
= − k

γ0

1

b−1 + z

∫ s

0

ĉ(z − s)ρ̂(s)ds,

where we have applied the convolution theorem. Multiplying both sides by z + b−1

and taking the inverse Laplace transform gives

∂xρ

∂x
+
xρ

b
=

k

γ0
c(x)ρ(x).

This can be solved for p(x):

ρ(x) = Ax−1e−x/b exp

(
k

γ0

∫
c(y)

y
dy

)
,

where A is a normalization factor. Performing the integral with respect to y for the
given form of c(y) finally yields the result

ρ(x) = Axm(1+ε)−1e−x/b[1 + (x/k)s]−m/s.

Finally, note that a rigorous analysis of the existence of a stationary density and
convergence to the stationary density has been carried out for a more general class of
integral operator equations than (4.5) [171,172,257].
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4.2. Transcriptional bursting and queuing theory

In section 3.2 we considered a simple two-state model of gene regulation. In this model,
a gene switches between an on- and off-state and mRNA is only produced during the
on-phase. However, in eukaryotic cells transcription appears to follow an ordered,
multistep and cyclic process, which involves transitions between distinct chromatin
states [36,251]. Schwabe et al. [223] refer to this complex transcription mechanism as
a molecular ratchet model, in which the time a single gene spends in the on- and off-
phases, and the time between consecutive transcription initiation events are random
variables with corresponding waiting time densities f(t), g(t) and h(t), see Fig. 14.
The complexity of the underlying molecular mechanisms means that these waiting
time densities are not necessarily exponential.

Suppose that an on-state persists for some random time Ton = t and let B(t) be
the number of transcription initiation events (number of mRNA) that occur over this
time interval. (For simplicity, we assume that each mRNA generates the same number
of proteins so that burst size is measured in terms of the number of mRNA produced
during an on-phase.) Let F (b, t) = P[B(t) ≥ b|Ton = t]. If the waiting time density
between events is h(τ) and τj , j = 1, . . . , b denotes the time of the j-th event, then

F (b, t) =

∫ t

0

. . .

∫ τ2

0

h(t− τb)H(τb − τb−1) · · ·h(τ2 − τ1)dτ1 · · · dτb ≡
∫ t

0

h(τ)(b)dτ,

where h(t)(b) denotes the b-th convolution of h(t). The probability that exactly b
initiation events occur in the time interval t is

P (b, t) = F (b, t)− F (b+ 1, t) =

∫ t

0

[
h(τ)(b) − h(τ)(b+1)

]
dτ.

The mean burst-size given t is then

〈b(t)〉 =

∞∑
b=0

b

∫ t

0

[
h(τ)(b) − h(τ)(b+1)

]
dτ.

Taking Laplace transforms of both sides and using the convolution theorem shows
that

〈̂b(s)〉 = s−1(1− ĥ(s))

∞∑
b=0

bĥ(s)b = s−1ĥ(s)(1− ĥ(s))
d

dĥ(s)

∞∑
b=0

ĥ(s)b

OFF ON

OFF ON

OFF ON

f(t)

g(t)

initiation of

transcription
h(t)

Figure 14. Schematic illustration of molecular ratchet model of transcription at
the single gene level, where the waiting time distribution of the on-state, off-state,
and transcription initiation are denoted by f(t), g(t), h(t).
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= s−1ĥ(s)(1− ĥ(s))
d

dĥ(s)

1

1− ĥ(s)
= s−1 ĥ(s)

1− ĥ(s)
.

Hence

〈b(t)〉 = L −1

[
1

s

ĥ(s)

1− ĥ(s)

]
(t). (4.6)

A similar analysis establishes that

〈b(t)2〉 = L −1

[
1

s

ĥ(s)(1 + ĥ(s))

(1− ĥ(s))2

]
(t). (4.7)

One now obtains the moments of the burst-size distribution by integrating with respect
to the on times Ton = t:

〈b〉 =

∫ ∞
0

〈b(t)〉g(t)dt, 〈b2〉 =

∫ ∞
0

b(t)2g(t)dt. (4.8)

In the case of exponential waiting times g(t) = kge
−kgt and h(t) = khe−kht, we

have

ĥ(s) =
kh

kh + s
,

so that

〈b(t)〉 = L −1

[
kh
s2

]
(t) = kht, 〈b(t)2〉 = L −1

[
kh
s2

2kh + s

s

]
(t) = k2

ht
2 + kht.

It follows that

〈b〉 =
kh
kg
, 〈b2〉 = 〈b〉+ 2〈b〉2, (4.9)

and thus the Fano factor is

Qb ≡
Var[b]

〈b〉
= 1 + 〈b〉. (4.10)

The corresponding distribution of burst sizes is a geometric distribution,

ηb ≡
∫ ∞

0

P (b, t)g(t)dt = η(1− η)b, η =
kg

kh + kg
.

Schwabe et al. [223] explore the effects of non-exponential on-state time distributions,
and show that they can lead to a burst size distribution that is peaked (rather than
exponentially decreasing) and this reduces transcriptional noise.

Now suppose that one combines the stochastic process that generates a
distribution of burst sizes with the waiting time density f(τ) of being in the off-
phase. The resulting system can be mapped into one of the classical models of queuing
theory [156], see Fig. 15. Queuing theory concerns the mathematical analysis of
waiting lines formed by customers randomly arriving at some service station, and
staying in the system until they receive service from a group of servers. Different
types of queuing process are defined in terms of (i) the stochastic process underlying
the arrival of customers, (ii) the distribution of the number of customers (batches)
in each arrival, (iii) the stochastic process underlying the departure of customers
(service-time distribution), and (iv) the number of servers. The above model of
transcriptional bursting can be mapped to a queuing process as follows: individual
mRNAs are analogous to customers, transcriptional bursts correspond to customers
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(i) arriving

customers

(ii) queue

(iii) exiting

customers

server

(a)

Y

o!-phase

on-phase

(i) transcriptional bursts

(b)

(ii) accumulation of

protein in cell

(iii) degradation

Figure 15. Diagram illustrating the mapping between queuing theory and
transcriptional bursting. (a) Example of a single-server queue. (b) Transcriptional
bursting. The stochastic switching of a gene between an on-phase and an off-phase
generates a a sequence of transcriptional bursts that is analogous to the arrival
of customers in the queuing model. This results in the accumulation of proteins
within the cell, which is the analog of a queue. Degradation corresponds to exiting
of customers after being serviced by an infinite number of servers.

arriving in batches, and the degradation of mRNAs is the analog of customers exiting
the system after being serviced. Thus, the waiting-time density for mRNA degradation
is the analog of the service-time distribution. Finally, since the mRNAs are degraded
independently of each other, the effective number of servers in the corresponding
queuing model is infinite, that is, the presence of other customers does not affect the
service time of an individual customer.

The particular queuing model that maps to the model of transcriptional bursting
is theGIX/M/∞ system, Here the symbolG denotes a general waiting time density for
the arrival process, that is, the waiting time density f(τ) for the gene to switch from the
off-phase to the on-phase, and IX refers to the fact that customers (mRNAs) arrive in
batches of independently distributed random sizes B (mRNA burst sizes). The symbol
M stands for a Markovian or exponential service-time density (mRNA degradation-
time density), and ‘∞’ denotes infinite servers. Exploiting this mapping, exact results
for the moments of the mRNA steady-state distribution can be obtained from the
corresponding known expressions for the moments of the steady-state distribution of
the number of current customers in the GIX/M/∞ model [156]. The latter were
originally derived by Liu et al. [167], and we will follow their analysis in section 4.3.
Here we simply quote the results for the mean and variance of the steady-state mRNA
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copy number N :

〈m〉 =
λ

µ
〈b〉, (4.11)

and

Var[m] = 〈m〉 − 〈m〉2 +
µ

λ
〈m〉2

(
f̂(µ)

1− f̂(µ)
+
〈b2〉 − 〈b〉

2〈b〉2

)
(4.12)

In the special case that the arrival times are also exponentially distributed, f̂(s) =
λ/(s+ λ), and the variance simplifies to

Var[m] =
λ

µ
〈b2〉. (4.13)

4.3. Moments of GIX/M/∞ queuing model

Let F (t) and H(t) be the probability distributions for the inter-arrival times and
the service times, respectively. It is assumed that the mean arrival rate λ and the
mean service rate µ are finite. Since the distribution of service times is taken to be
exponential, we have S(t) = 1 − e−µt. The arrivals are taken to occur in batches of
variable size X, where

P[X = b] = ηb, b = 1, 2, . . . ,

with finite mean and variance, and generating function

A(z) =

∞∑
b=1

ηbz
b.

It follows that for any positive integer k, the k-th factorial moment of X is given by

Ak =
dkA(z)

dzk

∣∣∣∣
z=1

=

∞∑
b=k

b(b− 1) · · · (b− k + 1)ηb. (4.14)

Let Tn be the time of the n-th group arrival, with Xn denoting the size of the
batch and Sni the service time of the ith member of the batch. The number of busy
servers at time is then

N(t) =
∑

0≤Tn≤t

χ(t− Tn, Xn), (4.15)

where

χ(t− Tn, Xn) =

Xn∑
i=1

I(t− Tn, Sni), I(t− Tn, Sni) =

{
1 if t− Tn ≤ Sni
0 if t− Tn > Sni

(4.16)

In other words, we are keeping track of all batches that arrived prior to time t and
the number of customers in each batch that haven’t yet exited the system. Introduce
the generating function

G(z, t) =

∞∑
k=0

zkP[N(t) = k], (4.17)

and the binomial moments

Br(t) =

∞∑
k=r

k!

(k − r)!r!
P[N(t) = k], r = 1, 2, . . . . (4.18)
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Suppose that the system is empty at time t = 0. We shall derive an integral
equation for the generating function G(z, t). Conditioning on the first arrival time
by setting T1 = y, it follows that N(t) = χ(t − y,X1) + N∗(t − y) if y ≤ t and zero
otherwise, where χ(t− y,X1) and N∗(t− y) are independent of each other, and N∗(t)
has the same distribution as N(t). Moreover,

P[I(t− y, S1i) = k] = P[t− y ≤ S1i]δk,1 + P[t− y > S1i]δk,0

= [1−H(t− y)]δk,1 +H(t− y)δk,0,

so that
∞∑
k=0

zkP [I(t− y, S1i) = k] = z + (1− z)H(t− y).

Since I(t − y, S1i) for i = 1, 2, . . . are independent and identically distributed, the
theorem of total expectation implies that

E[zχ(t−y,X1)] = E[E[zχ(t−y,X1)|X1]] =

∞∑
b=1

ηbE[z
∑b
i=1 I(t−y,S1i)]

=

∞∑
b=1

ηb

b∏
i=1

E[zI(t−y,S1i)] =

∞∑
b=1

ηb

b∏
i=1

( ∞∑
k=0

zkP [I(t− y, S1i) = k]

)

=

∞∑
b=1

ηb[z + (1− z)H(t− y)]b = A[z + (1− z)H(t− y)].

Another application of the theorem of total expectation gives

G(z, t) = E[zN(t)] = E[E[zN(t)|y]]

=

∫ ∞
t

E[z0]dF (y) +

∫ t

0

E[zχ(t−y,X1)]E[zN
∗(t−y)]dF (y)

= 1− F (t) +

∫ t

0

G(z, t− y)A[z + (1− z)H(t− y)]dF (y). (4.19)

One can now obtain an iterative equation for the Binomial moments by
differentiating equation (4.19) multiple times with respect to z and using

Br(t) =
1

r!

drG(z, t)

dzr

∣∣∣∣
z=1

.

Noting that

dr

dzr
A[z + (1− z)H(t− y)]

∣∣∣∣
z=1

= [1−H(t− y)]rAr, r = 1, 2, . . .

we obtain the integral equation

Br(t) =

∫ t

0

Br(t− y)dF (y) +

r∑
k=1

Ak
k!

∫ t

0

Br−k(t− y)[1−H(t− y)]kdF (y). (4.20)

This can be written in the more compact form

Br(t) =

∫ t

0

Br(t− y)dF (y) +

∫ t

0

Hr(t− y)dF (y), (4.21)

where

Hr(t) =

r∑
k=1

Ak
k!
Br−k(t)[1−H(t)]k. (4.22)
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Equation (4.21) is an example of a renewal-type equation, see below, which has the
unique solution

Br(t) = Hr(t) +

∫ t

0

Hr(t− y)dm(y), (4.23)

where

m(y) =

∞∑
n=1

Fn(y), Fn(y) = P[Tn ≤ y] (4.24)

is the so-called renewal function.
The steady-state Binomial moments can now be obtained by taking the limit

t→∞ in equation (4.23) and using the Key Renewal Theorem (see section 4.4)

Br = λ

r∑
k=1

Ak
k!

∫ ∞
0

Br−k(t)[1−H(t)]kdt, (4.25)

where λ−1 = E[T1]. In the case of an exponential service-time distribution, 1−H(t) =
e−µt so that

Br = λ

r∑
k=1

Ak
k!
B̂r−k(kµ), (4.26)

where B̂r(s) is the Laplace transform of Br(t). An iterative equation for the Laplace
transforms can be obtained by Laplace transforming equations (4.21) and (4.22), and
using the convolution theorem:

B̂r(s) = B̂r(s)f̂(s) + Ĥr(s)f̂(s),

which, on rearranging, yields

B̂r(s) =
f̂(s)

1− f̂(s)
Ĥr(s), Ĥr(s) =

r∑
k=1

Ak
k!
B̂r−k(s+ kµ), (4.27)

Note that B0(t) = 1 so B̂0(s) = 1/s and, hence,

B̂1(s) =
f̂(s)

1− f̂(s)

A1

s+ µ
.

Equations (4.26) and (4.27) determine completely the steady-state Binomial moments.
In particular,

B1 ≡ 〈N〉 =
λ

µ
A1, (4.28)

and

B2 ≡
1

2

(
〈N2〉 − 〈N〉

)
= λ

(
A1B̂1(µ) +

A2

4µ

)
=
λA1

2µ

(
f̂(µ)

1− f̂(µ)
A1 +

A2

2A1

)
. (4.29)

Combining these results with equation (4.14) for the specific bursting model yields the
expressions (4.11) and (4.12) for the mean and variance of the mRNA copy number.
For higher order moments see [156].
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4.4. The renewal equation.

A renewal process N(t) is defined according to

N(t) = max{n : Tn ≤ t}, T0 = 0, Tn = X1 + . . .+Xn (4.30)

for n ≥ 1, where {Xj} is a sequence of independent identically distributed non-negative
random variables. It immediately follows that

N(t) ≥ n if and only if Tn ≤ t.
Typically, N(t) represents the number of occurrences of some event in the time interval
[0, t]. In the case of queuing theory, this could be the number of customer batches that
have arrived for service. Thus Tn is the n-th arrival time and Xn is the n-th inter-
arrival time. In neurobiology, N(t) could represent the number of times a neuron has
fired an action potential in a time interval [0, t], Tn is the n-th firing time, and Xn

is the n-th inter-spike interval. In the following we will assume that Xj is strictly
positive, which ensures that P[N(t) <∞] = 1 for all t.

Introduce the inter-arrival distribution F (t) = P[X1 ≤ t] and let Fk(t) = P[Tk ≤ t]
be the distribution function of the k-th arrival time Tk. Clearly F1 = F . From the
identity Tk+1 = Tk +Xk+1, one has the iterative equation

Fk+1(t) =

∫ t

0

Fk(t− y)dF (y), k ≥ 1. (4.31)

Moreover,

P[N(t) = k] = P[N(t) ≥ k]− P[N(t) ≥ k + 1] = P[Tk ≤ t]− P[Tk+1 ≤ t]
= Fk(t)− Fk+1(t).

An important object in renewal theory is the renewal function m

m(t) ≡ E[N(t)] =

∞∑
k=1

Fk(t). (4.32)

The last expression results by expressing N(t) as a sum of Heaviside functions

N(t) =

∞∑
k=1

H(t− Tk),

so that

m(t) = E

[ ∞∑
k=1

H(t− Tk)

]
=
∞∑
k=1

E[H(t− Tk)] =
∞∑
k=1

Fk(t).

A fundamental result of renewal theory is that m satisfies the renewal equation

m(t) = F (t) +

∫ t

0

m(t− x)dF (x). (4.33)

This can be established using the theorem of total expectation:

m(t) = E[N(t)] = E[E[N(t) | X1]]

=

∫ ∞
0

E[N(t) | X1 = x]dF (x)

=

∫ t

0

E[N(t) | X1 = x]dF (x) +

∫ ∞
t

E[N(t) | X1 = x]dF (x)

=

∫ t

0

(1 + E[N(t− x)])dF (x) =

∫ t

0

(1 +m(t− x))dF (x).
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We have used the fact that E[N(t) | X1 = x] = 0 if t < x. It can also be shown
that m(t) =

∑∞
k=1 Fk(t) is the unique solution to the renewal equation (4.33) that is

bounded on finite intervals. An important generalization of (4.33) is the renewal-type
equation

C(t) = H (t) +

∫ t

0

C(t− x)dF (x), (4.34)

where H is a uniformly bounded function. The solution of the latter equation is
specified by the following theorem (see [121]):

Theorem 1 The function

C(t) = H (t) +

∫ t

0

H (t− y)dm(y) (4.35)

is a solution of the renewal-type equation (4.34). Moreover, if H is bounded on finite
intervals then so is C, and the solution is unique.

Proof If h : [0,∞)→ R, then define the functions h ∗m and h ∗ F by

(h ∗m)(t) =

∫ t

0

h(t− x)dm(x), (h ∗ F )(t) =

∫ t

0

h(t− x)dF (x),

assuming the integrals exist. From the definitions, we have

m ∗ F = F ∗m, (h ∗m) ∗ F = h ∗ (m ∗ F ).

Moreover, the iterative equation (4.31), the renewal equation (4.33) and the solution
(4.35) can be written in the compact forms

Fk+1 = Fk ∗ F = F ∗ Fk, m = F + F ∗m, C = H + H ∗m.
Convolving C with respect to F gives

C ∗ F = H ∗ F + H ∗m ∗ F = H ∗ F + H ∗ (m− F ) = H ∗m = C −H ,

which establishes that the function C is a solution of the renewal-type equation (4.34).
It remains to prove that if H is bounded on finite intervals then the solution is unique.

If H is bounded on finite intervals [0, T ], then from equation (4.35)

sup
0≤t≤T

|C(t)| ≤ sup
0≤t≤T

|H(t)|+ sup
0≤t≤T

∣∣∣∣∫ t

0

H (t− y)dm(y)

∣∣∣∣
≤ (1 +m(T )) sup

0≤t≤T
|H(t)| <∞.

Finiteness of the renewal function means that the solution C is also bounded on
finite intervals. Now suppose that Ĉ is another bounded solution of (4.34) and set

∆(t) = C(t)− Ĉ(t). Equations (4.31) and (4.34) imply that

∆ = ∆ ∗ F = ∆ ∗ F ∗ F = ∆ ∗ F2 = ∆ ∗ F ∗ F2 = ∆ ∗ F3 · · · ,
that is, ∆ = ∆ ∗ Fk, k ≥ 1. Therefore,

|∆(t)| ≤ Fk(t) sup
0≤u≤t

|∆(u)|, k ≥ 0.

Finally, taking the limit k →∞ and noting that

Fk(t) = P[N(t) ≥ k]→ 0 as k →∞,
we conclude that |∆(t)| = 0 for all t.

We end our brief discussion of renewal theory by stating several limit theorems.
Set µ = E[X1] <∞.
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Theorem 2 (Elementary Renewal Theorem) This states that

N(t)

t

a.s.→ 1

µ
as t→∞.

Theorem 3 (Key Renewal Theorem) Define a random variable Y and its
distribution FY to be arithmetic with span λ, λ > 0, if Y takes values in the set
{mλ,m ∈ Z} with probability one, and λ is the maximal value with this property.
Suppose that the first inter-arrival time X1 is not arithmetic. If g : [0,∞) → [0,∞)
is such that g is monotone decreasing and

∫∞
0
g(t)dt <∞, then∫ t

0

g(t− x)dm(x)→ 1

µ

∫ ∞
0

g(x)dx as t→∞.

5. Metastability in a genetic switch and the WKB approximation

In section 3 we described how a genetic regulatory network with nonlinear feedback
can form a genetic switch, consisting of two stable states representing high and low
levels of protein production, respectively, see Fig. 9. In the absence of noise, the
particular state of the switch is determined by initial conditions. On the other hand,
when weak molecular noise is included, fluctuations can induce transitions between
the metastable states (the states that are stable fixed points in the deterministic
limit). Since the noise tends to be weak, transitions are rare events involving large
fluctuations that are in the tails of the underlying probability density function. This
means that estimates of mean transition times and other statistical quantities can be
sensitive to any approximations, including the Gaussian approximation based on a
system-size expansion or adiabatic approximation (see section 2), and can sometimes
lead to exponentially large errors. Moreover, one finds that ignoring the stochastic
aspects of the promoter-based activation/inactivation of the gene is a major source of
error [15,151,191,192,195].

5.1. Metastability and large deviations in SDEs

The analysis of metastability has a long history [125], particularly within the context
of SDEs with weak noise. The underlying idea is that the mean rate to transition
from a metastable state in the weak noise limit can be identified with the principal
eigenvalue of the generator of the underlying stochastic process, which is a second-
order differential operator in the case of a Fokker-Planck equation. Calculating
the eigenvalue typically involves obtaining a Wentzel-Kramers–Brillouin (WKB)
approximation of a quasistationary solution and then using singular perturbation
theory to match the solution to an absorbing boundary condition [124, 174, 176, 187,
222]. The latter is defined on the boundary that marks the region beyond which
the system rapidly relaxes to another metastable state, becomes extinct, or escapes to
infinity. In one-dimensional systems (d = 1), this boundary is simply an unstable fixed
point, whereas in higher-dimensions (d > 1) it is generically a (d−1)-submanifold. For
example, if d = 2 then the boundary is a closed curve, see Fig. 16. In the weak noise
limit, the most likely paths of escape through an absorbing boundary are rare events,
occurring in the tails of the associated functional probability distribution. From a
mathematical perspective, the rigorous analysis of the tails of a distribution is known
as large deviation theory [72, 96, 98, 238, 239], which provides a rigorous probabilistic
framework for interpreting the WKB solution in terms of optimal fluctuational paths.
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Figure 16. (a) Deterministic trajectories of a multistable dynamical
system. The subset Ω is contained within the basin of attraction of a fixed
point xs. The boundary of the basin of attraction consists of separatrices,
which are also solution trajectories. Paths that start in a neighborhood of
a separatrix are attracted by different fixed points, depending whether they
begin on the left or right of the separatrix. (b) Random trajectories of the
stochastic system. Escape from the domain Ω occurs when a fluctuational
path hits the boundary ∂Ω.

