
Model Based Development of Quality-Aware Software Services 
Miguel A. de Miguel1, Philippe Massonet2, Juan P. Silva1, Javier Briones1 

Departamento de Ingeniería de Sistemas Telemáticos1,  
ETSI Telecomunicación, Universidad Politécnica de Madrid,  

Ciudad  Universitaria s/n, E-28040, Madrid, Spain. 
Centre d’Excellence en Technologies de l’Information et de la Communication2, 

Rue des Frères Wright, 29/3 
      Contact email: mmiguel@dit.upm.es 

 
Abstract 

Modelling languages and development frameworks 
give support for functional and structural description of 
software architectures. But quality-aware applications 
require languages which allow expressing QoS as a 
first-class concept during architecture design and 
service composition, and to extend existing tools and 
infrastructures adding support for modelling, 
evaluating, managing and monitoring QoS aspects. In 
addition to its functional behaviour and internal 
structure, the developer of each service must consider 
the fulfilment of its quality requirements. If the service 
is flexible, the output quality depends both on input 
quality and available resources (e.g., amounts of CPU 
execution time and memory). 
From the software engineering point of view, 
modelling of quality-aware requirements and 
architectures require modelling support for the 
description of quality concepts, support for the analysis 
of quality properties (e.g. model checking and 
consistencies of quality constraints, assembly of 
quality), tool support for the transition from quality 
requirements to quality-aware architectures, and from 
quality-aware architecture to service run-time 
infrastructures. Quality management in run-time 
service infrastructures must give support for handling 
quality concepts dynamically. 
QoS-aware modeling frameworks and QoS-aware run-
time management infrastructures require a common 
evolution to get their integration.  
 
1. Introduction: Strategic and Technical 

Objectives 
Frequently the behaviour of a service is functionally 

correct, but the result it generates is nevertheless 
unacceptable because the result does not meet some 
quality criteria, such as the response time and accuracy 
(i.e., quality). One way to enhance the capability of the 
system to deliver results of acceptable quality is to use 
flexible services. A flexible service composition can 
trade off among different alternative behaviours and 

resources it uses to produce its results, the quality of its 
input, and the quality of its result. 

Currently, service run-time infrastructures, and 
software development tools such as modelling 
languages, transformations of models and generators of 
code takes into account the functional description of 
services but not the non-functional properties of 
models. 

Software quality must be handled in the software 
development phases and the run-time execution of 
services. Some quality properties of software that 
requires special attention are the quality-aware static 
and dynamic composition of services, and the 
description of quality in requirements, architectures 
and design models, and in the run-time specification of 
services. 

In the last decade, the increased need for timely and 
dependable execution and communication support have 
led to established and improved software quality 
facilities (e.g. quality negotiation and adaptation 
algorithms, reservation protocols, resource brokers). 
They have been integrated in protocol stacks, operating 
systems kernels, middleware systems and some 
software development methods. These facilities 
provide support for the development of multimedia, 
real-time and complex systems in general. But the 
quality-aware software development is complex. 
Software architecture and software development must 
integrate quality support and analysis. Different levels 
of software infrastructures and software development 
require the integration of quality concepts, as described 
in Figure 1 below.  

The scientific and technical research objectives 
objectives that we are introducing are: 
1. Building modelling languages for Quality. The 

construction of languages and tools for supporting 
quality in modelling languages used for the 
specification of applications (requirements and 
architecture), 

2. Developing tools for evaluation of Quality 
contracts. Tool support for the evaluation of quality 
of software architectures and quality contracts and 

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.23

563

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148653981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solutions to improve traceability of quality 
requirements, 

3. Adapting services infrastructures for the 
integration of quality management. The 
improvement of services infrastructures for the 
integration of quality management. Specification of 
applications and services infrastructures will be 
designed taking into account quality infrastructure 
available in the other levels. 

