61 research outputs found

    Advanced Technique and Future Perspective for Next Generation Optical Fiber Communications

    Get PDF
    Optical fiber communication industry has gained unprecedented opportunities and achieved rapid progress in recent years. However, with the increase of data transmission volume and the enhancement of transmission demand, the optical communication field still needs to be upgraded to better meet the challenges in the future development. Artificial intelligence technology in optical communication and optical network is still in its infancy, but the existing achievements show great application potential. In the future, with the further development of artificial intelligence technology, AI algorithms combining channel characteristics and physical properties will shine in optical communication. This reprint introduces some recent advances in optical fiber communication and optical network, and provides alternative directions for the development of the next generation optical fiber communication technology

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer

    Get PDF
    A vertical perspective, ranging from management and routing to physical layer options, concerning dynamic network monitoring and compensation of impairments (M&C), is given. Feasibility, reliability, and performance improvements on reconfigurable transparent networks are expected to arise from the consolidated assessment of network management and control specifications, as a more accurate evaluation of available M&C techniques. In the network layer, physical parameters aware algorithms are foreseen to pursue reliable network performance. In the physical layer, some new M&C methods were developed and rating of the state-of-the-art reported in literature is given. Optical monitoring implementation and viability is discussed.Publicad

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Enabling Parallel Wireless Communication in Mobile Robot Teams

    Get PDF
    Wireless inter-robot communication enables robot teams to cooperatively solve complex problems that cannot be addressed by a single robot. Applications for cooperative robot teams include search and rescue, exploration and surveillance. Communication is one of the most important components in future autonomous robot systems and is essential for core functions such as inter-robot coordination, neighbour discovery and cooperative control algorithms. In environments where communication infrastructure does not exist, decentralised multi-hop networks can be constructed using only the radios on-board each robot. These are known as wireless mesh networks (WMNs). However existing WMNs have limited capacity to support even small robot teams. There is a need for WMNs where links act like dedicated point-to-point connections such as in wired networks. Addressing this problem requires a fundamentally new approach to WMN construction and this thesis is the first comprehensive study in the multi-robot literature to address these challenges. In this thesis, we propose a new class of communication systems called zero mutual interference (ZMI) networks that are able to emulate the point-to-point properties of a wired network over a WMN implementation. We instantiate the ZMI network using a multi-radio multi-channel architecture that autonomously adapts its topology and channel allocations such that all network edges communicate at the full capacity of the radio hardware. We implement the ZMI network on a 100-radio testbed with up to 20-individual nodes and verify its theoretical properties. Mobile robot experiments also demonstrate these properties are practically achievable. The results are an encouraging indication that the ZMI network approach can facilitate the communication demands of large cooperative robot teams deployed in practical problems such as data pipe-lining, decentralised optimisation, decentralised data fusion and sensor networks
    • …
    corecore