5.1.1. Large deviation principles. Let us begin with a simple motivating example of
large deviations [238,239]. Consider the sum (sample mean)

Sn =
1

n

n∑
i=1

Xi,

where X1, X2, . . . is an i.i.d. sequence of random variables generating from the
probability density P (X) with X ∈ R. The joint probability density function (pdf) is

P (X1, . . . , Xn) =

n∏
j=1

P (Xj).

The corresponding pdf of the sum Sn is obtained as follows:

Pn(s) = P[Sn = s] =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxnδ(

n∑
i=1

xi − ns)P (x1, . . . , xn). (5.1)

Introducing the Fourier representation of the Dirac delta function, δ(x) =∫∞
−∞ eikxdk/2π, and using the product decomposition of the joint pdf,

Pn(s) =

∫ ∞
−∞

dk

2π
e−ikns

n∏
j=1

(∫ ∞
−∞

eikxjP (xj)dxj

)
=

∫ ∞
−∞

P̃ (k)ne−ikns
dk

2π

In the case of a Gaussian pdf with mean µ and variance σ2,

P̃ (k) = eikµe−σ
2k2/2,

and in the case of an exponential pdf on [0,∞) with mean µ,

P̃ (k) =
µ

1− iµk
.
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Substituting into the integral expression for Pn(s) then gives

Pn(s) =

∫ ∞
−∞

eikn(µ−s)e−nσ
2k2/2 dk

2π
=

1√
2πnσ2

e−n(µ−s)2/2σ2

for the Gaussian, and

Pn(s) =

∫ ∞
−∞

e−ikns
(

µ

1− iµk

)n
dk

2π

=
µn

µ

∮
e−izns/µ

[1− iz]n
dz

2π
=

µn−1

(n− 1)!

(
−ns
µ

)n−1

e−ns/µ

=
nn−1

(n− 1)!

(
s

µ

)n
e−ns/µ.

We have closed the contour in the lower-half complex z-plane and used the following
residue theorem for an analytic function f(z):

f (n−1)(z0) =
1

(n− 1)!

∮
f(z)

(z − z0)n
dz

2πi
.

We now note that in both cases the leading order behavior in n for large n can
be expressed as

Pn(s) ≈ e−nI(s), (5.2)

where

I(s) =
(s− µ)2

2σ2
, s ∈ R (5.3)

for the Gaussian pdf and

I(s) = − 1

n
{(n− 1) lnn− ln[(n− 1)!]− n ln(s/µ)− ns/µ}

=
s

µ
− 1− ln(s/µ), s ≥ 0 (5.4)

for the exponential pdf (after applying Strirling’s formula). In both cases I(s) ≥ 0
and I(s) = 0 only when s = µ = E[X]. Since the pdf of Sn is normalized, it becomes
more and more concentrated around s = µ as n → ∞, that is, Pn(s) → δ(s − µ) in
the large-n limit. The leading order exponential form e−nI(s) found for the Gaussian
and exponential pdfs is the fundamental property of large deviation theory, which
is known as the large deviation principle or LDP. (An LDP should be distinguished
from the Central Limit Theorem, which is concerned with the asymptotic properties
of
√
n(Sn−µ).) It arises in a much wider range of stochastic process then sums of i.i.d.

random variables. Following Touchette [239], we will avoid the technical aspects of
the rigorous formulation of the large deviation principle. For our purposes, a random
variable Sn or its pdf Pn satisfies a large deviation principle (LDP) if the following
limit exists:

lim
n→∞

− 1

n
ln[Pn(s)] = I(s), (5.5)

with I(s) the so-called rate function. A more rigorous definition involves probability
measures on sets rather than in terms of pdfs, and gives lower and upper bounds on
these probabilities rather than a simple limit [238,243]. One of the main goals of large
deviation theory is to identify stochastic processes that satisfy an LDP, and to develop
analytical (and numerical) methods for determining the associated rate function.
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Large deviation principle for an SDE. Consider as an example the one-dimensional
SDE with additive noise

dX(t) = F (X(t) +
√
εdW (t), X(0) = 0, (5.6)

with W (t) a Wiener process. We are interested in the pdf of random paths {X(t), t ∈
[−τ, 0]} of duration τ in the limit where the noise strength ε vanishes. Denote the
pdf by the functional P [x]. The occurrence of an LDP in the low noise limit is a
reflection of the fact that random paths of the SDE should converge in probability to
the deterministic path given by the solution to the ODE

ẋ(t) = F (x(t)), x(−τ) = 0.

The path fluctuations away from the deterministic path are characterized by a
functional LDP of the Freidlin-Wentzel form [98]

P [x] ≈ e−S[x]/ε, S[x] =

∫ 0

−τ
[ẋ(t)− F (x(t))]2dt, (5.7)

where the rate function S[x] is known as an action functional. (Here the approximation
sign means that we are only considering the leading-order behavior and ignoring
prefactors.) Note that the above LDP can also be derived formally using Onsager-
Machlup path-integrals [119,120].

If we are only interested in the pdf P (x, τ) of the state X(0) given x(−τ) = xs,
then a coarser-grained LDP can be derived of the from

P (x, τ) ≈ e−Φ(x,τ)/ε, Φ(x, τ) = inf
{x(t):x(−τ)=xs,x(0)=x}

S[x], (5.8)

with Φ identified as the so–called quasipotential. That is, in the limit ε → 0 the pdf
for X(0) given the initial condition X(−τ) = xs is obtained by minimizing the action
functional with respect to the set of all trajectories from xs to x. In particular, if
xs is a metastable state of the system, then taking the limit τ → −∞ generates the
steady-state density (assuming it exists).

In order to show this, we introduce a Lagrangian L according to

S[x] =

∫ 0

−τ
L(x, ẋ)dt, L(x, ẋ) =

1

2
(ẋ− F (x))2. (5.9)

The most probable path is the given by the solution to the Euler-Lagrange equation

d

dt

∂L

∂ẋ
=
∂L

∂x
. (5.10)

Substituting for L, we see that the most probable path satisfies

ẍ = F (x)F ′(x). (5.11)

Suppose that in the zero noise limit there is a globally attracting fixed point xs such
that F (xs) = 0. The steady-state solution of the corresponding FP equation can be
obtained by solving the Euler-Lagrange equation with the conditions x(−∞) = xs and
x(0) = x. Multiplying both sides of equation (5.11) by ẋ and integrating with respect
to t shows that ẋ(t)2 = F (x(t))2 + constant. The initial condition implies that the
constant is zero and the end condition implies that the most probable path satisfies
ẋ = −F (x). It follows that the quasipotential is

Φ(x) = −2

∫ 0

−∞
F (x)ẋdt = 2

∫ 0

−∞
U ′(x)ẋdt = 2

∫ x

xs

U ′(x)dx = 2U(x).
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where we have set F (x) = −U ′(x) with U(x) the potential of the deterministic system.
Hence, we obtain the expected result that the stationary density is

ρ∗(x) ≈ e−2U(x)/ε.

In the case of a scalar SDE one can of course solve the steady-state FP equation
directly. The power of functional LDPs is that one can extend the definition of
the quasipotential to multivariate SDEs and to nonlinear systems having multiple
attractors. For example, consider the multivariate SDE

dXi(t) = Fi(X)dt+
√
ε
∑
j

bij(X)dWi(t), (5.12)

for i = 1, . . . , d with Wi(t) a set of independent Wiener processes. The associated
LDP is given by [98] P [x] ≈ e−S[x] with action functional

S[x] =
1

2

∫ 0

−τ

d∑
i,j=1

(ẋi(t)− Fi(x(t)))D−1
ij (ẋj(t)− Fj(x(t)))dt, (5.13)

where D = bbtr is the diffusion matrix. Suppose that the underlying deterministic
system has multiple attracting fixed points xr, r = 1, 2.... The quasipotential
Φ(x) characterizing the stationary distribution (assuming it exists) is estimated as
Φ(x) = minr Φr(x), where Φr(x) is the quasipotential obtained by initiating paths at
xr:

Φr(x) = inf
x(−∞)=xr,x(0)=x

S[x].

Note that the minimum over r switches abruptly on a separatrix separating the basins
of attraction of the fixed points.

5.1.2. Mean first passage times and the WKB method. We now establish a connection
between LDPs and the WKB method. Consider the FP equation corresponding to
the scalar SDE (5.6):

∂ρ

∂t
= −∂[F (x)ρ(x, t)]

∂x
+
ε

2

∂2ρ(x, t)

∂x2
≡ −∂J(x, t)

∂x
, (5.14)

where

J(x, t) = − ε
2

∂ρ(x, t)

∂x
+ F (x)ρ(x, t).

Suppose that the deterministic equation ẋ = F (x) has a stable fixed point x−,
F (x−) = 0, and a basin of attraction given by the interval Ω = (0, x∗); the point
x∗ corresponds to an unstable fixed point. For small but finite ε the fluctuations
about the steady state p(x) can induce rare transitions out of the basin of attraction
due to a metastable trajectory crossing the point x∗. Assume that the stochastic
system is initially at x− so that ρ(x, 0) = δ(x−x−). In order to solve the first passage
time problem for escape from the basin of attraction of x−, we impose an absorbing
boundary condition at x∗, ρ(x∗, t) = 0, and a reflecting boundary condition at x = 0.
Let T denote the (stochastic) first passage time for which the system first reaches x∗,
given that it started at x−. The distribution of first passage times is related to the
survival probability that the system hasn’t yet reached x∗:

S(t) ≡
∫

Ω

ρ(x, t)dx. (5.15)
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That is, Prob{t > T} = S(t) and the first passage time density is

f(t) = −dS
dt

= −
∫

Ω

∂ρ

∂t
(x, t)dx. (5.16)

Substituting for ∂p/∂t using the FP equation (5.14) shows that

f(t) =

∫
Ω

∂J(x, t)

∂x
dx = J(x∗, t) = − ε

2

∂ρ(x∗, t)

∂x
. (5.17)

We have used J(0, t) = 0 and ρ(x∗, t) = 0. The first passage time density can thus be
interpreted as the probability flux J(x∗, t) at the absorbing boundary.

The first passage time problem in the weak noise limit (ε � 1) has been well
studied in the case of FP equations, see for example [174, 176, 187, 222]. One of the
characteristic features of the weak noise limit is that the flux through the absorbing
boundary is exponentially small. Let 〈T 〉 =

∫∞
0
f(t)tdt denote the mean first passage

time (MFPT) to reach the absorbing boundary. Then λ = 1/〈T 〉 ∼ e−C/ε for some
constant C, which reflects the existence of an underlying LDP. In order to make this
connection more explicit, we consider the eigenfunction expansion

ρ(x, t) =
∑
r

Cre
−λrtφr(x), (5.18)

where (−λr, φr(x)) are an eigenpair of the linear operator

L = − ∂

∂x
F (x) +

ε

2

∂2

∂x2

appearing on the right-hand side of (5.14). That is,

Lφr(x) = −λrφr(x), (5.19)

together with the absorbing boundary conditions φr(x∗) = 0. We also assume that the

eigenvalues λ
(r)
ε all have positive definite real parts and the smallest eigenvalue λ

(0)
ε

is real and simple, so that we can introduce the ordering 0 < λ
(0)
ε < Re[λ

(1)
ε ] ≤

Re[λ
(2)
ε ] ≤ . . .. The exponentially slow rate of escape through x∗ in the weak-

noise limit means that λ
(0)
ε is exponentially small, λ

(0)
ε ∼ e−C/ε, whereas Re[λ

(r)
ε ]

is only weakly dependent on ε for r ≥ 1. Under the above assumptions, we have the
quasistationary approximation for large t

ρ(x, t) ∼ C0e−λ
(0)
ε tφ(0)

ε (x), (5.20)

and the FPT density takes the form f(t) ∼ λ
(0)
ε e−λ

(0)
ε t with 1/λ

(0)
ε identified as the

MFPT and

λ(0)
ε =

J0(x∗)∫
Ω
φ0(x)dx

, J0(x) = −ε
2

∂φ
(0)
ε

∂x
. (5.21)

The calculation of the principle eigenvalue λ0 consists of two major components
[174, 176, 187, 222]: (i) a WKB approximation of the quasistationary state, which
also provides an alternative method for deriving the quasipotential of large-deviation
theory, and (ii) the use of matched asymptotics in order to match the outer
quasistationary solution with an inner solution within a boundary layer around x0

so that the absorbing boundary condition is satisfied. The first step involves seeking
a quasistationary solution of the WKB form

φ(0)
ε (x) ∼ K(x; ε)e−Φ(x)/ε, (5.22)
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with K(x; ε) ∼
∑∞
m=0 ε

mKm(x). Substitute equation (5.22) into the eigenvalue

equation Lφ(0)
ε (x) = −λ(0)

ε φ
(0)
ε (x) and Taylor expand with respect to ε using the

fact that λ
(0)
ε is exponentially small. Collecting the O(1) terms gives

1

2

(
∂Φ(x)

∂x

)2

+ F (x)
∂Φ(x)

∂x
= 0. (5.23)

Similarly, collecting O(ε) terms yields the following equation for the leading
contribution K0 to the pre factor:[

∂Φ

∂x
+ F (x)

]
∂K0

∂x
= −

[
F ′(x) +

1

2

∂2Φ(x)

∂x2

]
K0(x). (5.24)

The latter either has the solution

K0(x) =
C0

F (x) + Φ′(x)
, (5.25)

along non-optimal paths and K0 = constant along optimal paths. Equation (5.23) has
the form of a Hamilton-Jacobi (HJ) equation for a classical Newtonian particle. That
is, introducing the time-independent Hamiltonian

H(x, p) =
p2

2
+ F (x)p, (5.26)

we see that equation (5.23) can be rewritten as the “zero-energy” HJ equation

H(x,Φ′(x)) = 0. (5.27)

The HJ structure suggests a classical-mechanical interpretation, in which the
Hamiltonian H describes the motion of a “fictitious” particle with position x and
conjugate momentum p evolving according to Hamilton’s equations

ẋ =
∂H

∂p
= p+ F (x) (5.28a)

ṗ = −∂H
∂x

= −pF ′(x). (5.28b)

The Hamiltonian is related to a classical Lagrangian L(x, ẋ) according to the Legendre
transformation

H(x, p) = pẋ− L(x, ẋ), p =
∂L

∂ẋ
. (5.29)

It follows that we recover the Lagrangian of equation (5.9). Moreover, from the least
action principle of classical mechanics, we can identify Φ(x) as the quasipotential of
large deviation theory, see equation (5.8). Note that Φ(x) is determined along a zero
energy trajectory, since we are interested in the quasistationary density, and thus
should take τ → −∞ and xs to be the fixed point x−. Since p = Φ′(x) along this
trajectory, it follows that the quasipotential can be computed from

Φ(x) =

∫ x

x−

p(y)dy. (5.30)

We now need to match the outer quasistationary solution with an appropriate
inner solution Π(x) in a neighborhood of the point x = x∗. This is necessary since
the quasistationary solution does not satisfy the absorbing boundary condition at
x∗. There are a number of different ways of carrying out the matched asymptotics
[125,174,176,187,222]. Here we will proceed by fixing the probability flux J0 through
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x∗ and carrying out a diffusion approximation of the inner solution. Introducing
stretched coordinates y = (x−x∗)/

√
ε, the inner solution Π(y) satisfies the stationary

FP equation for constant flux, that is,

J0 = F (x∗ +
√
εy)Π(y)−

√
ε

2

∂Π(y)

∂y
, (5.31)

which yields the solution

Π(y) =
2J0√
ε

e−Φ(x∗+
√
εy)/ε

∫ ∞
y

eΦ(x∗+
√
εy′)/εdy′.

with 2F (x) = −Φ′(x). Taylor expanding the potential to second order in
ε1/2y and reintroducing unstreteched coordinates gives the inner solution φi(x) =
ε−1/2Π(x/

√
ε),

φi(x) =
2J0

ε
e(x−x∗)2/σ2

∫ ∞
x

e−(x′−x∗)2/σ2

dx′, (5.32)

where σ =
√

2ε/|Φ′′(x∗)| determines the size of the boundary layer around x∗. In
order to match with the outer solution we note that for x∗ − x � σ we can take the
lower limit in the integral to be −∞ and evaluate the resulting Gaussian integral:

φi(x) =
2J0σ

√
π

ε
e(x−x∗)2/σ2

(5.33)

Similarly, Taylor expanding the outer solution about x∗ and matching shows that

J0 =
C0

2

√
ε|Φ′′(x∗)|

2π
e−Φ(x∗)/ε. (5.34)

Finally, using steepest descents we evaluate the normalization of the outer solution:∫
Ω

φ(0)
ε (x)dx ≈ C0

∫ ∞
−∞

e−ε
−1[Φ(x−)+Φ′′(x−)(x−x−)2/2] = C0

√
2πε

Φ′′(x0)
. (5.35)

From equation (5.21), the mean transition rate is then

λ(0)
ε =

1

4π

√
|Φ′′(x∗)|Φ′′(x−)e−(Φ(x∗)−Φ(x−))/ε. (5.36)

Higher-dimensional SDEs. Equation (5.36) will be recognized as the classical result
for the inverse MFPT obtained by solving a backwards FP equation [105]. However,
the point of using the more complicated analysis is that it can be generalized to higher
dimensions with multiplicative nose [35,174,222]. The simplest case is when the drift
term is given by the gradient of a potential so that

dXi(t) = Fi(X)dt+
√
ε

n∑
j=1

Dij(x)Wj(t), Fi(X) = −∇iV (X) (5.37)

for i = 1, . . . , d with Wi(t) a set of independent Wiener processes. Suppose that xs is a
stable fixed point of the deterministic system, (a minimum of the potential V (x)), and
that the basin of attraction of the fixed point consists of separatrices linking one or
more saddle points and unstable fixed points, see Fig. 16. Also let Dij = δij (additive
noise). Suppose that there exists an optimal path that passes through a distinguished
saddle xH . One can then derive the classical Eyring formula

λ(0)
ε =

|µ1(xH)|
2π

√
det(Z(xS))

|det(Z(xH)|
e−2(V (xH)−V (xS))/ε, (5.38)
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where µ1(xH) is the single negative eigenvalue of Z(xH), where Z(x) is the so-called
Hessian matrix with components Zij = ∂i∂jV .

One of the major mathematical challenges is deriving a version of the Eyring
formula under more general conditions, including boundaries with multiple saddles and
unstable fixed points, non-smooth gradient systems, and non-gradient systems. Maier
and Stein [174] have used WKB methods and matched asymptotics to investigate
two-dimensional non-gradient systems with multiplicative noise. Now the physical
potential V is replaced by a quasipotential Φ/2 satisfying an HJ equation H(x,∇Φ) =
0 with Hamiltonian

H(x,p) =
1

2

∑
i,j

Dij(x)pipj +

n∑
i=1

Fi(x)pi, pi =
∂Φ

∂xi
. (5.39)

They show that the Eyring formula breaks down unless the drift is locally given by
some gradient potential around xH and |µs(xH)|/µu(xH)| > 1. (If these conditions
do not hold then the Hessian matrix of the quasipotential develops a discontinuity at
xH so standard Gaussian approximations of the inner solution break down). Here µs
and µu are the negative and positive eigenvalues of the 2D Hessian matrix at xH .; the
only modification is that one has to determine the prefactor K0(xH), since it is no
longer a constant. The equation for the prefactor K0 now takes the form

K̇0 ≡
n∑
i=1

∂H

∂pi

∂K0

∂xi
= −

∑
i

∂2H

∂pi∂xi
+

1

2

∑
i,j

∂2Φ

∂xi∂xj

∂2H

∂pi∂pj

K0. (5.40)

We have used the fact that along a trajectory x(t), K̇0(x(t)) = ẋ · ∇K0. Hence, K0

can be determined numerically by integrating along trajectories originating from a
neighborhood of the fixed point xS , provided that the Hessian Z of Φ is known. It
turns out that the Hessian also satisfies an evolution equation. That is, differentiating
the HJ equation twice using(

∂

∂xi
+
∑
k

∂pk
∂xi

∂

∂pk

)(
∂

∂xj
+
∑
k

∂pk
∂xj

∂

∂pk

)
H = 0,

we find that [174]

Żij = −
∑
k,l

∂2H

∂pk∂pl
ZikZjl −

∑
k

∂2H

∂xj∂pk
Zik −

∑
k

∂2H

∂xi∂pk
Zjk −

∂2H

∂xi∂xj
. (5.41)

Thus one can proceed numerically by simultaneously integrating Hamilton’s equations
together with equations (5.40) and (5.41).

One of the features of higher-dimensional escape problems is that there tends
to be a distribution of fluctuational paths from a metastable state to the boundary
of its basin of attraction, see Fig. 16. Following Chan et al. [61], one can define a
switching path-distribution that gives the probability density of passing a given point
in state space during switching. In certain cases it can be shown both theoretically
and experimentally that the switching-path distribution consists of a narrow ridge in
state space whose cross-section is Gaussian except in a neighborhood of the metastable
state. Moreover, the maximum of the ridge lies along the most probable switching
path that is obtained from large deviation theory.
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5.2. Metastability in an autoregulatory network

The analysis of metastability in chemical master equations has been developed along
analogous lines to SDEs, combining WKB methods [81,85,90,124,129,177,217], large
deviation principles [96], and path-integral or operator methods [77,78,203,221,247].
The study of metastability in stochastic hybrid systems (SHS) is more recent, and
much of the theory has been developed in a series of papers on stochastic ion channels
[47, 190, 193, 194], gene networks [191, 192, 195] and stochastic neural networks [43].
Again there is a strong connection between WKB methods, large deviation principles
[48, 91, 92, 153] and formal path-integral methods [46, 49], although the connection is
now more subtle. Given that one can often approximate a chemical master equation or
a PDMP using an FP equation (see section 2), one might be inclined to estimate the
MFPT to escape from a metastable state using the results outlined above. However,
it is clear from the Arrhenius-like formula (5.36) that the escape rate is sensitive to
the precise form of the quasipotential Φ. That is, since a diffusion approximation
of a master equation or PDMP leads to an approximation of the corresponding
quasipotential, this can lead to exponentially large errors in estimates of the escape
rate. Hence, it is often necessary to apply WKB methods and large deviation principles
directly to the underlying master equation or CK equation.