Specification of 
Applications 

Services 
Infrastructures 

Middleware 
Infrastructures 

OS and Kernels 

Networking Quality 
of Service 

Q
u
a 
l 
i 
t 
y 
 

A 
w 
a 
r 
e 

Quality properties, 
Quality Regions and Contracts, 
Quality Levels and Adaptations 
Quality Config. with Attributes, 
Quality Assembly of Services, 

Quality Negotiation 

Quality Interface Specification, 
Quality Setup, 

Quality Adaptation 

Resource Kernels, 
Control of Resources, 

Admission Control 

Resource Protocols, 
Traffic Control, 

Quality Network Management 

Figure 1. Levels of Integration of Quality 
 
Building modelling languages for Quality 

Currently the quality management or the modelling 
elements for the description of quality is not available 
in general modelling languages. The quality 
management is developed as an activity not directly 
liked with architectural models (e.g. evaluation of 
quality of software architectures, and integration of 
quality in the description software concepts such as use 
cases and services). Some UML extensions gives 
support for the QoS description[OMG06], but these 
extensions do not support the integration of QoS 
analysis methods and QoS-aware platforms. 
Developing tools for evaluation of Quality contracts 

Currently the composition of services only takes into 
account functional description of services. But services 
are designed to support specific quality properties, not 
considered during the assembly or composition. The 
static and dynamic composition of quality-aware 
services takes into account the quality specification of 
services and guarantees that quality required in the 
client and quality offered by the server are compatible. 
Quality-aware services composition must be handled in 
modelling tools for software services and service 
runtime infrastructures. And static quality-aware 
composition in modelling tools and dynamic 
composition in run-time infrastructures must be 
compatible. 

Traceability solutions that link functional 
requirements, use cases, logical services and physical 
services are available. But the traceability of extra-
functional requirements, and the validation of quality 
properties taken into account in logical and physical 

architectures requires additional traceability 
infrastructures. 
Adapting services infrastructures for the integration 
of quality management 

Objective quality requirements have associated 
quantifiable parameters that can be monitored at 
runtime. The results of monitoring can be used for 
different purposes. Monitoring of quality parameters 
gives support for the testing of quality requirements. 
Some other applications are: i) handling exception of 
quality contracts, ii) quality adaptation algorithms, iii) 
improving the specification of quality constraints in 
software architectures. Quality constraints and quality 
specifications in general are reusable for the 
construction of quality monitoring.  
 
2. Progress beyond the state-of-the-art 

Service-oriented software development is a new 
paradigm that utilises services as the basic construct to 
support the development of distributed applications. It 
presents the vision of a world of cooperating services 
where application components are assembled with little 
effort in a network of services that can be coupled to 
create flexible dynamic business processes and 
applications that may span organisations and 
computing platforms [Pap06].  

Figure 2, taken from [Soft06], presents a 
characterisation of the software-services domain in the 
past, present, and future. The lower left quadrant 
illustrates the state of services in the past, the so-called 
First Generation Services, independent non-integrated 
services with low requirements in relation to service 
management, quality, reliability, security, trust, and 
interoperability. The middle part corresponds to the 
Second Generation Services, vertically integrated 
services where, for instance, a single vendor bundles a 
series of related services. Second Generation Services 
represent the current state of software services, 
embracing issues such as service lifecycle 
management, quality of service, and service level 
agreement; an increase in the threshold level of quality, 
reliability, interoperability, security and trust, and 
service management in comparison with first 
generation services.  

The top right quadrant presents the Third Generation 
Services, the desired state of software services, 
concerned with context-determined, consumer-driven, 
dynamically composed services. There is a dramatic 
increase in the threshold level of service management, 
quality, reliability, interoperability, security and trust 
across the heterogeneous enterprises involved. 

564

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.



 
Figure 2. Maturation of Software Services [Soft06] 

 
3. State of the Art and Advances in Software 

Services and Quality Requirements 
A general research objective is to develop the 

technology for quality management for the Third 
Generation Services. As presented in [Soft06], there 
are several challenges in achieving Third Generation 
Services.  

Requirement engineering is the very first step of the 
system development process. It is concerned with the 
identification of stakeholders’ goals about the intended 
system; the specification of services and constraints 
that make operational those goals; and the assignment 
of responsibilities for the resulting requirements to 
agents such as humans, devices and software [Lam00]. 
Requirements engineering is now widely recognized to 
be among the most critical steps of system 
development. In order to implement a system that 
satisfies the stakeholders’ needs, those needs must be 
clearly understood and adequately mapped to 
specifications of required software behaviour. 
Inadequate requirements engineering has been 
repeatedly pointed out to be a major source of 
problems in software development. The cost of 
correcting errors or misconceptions in requirements 
increases exponentially along the software life-cycle if 
such errors are not handled during the requirements 
engineering stage. It is thus essential that requirements 
engineering be done with great care and precision. 

