178 research outputs found

    A case for reproduciblity in MIR : replication of 'a highly robust audio fingerprinting system'

    Get PDF
    This article makes a case for reproducibility in MIR research. Claims made in many MIR publications are hard to verify due to the fact that (i) often only a textual description is made available and code remains unpublished - leaving many implementation issues uncovered; (ii) copyrights on music limit the sharing datasets; and (iii) incentives to put effort into reproducible research -- publishing and documenting code and specifics on data -- is lacking. In this article the problems around reproducibility are illustrated by replicating a MIR work. The system and evaluation described in 'A Highly Robust Audio Fingerprinting System' is replicated as closely as possible. The replication is done with several goals in mind: to describe difficulties in replicating the work and subsequently reflect on guidelines around reproducible research. Added contributions are the verification of the reported work, a publicly available implementation and an evaluation method that is reproducible

    Engineering systematic musicology : methods and services for computational and empirical music research

    Get PDF
    One of the main research questions of *systematic musicology* is concerned with how people make sense of their musical environment. It is concerned with signification and meaning-formation and relates musical structures to effects of music. These fundamental aspects can be approached from many different directions. One could take a cultural perspective where music is considered a phenomenon of human expression, firmly embedded in tradition. Another approach would be a cognitive perspective, where music is considered as an acoustical signal of which perception involves categorizations linked to representations and learning. A performance perspective where music is the outcome of human interaction is also an equally valid view. To understand a phenomenon combining multiple perspectives often makes sense. The methods employed within each of these approaches turn questions into concrete musicological research projects. It is safe to say that today many of these methods draw upon digital data and tools. Some of those general methods are feature extraction from audio and movement signals, machine learning, classification and statistics. However, the problem is that, very often, the *empirical and computational methods require technical solutions* beyond the skills of researchers that typically have a humanities background. At that point, these researchers need access to specialized technical knowledge to advance their research. My PhD-work should be seen within the context of that tradition. In many respects I adopt a problem-solving attitude to problems that are posed by research in systematic musicology. This work *explores solutions that are relevant for systematic musicology*. It does this by engineering solutions for measurement problems in empirical research and developing research software which facilitates computational research. These solutions are placed in an engineering-humanities plane. The first axis of the plane contrasts *services* with *methods*. Methods *in* systematic musicology propose ways to generate new insights in music related phenomena or contribute to how research can be done. Services *for* systematic musicology, on the other hand, support or automate research tasks which allow to change the scope of research. A shift in scope allows researchers to cope with larger data sets which offers a broader view on the phenomenon. The second axis indicates how important Music Information Retrieval (MIR) techniques are in a solution. MIR-techniques are contrasted with various techniques to support empirical research. My research resulted in a total of thirteen solutions which are placed in this plane. The description of seven of these are bundled in this dissertation. Three fall into the methods category and four in the services category. For example Tarsos presents a method to compare performance practice with theoretical scales on a large scale. SyncSink is an example of a service

    Structure Learning in Audio

    Get PDF

    UAV Payload Identification with Acoustic Emissions and Cell Phone Devices

    Get PDF
    The growing presence of Unmanned Aerial Vehicle (UAV) brings new threats to the civilian and military front. In response, the Department of Defense (DoD) is developing many drone detection systems. Current systems use Radio Detection and Ranging (RADAR), Light Detection and Ranging (LiDAR), and Radio Frequency (RF). Although useful, these technologies are becoming easier to spoof every year, and some are limited to line of sight. Acoustic emissions are a unique quality all drones emit. Acoustics are difficult to spoof and do not require line of sight for detection. This research expands the research field of study by creating HurtzHunter, a prototype which tests acoustic payload detection at far range (7 m - 100 m) and with cell phone devices. HurtzHunter uses MFCCs to train a SVM for UAV acoustic payload detection. Depending on the recording device and SVM configuration, the results show an 82-98% payload prediction accuracy using cell phone devices

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd
    corecore