We will illustrate the WKB analysis of metastability in discrete Markov processes
and stochastic hybrid systems by considering the simple autoregulatory network of
section 3.4, in which the dynamics of mRNA is ignored, see equations (3.32a) and
(3.32b) with the matrix A→ A/ε. We will consider separately the two limiting cases
ε→ 0 (adiabatic limit) and N →∞ (thermodynamic limit). Note, however, that one
could analyze the more general model by combining the two cases [192]. In the limit
ε → 0 for fixed N , we have Ps(n, t) = ρ∗s(n/N)P (n, t), where ρ∗s is given by equation
(3.37), and P (n, t) evolves according to the birth-death master equation

dP (n, t)

dt
= ω+(n− 1)P (n− 1, t) + ω−(n+ 1)P (n+ 1, t)− [ω+(n) + ω−(n)]P (n, t).

(5.42)

2

x−

x
*

x+

θ = 1

θ = 0.6

x

F(x)

Figure 17. Fixed points of 1D equation ẋ = −x + F (x) with F (x) =
2[1 + e−κ(x−θ)]−1. If κ > 1 then the network can exhibit bistability for
a range of thresholds θ. The sigmoid function arises if the corresponding
transition rates are taken to be α(x) = eκ(x−θ) and β(x) = 1, while σ0 = 0
and σ1 = 2.
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The transition rates are

ω+(n) = NF (n/N), ω−(n) = n, (5.43)

with

F (x) =
∑
n=0,1

ρ∗n(x)(sσ1 + σ0). (5.44)

The units of time are fixed by setting the protein degradation rate to unity γp = 1.
On the other hand, in the limit N → ∞ for fixed ε, we obtain a stochastic hybrid
system evolving according to the CK equation (see (3.33a) and (3.33b))

∂ρn(x, t)

∂t
≡ Lρn(x, t) = −∂Fn(x)ρn(x, t)

∂x
+

1

ε

∑
m=0,1

Anm(x)ρm(x, t), (5.45)

where n now represents the state of the gene rather than the number of proteins, and

A(x) =

(
−α(x) β(x)
α(x) −β(x)

)
, Fn(x) = nσ1 + σ0 − x

Note that if x(0) ∈ [σ0, σ0 + σ1] then x(t) ∈ Σ = [σ0, σ0 + σ1] for all t > 0 such that
F0(x) < 0 and F1(x) > 0 (see discussion of boundary conditions in section 2.6). In the
double limit N →∞ and ε→ 0, irrespective of the order, we obtain the deterministic
equation

ẋ =
∑
n=0,1

ρ∗n(x)Fn(x) ≡ −x+ F (x). (5.46)

Rather than identifying F (x) with the second-order Hill function Fa(x) of equation
(3.25), we will consider a more general sigmoid function of the form

F (x) =
2

1 + e−κ(x−θ) .

We will assume that the deterministic system (5.46) is bistable with stable fixed points
x± separated by an unstable fixed point x∗, see Fig. 17.

5.2.1. Metastability in the adiabatic limit. We first analyze metastability for the
birth-death process given by the master equation (5.42) with n representing the
number of proteins. For large but finite N , we set n± = Nx± and n∗ = Nx∗ and
impose an absorbing boundary condition at n = n∗. Let T denote the (stochastic) first
passage time for which the birth-death process first reaches n∗, given that it started
at n−. The distribution of first passage times is related to the survival probability
that the system hasn’t yet reached n∗:

S(t) =
∑
n<n∗

P (n, t). (5.47)

That is, Prob{t > T} = S(t) and the first passage time density is

f(t) = −dS
dt

= −
∑
n<n∗

dP (n, t)

dt
. (5.48)

We now note that equation (5.42) can be written in the form

dP (n, t)

dt
= J(n, t)− J(n+ 1, t) (5.49)
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with

J(n, t) = ω−(n)P (n, t)− ω+(n− 1)P (n− 1, t).

Using the reflecting boundary condition J(0, t) = 0, it follows that f(t) = J(n∗, t).
The first passage time density can thus be interpreted as the probability flux J(n∗, t)
at the absorbing boundary.

Suppose that we rewrite the birth-death master equation (5.42) for 0 ≤ n ≤ n∗
in the more compact form

dP (n, t)

dt
=
∑
m≤n∗

AnmP (m, t) (5.50)

with −A the generator of the continuous Markov chain (see section 2). For the
given model, the matrix A is irreducible. If the absorbing boundary condition at
n = n∗ were replaced by a reflecting boundary condition, then A would have a simple
zero eigenvalue with corresponding left eigenvector 1 whose components are all unity,
that is,

∑
nAnm = 0 for all m. The latter follows immediately from conservation

of probability in the case of reflecting boundaries. The Perron-Frobenius theorem
(see section 2.1) then ensures that all other eigenvalues of −A have positive real
part and that equation (5.50) has a globally attracting steady-state p∗n such that∑
mAnmp

∗
m = 0 and P (n, t) → p∗n as t → ∞. On the other hand, in the case of an

absorbing boundary, probability is no-longer conserved since there is an exponentially
small but non-zero flux at n = n∗ (for large N). The eigenvalues of −A can now

be ordered according to 0 < λ
(0)
ε < Re[λ

(1)
ε ] ≤ Re[λ

(2)
ε ] ≤ . . . with λ

(0)
ε ∼ e−ηN for

η = O(1), whereas λ
(r)
ε for r > 0 are only weakly dependent on N (polynomial rather

than exponential functions of N). The exponentially small principal eigenvalue reflects
the fact that the flux through the absorbing boundary is exponentially small, and in
the limit N → 0 it reduces to the zero Perron eigenvalue.

Now consider the eigenfunction expansion

P (n, t) =
∑
r

Cre
−λ(r)

ε tφ(r)
ε (n), (5.51)

where (λ
(r)
ε , φ

(r)
ε (n)) are eigenpairs of the matrix operator −A, supplemented by the

absorbing boundary conditions φ
(r)
ε (n∗) = 0. Since λ

(0)
ε � Re[λ

(r)
ε ], we have the

quasistationary approximation for large t

P (n, t) ∼ C0e−λ
(0)
ε tφ(0)

ε (n), (5.52)

Substituting into equation (5.50) and summing over n, 0 ≤ n ≤ n∗ shows that the FPT

density takes the form f(t) ∼ λ
(0)
ε e−λ

(0)
ε t with λ

(0)
ε identified as the mean transition

rate (inverse MFPT) and

λ(0)
ε =

J (0)(n∗)∑
n≤n∗ φ

(0)
ε (n)

, J (0)(n) = ω−(n)φ(0)
ε (n)− ω+(n− 1)φ(0)

ε (n− 1). (5.53)

As in the case of an SDE (section 5.1), the calculation of the principle eigenvalue λ
(0)
ε

consists of two major components, namely, a WKB approximation of the principal
eigenfunction in the bulk of the domain (outer solution), and the asymptotic matching
of the outer solution with an inner solution around x∗, which satisfies the absorbing
boundary condition.
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WKB approximation of quasistationary state. Write φ
(0)
ε (n) = φε(n/N) and ω±(n) =

NΩ±(n/N) with x = n/N treated as a continuous variable. Since λ
(0)
ε is exponentially

small we set it to zero and treat φε(x) as a quasistationary solution:

0 = Ω+(x− 1/N)φε(x− 1/N) + Ω−(x+ 1/N)φε(x+ 1/N)− (Ω+(x) + Ω−(x))φε(x).

(5.54)

We then seek make the WKB ansatz

φε(x) ∼ K(x; ε)e−Φ(x)/ε ε = N−1, (5.55)

with K(x; ε) ∼
∑∞
m=0 ε

mKm(x). This solution is taken to hold in the bulk of the
domain [0, x∗] excluding O(ε1/2) neighborhoods of the stable fixed point x− and the
unstable fixed point x∗. The latter is necessary since the WKB approximation does
not satisfy the absorbing boundary condition at x∗. Substituting equation (5.55) into
equation (5.54), Taylor expanding with respect to ε, and collecting the O(1) terms
gives

Ω+(x)(eΦ
′
(x) − 1) + Ω−(x)(e−Φ

′
(x) − 1) = 0 (5.56)

where Φ′ = dΦ/dx. Solving this quadratic equation in eΦ′ shows that

Φ =

∫ x

ln
Ω−(y)

Ω+(y)
dy (5.57)

or Φ = constant. Proceeding to the next level, equating terms at O(ε) gives

Ω+eΦ′
(
−K

′
0

K0
+
φ′′

2

)
+ Ω−e−Φ′

(
K ′0
K0

+
φ′′

2

)
− Ω′+eΦ′ + Ω−e−Φ′ = 0.

Substituting for Φ using (5.56) and solving for K0 yields the following leading order
forms for φε:

φε(x) =
A√

Ω+(x)Ω−(x)
e−NΦ(x). (5.58)

with Φ given by (5.57), which is sometimes called the activation solution, and

φε(x) =
B

Ω+(x)− Ω−(x)
, (5.59)

which is sometimes called the relaxation solution. The constants A ,B are determined
by matching solutions around x0. Clearly, (5.59) is singular at any fixed point xj ,
where Ω+(xj) = Ω−(xj), so is not a valid solution for the required quasistationary
density.

We now observe that equation (5.56) has the form of a stationary Hamilton–Jacobi
(HJ) equation [143]:

H(x,Φ′(x)) = 0, (5.60)

with Hamiltonian given by

H(x, p) = (ep − 1)Ω+(x) + (e−p − 1)Ω−(x). (5.61)

The HJ structure suggests a classical-mechanical interpretation, in which the
Hamiltonian H describes the motion of a “fictitious” particle with position x and
conjugate momentum p evolving according to Hamilton’s equations

ẋ =
∂H

∂p
=
∑
r=±1

rΩr(x)erp (5.62)

ṗ = −∂H
∂x

=
∑
r=±1

∂Ωr
∂x

(x) [1− erp] (5.63)
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Defining the Lagrangian L(x, ẋ) according to the Legendre transformation (5.29) we
can express the quasipotential as

Φ(x) = inf
x(−∞)=x−,x(τ)=x

∫ τ

0

L(x, ẋ)dt. (5.64)

Analogous to SDEs, the fact that the quasipotential can be expressed as the infimum
over trajectories from x− to x, is a reflection of an underlying large deviation principle
[96]. From a dynamical systems perspective, the most probable fluctuational path
of large deviation theory is the unstable manifold of the fixed point (x−, 0) in the
Hamiltonian phase space [0, x∗]× R. Since p = Φ′(x) along this trajectory, it follows
that the quasipotential can be computed from

Φ(x) =

∫ x

x−

pdx. (5.65)

The corresponding stable manifold is obtained by setting p = 0 in Hamilton’s
equations, which recovers the deterministic solution of equation (5.46) with
limt→∞ x(t) = x−. In Fig. 18 we illustrate the Hamiltonian phase space for
the particular transition rates (5.43), showing the constant energy solutions; the
zero energy activation and relaxation trajectories through the fixed points of the
deterministic system are highlighted as thicker curves. Note thatNΦ(x∗), where Φ(x∗)
is the area enclosed by the heteroclinic connection from x− to x∗, gives the leading
order contribution to log τ−, where τ− is the mean escape time from x−. Similarly, the
area under the heteroclinic connection from x+ to x∗ gives the corresponding leading
contribution to log τ+, where τ+ is the mean escape time from x+ . We immediately
deduce that for the chosen parameter values τ+ < τ−.

Matched asymptotics at x∗. Given the WKB approximation, the rate of escape λ
(0)
ε

from the metastable state centered about x = x− can be calculated by matching
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Figure 18. Phase portrait of Hamiltonian equations of motion for Ω+(x) =
σ1/(1+e−κ(x−θ)) and Ω−(x) = x with κ = 4, θ = 1.0 and σ1 = 2. The zero
energy solutions are shown as thicker curves.
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the quasistationary solution with an appropriate inner solution in a neighborhood of
the fixed point x = x∗. This is necessary since the quasistationary solution does
not satisfy appropriate boundary conditions at the saddle point separating the two
metastable states. There are a number of different ways of carrying out the matched
asymptotics [81,85,90,124,129,217]. Here we will proceed by fixing the probability flux
J0 through x∗ and carrying out a diffusion approximation of the inner solution [90,129].
Introducing stretched coordinates y = (x − x∗)/

√
ε, the inner solution Π(y) satisfies

the stationary FP equation for constant flux, that is,

J0 = V (x∗ +
√
εy)Π(y)−

√
εD(x∗)

2

∂Π(y)

∂y
, (5.66)

where

V (x) = Ω+(x)− Ω−(x), D(x) = Ω+(x) + Ω−(x).

This yields the solution

Π(y) =
2J0√
ε

e−2U(x∗+
√
εy)/D(x∗)ε

∫ ∞
y

e2U(x∗+
√
εy′)/D(x∗)εdy′.

with V (x) = −U ′(x) and D(x∗) = 2Ω+(x∗). Taylor expanding the potential to second
order in ε1/2y and reintroducing unstretched coordinates gives the inner solution
φi(x) = ε−1/2Π(x/

√
ε),

φi(x) =
2J0

εD(x∗)
e(x−x∗)2/Γ2

∫ ∞
x

e−(x′−x∗)2/Γ2

dx′, (5.67)
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Figure 19. Time series showing a single realization of the stochastic
autoregulatory gene network evolving according to the birth-death master
equation (5.42) with transition rates (5.43). Parameters are θ = 0.86,
κ = 4.0, σ1 = 2 and N = 20. The bistable nature of the process is clearly
seen.
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where

Γ =

√
εD(x∗)

|U ′′(x∗)|
=

√
2Ω+(x∗)

N [Ω
′
+(x∗)− Ω

′
−(x∗)]

(5.68)

determines the size of the boundary layer around x∗. In order to match with the outer
solution we note that for x∗ − x� Γ we can take the lower limit in the integral to be
−∞ and evaluate the resulting Gaussian integral:

φi(x) =
J0Γ
√
π

εΩ+(x∗)
e(x−x∗)2/Γ2

(5.69)

Similarly, Taylor expanding the outer solution about x∗ using Φ
′
(x∗) = 0 and

Φ
′′
(x∗) = −2ε/Γ2 and matching shows that (for ε−1 = N)

J0 =
AΩ+(x∗)√

Ω+(x∗)Ω−(x∗)

√
|Φ′′(x∗)|

2πN
e−NΦ(x∗). (5.70)

Finally, using steepest descents we evaluate the normalization of the outer solution:∫
Σ

φ(0)
ε (x)dx ≈ A√

Ω+(x∗)Ω−(x∗)

∫ ∞
−∞

e−N [Φ(x−)+Φ′′(x−)(x−x−)2/2]

=
A√

Ω+(x∗)Ω−(x∗)

√
2π

NΦ′′(x−)
. (5.71)

From equation (5.21), the mean transition rate is then

r− ≡ λ(0)
ε =

Ω+(x−)

2π

√
|Φ′′(x∗)|Φ′′(x−)e−N [Φ(x∗)−Φ(x−)]. (5.72)

Similarly, the escape rate from the metastable state x+ is

r+ =
Ω+(x+)

2π

√
|Φ′′(x∗)|Φ′′(x+)e−N [Φ(x∗)−Φ(x+)]. (5.73)

Finally, note that the long–term behavior of the stochastic bistable gene network
can be approximated by a two–state Markov process that only keeps track of which
metastable state the system is close to [244], see also Fig. 19:

d

dt

(
P−
P+

)
= Q̂

(
P−
P+

)
, Q̂ =

(
−r− r+

r− −r+

)
(5.74)

where P± are the probabilities of being in a neighborhood of x±. The matrix Q̂ has

eigenvectors λ̂0 = 0 and λ̂1 = −(r+ + r−) and corresponding eigenvectors

v̂0 =

(
r+/(r+ + r−)
r−/(r+ + r−)

)
, v̂1 =

(
1/2
−1/2

)
. (5.75)

Note that the two–state model generates an exponential density for the residence times
within a given metastable state. This captures the behavior of the full master equation
at large residence times but fails to capture the short–term dynamics associated with
relaxation trajectories within a neighborhood of the metastable state. Finally, we note
that certain care has to be taken if the fixed point x− is too close to the boundary at
x = 0, as highlighted in Ref. [129].
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5.2.2. Metastability in the thermodynamic limit. In the thermodynamic limit for
fixed ε, the autoregulatory network evolves according to a stochastic hybrid system
with corresponding CK equation (5.45). Now n ∈ Γ = {0, 1} represents the discrete
state of the gene. In order to calculate the mean transition time for escape from
the metastable state x−, we supplement the CK equation (5.45) by the absorbing
boundary conditions

ρ0(x∗, t) = 0, (5.76)

since F0(x∗) < 0. The initial condition is taken to be ρn(x, 0) = δ(x − x−)δn,n0
. Let

T denote the (stochastic) first passage time for which the system first reaches x∗,
given that it started at x−. The distribution of first passage times f(t) is related to
the survival probability that the system hasn’t yet reached x∗ according to equation
(5.48) with

S(t) =

∫
Σ

∑
n∈Γ

ρn(x, t)dx. (5.77)

Substituting for ∂ρn/∂t using the CK equation (5.45) shows that

f(t) =

∫
Σ

[∑
n∈Γ

∂[Fn(x)ρn(x, t)]

∂x

]
dx =

∑
n∈Γ

ρn(x∗, t)Fn(x∗), (5.78)

with Γ = {0, 1} for the two-state model. We have used
∑
n∈ΓAnm(x) = 0 and

limx→−∞ Fn(x)ρn(x, t) = 0. Note that for the sake of generality we will develop the
following analysis in the case of the more general discrete set Γ = {0, 1, . . . , N0 − 1},
under the assumption that we can partition the functions Fn(x), n ∈ Γ, into positive
and negative subsets, see section 2.6. We will then return to the two-state model
(N0 = 2).

As in the case of the discrete Markov process, we can identify the mean transition

rate with the principal eigenvalue λ
(0)
ε of the CK operator −L in equation (5.45),

assuming λ
(0)
ε exists and is exponentially small. We can then make the quasistationary

approximation

ρn(x, t) ∼ C0e−λ
(0)
ε tφ(0)

ε (x, n). (5.79)

Substituting such an approximation into equation (5.78) gives

f(t) ∼ C0e−λ
(0)
ε t
∑
n∈Γ

Fn(x∗)φ
(0)
ε (x, n). (5.80)

and thus

λ(0)
ε =

∑
n∈Γ Fn(x∗)φ

(0)
ε (x∗, n)∑

n

∫
Σ
φ

(0)
ε (x, n)dx

. (5.81)

Proceeding along analogous lines to the birth-death master equation, we seek a
WKB approximation of the quasistationary solution of the form

φ(0)
ε (x, n) ∼ Zn(x) exp

(
−Φ(x)

ε

)
, (5.82)

where Φ(x) is the WKB quasipotential. Substituting into the time-independent version
of equation (5.45) yields∑

m

(Anm(x) + Φ′(x)δn,mFm(x))Zm(x) = ε
dFn(x)Zn(x)

dx
, (5.83)
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where Φ′ = dΦ/dx. Introducing the asymptotic expansions Φ ∼ Φ0 + εΦ1 and
Z ∼ Z(0) + εZ(1), the leading order equation is∑

m∈Γ

Anm(x)Z(0)
m (x) + Φ′0(x)Fn(x)Z(0)

n (x) = 0. (5.84)

(Since the prefactor is a component of a vector, we separately expand Φ and Z(0).)

Positivity of the quasistationary density φ
(0)
ε requires positivity of the corresponding

solution Z(0). One positive solution is the trivial solution Z(0)(x) = ρ∗(x) for all
x ∈ Σ, where ρ∗ is the unique right eigenvector of A, for which Φ′0 = 0. Establishing
the existence of a non-trivial positive solution requires more work, and is related to
the fact that the connection of the WKB solution to optimal fluctuational paths and
large deviation principles is less direct.

It turns out that one has to consider the eigenvalue problem [46,49,91,92,153]∑
m∈Γ

[Anm(x) + pδn,mFm(x)]Rm(x, p) = Λ(x, p)Rn(x, p). (5.85)

Assuming that A(x) is irreducible for all x, one can use the Perron-Frobenius theorem
to show that for fixed (x, p) there exists a unique eigenvalue Λ0(x, p) with a positive

eigenvector R
(0)
n (x, p). The optimal fluctuational paths are obtained by identifying

the Perron eigenvalue Λ0(x, p) as a Hamiltonian and finding zero energy solutions to
Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, H(x, p) = Λ0(x, p). (5.86)

Comparison of equation (5.84) with equation (5.85) then shows that there exists a

nontrivial positive solution of equation (5.84) given by Z
(0)
n (x) = R

(0))
n (x, p) with

p = Φ′0(x) and Φ0 satisfies the corresponding HJ equation

Λ0(x,Φ′0(x)) = 0. (5.87)

Note that since Φ′0(x) vanishes at x = x∗ it follows that Z(0)(x∗) = ρ∗(x∗), and
similarly for the other fixed points. The interesting feature of PDMPs is that the
WKB method does not generate the correct Hamiltonian of large deviation theory
except along fluctuational paths where the Hamiltonian is zero.

Calculation of principal eigenvalue. In order to calculate the principal eigenvalue,
we have to determine the first order correction Φ1 to the quasipotential of the WKB
solution (5.82). Proceeding to the next order in the asymptotic expansion of equation
(5.83), we have∑
m

(Anm(x) + Φ′0(x)δn,mFn(x))Z(1)
m (x) =

dFn(x)Z
(0)
n (x)

dx
− Φ′1(x)Fn(x))Z(0)

n (x).

(5.88)

For fixed x and WKB potential Φ0, the matrix operator Ānm(x) = Anm(x) +
Φ′0(x)δn,mFm(x) on the left-hand side of this equation has a one-dimensional null
space spanned by the positive WKB solution Z(0)(x). The Fredholm Alternative
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Theorem† then implies that the right-hand side of (5.88) is orthogonal to the left null
vector S of Ā. That is, we have the solvability condition∑

n∈Γ

Sn(x)

[
dFn(x)Z

(0)
n (x)

dx
− Φ′1(x)Fn(x)Z(0)

n (x)

]
= 0,

with S satisfying∑
n∈Γ

Sn(x) (Anm(x) + Φ′0(x)δn,mFm(x)) = 0. (5.89)

Given Z(0),S and Φ0, the solvability condition yields the following equation for Φ1:

Φ′1(x) =

∑
n∈Γ Sn(x)[Fn(x)Z

(0)
n (x)]′∑

n∈Γ Sn(x)Fn(x)Z
(0)
n (x)

. (5.90)

Combining the various results, and defining

k(x) = exp (−Φ1(x)) , (5.91)

gives to leading order in ε,

φ(0)
ε (x, n) ∼ N k(x) exp

(
−Φ0(x)

ε

)
Z(0)
n (x), (5.92)

where we choose
∑
n Z

(0)
n (x) = 1 for all x and N is the normalization factor,

N =

[∫
Σ

k(x) exp

(
−Φ0(x)

ε

)]−1

.