In goal-oriented requirements engineering 
methodology [Lam00], goals play a prominent role in 
the requirements engineering process. Goals drive the 
elaboration of requirements to support them; they 
provide a completeness criterion for the requirements 
specification - the specification is complete if all stated 
goals are met by the specification [Yue87]; they 
provide a rationale for requirements - a requirement 
exists because of some underlying goal which provides 
a base for it; they are generally more stable than the 
requirements to achieve them [Ant94]. In short, 

requirements “implement” goals much the same way as 
programs implement design specifications. 

Quality requirements are critical to the success of 
any application. Even if an application fulfils all of its 
functional requirements by providing all of its required 
features and implementing each and every one of its 
use cases, it can still be totally unacceptable if its 
availability is too little, its capacity is too low, its 
performance is to slow, it is not interoperable with 
other systems, it has numerous security vulnerabilities, 
and it is not considered to be user friendly by its end 
users. There are a large number of quite different types 
of quality requirements, and these different types of 
quality requirements require quite different types of 
analysis methods. For example, you can use asset-
based threat analysis and anti-goals to analyse security 
requirements as shown in [Naq06], but these 
techniques will be quite inappropriate for analysing 
other types of quality requirements such as 
performance (e.g. throughput, response-time, jitter, and 
scheduling) requirements or dependability (e.g. 
availability, reliability, and robustness) requirements. 

In practice, quality requirements are often retrofitted 
late in the development process or pursued in parallel 
but separately from functional design. These practices 
tend to result in systems which cannot be accredited, 
are more costly and less trustworthy.  Modern quality 
requirements methods have advocated for solving this 
drawback by taking quality requirements into account 
since early stages in the development process. For 
instance, [Cys04] treats quality requirements as first 
class requirements; it presents a process to elicit them, 
analyse their interdependencies, and trace them to 
functional conceptual models, focusing on conceptual 
models expressed using UML. In [Chu04], Chung 
proposes a framework for representing and integrating 
quality and functional requirements in the UML use 
case model. The quality requirements can be implicitly 
associated with other related use case model elements 
based on the non-functional requirement propagation 
rules proposed to eliminate the need for redundant non-
functional requirement specifications. 
 
3.1 Advance in Quality Requirements for 
Software Services 

As presented in [Soft06], requirements engineering 
needs to take into account the fact that not all of the 
requirements can be defined during design time, and 
that some of the requirements need to be negotiated at 
run-time to take into account the adaptable and 
dynamic nature of service based systems. As also 
stated in [Soft06], one of the key challenges in terms of 
quality and reliability is to be able to engineer service 

565

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.



based systems that can deal with the change and 
complexity, yet still remain dependable. 

One of the novelties that we propose is to use the 
specification of quality requirements for defining both 
design-time and run-time architectural artefacts that 
meet the quality requirements, as show in Figure 3. 
Quality requirements can be captured in a requirements 
model that can then be used to derive: i) design-time 
artefacts that satisfy the requirements (including the 
quality requirements) by design such as service 
specifications or design-time composition of services. 
ii) Artefacts to be used at run-time to check that run-
time decisions do not violate the design-time 
requirements and additional requirements that are 
known at run-time. The two examples illustrated in the 
figure are run-time monitors, and policies for quality 
requirement negotiation. The run-time monitors 
monitor required properties of the system that cannot 
be guaranteed by design because they depend on 
assumptions made on the environment [Fea98]. The 
policies for quality requirement negotiation can be 
used at run-time to drive service level agreement 
negotiation [Mas05]. 

 

Design Time Run Time 

 

 

R
eq

u
ir

em
e
n
ts

 

Logical Architecture Model 

 

SLA Negotiation 

Policies for 
quality 

requirement 
negotiation 

Run-time 
Monitors 

Service 
Specifications 

Service 
Composition

Requirements 
Model 

Functional 
Non-functional 

Physical Architecture 
Model 

Quality 
Contracts 

Composition of services 

Lo
g
ic

a
l 

A
rc

h
it

ec
tu

re
 

P
h
y
si

ca
l 

A
rc

h
it

ec
tu

re
 

Figure 3. Handling Quality Requirements 
 

Figure 3 also shows that the logical architecture 
model is refined into a physical architecture model by 
application of quality design patterns. The 
requirements are used to guide the application of 
quality patterns to ensure that the architecture 
refinement respects the requirements [Lam03]. 

