1,229 research outputs found

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    SLAng: A language for defining service level agreements

    Get PDF
    Application or web services are increasingly being used across organisational boundaries. Moreover, new services are being introduced at the network and storage level. Languages to specify interfaces for such services have been researched and transferred into industrial practice. We investigate end-to-end quality of service (QoS) and highlight that QoS provision has multiple facets and requires complex agreements between network services, storage services and middleware services. We introduce SLAng, a language for defining Service Level Agreements (SLAs) that accommodates these needs. We illustrate how SLAng is used to specify QoS in a case study that uses a web services specification to support the processing of images across multiple domains and we evaluate our language based on it

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    Context Aware Adaptable Applications - A global approach

    Get PDF
    Actual applications (mostly component based) requirements cannot be expressed without a ubiquitous and mobile part for end-users as well as for M2M applications (Machine to Machine). Such an evolution implies context management in order to evaluate the consequences of the mobility and corresponding mechanisms to adapt or to be adapted to the new environment. Applications are then qualified as context aware applications. This first part of this paper presents an overview of context and its management by application adaptation. This part starts by a definition and proposes a model for the context. It also presents various techniques to adapt applications to the context: from self-adaptation to supervised approached. The second part is an overview of architectures for adaptable applications. It focuses on platforms based solutions and shows information flows between application, platform and context. Finally it makes a synthesis proposition with a platform for adaptable context-aware applications called Kalimucho. Then we present implementations tools for software components and a dataflow models in order to implement the Kalimucho platform

    A Framework For Adaptation In secure Web Services

    Get PDF
    In the context of service-oriented computing, the introduction of the Quality-of-Service (QoS) aspect leads to the need to adapt the execution of programs to the QoS requirements of the particular execution. This is typically achieved by finding alternate services that are functionally equivalent to the ones originally specified in the program and whose QoS characteristics closely match the requirements, and invoking the alternate services instead of the originally specified ones; the same approach can also be employed for tackling exceptions. The techniques proposed insofar, however, cannot be applied in a secure context, where data are encrypted and signed for the originally intended recipient. In this paper, we introduce a framework for facilitating adaptation in the context of secure SOA

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    An Investigation into Dynamic Web Service Composition Using a Simulation Framework

    Get PDF
    [Motivation] Web Services technology has emerged as a promising solution for creat- ing distributed systems with the potential to overcome the limitation of former distrib- uted system technologies. Web services provide a platform-independent framework that enables companies to run their business services over the internet. Therefore, many techniques and tools are being developed to create business to business/business to customer applications. In particular, researchers are exploring ways to build new services from existing services by dynamically composing services from a range of resources. [Aim] This thesis aims to identify the technologies and strategies cur- rently being explored for organising the dynamic composition of Web services, and to determine how extensively each of these has been demonstrated and assessed. In addition, the thesis will study the matchmaking and selection processes which are essential processes for Web service composition. [Research Method] We under- took a mapping study of empirical papers that had been published over the period 2000 to 2009. The aim of the mapping study was to identify the technologies and strategies currently being explored for organising the composition of Web services, and to determine how extensively each of these has been demonstrated and assessed. We then built a simulation framework to carry out some experiments on composition strategies. The rst experiment compared the results of a close replication of an ex- isting study with the original results in order to evaluate our close replication study. The simulation framework was then used to investigate the use of a QoS model for supporting the selection process, comparing this with the ranking technique in terms of their performance. [Results] The mapping study found 1172 papers that matched our search terms, from which 94 were classied as providing practical demonstration of ideas related to dynamic composition. We have analysed 68 of these in more detail. Only 29 provided a `formal' empirical evaluation. From these, we selected a `baseline' study to test our simulation model. Running the experiments using simulated data- sets have shown that in the rst experiment the results of the close replication study and the original study were similar in terms of their prole. In the second experiment, the results demonstrated that the QoS model was better than the ranking mechanism in terms of selecting a composite plan that has highest quality score. [Conclusions] No one approach to service composition seemed to meet all needs, but a number has been investigated more. The similarity between the results of the close replication and the original study showed the validity of our simulation framework and a proof that the results of the original study can be replicated. Using the simulation it was demonstrated that the performance of the QoS model was better than the ranking mechanism in terms of the overall quality for a selected plan. The overall objectives of this research are to develop a generic life-cycle model for Web service composition from a mapping study of the literature. This was then used to run simulations to replicate studies on matchmaking and compare selection methods

    Model aware execution of composite web services

    Get PDF
    In the Service Oriented Architecture (SOA) services are computational elements that are published, discovered, consumed and aggregated across platform and organizational borders. The most commonly used technology to achieve SOA are Web Services (WSs). This is due to standardization process (WSDL, SOAP, UDDI standards) and a wide range of available infrastructure and tools. A very interesting aspect of WSs is their composeability. WSs can be easily aggregated into complex workflows, called Composite Web Services (CWSs). These compositions of services enable further reuse and in this way new, even more complex, systems are built.Although there are many languages to specify or implement workflows, in the service-oriented systems BPEL (Business Process Execution Language) is widely accepted. With this language WSs are orchestrated and then executed with specialized engines (like ActiveBPEL). While being very popular, BPEL has certain limitations in monitoring and optimizing executions of CWSs. It is very hard with this language to adapt CWSs to changes in the performance of used WSs, and also to select the optimal way to execute a CWS. To overcome the limitations of BPEL, I present a model-aware approach to execute CWSs. To achieve the model awareness the Coloured Petri Nets (CPN) formalism is considered as the basis of the execution of CWSs. This is different than other works in using formal methods in CWSs, which are restricted to purposes like verification or checking of correctness. Here the formal and unambiguous notation of the CPN is used to model, analyze, execute and monitor CWSs. Furthermore this approach to execute CWSs, which is based on the CPN formalism, is implemented in the model-aware middleware. It is also demonstrated how the middleware improves the performance and reliability of CWSs
    corecore