The latter can be approximated using Laplace’s method to give

N ∼ 1

k(x−)

√
|Φ′′0(x−)|

2πε
exp

(
Φ0(x−)

ε

)
. (5.93)

The final step is to use singular perturbation theory to match the outer quasistationary
solution to the absorbing boundary condition at x∗. The analysis is quite involved,
see [148,191,192], so here we simply quote the result for the 1D model:

λ0 ∼
1

π

k(x∗)D(x∗)

k(x−)

√
Φ′′0(x−)|Φ′′0(x∗)| exp

(
−Φ0(x∗)− Φ0(x−)

ε

)
. (5.94)

with D(x) the effective diffusion coefficient (2.54) obtained using a QSS reduction.

Two-state model. We now illustrate the above theory for the simple two-state
autoregulatory network of equation (5.45). An example of a larger discrete set
(N0 > 2) will be considered in section 8.1 for a model of stochastic ion channels. The
specific version of the linear equation (5.85) can be written as the two-dimensional
system(
−α(x) + pF0(x) β(x)

α(x) −β(x) + pF1(x)

)(
R0

R1

)
= Λ

(
R0

R1

)
. (5.95)

† Consider an M -dimensional linear inhomogeneous system Ax = b with x,b ∈ RM . Suppose that
the M ×M matrix A has a nontrivial null-space and let v be a null vector of the adjoint matrix A†,
that is, A†v = 0. The Fredholm Alternative Theorem states that the inhomogeneous equation has a
(non-unique) solution if and only if v · b = 0 for all null vectors v.
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The corresponding characteristic equation is

0 = Λ2 + Λ[α(x) + β(x)− p(F0(x) + F1(x))]

+ (pF1(x)− β(x))(pF0(x)− α(x))− β(x)α(x).

It follows that the Perron eigenvalue is given by

Λ0(x, p) =
1

2

[
Σ(x, p)−

√
Σ(x, p)2 − 4h(x, p)

]
(5.96)

where

Σ(x, p) = p(F0(x) + F1(x))− [α(x) + β(x)],

and

h(x, p) = p2F1(x)F0(x)− p[β(x)F0(x) + α(x)F1(x)].

A little algebra shows that

D(x, p) ≡ Σ(x, p)2 − 4h(x, p) = [p(F0 − F1)− (α(x)− β(x))]2 + α(x)β(x) > 0

so that as expected Λ0 is real. The quasipotential Φ0(x) satisfies the HJ equation
Λ0(x, p) = 0 with p = Φ′0(x), which reduces to the condition

h(x,Φ′0(x)) = 0. (5.97)

This has two solutions: the classical deterministic solution p = 0 with Φ′0(x) = 0 and
a non-trivial solution whose quasipotential satisfies

Φ′0(x) =
β(x)

F1(x)
+

α(x)

F0(x)
. (5.98)

(Note that Fn(x) does not vanish anywhere and F0(x)F1(x) < 0.) The quasipotential
can be determined by numerically integrating with respect to x. As shown in [192],
the resulting quasipotential differs significantly from the one obtained by carrying out
a QSS diffusion approximation of the stochastic hybrid system along the lines outlined
in section 2.6.

For this simple model, it is also straightforward to determine the various
prefactors in equation (5.94). For example, the normalized positive eigenvector Z(0)

has components

Z
(0)
0 =

F1(x)

F1(x)− F0(x)
, Z

(0)
1 =

−F0(x)

F1(x)− F0(x)
.

Since F0(x) < 0 and F1(x) > 0 for 0 < x < σ, it follows from equation (5.98) that

Z
(0)
0 is positive. The components of the adjoint eigenvector S satisfy

S1

S0
=
−α+ Φ′0(x)F0(x)

α
=
−β + Φ′0(x)F1(x)

β
.

It then follows from equation (5.90) that the first correction to the quasipotential
satisfies

Φ′1(x) =
1

F0(x)F1(x)

d

dx
(F0(x)F1(x)). (5.99)

Hence

k(x) ≡ e−Φ1(x) =
1

|F0(x)|F1(x)
. (5.100)

Finally, D(x∗) is given by equation (2.57). For extensions to the two-dimensional
models considered in section 3, namely, the mutual repressor network and the
autoregulatory network with both mRNA and protein dynamics included, see
[151,191,195].
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OR3 OR2
OR1

crocI

Figure 20. Schematic diagram of operator complex OR with three binding sites
ORj , j = 1, 2, 3. The gene cI is transcribed when OR3 is free and OR2 is occupied
by the protein CI, whereas the gene cro is transcribed when both OR2 and OR1

are free. Dimers of CI bind cooperatively to OR1 and OR2.

5.3. Metastability in epigenetics

Aurell et al. [21, 22] have developed a theoretical framework for studying the
metastability of epigenetic states (see also [230]). Epigenetics concerns phenotypic
states that are not encoded as genes, but as inherited patterns of gene expression
originating from environmental factors. Examples of environmental influences range
from changes in the supply of nutrients in bacteria to stress in humans. The simplest
and best studied example of inherited gene expression involves the infection of E. coli
by the λ phage DNA virus [206]. Following infection, the λ phage either multiplies and
ultimately kills the host (lysis), or it integrates its DNA into that of the host (lysogeny)
and is passively replicated over many generations. These two distinct scenarios involve
the expression of different genes. In wild-type, one finds that the lyosgenic state is
extremely stable with spontaneous loss occurring around 10−5 per cell and generation,
which corresponds to a lifetime of five years. Hence, the spontaneous escape from the
metastable lysogenic state is an excellent example of a rare event. Here we briefly
review the model of metastability by Aurell and Sneppen [21].

Lysogeny is maintained by a regulatory network involving λ phage DNA, a pair
of regulatory proteins CI and Cro, and an operator complex OR consisting of three
binding sites ORj , j = 1, 2, 3, overlapping with two promoter sites PRM and PR,
see Fig. 20. Either CI or Cro can bind to the operators ORj . The protein CI has
the highest affinity for OR1, and when it is bound it blocks RNA polymerase from
binding to the promoter PR and initiating transcription of the gene cro. On the other
hand, the protein Cro mainly binds to OR3 consequently blocking the promoter PRM
and the synthesis of CI. The rate of initiation of cI transcription also depends on
whether or not CI is bound to OR2. We see that the regulatory network is a more
complicated version of the mutual repressor model of a bistable switch, see section
3.5. Lysogeny is maintained during bacterial growth provided that the number of CI
molecules per bacterial cell is sufficiently high (200-350 per cell [206]). However, if
the CI concentration becomes too low, then increased activation of cro increases the
concentration of Cro protein and decreases cI activation. Thus lysogeny ends and
lysis begins. This can be modeled in terms of a bistable switch, in which one of the
metastable fixed points is the lysogenic state, and termination of lysogenesis occurs
when there is a noise-induced path that exits the basin of attraction of this state.

First suppose that the numbers of CI and Cro within a cell are large so that
the dynamics can be represented in terms of mass action kinetic equations for the
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concentrations xCI and xCro [213]:

dxCI

dt
= φCI(xCI, xCro),

dxCro

dt
= φCro(xCI, xCro), (5.101)

where the net production rates are taken to be of the form

φJ = SJfJ(xCI, xCro)− xJ
τJ
, J = CI,Cro. (5.102)

Here SJ is the number (per unit volume) of proteins of type J produced from one
mRNA of the corresponding gene, whereas the transcription rates fJ are taken to
have the following form:

fCI = R̂RM (P010 + P011 + P012) +RRM (P000 + P001 + P002 + P020 + P021 + P022)

fCro = R̂R(P000 + P100 + P200), (5.103)

where Ps is the probability of a state s = (i3, i2, i1) with the three numbers referring
respectively to OR3, OR2 and OR1, and are based on the coding in = 0 if the
corresponding site is free, in = 1 if the site is occupied by a CI dimer, and in = 2 if
the site is occupied by a Cro dimer. Moreover, RRM is the base rate of transcription of
cI, R̂RM is the stimulated rate when CI is bound to OR2, and RR is the transcription
rate of cro. Finally, the grand canonical ensemble of equilibrium statistical mechanics
is used to determine Ps:

Ps = N −1xmsCI x
ns
Croe−G(s)/RT , (5.104)

where ms and ns are the numbers of CI and Cro dimers bound to operator sites in
state s, and G(s) is the associated free energy.

In reality, the numbers of CI and Cro proteins involved in lysogenesis are only
in the range of hundreds. This has two implications for the analysis of the model.
First, one has to take into account conservation of molecules in order to determine the
number of free dimers that can bind to sites on the operator OR. Second, intrinsic
fluctuations in the number of proteins occur. In Ref. [21], these fluctuations are
modeled in terms of an effective SDE of the form

dXCI = φCIdt+
1√
Ω
gCIdWCI, dXCro = φCrodt+

1√
Ω
gCIdWCro, (5.105)

where WCI(t) and WCro(t) are independent Wiener processes, Ω is the system size,
and the noise amplitudes are

gJ =
√
S2
JfJ +XJ/τJ , J = CI,Cro. (5.106)

This SDE can be derived by carrying out a system-size expansion of the associated
chemical master equation along the lines of section 2.4. Aurell and Sneppen then
analyze metastability of the lysogenic state by applying the large deviation theory of
SDEs described in section 5.1. In particular, the Hamiltonian (5.39) is given by [21]

H =
1

2
(g2

CIp
2
CI + g2

Crop
2
Cro) + pCIφCI + pCroφCro, (5.107)

where pJ is the momentum conjugate to the generalized coordinate xJ . The optimal
path of escape from the metastable lysogenic state is determined from the zero-energy
solutions of Hamilton’s equations

ẋJ =
∂H

∂pJ
, ṗJ = − ∂H

∂xJ
, J = CI,Cro. (5.108)

One of the interesting aspects of the analysis in Ref. [21] is the quantification of the
robustness of the lysogenic state in terms of the value of the minimized action Smin

along the optimal path of escape. That is, since the rate of escape ∼ e−ΩSmin , higher
stability corresponds to a larger action.
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6. Bacterial growth and switching in changing environments

A challenging problem for microbial organisms such as bacteria is how to adapt to a
randomly fluctuating environment involving, for example, sudden changes in chemical
composition, local temperature, or light illumination. One strategy is to sense these
environmental changes and respond appropriately by switching phenotype or behavior.
However, there is a cost: each individual must maintain an active sensory system. An
alternate way to adapt to randomly fluctuating environments is to maintain population
diversity, whereby different sub-populations are well-adapted to different types of
environments (see the review [197]). There are variety of microbial organisms that
achieve phenotypic diversity by stochastic phenotype-switching mechanisms. One
example is the persistence mechanism in E. coli, where cells switch spontaneously
and reversibly to a phenotype exhibiting slower growth and reduced killing by
antibiotics [24]; this allows cells to survive prolonged exposure to antibiotics. Another
example is the lactose metabolism of E. coli: if an inducer that is not metabolized
binds to the repressor of the lac operon, then only a part of the bacteria expresses
lac [229]. This allows a more robust response to changes in lactose densities in the
environment. A third example occurs in the quorum sensing system of V. harveyi, see
section 7.2, where it has been found that only a fraction of the cells respond to an
autodinducer (a signaling molecule that can be exchanged with the environment and
whose concentration depends on cell density) [11].

The potential advantages of stochastically switching phenotypes in fluctuating
environments has been known for a long time in ecology and population genetics,
where it is known as bet-hedging [224]. In this scenario, each phenotype is better
suited to a particular environmental condition so that there is a fitness tradeoff. More
recently a number of mathematical models of bet-hedging have been developed within
the context of microbial populations [1,103,160,186,214,236]. Roughly speaking, when
changes in the environment are slow and cells in the wrong state are subject only to
moderate stress (weak selection), then stochastic switching can be preferable to active
environmental sensing. On the other hand, if environmental changes are unpredictable
and more severe, active sensing is generally preferred, provided that cells are capable
of responding quickly to new conditions. If the cells cannot respond in a timely fashion
then stochastic switching again becomes preferable. Stochastic switching can also be
beneficial in cases where the environment is favorable most of the time but occasionally
causes a catastrophe that wipes out most of the population [168,245].

In section 3 we described various mechanisms for genes to exhibit switching
between low and high levels of activity, in particular, noise-induced switching in
bistable gene regulatory networks. This suggests that stochastic gene expression
provides a direct mechanism for populations of cells to undergo different fates. In
this section we will simply assume that individual cells can switch between different
phenotypes, and describe various stochastic models of cell populations evolving in
random environments. We will assume that the switching times of the phenotypes
and environmental states are exponentially distributed. Note that by observing the
evolution of successive generations one can obtain statistics regarding the distribution
of switching or residence times, the relative abundance of different phenotypes and
the fitness of the population, see Fig. 21.
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Figure 21. Population-level phenotypic switching. (a) An individual mother
cell grows and divides into two daughter cells, producing a family tree over
multiple generations. Switching between two phenotypes is shown using two
different colors. At a given generation, the relative abundance of each of the
two phenotypes can be determined by measuring across the corresponding row.
Alternatively, one can keep track of phenotypic switching along one lineage of
the expanding tree (indicated by the thicker branches). If this single lineage
is observed for a sufficiently long time then one should recover the steady-state
population incidence of the two phenotypes, assuming the system is ergodic. (b)
Keeping track of the durations τl of each phenotype generates the residence time
distribution.

6.1. Stochastic population model of bacterial persistence

We begin by considering a stochastic population model of bet-hedging in E. coli due
to Kussell and Leibler [160], see also [186]. Consider a bacterial population growing
in an environment K(t) that switches between a finite number n of different states
according to a jump Markov process. Let Pk(t) = P[K(t) = k] denote the probability
that the environment is in state k at time t, which evolves according to the master
equation (section 2.4)

dPk
dt

=
∑
l 6=k

WklPl(t)−

∑
l 6=k

Wlk

Pk(t), (6.1)

where W is the transition rate matrix of the continuous-time Markov chain. Define
τk and bkl by

τ−1
k =

∑
j 6=k

Wjk, Wkl = bkl/τl.
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Figure 22. Bet-hedging model of switching between bacterial phenotypes
and environmental states. For the sake of illustration two environmental and
two phenotypic states are shown. The phenotype ci (cj) grows faster in the
environmental state ei (ej). Irrespective of the labels i, j, the fit state is denoted
an open box and the unfit state by a shaded box.

such that
∑
l 6=k blk = 1. We can interpret τl as the mean of the exponentially

distributed waiting times for transitions from environmental state l and bkl as the
probability of jumping to state k 6= l when a transition occurs. Setting pk = Pk/τk
we obtain the rescaled master equation

dpk
dt

=
∑
l 6=k

bklpl(t)− pk(t), (6.2)

At equilibrium, we have

p∗k =
∑
l 6=k

bklp
∗
l .

in which p∗k can be interpreted as the steady-state probability that a transition to
state k occurs.

Each individual organism can exist in one of n different phenotypes. Suppose

that phenotype i grows with rate f
(k)
i in environment k (with the possibility of either

positive or negative growth), see Fig. 22. Assume that the fastest growing phenotype

in environment k is phenotype k, that is f
(k)
k > f

(k)
j for all j 6= k. Let xj(t) denote the

number of bacteria in a large population that has phenotype j at time t. The vector
x(t) = (x1(t), . . . , xn(t)) evolves according to the system of piecewise linear ODEs

dxi
dt

= f
(k)
i xi(t) +

∑
j

H
(k)
ij xj(t) ≡

∑
j

Aij(k)xj(t), (6.3)

for K(t) = k. We are assuming that the phenotypes switch according to a jump
Markov process with generator −H(k), which may also depend on the current
state of the environment. Equations (6.2) and (6.3) thus provide another example
of a stochastic hybrid system, although in this case transitions of the discrete
environmental variable do not depend on the continuous variables x(t). For a given
x(t) the total population size is N(t) =

∑n
j=1 xj(t).
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Kussell and Leibler [160] distinguish between two types of phenotypic switching:
purely stochastic switching, where the rates are independent of k,

H
(k)
ij = Hij for all k,

and responsive switching, where sensing mechanisms allow switching to depend
strongly on the state of the environment. An extreme version of the latter is where
all phenotypes switch at the same rate Hm to phenotype k in environment k:

H
(k)
kj = Hm for all j 6= k, H

(k)
ij = 0 for all i 6= k, j 6= i.

The effectiveness of these two types of switching can be compared by calculating the
so-called Lyapunov exponent Λ, which characterizes the asymptotic growth rate of
the total population size. In general, deriving an exact expression for the Lyapunov
exponent (assuming it exists) is non-trivial. Therefore, we will follow Ref. [160] and
obtain an approximate expression for the Lyapunov exponent.

Suppose that time is divided into consecutive intervals during which the
environmental variable K(t) does not change. Let Tl denote the duration of the l-

th interval and set tL =
∑L
l=1 Tl with t0 = 0. Let nl be the state of the environment

during interval l. Introduce the generalized eigenvectors vr(k) of the matrix A(k)
and denote the corresponding eigenvalues by λr(k) with λ1(k) > λk2 ≥ . . . ≥ λn.
The Perron-Frobenius Theorem (see section 2.1) ensures that the principle eigenvalue
is non-degenerate and that it’s eigenvector is positive. We will take the principal
eigenvector to have the normalization

∑
j(v1(k))j = 1. To simplify the subsequent

analysis, we will assume that all eigenvalues are non-degenerate. However, this is not
necessary to derive the final result. Suppose that at the beginning of the l-th interval,
we expand the solution x(tl−1) in terms of the eigenvectors vnlr :

x(tl−1) =
∑
r

Crl,l−1vr(nl).

It follows that for tl−1 < t < tl

x(t) = eA(nl)(t−tl−1)
∑
r

Crl,l−1vr(nl) =
∑
r

eλr(nl)(t−tl−1)Crl,l−1vr(nl).

For sufficiently long durations Tl, we can keep only the term involving the principle
eigenvalue, that is,

x(tl) ≈ eλ1(nl)(tl−tl−1)C1
l,l−1v1(nl) = N(tl)v1(nl).

Since, we can apply the same argument to all the intervals, we see that

x(tl−1) ≈ N(tl−1)v1(nl−1),

where he have used the normalization
∑
j [v1(nl−1)]j = 1 and the fact that

∑
j xj(t) =

N(t) with N(t) the population size at time t. It follows that

C1
l,l−1 = N(tl−1)[M(nl)

−1v1(nl−1)]1 ≡ N(tl−1)qnl,nl−1
,

where M(k) is the matrix whose columns are the vectors vr(k).
Iterating the above results, we see that to leading order

N(tL) = eλ1(nL)(TL)qnL,nL−1
N(tL−1) =

L∏
l=1

eλ1(nl)(Tl)qnl,nl−1
N0.
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The Lyapunov exponent is then given by the following limit:

Λ = lim
L→∞

logN(tL)

tL
= lim
L→∞

1

tL

[
L∑
l=1

log
(
qnl,nl−1

eλ1(nl)Tl
)

+ logN0

]

= lim
L→∞

1

Lτ

L∑
l=1

Tlλ1(nl) + lim
L→∞

1

Lτ

L∑
l=1

log qnl,nl−1
, (6.4)

where τ = limL→∞ tL/L. is the average duration time. Now recall that transitions
between the different environmental states are modeled in terms of a continuous-time
Markov chain, see equation (6.2). Let T

(i)
k be the duration of the k-th occurrence of

environment i, which are exponentially distributed with mean τi. For a large number
L of elapsed intervals, the number of occurrences of environment i approaches Lp∗i
and the number of transitions i→ j approaches bijp

∗
jL. Hence, we can decompose the

sums in equation (6.4) for the Lyapunov exponent as follows:

τΛ = lim
L→∞

1

L

n∑
i=1

p∗iL∑
k=1

T
(i)
k λ1(i) + lim

L→∞

1

L

n∑
i,j=1

p∗j bijL log qij ,

We thus obtain the final result [160]

τΛ =

n∑
i=1

p∗i τiλ1(i) +

n∑
i,j=1

p∗j bij log qij , τ =

n∑
k=1

p∗kτk. (6.5)

It remains to calculate the principal eigenvalues λ1(k) and the elements qij . One
finds that for responsive switching [160]

τΛR =

n∑
i=1

p∗i τif
(i)
i − cτ −

n∑
i,j=1

p∗j bij log(1 + ∆R
ji/Hm), (6.6)

where

∆R
ij = ∆ij ≡ f (i)

j − f
(j)
i .

Note that the additional term −cτ has been introduced to take into account the
energy costs of requiring environmental sensing machinery, which is assumed to slow
the growth rate. The case of stochastic switching is more difficult to analyze. However,
if we assume that the switching rates Hij are sufficiently slow, then we can carry out
a perturbation expansion in the switching rates to obtain the approximation [160]

τΛS =

n∑
i=1

p∗i τif
(i)
i −

n∑
i=1

p∗i τi

∑
j 6=i

Hij

− n∑
i,j=1

p∗j bij log(1 + ∆S
ji/Hij), (6.7)

with
1

∆S
ij

=
1

∆ij
+

1

∆ji
.

The first term on the right-hand side of equations (6.6) and (6.7) represents the
expected long term growth of the population, whereas the final term takes into account
the time taken for the structure of the population to change in response to changes
in environment (delay-time cost). The second term in (6.6) is the cost due to sensing
the environment, whereas in (6.7) it is the cost associated with switching to slower
phenotypes (diversity cost).
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Using equation (6.7), we can now determine the optimal phenotype switching
rates Hij by maximizing ΛS . Setting ∂ΛS/∂Hij = 0 and using the approximation
∆S
ij/Hij � 1, we find that

Hij(optimal) =
bij
τj
. (6.8)

Hence, the optimal switching rate is proportional to the probability that the
environment undergoes the transition j → i and is inversely proportional to the
average duration of environment j. In other words, optimal rates are precisely tuned
to the environmental statistics. This recovers the same basic principle as found in the
two-state model.

6.2. Stochastic switching with reset in catastrophic environments

In section 6.1 it was assumed that the environment randomly switches between two or
more different states, each favoring a particular bacterial phenotype. Here we consider
a distinct scenario, in which there is a single environment that undergoes rare, sudden
and instantaneous catastrophes. One example is the sudden flushing out of a microbe
from an animal host due to urination or diarrhoea; a more resistant phenotype would
be one that is able to attach to the wall of the hist’s intestinal or urinary tract. A
second example would be the sudden exposure of a population to antibiotics, where
cells in a non-growing persister state are more likely to survive. In this section, we
describe a particular model due to Visco et al. [245].

Consider two microbial sub-populations A and B corresponding to distinct
phenotypes. Between catastrophes, they grow exponentially at at rates γA and γB
with γA > γB . Thus under normal conditions, sub-population A is fitter. Let nA
and nB be the number of microbes in the two sub-populations, which evolve between
catastrophes according to the pair of equations

dnA
dt

= γAnA + kBnB − kAnA, (6.9a)

dnB
dt

= γBnB − kBnB + kAnA, (6.9b)

with kA, kB the rates of phenotypic switching. Whenever a catastrophe occurs, the
population size nA decreases instantaneously to some new value n′A < nA, with a
reset probability ν(n′A|nA). The final component of the model is specifying how the
rate of catastrophes depends on the population size according to some environmental
response function β(nA, nB). Before specifying the precise form of ν and β, it is useful
to introduce the notion of population fitness.

Following [236], define the population fitness f as the fraction of the total
population that is in state A:

f(t) =
nA(t)

n(t)
, n(t) = nA(t) + nB(t).

A nonlinear dynamical equation for f can be derived by first noting that
dn

dt
= γAnA + nBγB = (γB + ∆γf)n,

where ∆γ = γA − γB > 0. Differentiating the expression for f with respect to time
then shows that

df

dt
=

1

n

dnA
dt
− nA
n2

dn

dt
= (γA − kA)f + kB(1− n)− f(γB + ∆γf)

= −∆γ(f − f+)(f − f−) ≡ V (f),
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where f± are the roots of the quadratic equation

f2 −
(

1− kA + kB
∆γ

)
f − kB

∆γ
= 0.

It is straightforward to show that f− < 0 < f+ ≤ 1. Hence, the system evolves
deterministically, converging towards the fitness value f+, except at specific times
(catastrophes) where it undergoes random jumps. We thus have yet another example
of a stochastic hybrid system or piecewise deterministic Markov process. However,
in contrast to previous examples, it is not one of the parameters of the deterministic
system that jumps, rather it is the deterministic variable itself.

Visco et al. [245] take the rate of catastrophes to depend on the fitness f according
to the parameterized sigmoid function

βλ(f) =
ξ

2

(
1 +

f − f∗√
λ2 + (f − f∗)2

)
. (6.10)

Mathematically speaking, this function is defined for all f ∈ R, but the physically
range is 0 < f < 1. Note that for finite λ, βλ(f) → 0 for f − f∗ � λ and
βλ(f)→ ξ for f −f∗ � λ. The sharpness of the sigmoid increases as λ decreases with
β0(f) = ξΘ(f − f∗) a Heaviside function. Finally, f∗ is the threshold value at which
βλ = ξ/2. The other important element of the model is the probability distribution
ν(n′A|nA) for the population reset nA → n′A following a catastrophe. In order to
express everything in terms of the fitness f , Visco et al. take

ν(n′A|nA) =
1

nA
F (n′A/nA)

with
∫ x

0
F (x)dx = 1. That is, when a catastrophe occurs, the fit population A is

reduced by a random factor generated from the distribution F . In terms of the
fitness f , we have f → f ′ with f ′ = n′A/(n

′
A + nB). The corresponding distribution

of jumps in fitness, µ(f ′|f), then satisfies µ(f ′|f)df ′ = ν(n′A|nA)dn′A. Since

F (n′A/nA) = F ([n′A/nB ][nB/nA]) = F

(
f ′(1− f)

f(1− f ′)

)
,

and

nA
df ′

dn′A
=

nA
n′A + nB

− nAn
′
A

(n′A + nB)2
=
nA
n′A

f ′(1− f ′) =
(1− f ′)2f

1− f
,

λ = 0.01

λ = 0.1

λ = 1

f

βλ(f)

1
(a) α = -0.5

α = 1

α = 10

n’/n

F (f)

1

(b)

2

0

3

4

0.0 1.00.5 0.0 1.00.5

Figure 23. Rate and strength of catastrophes. (a) Sigmoidal rate function βλ(f)
with ξ = 1 and f∗ = 1/2. (b) Power law jump distribution ν(n′A|nA).
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it follows that

µ(f |f ′) = F

(
f ′(1− f)

f(1− f ′)

)
1− f

(1− f ′)2f
, f > f ′. (6.11)

In Ref. [245], F is chosen for simplicity so that µ(f |f ′) factorizes: F (x) = (α+ 1)xα

with α > −1. For this choice,

ν(n′|n) =
α+ 1

n

(
n′

n

)α
, (6.12)

and

µ(f ′|f) =
d

df ′
m(f ′)

m(f)
, m(f) =

(
f

1− f

)1+α

. (6.13)

The model specific choices for β and ν are shown in Fig. 23.

Steady-state distribution. The steady-state probability distribution for the popula-
tion fitness, p(f), is determined by a balance condition for the probability flux [245]:

V (f)p(f) =

∫ f+

f

∫ f

0

β(f ′)p(f ′)µ(f ′′|f ′)df ′′ df ′. (6.14)

The left-hand side represents the flux through the state f to higher population fitnesses
f ′ > f due to growth, which must be balanced by the total flux from the states f ′ to
states F ′′ < f due to catastrophes. Substituting the explicit expression for ν gives

V (f)p(f) =

∫ f+

f

β(f ′)p(f ′)
m(f ′)

m(f)
df ′. (6.15)

Dividing through by m(f), setting G(f) = β(f)G(f)/V (f), and differentiating both
sides with respect to f yields

dG

df
= −βG

V
,

which can be solved to give

G(f) = C exp

(
− β(f)

V (f)

)
,

for some constant C. Hence

p(f) =
C

V (f)

(
f

1− f

)1+α

exp

(
− β(f)

V (f)

)
. (6.16)

The constant C can then be determined from the normalization of p(f).
The existence of an analytic solution means that we can now investigate under

what circumstances random switching is advantageous to the microbial population.
One way to characterize this is in terms of the average population fitness

〈f〉 =

∫ 1

0

fp(f)df

as a a function of the switching rate kA. In Fig. 24 we sketch results for several values
of the gain parameter λ. It can be seen that for large λ, where the catastrophe rate
is approximately constant, β = ξ/2, the average fitness is a monotonically decreasing
function of kA, suggesting that not switching is the best strategy. On the other hand,
for sufficiently small λ, there is a local maximum at a non-zero switching rate kA,
implying that switching into the slow-growing state represents an optimal strategy.
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6.3. Stochastic model of population extinction

As our final example, we consider a recent WKB analysis of the effect of a catastrophe
on extinction in a population model consisting of two distinct phenotypes [168]. As
in the previous models, the populations are assumed to be well-mixed so that spatial
effects can be ignored. One population consists of so-called “normals” that grow and
die, whilst the second population consists of “persisters” that do neither. However,
individuals can switch between the two types. The Let n and m denote the number
of normals and persisters. Assuming a maximum carrying capacity of N , the normals
grow at a rate B(1 − n/N) and die at a rate that is set to unity. If the phenotypic
switching rates are taken to be constants α, β, then the mean-field kinetic equations
(for large populations) are

dn

dt
= B

(
1− n

N

)
n− n− αn+ βm, (6.17a)

dm

dt
= αn− βm (6.17b)

The rate equations have a trivial fixed point at n = m = 0, which represents population
extinction, and a nontrivial fixed point Q at n∗ = N(1−1/B), m∗ = αn/β. The latter
fixed point is stable provided that B > 1, whereas the zero state is a saddle point.
Hence, in the absence of noise and n(0) > 0, the system converges to the non-trivial
fixed point Q, resulting in a viable steady-state population of phenotypes.

As with biochemical processes, one can write down a stochastic version of the
population model based on the discrete nature of individuals. The resulting master
equation for the probability distribution Pnm(t) = P[n(t) = n,m(t) = m] is

dPn,m
dt

= ÂPn,m (6.18)

= B(n− 1)

(
1− n− 1

N

)
Pn−1,m + (n+ 1)Pn+1,m −Bn

(
1− n

N

)
Pn,m − nPn,m

+ α(n+ 1)Pn+1,m−1 + β(m+ 1)Pn−1,m+1 − αnPn,m − β(1− δn,N )Pn,m.

λ = 0.01

λ = 0.1

λ = 1<f>

0.0 0.5 1.0 1.5 2.0

kA

0.0

0.5

1.0

1.5
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Figure 24. Schematic illustration of results from a model of catastrophes [245].
Sketch of average population fitness 〈f〉 as a function of the switching rate kA
and various values of λ. Other parameter values are λ = 0, kB = 0.1, ∆γ = 1
ξ = 1, α = −0.99 and f∗ = 0.5.
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Here (n,m) ∈ [0, N ]× [0,∞) with Pn<0,m = Pn,m<0 = Pn>N,m = 0. In the stochastic
model the state n = m = 0 is now an absorbing extinction state, with the extinction
probability satisfying

dP0,0

dt
= P1,0. (6.19)

The extinction state reflects the existence of a simple zero eigenvalue of the generator
−Â of the Markov chain with corresponding eigensolution Pn,m = δn,0δm,0. Since all
other eigenvalues are positive definite, it follows that all other eigensolutions decay
to zero, and hence the population goes extinct in the limit t → ∞. We thus have a
situation analogous to the stochastic genetic switch considered in section 5. Now the
metastable state is the non-trivial fixed point Q, and there is an absorbing boundary
at the zero fixed point. We can decompose the probability density for all non-zero
states as

Pn,m(t) =
∑
r

φ(r)
n,me−λ

(r)t,

where the sum is over all non-zero eigenvalues, and

P0,0(t) = 1−
′∑

n,m

Pn,m(t).

Here ′ indicates that the sum excludes (0, 0). If the system is initially close to A and N
is sufficiently large, then we expect extinction to be a rare event. Following from the
analysis of section 5, we assume that the smallest non-zero eigenvalue is exponentially
small with respect to the system size N , in contrast to all other non-zero eigenvalues.
We thus have the quasistationary approximation for (n,m) 6= (0, 0),

Pn,m(t) ≈ Πn,me−λ
(0)t,

where Πn,m = φ
(0)
n,m. Choosing Πn,m to have unit normalization (with Π0,0 = 0), it

follows that

P0,0 ≈ 1− e−λ
(0)t

and we can identify 1/λ(0) as the mean time to extinction [15]. Moreover, equation
(6.19) implies that

λ(0) = Π1,0. (6.20)

The quasistationary density can be calculated using a WKB approximation along
similar lines to section 5.1. Consider the WKB ansatz

Πn,m = e−NΦ(x,y) (6.21)

with x = n/N, y = m/N treated as continuous variables. It follows that

λ(0,0) ≈ e−NΦ(0,0). (6.22)

Substituting the WKB ansatz into the quasistationary equation ÂΠn,m = 0 gives, to
leading order in 1/N , the zero-energy Hamilton-Jacobi equation [168]

H(x, y, ∂xΦ, ∂yΦ) = 0, (6.23)

with effective Hamiltonian

H(x, y, px, py) = Bx(1− x)(epx − 1) + x(e−px − 1) + αx(e−px+py − 1)

+ βy(epx−py − 1) (6.24)
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Hamilton’s equation are given by

ẋ = Bx(1− x)epx − xe−px − αxe−px+py + βyepx−py (6.25a)

ẏ = αxe−px+py − βyepx−py (6.25b)

ṗx = −B(1− 2x)(epx − 1)− (e−px − 1)− α(e−px+py − 1) (6.25c)

ṗy = −β(epx−py − 1). (6.25d)

As in the case of the birth-death process in section 5.1, the zero-energy dynamics
in the invariant plane px = py = 0 recovers the rate equations (6.17a) and
(6.17b), after rescaling by N . Thus, the two saddles O = (0, 0, 0, 0) and Q =
(n∗/N,m∗/N, 0, 0) in the four-dimensional phase-plane originate from the fixed points
of the two-dimensional deterministic system. There is an additional saddle at
P = (0, 0,− lnB,− lnB), which corresponds to the fluctuational extinction point
[15,85,168].

We now have to determine the appropriate zero-energy path along which to
evaluate the action of the Hamiltonian system, which we then identify with the
quasipotential (see section 5.1). Given an established population at t → −∞, the
trajectory starts at the saddle Q. The issue is then whether it terminates at O or P,
both of which represent extinction of the two populations. It can be shown that the
correct choice is the fluctuational extinction point P [82, 152], so that the optimal
fluctuational path (also known as an instanton) is the heteroclinic connection C from
Q to P. Hence†,

Φ(0, 0) =

∫
C

[pxdx+ pydy]. (6.26)

In contrast to the one-degree-of-freedom model of a genetic switch (single
protein concentration) with a corresponding two-dimensional Hamiltonian phase space
(section 5.1), the extinction model has two-degrees-of-freedom (population densities
of two phenotypes) and a four-dimensional phase-space. Since there is only one
independent integral of motion (the energy), it follows that in general the instanton
solution has to be calculated numerically. It is also possible to carry out a multi-
scale perturbation analysis when B ≈ 1, where all of the fixed points approach each
other (due to the fact that for B < 1 the deterministic system also becomes extinct).
Analytical results can be obtained in both the fast and slow switching limits. Moreover,
it is possible to analyze the effects of a catastrophe (temporary reduction in the growth
rate B) on the population extinction risk. This issue was previously explored in
Ref. [17] for a single population of normals, which is obtained in the fast switching
limit α, β →∞ (see below). The main finding of the two-population model is that the
presence of a persister subpopulation dramatically reduces the increase in extinction
probability due to the same type of catastrophe [168]. Moreover, the reduction is
significantly greater in the slow phenotypic switching regime.

One-population model. In spite of the limitations of the one-population model with
regards the response to a catastrophe, it is useful to review the analysis of the simpler
model [17], since the same basic ideas extend to the more complex model. In the fast

† It is important to note that the assumption of large system size (n,m � 1) implicit in the WKB
analysis breaks down around x = y = 0. This means that one has to introduce a boundary layer of
width ∼ 1/N around the origin. However, since this yields a subleading contribution in N−1 to the
mean extinction time [18], it can be ignored (see also [129]).
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switching limit α, β → ∞ we can eliminate the variables y, py by taking y → αx/β
and py → px. Hamilton’s equations for x, px become

ẋ = Bx(1− x)epx − xe−px (6.27a)

ṗx = −B(1− 2x)(epx − 1)− (e−px − 1). (6.27b)

and the associated Hamiltonian is

H(x, px) = Bx(1− x)(epx − 1) + x(e−px − 1) (6.28)

The corresponding phase plane is shown in Fig. 25. We now have an explicit equation
for the heteroclinic connection from P = (1−B−1, 0) to P = (0,− lnB):

x = x(p) = 1− e−px

B
.

After integration by parts, we have

Φ(0, 0) = −
∫ − lnB

0

x(p)dp =
1−B
B

+ lnB. (6.29)

In the regime 0 < δ � 1 with δ = B − 1, we have Φ(0, 0) ≈ δ2/2 and the mean
extinction time τe = 1/λ(0) is

τe ∼ eNδ
2/2. (6.30)

For comparison, note that when persisters are also taken into account and phenotypic
switching is slow, the extinction time is increased according to [168]

τe ∼ eNδ
2(1/2+α/β). (6.31)

That is, spending more time in the persister state delays extinction.

Effect of a catastrophe. Now suppose that an environmental catastrophe occurs, in
which either the reproduction rate or the carrying capacity temporarily reduces [17].
The latter can be modeled by taking Bx(1−x)→ Bx(f(t)−x) with a time-dependent
factor such that f(±∞) = 1. Suppose for the sake of illustration that

f(t) =

{
1 if t < 0 or t > T
0 if 0 < t < T

(6.32)

That is, the carrying capacity drops instantaneously to zero at t = 0 and subsequently
jumps back to the original value at t = T . The effective Hamiltonian system now
switches between the unperturbed Hamiltonian (6.28) and the perturbed Hamiltonian

Ĥ(x, px) = −Bx2(epx − 1) + x(e−px − 1). (6.33)

Each of the Hamiltonians is an integral of the motion during the associated time
interval. Hence the maximum likelihood fluctuational path to extinction can
be determined by matching three separate trajectories corresponding to the pre-
catastrophe, catastrophe and post-catastrophe stages. The trajectories for t ∈ (−∞, 0)
and t ∈ (T,∞) are zero energy and thus belong to the original heteroclinic connection
from Q to P. On the other hand, the catastrophe path for t ∈ [0, T ] has some non-
zero energy Ec, which is unknown a priori. In particular, the points ρ1, ρ2 where the
non-zero energy path intersects the heteroclinic connection depend on Ec. The full
solution is obtained by imposing continuity of x(t) and p(t) at the intersection points
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Figure 25. Schematic diagram indicating the phase-plane (x, p) for the one-
population model of extinction. The fixed points are the trivial state O, the
metastable state Q and the fluctuational fixed point P. The zero-energy
trajectories are indicated by thick solid lines, including the optimal fluctuational
path given by the heteroclinic connection QP. The dashed thick line indicates a
fluctuational path segment with non-zero energy Ec. This arises in response to a
catastrophe consisting of the instantaneous reduction of the carrying capacity to
zero at t = 0 and full recovery at t = T (see text for details).

and imposing the condition that the duration of the catastrophe is T . One thus finds
that the modified quasipotential or action is

Φ̂(0, 0) = Φ(0, 0)−∆A− Ec(T )T, (6.34)

where ∆A is the shaded region in Fig. 25. The reduction in the action leads to an
exponential decrease in the mean extinction time. However, this is mitigated by the
presence of a persister subpopulation, as shown in Ref [168].

In the above example, the effect of a catastrophe on population extinction was
explored by introducing a time-dependent reaction rate into the WKB Hamiltonian
and seeing how it effects the optimal fluctuational path to the absorbing state. This
is a special case of a more general theory of population extinction in the presence
of time-dependent reaction rates that has been developed in a series of papers
[16,19,20,23,89,146,216]. Such rates represent the effects of colored environmental or
extrinsic noise or some periodic modulation of the environment.)

7. Quorum sensing

In this section, we consider another example of switching at the multicellular level,
namely, quorum sensing. This refers to the switching on or off of gene regulatory
networks within each cell depending on the cell density within the environment. Most
models of bacterial quorum sensing are based on deterministic ordinary differential
equations (ODEs), in which both the individual cells and the extracellular medium
are treated as well-mixed compartments (fast diffusion limit) [13, 62, 75, 104, 117, 142,
179,182,248]. (For a discussion of spatial models that take into account bulk diffusion
of the autoinducer in the extracellular domain see Refs. [75,118,154,184,185].) Suppose
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κ

cell j

extracellular domain

autoinducer A

Figure 26. Schematic diagram showing a population of cells labeled j =
1, . . . , N that can exchange an autodinducer A with the extracellular environment.
The extracellular concentration of A is denoted by U and the intracellular
concentration of A in the j-th cell is denoted by uj . The diffusive coupling
parameter is κ. All compartments are taken to be well-mixed.

that there are N cells labeled i = 1, . . . , N . Let U(t) denote the concentration
of signaling molecules in the extracellular space and let ui be the corresponding
intracellular concentration within the i-th cell, see Fig. 26. Suppose that there are
K other chemical species within each cell, which together with the signaling molecule
comprise a regulatory network. Introduce the vector vi = (vi,1, . . . , vi,K) with vi,k
the concentration of species k within the i-th cell. A deterministic model of quorum
sensing may be expressed in the general form [182]

dui
dt

= F (ui,vi)− κ(ui − U), (7.1a)

dvi,k
dt

= Gk(ui,vi), (7.1b)

dU

dt
=

α

N

N∑
j=1

κ(uj − U)− γU, (7.1c)

The nonlinear terms F (u,v) and Gk(u,v) are the reaction rates of the regulatory
network based on mass action kinetics, the term κ(uj − U) represents the diffusive
exchange of signaling molecules across the membrane of the i-th cell, and γ is the
rate of degradation of extracellular signaling molecules. Also α = Vcyt/Vext is a cell
density parameter equal to the ratio of the total cytosolic and extracellular volume.
Note that Vcyt = vcytN , where vcyt is the single-cell volume.

The global convergence or synchronization properties of quorum sensing networks,
where coupling between nodes in the network is mediated by a common environmental
variable, has been analyzed within the context of nonlinear dynamical systems in
Ref. [218]. In particular, the authors derive conditions on the nonlinear function F and
Gk for which solutions converge exponentially toward each other, that is ui(t)→ u(t)
and vi(t)→ v(t) with

du

dt
= F (u,v)− κ(u− U), (7.2a)

dvk
dt

= Gk(u,v), (7.2b)
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dU

dt
= ακ(u− U)− γU. (7.2c)

From a dynamical systems perspective, two basic forms of collective behavior
are typically exhibited by equations (7.2a-7.2c): either the population acts as a
biochemical switch [75, 136, 142, 248] or as a synchronized biochemical oscillator
[62,179,182]. Two distinct mechanisms for a biochemical switch have been identified.
The first mechanism is bistability in a gene regulatory network (see section 3). One
well-known example is a mathematical model of quorum sensing in the bacterium
Pseudomonas aeruginosa [75]. P. aeruginosa is a human pathogen that only releases
toxins once the bacterial colony has reached a critical size so that it can resist being
neutralized by an efficient host response [71,80]. Multistability also occurs in a related
model of quorum sensing in the bioluminescent bacteria V. fisheri [142]. In this system,
quorum sensing limits the production of bioluminescent luciferase to situations where
cell populations are large; this saves energy since the signal from a small number
of cells would be invisible and thus useless. Recent experimental studies of quorum
sensing in the bacterial species V. harveyi and V. cholerae [163, 233, 252] provide
evidence for an alternative switching mechanism, which can provide robust switch-like
behavior without bistability. In these quorum sensing systems two or more parallel
signaling pathways control a gene regulatory network via a cascade of phosphorylation-
dephosphorylation cycles (PdPCs). Within the context of quorum sensing, the binding
of an autodinducer to its cognate receptor switches the receptor from acting like a
kinase to one acting like a phosphotase. Thus the PdPCs are driven by the level of
autoinducer, which itself depends on the cell density. One source of the switch-like
behavior is thus ultrasenstivity of the PdPCs [34,107,113,208–210]. In contrast to the
noise-driven phenotypic switching considered in section 6, the switching mechanism in
quorum sensing is now stimulus-driven (based on cell density), and thus noise tends
to have a detrimental effect.

7.1. Bistability in a model of Pseudomonas aeruginosa quorum sensing

In P. aeruginosa there are two quorum-sensing systems working in series, known as
the las and rhl system, respectively. Following Ref. [75], we consider the upstream
las system, which is composed of lasI, the autoinducer synthase gene responsible for
synthesis of the autoinducer 3-oxo-C12-HSL via the enzymatic action of the protein
LasI, and the lasR gene that codes for transcriptional activator protein LasR (R), see
Fig. 27. Positive feedback occurs due to the fact that LasR and 3-oxo-C12-HSL can
form a dimer, which promotes both lasR and lasI activity. (We ignore an additional

lasR

lasR

3-oxo-C12-HSL

lasI
+

dimer

lasI

lasR

+

Figure 27. Simplified regulatory network for the las system in P. aerginosa.



CONTENTS 101

negative feedback loop that is thought to play a relatively minor role in quorum
sensing.) Exploiting the fact that the lifetime of each type of mRNA is much shorter
than its corresponding protein, we can eliminate the mRNA dynamics, and write down
a system of ODES for the concentrations of LasR, the dimer LasR/3-oxo-C12-HSL and
the autoinducer 3-oxo-C12-HSL, which we denote by R,P and A, respectively. The
resulting system of ODES for mass action kinetics at the single-cell level thus take the
form [75]

dP

dt
= kRARA− kPP, (7.3a)

dR

dt
= −kRARA+ kPP − kRR+ VR

P

KR + P
+R0, (7.3b)

dA

dt
= −kRARA+ kPP + VA

P

KA + P
+A0 − kAA. (7.3c)

Here kA, kR are the rates of degradation of A,R, kRA, kP are the rates of production
and degradation of the dimer P , and A0, R0 are baseline rates of production of A,R.
Finally, the positive feedback arising from the role of the dimer P as an activator
protein that enhances the production of LasR and arising from the activation of R
and A (with the latter mediated by lasI) is taken to have Michaelis-Menten form.
Dockery and Keener [75] carry out a further reduction by noting that formation and
degradation of dimer is much faster than transcription and translation so that we can
assume P is in quasi steady-state so that

P =
kRA
kP

RA = kRA.

Then we have
dR

dt
= −kRR+ VR

kRA

KR + kRA
+R0, (7.4a)

dA

dt
= VA

kRA

KA + kRA
+A0 − kAA. (7.4b)

Comparison of equations (7.4a) and (7.4b) with the general kinetic system in equations
(7.2a) and 7.2b), shows that we have one auxiliary species and we can make the
following identifications (after dropping the k = 1 index): u = A, v = R with

F = VA
uv

KA + kuv
+A0 − kAu.

G = −kRv + VR
kuv

KR + kuv
+R0.

Now suppose equation (7.4b) is diffusively coupled to an extracellular
concentration along the lines of (7.2a-7.2c), and as a further simplification take U
to be in quasi-equilibrium. The latter conditions allows us to carry out a phase-plane
analysis without changing the essential behavior of the system. Set α = ρ/(1−ρ) and
κ = δ/ρ, where ρ is the volume fraction of cells and the conductance δ is independent
of ρ. The only modification is that the last term on the right-hand side of (7.4b) which
is transformed according to the scheme

kAA→ d(ρ) ≡
[
kA +

δ

ρ

γ

γ + δ/(1− ρ)

]
A.

Quorum sensing thus arises due to the dependence of the effective degradation rate
d(ρ) on ρ. More specifically, when ρ is small the rate d(ρ) is large, whereas d(ρ) is
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Figure 28. Bistability in planar model of las system in P. aerginosa.. (a)
Nullcline Ṙ = 0 is shown by the gray curve and the ρ-dependent nullclines Ȧ = 0
are shown by the black curves for three different values of ρ. It can be seen
that for intermediate ρ values there are two stable fixed points separated by an
unstable fixed point. (b) The appearance and subsequent disappearance of a
stable/unstable pair of fixed points via saddle-node bifurcations can switch the
system from a low activity state to a high activity state. Decreasing the density
again leads to hysteresis. Parameter values are VR = 2.0, VA = 2.0, KR = 1.0,
KA = 1.0, R0 = 0.05, A0 = 0.05, δ = 0.2, γ = 0.1, kR = 0.7, and kA = 0.02.

small when ρ → 1. In Fig. 28(a), we plot nullclines of the system at various values
of ρ, illustrating that bistability occurs at intermediate values of ρ. In this parameter
regime the system acts like a bistable switch, where one stable state has low levels
of autoinducer and the other high levels of autoinducer [75]. Switching occurs due
to a saddle-node bifurcation as illustrated in Fig. 28(b). When noise is included,
the resulting steady-state distribution exhibits peaks around the stable fixed points
of the deterministic system, and the transition between a unimodal and a bimodal
distribution is used as one indictator of a stochastic bifurcation [108,231].

7.2. Ultrasensitivity in a model of V. harveyi quorum sensing

The bioluminescent bacterium V. harveyi has three parallel quorum sensing systems,
each consisting of a distinct autoinducer (HAI-1, AI-2, CAI-1), cognate receptor
(LuxN, LuxPQ, CqsS), and associated enzyme that helps produce the autoinducer,
see Fig. 29. (The human pathogen V. cholerae has a similar quorum sensing
network, except that there could be up to four parallel pathways [144].) Each
autoinducer is freely exchanged between the intracellular and extracellular domains.
Extracellular diffusion at low (high) cell densities leads to small (large) intracellular
autoinducer concentrations, resulting in a low (high) probability that the autoinducer
can bind to its cognate receptor. The receptors target downstream DNA-binding
regulatory proteins LuxU and LuxO. At low cell densities the receptors act as kinases
and the resulting phosphorylation of LuxU and LuxO activates transcription of
the genes encoding five regulatory small non-coding RNAs (sRNAs) termed Qrr1-
Qrr5, which destabilize the transcriptional activator protein LuxR. This prevents the
activation of target genes responsible for the production of various proteins, including
bioluminescent luciferase. Hence, at low cell densities the bacteria do not bioluminesce.
On the other hand, at high cell densities the receptors switch from kinases to
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Figure 29. Summary diagram of the V. harveyi quorum sensing circuit. Three
phosphorylation cascades work in parallel to control the ratio of LuxO to LuxO-
P based on local cell-population density. Five sRNA, qrr1-5, then regulate
expression of quorum sensing target genes including the master transcriptional
regulator LuxR, which upregulates downstream factors.

phosphotases, significantly reducing the levels of LuxU-P and LuxO-P. The sRNAs
are thus no longer expressed, allowing the synthesis of LuxR and the expression of
bioluminescence, for example. Both the phosphorylation-dephosphorylation cascades
and the sRNA regulatory network provide a basis for a sharp, sigmoidal response of
the concentration of LuxR to smooth changes in cell density.

Following Ref. [55], we analyze the occurrence of ultrasensitivity at the single
cell level by focusing on a single phosphorylation pathway and adapting the
Goldbeter-Koshland of phosphorylation-dephosphorylation cycles (PdPCs) [113]. (For
a corresponding model of switching due to the action of sRNAs see Hunter et al. [136].)
In particular, we consider the phosphorylation-dephosphorylation of LuxU by the
enzymatic action of a particular quorum sensing receptor, which is denoted by R
when acting as a kinase and by R̂ when it is it is bound by an autoinducer (A) and
acts like a phosphotase. Denoting the protein LuxU by W, we define the following
reaction schemes:

W +R
a1


d1
WR

k1→W ∗ +R (7.5a)

W ∗ + R̂
a2


d2
W ∗R̂

k2→W + R̂, (7.5b)

R+A
k+


k−
R̂. (7.5c)

For simplicity, we assume that both the phosphorylation and the dephosphorylation
steps are irreversible. (See the work of Qian and collaborators for an analysis of more
detailed, reversible models of PdPCs [107, 208–210].) Introducing the concentrations

u = [A], w = [W ], w∗ = [W ∗], r = [R], r̂ = [R̂], v = [WR] and v∗ = [W ∗R̂], the
corresponding kinetic equations for a single cell with a fixed intracellular concentration
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of autoinducer, are

dw

dt
= −a1w(r − v) + d1v + k2v

∗ (7.6a)

dv

dt
= a1w(r − v)− (d1 + k1)v (7.6b)

dw∗

dt
= −a2w

∗(r̂ − v∗) + d2v
∗ + k1v (7.6c)

dv∗

dt
= a2w

∗(r̂ − v∗)− (d2 + k2)v∗ (7.6d)

dr

dt
= k−r̂ − k+ur. (7.6e)

These are supplemented by the conservation equations

WT = w + w∗ + v + v∗, RT = r + r̂, (7.7)

where RT is the total concentration of receptors and WT is the total concentration of
LuxU.

For simplicity, we will assume that the conversion of the receptors from
kinase to phosphotase activity is independent of the PdPC. That is, we ignore
any positive feedback pathways, in which the regulation of gene expression by the
phosphorylation/dephsophorylation of LuxU alters the production of the autoinducer
[196]. This allows us to treat the receptor-ligand dynamics given by Eq. (7.6e),
or subsequent extensions, independently of the PdPC dynamics given by Eqs. (7.6a-
7.6d). In particular, for fixed concentration u, we can take the concentration of kinases
and phosphotases to be at equilibrium:

req =
k−

k+u+ k−
RT ≡ R(u), r̂eq = RT −R(u). (7.8)

The system of Eqs. (7.6a-7.6e) then reduces to the classical Goldbeter-Koshland
model of PdPCs [113,157], and we can apply their analysis based on a generalization
of Michaelis-Menten kinetics. The first step is to assume that the concentration of W
and W ∗ is much larger than that of the receptor, that is, WT � RT or equivalently
WT = w + w∗. This implies that the time scale for the dynamics of the complexes
WR and W ∗R̂ is much faster than that for the dynamics of W and W ∗. Performing
a separation of time-scales, we can treat the concentrations w and w∗ as constants
when analyzing equations (7.6b) and (7.6b) , while we can take the steady-state values
of the concentrations v, v∗ when solving equations. (7.6a) and (7.6c) . Hence, setting
dv/dt = 0 and r = R(u) in (7.6b) we can solve for v in terms of w. Similarly, setting
dv∗/dt = 0 and r̂ = RT −R(u) in (7.6d) we can solve for v∗ in terms of w∗. We thus
obtain the reduced kinetic scheme

W
f1(w)



f2(w∗)
W ∗, (7.9)

with

f1(w) =
k1R(u)w

K1 + w
, f2(w∗) =

k2[RT −R(u)]w∗

K2 + w∗
, (7.10)

and

K1 =
d1 + k1

a1
, K2 =

d2 + k2

a2
.
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Figure 30. Molar fraction of modified protein W ∗ at steady-state as a function
of (a) the autoinducer concentration u and (b) cell density α for different values
of K, with K = K1 = K2, k−k1 = k+k2, Γ = 1, κ = 10, and αc = 0.05.

Imposing the conservation condition WT = w+w∗ thus yields the single independent
kinetic equation

dw∗

dt
= f1(WT − w∗)− f2(w∗). (7.11)

The steady-state concentration w∗eq of LuxU-P is thus obtained by solving
f1(WT −w∗) = f2(w∗), which yields a quadratic equation for w∗. Taking the positive
root, and expressing it as a function of the fixed autoinducer concentration u, we find
that

[LuxU-P]

[LuxU-P]+[LuxU]
= φ(V (u)), (7.12)

with

V (u) =
k1R(u)

k2[RT −R(u)]
=

k−
k+u

k1

k2
(7.13)

and φ given by

φ =
−B +

√
B2 + 4AC

2AWT
, (7.14)

for V 6= 1, where

A = V (u)− 1, B =
1

WT
(K1 +K2V (u))− (V (u)− 1) , C =

K2

WT
V (u).

A plot of φ, as a function of the autoinducer concentration u is shown in Fig. 30(a) for
K1 = K2 = K. At low values of K, there is a sharp change from high to low levels of
modified protein over a very small change in u (ultrasensitivity); this corresponds to
a regime in which the two enzymes are saturated. On the other hand, for large values
of K, the curve is relatively shallow, and one obtains a response similar to first-order
kinetics.

Now consider a population of N identical cells that are coupled via a common
extracellular domain due to the transfer of the autoinducer A across the cell membrane.
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Eq. (7.6e) for a single cell is then replaced by a system of equations of the form

dui
dt

= Γ + k−(RT − ri)− k+uiri − κ(ui − U), (7.15a)

dri
dt

= k−(RT − ri)− k+uiri i = 1, . . . , N (7.15b)

dU

dt
= ακ(uav − U)− γU, (7.15c)

where

uav =
1

N

N∑
j=1

uj , (7.16)

is the population-averaged intracellular concentration of A, U is the extracellular
concentration of A, and Γ is the rate of production of A due to the action of enzymes.

Suppose that the above system is globally convergent with ui(t) → u(t) and
ri(t)→ r(t) in the limit t→∞, with (u, r) evolving according to the effective single-
cell model

du

dt
= Γ + k−[RT − r]− k+ur − κ(u− U) (7.17a)

dr

dt
= k−[RT − r]− k+ur (7.17b)

dU

dt
= ακ(u− U)− γU. (7.17c)

(Conditions for global convergence have been derived elsewhere [55].) Equations
(7.17a)-(7.17c) have a unique stable fixed point ueq with

ueq = Γ
(ακ+ γ)

κγ
≡ ψ(α). (7.18)

Putting u = ueq in equation (7.12) finally shows that

[LuxU-P]

[LuxU-P]+[LuxU]
= φ

(
k−

k+ψ(α)

k1

k2

)
≡ Ψ(α), (7.19)

In order that the system exhibit switch-like behavior as a function of cell density α,
we require a critical value αc, 0 < αc <∞ such that (for Γ = 1)

χ ≡ k−
k+

k1

k2
=
αc
γ

+
1

κ
,

that is αc = γ(χ− κ−1). Assuming that χ = 1 and taking αc = 0.05 [182], we require
κ > 1 and γ = γc = 0.05(1− κ−1). For low cell densities (α� αc) we have Ψ(α) ≈ 1,
which follows from the functional form of φ, see Fig. 30(a). Hence the fraction of
phosphorylated LuxU-P is high, which ultimately means that the expression of the
gene regulator protein LuxR is suppressed. On the other hand, for large cell densities
(α � αc) we find that Ψ(α) ≈ 0. Now the fraction of phosphorylated LuxU-P is
small, allowing the expression of LuxR and downstream gene regulatory networks.
The α-dependence is illustrated in Fig. 30(b) with α and u linearly related.
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7.3. Noise amplification of intrinsic fluctuations in an ultrasensitive switch

One of the characteristic features of ultrasensitive biochemical signaling networks is
that they tend to amplify noise [34, 107, 165, 227]. On the other hand, collective
behavior at the population level, as exhibited by quorum sensing networks, can
mitigate the effects of noise [218, 234]. The amplification of intrinsic fluctuations
in the V. harveyi quorum sensing model has recently been investigated within the
framework of linear response theory [55].

Linear response of single-cell model. First, consider the single-cell model with fixed
concentration u of autoinducer. In the deterministic case, with r given by the
equilibrium solution (7.8), the dynamics of LuxU is given by equation (7.11), which
we write explicitly in the form

dw∗

dt
= F (w∗, r) ≡ k1r(WT − w∗)

K1 + [WT − w∗]
− k2[RT − r]w∗

K2 + w∗
. (7.20)

Several studies have analyzed noise signal amplification in ultrasensitive signal
transduction networks by considering stochastic versions of equation (7.20) [34, 107,
165, 227]. (A more detailed analysis would need to start from a stochastic version of
the full system of equations (7.6a-7.6e), since r(t) is now time-dependent.) Suppose
that r(t) undergoes small fluctuations about the equilibrium state req of Eq. (7.8).
This can be incorporated by replacing equation (7.6e) for fixed u by the Langevin
equation

dr

dt
= k−(RT − r)− k+ur + σ0ξ(t), (7.21)

with ξ(t) a white noise process,

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′),
and σ0 a fixed noise intensity. One possible source of noise is fluctuations in the
autoinducer concentration u (see below). Under the linear noise approximation, we
set r(t) = req +R(t) such that

dR

dt
= −(k− + k+u)R+ σ0ξ(t). (7.22)

Similarly, linearizing equation (7.20) about the equilibrium solution by setting w∗ =
w∗eq +W , w∗eq = φ(V (u)), gives

dW

dt
= −β1W + β2R, (7.23)

with

β1 = − ∂F

∂w∗

∣∣∣∣
eq

=
k1K1req

[K1 + [WT − w∗eq]]2
+
k2K2[RT − req]

[K2 + w∗eq]2
(7.24)

and

β2 =
∂F

∂r

∣∣∣∣
eq

=
k1(WT − w∗eq)

K1 + [WT − w∗eq]
+

k2w
∗
eq

K2 + w∗eq

(7.25)

Note that the gain of the underlying deterministic system (7.20) at equilibrium is
given by

g =
∆W/w∗eq

∆R/req
=
β2

β1

req

w∗eq

. (7.26)
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Figure 31. Plot of (a) relative gain G/g and (b) stochastic gain G as a function
of autoinducer concentration u for different values of K, K = K1 = K2. Other
parameter values are k− = k+ = k1 = k2 = 1, and RT = WT = 1.

Incorporating the u-dependence of req and β1,2 one can determine g = g(u) and show
that there is a sharp gain around the critical concentration u = 1. (Note that the
units of autoinducer concentration are fixed by taking the PdPC switch to occur at
u = 1. Typical intracellular molar concentrations are of order nM.)

In order to characterize noise amplification in the system, one can Fourier
transform the linear equations (7.22) and (7.23) with

R(ω) =

∫ ∞
−∞

eiωtR(t)dt

etc.. This gives

W (ω) =
β2

β1 + iω
R(ω), R(ω) =

σ0

k− + k+u+ iω
ξ(ω),

where ξ(ω) is the Fourier transform of a white noise process with

〈ξ(ω)〉 = 0, 〈ξ(ω)ξ(ω′)〉 = 2πδ(ω − ω′).
Using the Wiener-Khinchine theorem, the variance of the receptor concentration is
given by the integral of the power spectrum defined by

2πSR(ω)δ(ω − ω′) = 〈R(ω)R(ω′)〉
That is,

σ2
R =

∫ ∞
−∞

SR(ω)
dω

2π
=

∫ ∞
−∞

σ2
0

[k− + k+u]2 + ω2

dω

2π
=

σ2
0

2[k− + k+u]
. (7.27)

Similarly, the variance of the Lux-P concentration is

σ2
W =

∫ ∞
−∞

SW (ω)
dω

2π
=

∫ ∞
−∞

β2
2

β2
1 + ω2

σ2
0

[k− + k+u]2 + ω2

dω

2π

=
β2

2σ
2
0

2β1[k− + k+u]

1

k− + k+u+ β1
. (7.28)

If we interpret σW /w
∗
eq as the relative noise intensity of the output and σR/req as

the relative noise intensity of the output, then the noise amplification of the PdPC in
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response to receptor fluctuations is defined by the stochastic gain [227]

G =
σW /w

∗
eq

σR/req
=

req

w∗eq

√
β2

2

β1

1

k− + k+u+ β1
= g

√
β1

k− + k+u+ β1
, (7.29)

where g is the deterministic gain (7.26). In Fig. 31 we plot the relative gain G/g and
the stochastic gain G as a function of u. It can be seen that the sharp amplification
around the critical density u = 1 in the ultrasensitive regime (K = 0.01) is suppressed
relative to the deterministic gain.

Linear response of population model. In order to extend the analysis of noise
amplification to the population model, it is necessary to explicitly model the stochastic
dynamics of the autodinducer concentration. In a stochastic model of quorum sensing,
it is no longer possible to identify the state of all the cells, even if the deterministic
system (7.1a-7.1c) is globally convergent. Therefore, in the case of V. harveyi, we have
to consider a stochastic version of equations (7.15a) and (7.15b)

dui
dt

= Γ + k−(RT − ri)− k+uiri − κ(ui − U) + θ0ξi(t), (7.30a)

dri
dt

= k−(RT − ri)− k+uiri, (7.30b)

dU

dt
= ακ(uav − U)− γU (7.30c)

for i = 1, . . . , N , with

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δ(t− t′)δij .
We assume that each cell is driven by an independent white noise term with constant
noise intensity θ0; one source of the noise could be fluctuations in the production of
the autoinducer. Linearizing about the global steady-state by setting

ui(t) = ueq + Ui(t), ri(t) = req +Ri(t), U(t) = Ueq + V (t),
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Figure 32. (a) Plot of variance σ2
R in receptor fluctuations as a function

of autoinducer concentration ueq for different values of κ. Also shown is the
corresponding quantity in the single-cell model (dashed curve). (b) Plot of
stochastic gain G of population model as a function of autoinducer concentration
ueq for different values of κ and K = 0.01. Other parameter values are
k− = k+ = k1 = k2 = 1, and RT = WT = 1. Dashed curve is gain of single-cell
model from Fig. 31(b).
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yields

dUi

dt
= −k−Ri − k+(Uireq + ueqRi)− κ(Ui − V ) + θ0ξi(t), (7.31a)

dRi
dt

= −k−Ri − k+(Uireq + ueqRi), (7.31b)

dV

dt
= ακ(Uav − V )− γV , Uav =

1

N

N∑
i=1

Ui. (7.31c)

These linear equation can be analyzed along similar lines to the single-cell case
using Fourier transforms and contour integration [55]. Here, we simply state the final
results (for large N). First, the variance in the receptor concentration ri at the single
cell level is

σ2
R =

σ2
0

2z−(z2
+ − z2

−)
− σ2

0

2z+(z2
+ − z2

−)
=

σ2
0

2z+z−(z+ + z−)
, (7.32)

where σ0 = k+reqθ0/Γ with Γ = 1, and

z± =
1

2

[
(k− + k+(ueq + req) + κ)±

√
(k− + k+(ueq + req) + κ)2 − 4κ(k− + k+ueq)

]
.

The corresponding stochastic gain of individual cell PdPCs driven by the receptor
fluctuations of the population model is

G = g

√
β1

(β2
1 − z2

+)(β2
1 − z2

−)

√
β1[β2

1 − (z2
− + z−z+ + z2

+)] + (z+ + z−)z+z−, (7.33)

One finds that σ2
R → 0 as κ → ∞, see Fig.32(a). On the other hand, expressing req

and β1,2 in terms of ueq, one finds that the stochastic gain G is only weakly dependent
on κ, and approaches the gain of the single-cell model as κ increases, see Fig. 32(b).
Given that the receptor fluctuations σ2

R are suppressed in the quorum sensing model
for large κ, while the gain is hardly changed, we conclude that the fluctuations in the
LuxU-P concentration w∗ are greatly suppressed compared to an isolated cell.

8. Other examples of biological switching processes

In this final section we describe some other common examples of stochastic switching
models in biology that have similar mathematical structures to the genotypic and
phenotypic examples of previous sections.

8.1. Stochastic ion channels and spontaneous action potentials

The generation and propagation of a neuronal action potential arises from
nonlinearities associated with active membrane conductances [45]. Ions can diffuse
in and out of the cell through ion specific channels embedded in the cell membrane.
Ion pumps within the cell membrane maintain concentration gradients, such that there
is a higher concentration of Na+ and Ca2+ outside the cell and a higher concentration
of K+ inside the cell. The membrane current through a specific channel varies
approximately linearly with changes in the voltage x relative to some equilibrium
or reversal potential, which is the potential at which there is a balance between the
opposing effects of diffusion and electrical forces. Summing over all channel types,
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the total membrane current (flow of positive ions) leaving the cell through the cell
membrane is

Icon =
∑
s

gs(x− Vs), (8.1)

where gs is the conductance due to channels of type s and Vs is the corresponding
reversal potential.

Recordings of the current flowing through single channels indicate that channels
fluctuate rapidly between open and closed states in a stochastic fashion, thus acting
as stochastic switches with respect to ion current flow, see Fig. 33. Consider a simple
two-state model of an ion channel that can exist either in a closed state (C) or an open
state (O). Transitions between the two states are governed by the continuous-time
discrete Markov process

C(closed)
α(x)


β(x)

O(open). (8.2)

with transition rates α(x), β(x) depending on the membrane voltage x. For the
moment, we assume that the voltage is fixed. Let Z(t) be a discrete random variable
taking values Z ∈ {C,O} and set P (t) = Prob [Z(t) = O] = 1−Prob [Z(t) = C]. The
master equation for P is

dP

dt
= α(1− P )− βP,

which has the unique stable steady-state (for fixed x) P ∗(x) = a(x) ≡ α(x)/(α(x) +
β(x)). In spite of stochasticity at the level of single channels, most models of a neuron
use deterministic descriptions of conductance changes, under the assumption that
there are a large number of approximately independent channels of each type. It then
follows from the law of large numbers that the fraction of channels open at any given
time is approximately equal to the probability that any one channel is in an open
state. The conductance gs for ion channels of type s is thus taken to be the product

CLOSED OPEN

(a)

(b)
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+

+

+
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+

+

α(x)

β(x)

Figure 33. Ion channel as a stochastic switch. (a) Internal open and closed states
of an ion channel. (b) Illustration of a typical time-course of a glycine receptor
showing stochastic variations in current due to the opening and closing of the ion
channel.
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gs = ḡsPs where ḡs is equal to the density of channels in the membrane multiplied by
the conductance of a single channel and Ps is the fraction of open channels with

dPs
dt

= −αs(1− Ps) + βsPs. (8.3)

A simple model of neural excitability is the Morris-Lecar model [183], which takes
the form of a planar dynamical system

dx

dt
= a(x)fNa(x) + wfK(x)− g(x) ≡ f(x,w) (8.4a)

dw

dt
=
w∞(x)− w
τw(x)

≡ εg(x,w), (8.4b)

where w represents the fraction of open K+ channels, fi(x) = gi(vi − x), i = Na,K,
g(x) = g0(x− v0) and

a(x) =
αNa(x)

αNa(x) + βNa(v)
, w∞(x) =

αK(x)

αK(x) + βK(x)
, τw(x) =

1

αK(x) + βK(x)
.

The fraction of Na+ channels (or Ca2+ channels in the original formulation of the
model) is assumed to be in quasi steady-state. The deterministic dynamics can be
analyzed using a slow/fast analysis of the planar system, under the assumption that
the dynamics of w is slow relative to that of x (ε � 1). The fast variable x has a
cubic-like nullcline (along which ẋ = 0) and the slow variable has a monotonically
increasing nullcline (along which ẇ = 0), see Fig. 34. Suppose that the nullclines have
a single intersection point at (x∗, w∗) on the left-hand branch of the x-nullcline. This
corresponds to a stable fixed point of the system, which is identified with the resting
state of the neuron. The neuron is said to be excitable in the sense that sufficiently
large perturbations of the resting state result in a time-dependent trajectory taking a
prolonged excursion through state space before returning to the resting state - this is

voltage x

re
co

ve
ry

 w

Figure 34. Deterministic phase plane dynamics. Thick curves show the
nullclines: ẋ = 0 as grey and ẇ = 0 as black. Black stream lines represent
deterministic trajectories. Green/blue curves represent an action potential
trajectory in the limit of slow w. If the slow variable w is fixed then the voltage
dynamics along the dashed horizontal line exhibits bistability.
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an action potential - see Fig. 34. On the other hand, since the resting state is linearly
stable, small perturbations simply result in small excursions that decay exponentially
in time. Hence, there is effectively a threshold phenomenon in which sub-threshold
perturbations result in a simple return to the resting state, whereas super-threshold
perturbations generate an action potential. Note, in particular, that decreasing the
external input Iext increases the firing threshold.

Almost all studies of ion channel fluctuations and their effect on action potential
generation are based on a system size expansion with respect to the number N of
ion channels, in which one reduces the dynamics to an effective Langevin equation
[63, 97, 115], see section 2.4. However, such a reduction breaks down if the number
of ion channels is small. Moreover, it can lead to exponentially large errors when
estimating the rate of spontaneous action potential generation. Recently, Keener
and Newby [148, 190] have used the WKB method for stochastic hybrid systems (see
section 5.2) in order to analyze spontaneous action potential generation, which holds
for small N and fast channel switching. They consider the simplified problem of how
ion channel fluctuations affect the initiation of an action potential due to the opening
of a finite number of Na+ channels. The slow K+ channels are assumed to be frozen,
so that they effectively act as a leak current, and each sodium channel is treated as
a simple two-state system. The Morris-Lecar equations (8.4a) and (8.4b) reduce to a
piecewise deterministic equation for the membrane voltage

dx

dt
= Fn(x) ≡ n

N
f(x)− g(x), (8.5)

where f(x) = gNa(VNa − x) represents the gated sodium currents, g(x) = −geff [Veff −
x] − Iext represents the sum of effective leakage currents and external inputs, and n
is the number of open sodium channels. Note that the right-hand side of (8.5) is
negative for large x and positive for small x. This implies that the stochastic voltage
x is confined to some bounded domain [x1, x2]. The opening and closing of the ion
channels is described by a birth-death process of the form (5.42) with x-dependent
transition rates

ω+(x, n) = α(x)(N − n), ω−(n) = βn

with

α(x) = β exp

(
2(x− v1)

v2

)
for constants β, v1, v2.

The associated probability density ρn(x, t) satisfies the differential Chapman-
Kolmogorov (CK) equation (see also (5.45))

∂ρn
∂t

= −∂[Fn(x)ρn(x, t)]

∂v
+

1

ε
[ω+(x, n− 1)ρn−1(x, t) + ω−(n+ 1)ρn+1(x, t)

− (ω+(x, n) + ω−(n))ρn(x, t)],

with boundary condition ρ−1(x, t) ≡ 0 and ρN+1(x, t) = 0. The equation for the
steady–state distribution ρ∗(x) of the discrete Markov process for fixed x can be
obtained from the zero current condition

J(x, n) ≡ ω−(n)ρ∗n(x)− ω+(x, n− 1)ρ∗n−1(x) = 0, n ≥ 0.

Solving this equation iteratively using the unit normalization condition on p∗ gives
the binomial distribution

ρ∗n(x) =
N !

(N − n)!n!
a(x)nb(x)N−n, a(x) =

α(x)

α(x) + β
, b(x) =

β

α(x) + β
. (8.6)
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The mean number of open channels is then

〈n〉 =

N∑
n=1

nρ∗n(x) = Na(x). (8.7)

It follows that the mean-field equation obtained in the ε→ 0 limit is

dx

dt
=

N∑
n=0

ρ∗n(x)Fn(x) = F (x) = a(x)f(x)− g(x). (8.8)

It is straightforward to find physiologically reasonable parameter values under which
the deterministic equation exhibits bistability. (For example, fixing w such that the
dynamics of x takes place along the horizontal dashed line in Fig. 34.) Defining the
effective potential Ψ(x) according to Ψ′(x) = −F (x), we thus obtain a double well
potential, see Fig. 2(b), with x− representing a stable resting state and x+ a stable
active state.

The spontaneous initiation of an action potential now reduces to a first-passage
time problem of noise-induced escape from the resting metastable state x− to the
active state x+ by crossing the barrier at x∗. (Once this transition has occurred, the
opening of the K+ channels has to be taken into account in order that the system
eventually returns to the rest state.) The calculation proceeds along identical lines to

the genetic switch in section 5.3 [148]. In particular the mean rate of escape λ
(0)
ε is

given by equation (5.94). Hence, in order to determine λ
(0)
ε for the ion channel model,

one has to calculate the quasipotential Φ0(x), the prefactor k(x) and the effective
diffusivity D(x). First note that the generator of the discrete Markov process is now
a tridiagonal matrix with

An,n−1(x) = ω+(x, n− 1), An,n(x) = −ω+(x, n)− ω−(n), An,n+1(x) = ω−(n+ 1)

for n = 0, 1, . . . , N . In the case of the stochastic ion channel model, the eigenvalue

equation (5.85) with R
(0)
n (x, p) = ψn(x, p) takes the explicit form

(N − n+ 1)αψn−1 − [λ0 + nβ + (N − n)α]ψn

+ (n+ 1)βψn+1 = −p
( n
N
f − g

)
ψn (8.9)

Consider the trial solution

ψn(x, p) =
Γ(x, p)n

(N − n)!n!
, (8.10)

which yields the following equation relating Γ and Λ0:

nα

Γ
+ Γβ(N − n)− Λ0 − nβ − (N − n)α = −p

( n
N
f − g

)
.

Collecting terms independent of n and terms linear in n yields the pair of equations

p = − N

f(x)

(
1

Γ(x, p)
+ 1

)
(α(x)− β(x)Γ(x, p)) , (8.11)

and

Λ0(x, p) = −N(α(x)− Γ(x, p)β(x))− pg(x). (8.12)

Eliminating Γ from these equation gives

p =
1

f(x)

(
Nβ(x)

Λ0(x, p) +Nα(x) + pg(x)
+ 1

)
(Λ0(x, p) + pg(x))
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x

x- x*
x+

p

Figure 35. Phase portrait of Hamilton’s equations of motion for the ion
channel model with Hamiltonian given by the Perron eigenvalue (8.12). (x
and p are taken to be dimensionless.) The zero energy solution representing
the maximum likelihood path of escape from x− is shown as the gray curve.
(The corresponding path from x+ is not shown.) Parameter values are
VNa = 120 mV, VL = −62.3 mV, gNa = 4.4 mS/cm2, gL = 2.2 mS/cm2,
and α(x) = β exp[(x−v1)/v2] with β = 0.8 s−1, v1 = −1.2mV , v2 = 18mv.

This yields a quadratic equation for Λ0 of the form

Λ2
0 + σ(x)Λ0 − h(x, p) = 0. (8.13)

with

σ(x) = (2g(x)− f(x)) +N(α(x) + β(x)),

h(x, p) = p[−Nβ(x)g(x) + (Nα(x) + pg(x))(f(x)− g(x))].

Along the zero energy surface Λ0(x, p) = 0, we have h(x, p) = 0 which yields the pair
of solutions

p = 0 and p = p(x) ≡ N α(x)f(x)− (α(x) + β)g(x)

g(x)(f(x)− g(x))
. (8.14)

It follows that the non-trivial WKB quasipotential (or action) is given by

Φ0(x) =

∫ x

x−

p(y)dy. (8.15)

In Fig. 35 we show solutions to Hamilton’s equations in the (x, p)-plane, highlighting
the zero energy maximum likelihood curve linking x− and x∗. Note that NΦ(x∗),
where Φ(x∗) is the area enclosed by the heteroclinic connection from x− to x∗, gives
the leading order contribution to log τ , where τ is the mean escape time.

Keener and Newby [148] also calculate the subleading-order contributions to the
mean escape time. First, the null eigenfunction ηn(x) = S(x, n) of equation (5.89),
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which becomes

(N −m)αηm+1 − [(N −m)α+mβ]ηm +mβηm−1

= µ
(m
N
f(x)− g(x)

)
ηm. (8.16)

Trying a solution of the form ηm(x) = Γ(x)m yields

(N−m)αΓ−((N−m)α+mβ)+mβΓ−1 = µ1

(m
N
f(x)− g(x)

)
.(8.17)

Γ is then determined by canceling terms independent of m, which gives

ηn(x) =

(
b(x)g(x)

a(x)(f(x)− g(x)))

)n
. (8.18)

The prefactor k(x) may now be determined using equations (5.90) and (5.91). Finally,
the effective diffusion coefficient D(x) is obtained from equations (2.54) and (2.55) to
give [148]

D(x∗) =
f(x∗)

2α(x∗)β

N(α(x∗) + β)3
. (8.19)

Keener and Newby show that the resulting expression for the mean escape time agrees
very well with Monte Carlo simulations of the stochastic model [148]. On the other
hand, estimating the mean escape time using a Gaussian approximation of the PDMP
(see section 2.6) leads to exponentially large errors when the resting state of the neuron
is well below the firing threshold (small external input).

As in the case of metastability in genetic switches (section 5), there have been
various extensions of the above analysis to more complicated ion channel models,
including a stochastic version of the full Morris-Lecar model [193, 194] and a model
of dendritic action potentials [47]. Once again it is necessary to deal with higher-
dimensional models, where numerical methods become crucial.

8.2. Diffusion in randomly switching environments

In the analysis of the two-state regulatory gene network in sections 3.2 and 3.3, we
considered a piecewise deterministic PDE based on the Fokker-Planck equation, which
described a population of independent cells operating in the same randomly switching
environment. A very similar type of mathematical model occurs within the context
of molecular diffusion within bounded environments such as the cell cytoplasm, the
cell nucleus [254], and the branched network of tracheal tubes forming the passive
respiration system in insects [54,162]. Now the switching environment is generated by
the random opening and closing of pores or ion channels within the boundary of the
domain, and so one has the problem of analyzing the diffusion (or advection-diffusion)
equation in a domain with a (partially) randomly switching boundary [50–52,162].

As a simple example, consider a single Brownian particle drift-diffusing in the
finite interval [0, L] with a fixed absorbing boundary at x = 0 and a randomly switching
gate at x = L; the right-hand boundary randomly switches between absorbing and
reflecting. In order to keep track of the boundary state, we introduce the discrete
random variable n(t) ∈ {0, 1} such that

dX(t) = −V ′(X)dt+
√

2DdW (t), (8.20)

where V (x) is a potential energy function, with an inhomogeneous Dirichlet boundary
condition at x = L if n(t) = 0 and a reflecting boundary at x = L if n(t) = 1.
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Figure 36. (a) Switching gate and (b) switching conformational state.

Assume that transitions between the two states are given by the two-state Markov

process 0
β


α

1 with fixed transition rates α, β. One way to analyze the given system,

is to view it as a piecewise SDE and to consider the differential Chapman-Kolmogorov
(CK) equation for the joint probability density ρn(x, t) = E[p(x, t)1n(t)=n]:

∂ρn(x, t)

∂t
=

∂

∂x
[V ′(x)ρn(x, t)] +D

∂2ρn(x, t)

∂x2
+
∑
m=0,1

Anmρm(x, t), (8.21)

with A the matrix

A =

(
−β α
β −α

)
. (8.22)

Equation (8.21) is supplemented by the joint boundary conditions

ρ0(0, t) = ρ1(0, t) = 0, ρ0(L, t) = 0, −Φ′(L)ρ1(L, t)−D ∂ρ1(x, t)

∂x

∣∣∣∣
x=L

= 0,

and the initial condition

ρn(x, 0) = δ(x− y)ρ∗n, ρ∗0 = 1− ρ∗1 =
α

α+ β
,

where ρ∗n is the stationary distribution of the two-state Markov process.
Equation (8.21), and its higher-dimensional analog, is the starting point for

analyzing the escape of a single particle from a bounded domain with switching gates
in the boundary [51,52]. From this single-particle perspective, one could equally well
interpret the source of the switching to be changes in the conformational state of the
particle, rather than the gate(s), such that it can only pass through a gate when in
one of the two states, see Fig. 36. (In this case, the diffusivity of the particle could
also depend on n.) However, this equivalence breaks down when there are multiple
particles and switching gates. Even when the particles are non-interacting, statistical
correlations arise due to the fact that they all move in the same randomly switching
environment; such correlations would not occur if each particle independently switched
between different conformational states with fixed gates. In order to explore the multi-
particle case, it is necessary to consider an alternative formulation of the problem, in
which equation (8.21) is replaced by a piecewise deterministic diffusion equation:

∂u

∂t
= D

∂2u

∂x2
, x ∈ [0, L], t > 0 (8.23a)
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with u satisfying the boundary conditions

u(0, t) = 0, u(L, t) = 0 for n = 0, ∂xu(L, t) = 0 for n = 1. (8.23b)

For simplicity we have dropped the drift term V ′(x). One can view a numerical
solution of equation (8.23a) up to some time t as determining the probability density
u(x, t) conditioned on a single realization {n(s), 0 ≤ s < t} of the stochastic gate.
Thus the conditional probability density u(x, t) can be interpreted as determining
the density of multiple particles moving in the same random environment. Each
realization of the gate will typically generate a different solution u(x, t) so that u(x, t)
is a random field variable. The relationship between the single particle and multi-
particle perspectives is then established by averaging over realizations of the stochastic
gate:

ρn(x, t) = E[u(x, t)1n(t)=n]. (8.24)

The CK equation (8.21) is the analog of equations (3.8a) and (3.8b) for a
single gene network, whereas the piecewise deterministic PDE (8.23a) is the analog
of equation (3.15) for a population of gene networks evolving in the same random
environment. Following [50] and section 3.3, we can analyze (8.23a) by discretizing
space and constructing the differential CK equation for the resulting finite-dimensional
stochastic hybrid system. The first step is to spatially discretize the piecewise
deterministic PDE (8.23a) using a finite-difference scheme. One of the useful features
of this discretization for switching boundaries is that we can incorporate the boundary
conditions into the resulting discrete Laplacian. Introduce the lattice spacing a such
that (N + 1)a = L for integer N , and let uj = u(aj), j = 0, . . . , N + 1. This yields
the piecewise deterministic ODE

dui
dt

=

N∑
j=1

∆n
ijuj + ηaδi,Nδn,0, i = 1, . . . , N, ηa =

ηD0

a2
(8.25)

for n = 0, 1. Away from the boundaries (i 6= 1, N), ∆n
ij is given by the discrete

Laplacian

∆n
ij =

D

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (8.26a)

On the left-hand absorbing boundary we have u0 = 0, whereas on the right-hand
boundary we have

uN+1 = η for n = 0, uN+1 − uN−1 = 0 for n = 1.

These can be implemented by taking

∆0
1j =

D

a2
[δj,2 − 2δj,1], ∆0

Nj =
D

a2
[δN−1,j − 2δN,j ], ∆1

1j =
D

a2
[δj,2 − 2δj,1] (8.26b)

and

∆1
Nj =

2D

a2
[δN−1,j − δN,j ]. (8.26c)

Let u(t) = (u1(t), . . . , uN (t)) and introduce the probability density

Prob{u(t) ∈ (u,u + du), n(t) = n} = %n(u, t)du, (8.27)
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where we have dropped the explicit dependence on initial conditions. The probability
density evolves according to the following differential CK equation for the stochastic
hybrid system (8.25),

∂%n
∂t

= −
N∑
i=1

∂

∂ui

 N∑
j=1

∆n
ijuj + ηaδi,Nδn,0

 %n(u, t)

+
∑
m=0,1

Anm%m(u, t), (8.28)

One can now proceed equation along identical lines to the analysis of equation
(3.19) by deriving moment equations from (8.28) and then taking the continuum
limit [50]. For example, defining the first moment

Vn(x, t) = E[u(x, t)1n(t)=n], (8.29)

we obtain the system of equations

∂V0

∂t
= D

∂2V0

∂x2
− βV0 + αV1 (8.30a)

∂V1

∂t
= D

∂2V1

∂x2
+ βV0 − αV1 (8.30b)

with

V0(0, t) = V1(0, t) = 0, V0(L, t) = ρ∗0η > 0, ∂xV1(L, t) = 0. (8.31)

The resulting steady-state solution for V = V0 + V1 is [50, 162]

V (x) =
x

L

η

1 + (ρ∗1/ρ
∗
0)(ξL)−1 tanh(ξL)

, ξ =
√
α+ β (8.32)

Although one has the expected linear gradient in concentration, the dependence of the
slope on model parameters is non-trivial. However, one recovers the classical result in
the fast switching limit ξ →∞:

V (x) =
x

L
η,

This reflects a more general result that a switching gate is equivalent to an open gate
in the fast switching limit, provided the fraction of time it is open is non-zero.

Similarly, we find that the higher-order moments

C(r)
n (x, y) = E[u(x1, t)u(x2, t) . . . u(xr, t)1n(t)=n], (8.33)

satisfy the system of equations

∂C
(r)
0

∂t
= D0

r∑
l=1

∂2C
(r)
0

∂x2
l

− βC(r)
0 + αC

(r)
1 (8.34a)

∂C
(r)
1

∂t
= D1

r∑
l=1

∂2C
(r)
0

∂x2
l

+ βC
(r)
0 − αC(r)

1 (8.34b)

Note that the r-point correlations couple to the (r−1)-order moments via the boundary
conditions:

C
(r)
0 (x1, . . . , xr, t)

∣∣∣
xl=0

= C
(r)
1 (x1, . . . , xr, t)

∣∣∣
xl=0

= ∂xlC
(r)
1 (x1, . . . , xr, t)

∣∣∣
xl=L

= 0,

and

C
(r)
0 (x1, . . . , xr, t)

∣∣∣
xl=L

= ηC
(r−1)
0 (x1, . . . , xl−1, xl+1 . . . , xr, t),
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C
(x
)

Figure 37. Plot of variance C(x) for L = η = 1, ξ = 10, and either ρ∗0 = 0.75,
0.5, or 0.25.

for l = 1, . . . , r. The solution of the second-order moment equations can be found
in Ref. [50]. In Fig. 37 we show example plots of the steady-state variance

C(x) = E[u(x)u(x)] = C
(2)
0 (x, x) + C

(2)
1 (x, x).

The rth moments of the piecewise deterministic PDE can be related to
the statistics of r Brownian particles diffusing in the same randomly switching
environment. The first observation is that the first-moment equations (8.30a) and
(8.30b) are identical in form to the CK equation (8.21) describing a single Brownian
particle diffusing under the same switching boundary conditions with Φ(x) = 0. That
is, ρn(x, t) = Vn(x, t). One remaining issue is the interpretation of the inhomogeneous
term η from the single particle perspective. This can be addressed by noting that if
we set

πn(x) =
1

ρ∗nη
Vn(x),

where Vn(x) is the steady-state solution of equations (8.30a) and (8.30b), then

0 = D
∂2π0

∂y2
− β[π0 − π1], (8.35a)

0 = D
∂2π1

∂y2
+ α[π0 − π1] (8.35b)

with boundary conditions

π0(0) = π1(0) = 0, π0(L) = 1, ∂yπ1(L) = 0.

We recognize equations (8.35a) and (8.35b) as steady-state backward equations for the
CK equation (8.21) when Φ(x) = 0 and η = 0, with πn(x) corresponding to the hitting
probability that the particle exits at the end x = L and n(0) = n. Furthermore, let
πrn(x1, . . . , xr) be the probability that r Brownian particles all exit at x = L given
that the initial positions of the Brownian particles are x1, . . . , xr and n(0) = n. Then

πrn(x1, . . . , xr) =
1

ρ∗nη
r

lim
t→∞

C(r)
n (x1, . . . , xr, t), (8.36)
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where C
(r)
n is the rth moment defined in equation (8.33). Though the particles are

non-interacting, the probability that all r particles exit at x = L is not the product
of the probabilities of each particle exiting at x = L because the particles are all
diffusing in the same randomly switching environment. Equation (8.36) follows from
writing down the backward equation for the joint probability density for r particles.
The crucial step is determining the appropriate inhomogeneous boundary condition
for the resulting r-dimensional time-independent PDE that determines the splitting
probability. The boundary condition takes the form

π
(r)
0 (x1, . . . , xr)

∣∣∣
xl=L

= π
(r−1)
0 (x1, . . . , xl−1, xl+1 . . . , xr), (8.37)

for l = 1, . . . , r. This ensures that if one of the particles starts on the right-hand
boundary when the latter is in the state n = 0, then the particle is immediately
removed and thus one just has to determine the splitting probability that the r − 1
remaining particles also exit at the right-hand boundary. Finally, performing a similar
scaling to the first-moments yields the desired result.

8.3. Bacterial chemotaxis and velocity-jump processes

Another important class of biological switching processes involves switching between
different velocity states. A classical example is the chemotaxis of the bacteria E.
coli [31,39]. Many bacteria including E. coli possess flagella, which are helical polymer
filaments that are turned by molecular motors embedded in the cell’s membrane. (The
axial-asymmetric helical structure of flagella provides a mechanism for swimming
at low Reynolds number.) When all of the flagellar motors are rotating counter-
clockwise, the helical filaments bundle together and efficiently drive the bacterium in
a straight line comprising a single run. On the other hand, if the motors reverse
direction, the flagellar bundle flies apart and the bacterium rotates in a random
fashion called a tumble. This is illustrated in Fig. 38(a). Over longer time-scales
the motion of the bacterium looks like a sequence of straight line trajectories arranged
at random angles to each other, see Fig. 38(b). Tuning of the swimming behavior
by environmental signaling molecules allows the bacterium to swim either toward
a food source (chemoattractant) or away from a noxious toxin (chemorepellant).
These signaling molecules bind to chemoreceptors in the cell membrane that induce
dephosphorylation of a downstream signaling molecule CheY which tends to switch
the flagellar motors from clockwise to counter-clockwise rotation, see Fig. 38(c). This
is another example of an ultrasensitive switch, which is based on cooperative receptor
binding rather than a phophorylation-dephosophorylation cycle, as in the case of V.
harveyi quorum sensing.

Early models of chemotaxis tended to be phenomenological in nature, representing
the dynamics of cells in terms of an advection-diffusion equation for the cell density
u(x, t), in which the velocity is taken to depend on the concentration gradient of some
chemotactic substance [150]. For example,

∂u

∂t
= ∇ · (D∇u− uχ(c)∇), (8.38)

where c is the concentration of the extracellular signal and the function χ(c) is known
as a sensitivity function. Often the above equation is coupled to a reaction-diffusion
equation for the evolution of c, which may itself depend on u if cells secrete their
own chemoattractant. An alternative, stochastic formulation of bacterial motion has
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Figure 38. Bacterial chemotaxis. (a) A schematic showing the motion of a
bacterium that consists of a series of runs and tumbles. (b) The sequence of runs
and tumbles can be altered by an external chemical gradient so that the motion
is biased towards (away from) an attractant (a repellant). (c) The switching
of a flagellar motor from counterclockwise to clockwise rotation, resulting in a
switch from running to tumbling, is controlled by a signaling pathway in which
unbinding of a ligand (attractant molecule) from a chemoreceptor in the cell
membrane leads to the phosphorylation of CheY, which subsequently binds to
the motor and induces the switch.

been developed in terms of a so-called velocity jump process, in which the velocity
of the cell can randomly jump according to a discrete or continuous Markov process
[3, 73, 128, 199, 200]. For example, let ρ(x, v, t) denote the probability density of cells
at position x ∈ Rd and velocity v ∈ Rd at time t. Then ρ evolves according to an
equation of the form

∂

∂t
ρ(x, v, t) + v · ∇ρ(x, v, t) = −λρ(x, v, t) + λ

∫
T (v, v′)ρ(x, v′, t)dv′. (8.39)

Here λ is a constant turning rate, with 1/λ measuring the mean run length between
velocity jumps. For simplicity the time spent in the tumbling state is neglected. The
kernel T (v, v′) is the conditional probability of a velocity jump from v′ to v given that
a jump occurs. If motion is restricted to 1D, then there are just two velocity states ±v
and equation (8.39) reduces to a version of the velocity jump (or dichotomous noise)
process considered in section 2.6:

∂ρ+

∂t
+ v

∂ρ+

∂x
= −λρ+ + λρ−, (8.40a)

∂ρ−
∂t
− v ∂ρ−

∂x
= λρ+ − λρ−, (8.40b)

where ρ±(x, t) are the probability densities of a cell being at (x, t) and moving to the
right (+) and left (−), respectively, and v is the speed. This pair of equations is also
similar in form to the CK equations (3.8a) and (3.8a) of a two-state gene regulatory
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network in the absence of degradation, with x now representing the spatial position of
a bacterium rather than protein concentration. Several other biological systems can
be modeled according to the pair of equations (8.40a) and (8.40b):

(i) The Dogterom-Leibler model of microtubule catastrophes [76]. Here x represents
the length of a microtubule and the +-state (−-state) represents a recovery phase
with growth rate v (a catastrophe phase with shrinkage rate v).

(ii) A model of bidirectional intracellular motor transport along a microtubule
[44, 188, 189]. Here x represents the position of a motor along the filament, and
the motor can exist in two motile states with velocities ±v, corresponding to
anterograde and retrograde transport respectively. (There could also be a third,
non-motile or pausing state.) As with bacterial chemotaxis, there are higher-
dimensional versions of bidirectional transport in which motors walk along along
2D and 3D cytoskeletal networks.

(iii) The previous example is a molecular version of a more general type of switching
process known as a random intermittent search [28–30, 198], in which a particle
randomly switches between a slow search phase and a faster non–search phase.
There is evidence that such a search strategy is used throughout nature as a means
of efficiently searching for one or more targets of unknown location. Examples
include animals foraging for food or shelter [26], transcription factor proteins
searching for particular sites on DNA [33,123] (see section 3.6), and biochemical
reaction kinetics [170]. Theoretical calculations of the mean first passage time
to find a hidden target establishes the relative efficiency of the random search
process. At the molecular level, the random switching between different motile
states can increase the efficiency of biochemical reactions.

In order to model 1D chemotaxis, it is necessary to introduce some bias into the
stochastic switching (tumbling) between the velocity states ±v that depends on the
extracellular concentration gradient c. One phenomenological way to achieve this is to
assume that the rate of tumbling depends on the time derivative of the concentration
c(t) = c(x(t)) along the bacterial trajectory according to some function r(ċ), where
ċ = ±vdc/dx [39]. This yields the pair of equations

∂ρ+

∂t
+ v

∂ρ+

∂x
= −1

2
r(vc′(x))ρ+(x, t) +

1

2
r(−vc′(x))ρ−(x, t) (8.41a)

∂ρ−
∂t
− v ∂ρ−

∂x
=

1

2
r(vc′(x))ρ+(x, t)− 1

2
r(−vc′(x))ρ−(x, t). (8.41b)

We are assuming that when the bacterium tumbles there is an equal probability of
moving in either direction, and that tumbling is instantaneous – experimentally it is
an order of magnitude faster than a typical run length. Another simplification is to
take the tumble rate to depend on instantaneous values of the concentration gradient
rather than a time averaged change in concentration. The steady-state probability
densities satisfy the pair of equations

v
∂ρ+

∂x
=

1

2
r(−vc′(x))ρ−(x)− 1

2
r(vc′(x))ρ+(x)

and

−v ∂ρ−
∂x

=
1

2
r(vc′(x))ρ+(x)− 1

2
r(−vc′(x))ρ−(x).
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Adding these two equations gives

v
∂ρ+

∂x
− v ∂ρ−

∂x
= 0,

which implies that the difference ρ+(x) − ρ−(x) = constant. Assuming that −∞ <
x < ∞, normalizability of the probability densities requires this constant to be zero.
Hence, ρ±(x) = ρ(x)/2 with ρ(x) satisfying the single equation

v
∂ρ

∂x
=

1

2
[r(−vc′(x))− r(vc′(x))] ρ(x).

Under the linear approximation r(z) ≈ r(0) + r′(0)z, we have

r(±vc′(x)) ≈ r(0)± r′(0)vc′(x),

and

v
∂ρ

∂x
= −r′(0)c′(x)ρ(x).

This has the straightforward solution

ρ(x) =
1

Z
e−r

′(0)c(x), (8.42)

where Z is a normalization factor. If the signaling molecules correspond to a
chemoattractant then the rate of tumbling decreases in the direction for which ċ > 0,
that is, r′(0) < 0, and maxima of the steady-state solution (8.42) coincide with maxima
of the concentration c(x). Conversely, r′(0) > 0 for a chemorepellant and maxima of
ρ(x) coincide with minima of the concentration. Note that Erban and Othmer [87]
have developed a more detailed 1D model of chemotaxis that incorporates aspects of
the biochemical signal transduction pathways.

8.4. Stochastic neural networks

As our final example, we briefly consider one approach to incorporating noise into
local populations of neurons, which explicitly makes a formal connection with gene
networks [43], see also [41, 42, 57, 58]. The basic idea is to partition a network of
synaptically-coupled spiking neurons into M homogeneous subpopulations labeled
α = 1, . . . ,M and to represent the output activity of the α-th population in terms
of the number Nα(t) of neurons that are currently firing. The discrete stochastic
variables Nα(t) are taken to evolve according to a birth-death Markov process:

Nα(t)→ Nα(t)± 1 : transition rate ω±, (8.43)

The corresponding transition rates are

ω+ =
1

τa
F (Uα), ω− =

nα
τa
, (8.44)

where F is a sigmoidal firing-rate function, the time constant τa determines the
relaxation rate of a local population to the instantaneous firing rate, and Uα(t) is the
net synaptic current into population α. The latter evolves according to the piecewise
deterministic ODE

τ
dUα(t)

dt
= −Uα(t) +

M∑
β=1

wαβNβ(t), (8.45)

where wαβ represents the effective strength or weight of synaptic connections from
population β to population α, and τ is a synaptic time constant. We see that the
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resulting stochastic process defined by equations (8.43)–(8.45) is a PDMP at the
population neuron level, just as stochastic ion channel gating provides an example
at the cellular level, see section 8.1. The formal connection between the stochastic
neural network and a stochastic gene network is illustrated in Fig. 39. Given this
connection, all of the mathematical methods highlighted in this review carry over to
the neural population model. We briefly sketch a few of the details.

Denote the random state of the model at time t by {(Uα(t), Nα(t));α = 1, . . . ,M}.
Introduce the corresponding probability density

Prob{Uα(t) ∈ (uα, uα + du), Nα(t) = nα;α = 1, . . . ,M} = ρ(u,n, t)du, (8.46)

with n = (n1, . . . , nM ) and u = (u1, . . . , uM ). It follows from equations (8.43)–(8.45)
that the probability density evolves according to the Chapman-Kolmogorov (CK)
equation [43]

∂ρ

∂t
+

1

τ

∑
α

∂[vα(u,n)ρ(u,n, t)]

∂uα
(8.47)

=
1

τa

∑
α

[
(Tα − 1) (ω−(nα)ρ(u,n, t)) + (T−1

α − 1) (ω+(uα)ρ(u,n, t))
]
,

≡ 1

τa

∑
m

A(n,m; u)ρ(u,m, t) (8.48)

with

ω+(uα) = F (uα), ω−(nα) = nα, vα(u,n) = −uα +
∑
β

wαβnβ . (8.49)

The continuous-time Markov process for fixed u,

dρ(u,n, t)

dt
=

1

τa

∑
m∈I

A(n,m; u)ρ(u,m, t),

has a globally attracting steady-state ρ∗(u,n) such that ρ(u,n, t)→ ρ∗(u,n) as t→∞.
The steady-state equation is

0 =
∑
m

A(n,m; u)ρ∗(u,m)

=

M∑
α=1

[(nα + 1)ρ∗(u,n + eα)− nαρ(u,n) + F (uα)(ρ(u,n− eα)− ρ∗(u,n))] ,

where [eα]β = δα,β . The solution can be factorized as ρ∗(u,n) =
∏M
β=1 ρ1(uβ , nβ)

with

0 =

M∑
α=1

∏
β 6=α

ρ1(uβ , nβ)

 [J(uα, nα + 1)− J(uα, nα)] ,

where

J(u, n) = nρ1(u, n)− F (u)ρ1(u, n− 1).

Since ρ1(u,−1) ≡ 0, it follows that J(u, n) = 0 for all n. Hence,

ρ1(u, n) = ρ1(u, 0)

n∏
m=1

F (u)

m
= ρ1(u, 0)

F (u)n

n!
, (8.50)
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Figure 39. Comparison of mathematical structures for a pair of synaptically
coupled neural populations and a pair of mutually regulated genes. (a) In the
neural case the input synaptic current U is the piecewise deterministic continuous
variable, whereas the number of output spikes N is a discrete Markov process.
The nonlinear sigmoid-like function F appears in the transition rates of the
discrete process. Population A can either excite (wBA > 0) or inhibit (wBA < 0)
population B, and vice versa. It is also possible to have autofeedback with weight
wAA. (b) In the genetic case, the output concentration X of proteins is the
piecewise deterministic continuous variable, whereas the state N of the promoter
(active or inactive) is a discrete Markov process. The nonlinear sigmoid-like
function F again appears in the transition rates of the discrete process. Proteins
from gene A can either activate or repress gene B and vice versa, depending on
the precise form of F . Proteins can also regulate their own gene (autoregulation).

and the corresponding normalized density is a Poisson process with rate F (u)

ρ1(u, n) = e−F (u)F (u)n

n!
. (8.51)
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There are two time-scales in the CK equation (8.47), the synaptic time constant τ and
the time constant τa, which characterizes the relaxation rate of population activity.
In the limit τa → 0 for fixed τ , we obtain deterministic mean-field equations

τ
duα
dt

= 〈vα〉(u(t)) ≡
∑
n

vα(u(t),n)ρ∗(u(t),n)

= − uα(t) +

M∑
β=1

wαβ
∑
n

nβρ
∗(u(t),n). (8.52)

Since ρ∗(u,n) is given by product of independent Poisson processes with rates F (uα),
it follows that

〈nβ〉 = F (uβ), (8.53)

and (8.52) reduces to the standard Hopfield neural network equation [130].
By analogy with gene regulatory networks, a single neural population with

positive synaptic feedback, or a pair of mutually inhibitory neural populations can
exhibit bistability in the deterministic limit. When intrinsic noise is included one
has noise-induced transitions that can be analyzed along identical lines to section
5.2 [42,43].

9. Discussion

In this review we have presented current state-of-the-art analytical methods and
mathematical tools to deal with the stochastic processes giving rise to biological
switches. One of our main goals was to go beyond the standard and often-used
techniques of the linear noise approximation and system size expansion, by covering
more advanced topics in the theory of stochastic processes, including continuous time
Markov chains, chemical reaction network theory, stochastic hybrid systems, queuing
theory, large deviations and the WKB method, adiabatic reductions, and diffusion in
switching environments. In order to develop the main ideas, we focused on applications
to simple gene regulatory networks. However, in section 8 we illustrated how the same
techniques can be extended to other examples of biological switches.

One of the major challenges in furthering our understanding of biological switches,
as well as other processes in systems biology, is dealing with the complexity of most
gene regulatory and biochemical signaling networks. For example, typical reaction
networks involve multiple nodes (complexes) and links (reactions) that represent a
hierarchy of nonlinear feedback loops. Identifying characteristic modules and motifs
within these networks (including switches) is a subject of intense research. The theory
of chemical reaction networks touched upon in section 2.3 could be important in
identifying non-equilibrium steady-states in complex networks, as could multi-scale
analyses that exploit any separation of time-scales. Another source of complexity arises
when spatial effects become important. We touched on this within the context of gene
regulatory networks, where some form of facilitated diffusion is thought to play a role
in speeding up the search of a transcription factor for a specific binding site on DNA
(see section 3.6). In eukaryotic cells, one also has to take into account the fact that
gene regulation involves the exit of mRNA from the nucleus through the nuclear pore
complex, and the subsequent reentry of newly synthesized transcription factors into
the nucleus [254]. More generally, one needs to consider hybrid systems involving the
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coupling of stochastic chemical reactions within well mixed compartments with bulk
diffusion in complex, crowded environments. This in turn will require the development
of efficient numerical schemes for simulating reaction-diffusion systems with non-trivial
boundary conditions. Much of the current work in this area is based on constructing
spatial extensions of the SSA introduced in section 2.5 by considering reaction-diffusion
master equations [10,37,84,88,137,138,175].

Finally, we would like to highlight the increasingly important role that stochastic
hybrid systems such as PDMPs are playing in biological modeling, see also [45].
Throughout the review we have encountered examples of systems that involve a
coupling between one or more continuous variables, evolving either deterministically
or stochastically, and a discrete Markov process. In the case off gene networks,
this occurs if there is a mixture of molecules with low copy numbers (eg. genes,
mRNA) and molecules with high copy numbers (eg. certain proteins). Other examples
were presented in section 8, including membrane voltage fluctuations induced by the
stochastic opening and closing of ion channels, bacterial chemotaxis, stochastic neural
networks, and diffusion in randomly switching environments. The theory of stochastic
hybrid systems is underdeveloped compared to that of SDEs and discrete Markov
processes, although similar techniques can be applied, including large deviations and
WKB methods, and diffusion approximations. It is a rich area for further exploration.
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bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface 6 925-940
[245] Visco P, Allen R J, Majumdar S N and Evans M R 2010 Switching and growth for microbial

populations in catastrophic responsive environments Biophys. J. 98 1099-1108
[246] von Hippel P H and Berg O G 1989 Facilitated target location in biological systems. J. Biol.

Chem. 264, 675-678
[247] Walczak A M, Sasai M and Wolynes P G 2005 Self-consistent proteomic field theory of stochastic

gene switches. Biophys. J. 88 828-850
[248] Ward J P, King J R, Koerber A J, Williams P, Croft J M and Sockett R E 2001 Mathematical

modelling of quorum-sensing in bacteria. MA J. Math. Appl. Med. 18, 263-292
[249] Warmflash A, Bhimalapuram P and Dinner A R 2007 Umbrella sampling for nonequilibrium

processes. J. Chem. Phys. 127 154112
[250] Waters C M and Basser B L 2005 Quorum sensing: Cell-to-cell communication in bacteria.

Annu. Rev. Cell Dev. Biol. 21 319-346
[251] Weake V M and Worlkman J L 2010 Inducible gene expression: diverse regulatory mechanisms.

Nat. Rev. Genet. 11 426-437
[252] Wei Y, Ng W-L, Cong J and Bassler B L 2012 Ligand and antagonist driven regulation of the

Vibrio cholerae quorum-sensing receptor CqsS Mol. Microbiol. 83 1095-1108
[253] Weinan E, Weiqing R and Vanden-Eijnden E 2002 String method for the study of rare events

Phys. Rev. B 66 052301
[254] Tran E J and Wente S R Dynamic nuclear pore complexes: Life on the edge 2006 Cell 125

1041-1053
[255] Yang Y M, Austin R H and Cox E C 2006 Single molecule measurements of repressor protein

1D diffusion on DNA. Phys. Rev. Lett. 97 048302
[256] Yu J, Xiao J, Ren X, Lao K and Xie X S 2006 Probing gene expression in live cells, one protein

molecule at a time. Science 311 1600-1603
[257] Yvinec R, Zhuge C, Lei J and Mackey M C 2014 Adiabatic reduction of a model of stochastic

gene expression with jump Markov process J. Math. Biol. 68 1051-1070
[258] Zeiser S, Franz U, Wittich O and Liebscher V 2008 Simulation of genetic networks modelled

by piecewise deterministic Markov processes IET Syst. Biol. 2 113-135
[259] Zhang B W, Jasnow D and Zuckerman D M 2010 The “weighted ensemble” path sampling



CONTENTS 137

method is statistically exact for a broad class of stochastic processes and binning procedures.
J Chem Phys 132 054107

[260] Zuckerman M and Woolf T B 2000 Efficient dynamic importance sampling of rare events in
one dimension. Phys. Rev. E 63 016702