The ability to elicit quality requirements and 
understand how to transform them into appropriate 
architectural solutions is one of the challenges of Third 
Generation Services [Soft06, page 8]. As far as we 

know, this is the first type of work to be developed in 
this area for the case of software services. 

 
4. State of the Art and Advances in Quality-

Aware Models 
The design by contract is a subject well studied in 

the field of object-oriented and component oriented 
software development, but these approaches do not 
take into account extra-functional properties of 
components and services.  

Innovation advances produce quality models based 
on quality contracts. The quality contracts of services 
must take into account two fundamental concepts: i) 
Definition of quality characteristics that represent a 
quantifiable aspect of quality, which are defined 
independently of the means by which it is represented 
or controlled. Levels of abstraction depend on the 
domain, applications and precision of requirements. ii) 
Quality constraints define any kind of restriction that 
services impose on quality characteristics.  

The services have two view points: server and client, 
and the quality constraints are definable from the client 
or server view point. If the constraints that impose the 
client and the server are compatible, the contract is 
allowed. The restrictions express limitations in the 
parameters and methods of characteristics. They 
identify ranges of values allowed for one or multiple 
parameters and methods and their dependencies.  

Examples of simple quality constraints are 
constraints that describe maximum response times, or 
the minimum number of errors supported. Sometimes 
the quality characteristics have associated 
interdependencies, for instance, in a compression 
algorithm; the response time depends on the 
compression degree (more level of compressions 
requires more computation time) or the functions for 
the description of subjective priority of qualities or for 
the description of quality optimal values.  

Quality constraint can represent the dependencies 
and the allowed values taking into account the 
dependencies. Figure 4 represents the dependencies of 
qualities qx, qy and qz for a hypothetical 
implementation function - the maximum and minimum 
values and the dependencies of quality values; qx 
cannot have an arbitrary value when the values of qy 
and qz are fixed. Analytical methods are based on the 
optimisation of these functions and these functions can 
be restricted for specific analysis methods. The 
analytical methods must guarantee that clients and 
servers have common spaces in their allowed spaces 
and define the quality contract based on the allowed 
space. 

566

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.



Figure 4. Constraints and relationships of qualities 

Examples of quality-enabled modelling languages 
are QML (QoS Modelling Language) [Fro98] and 
CQML (Component Quality Modelling Language) 
[Aaf02]. QML and CQML are languages with a BNF 
grammar. Other similar approaches are based on 
metamodels [Ase00] [Bor00]. These languages provide 
support for the description of user defined quality 
categories and characteristics, quality contracts and 
quality bindings. They are frameworks for the 
description of quality catalogs [Bra02] of general 
quality parameters, or application specific quality 
parameters. They do not provide support to optimise 
the resource allocation, or evaluate the levels of quality 
provided. They address the problem from the 
specification point of view. Two OMG standards 
designed for handling quality specifications in UML 
models are [OMG06] [OMG02]. 

Another approach is the description of resource 
services quality. [Raj97][Sel00] provide support for 
describing quality based on resource services, and the 
relation with analytic methods of performances such as 
latencies and throughputs. 

Quality-enabled modelling languages pay special 
attention to the specification of quality characteristics 
and parameters, quality contracts for the description of 
restrictions or quality values, and binding of quality 
between components, resources and subsystems. 

Analytical models for quality management provide 
support for the application of metric evaluations and 
resource allocation optimisation. [Raj97] proposes a 
general quality analytical model for the optimisation of 
resource allocation. The model assumes a system with 
multiple resources and dynamic applications, each of 
which can operate at different levels of quality, based 
on the system resources available to it. Reward 
functions describe the interdependencies of quality 
levels and resource allocation, utility functions and 
weighted utility functions evaluate the application and 
system quality. The optimisation of these functions 
provides the optimal resource distribution. 

Other approaches are domain specific. 
[Sta95][Ven97] are analytical models to support the 
quality metrics of video and multimedia applications. 
They identify the quality parameters for user 
satisfaction and resource consumption in these types of 
applications (video and multimedia), and the functions 
for the relationships of resources and user satisfaction. 

 
4.1 Advance in Quality-Aware Models  
Three different points of view of quality specification 
not combined in a common solution yet are:  i) the 
description of user perceptible quality characteristics 
and their contracts; ii) the definition of system and 
resource levels quality characteristics and contracts; 
and iii) the analytic methods that provide support for 
the optimal resource allocation and quality levels 
identifications.  
New progresses innovate in proposing a development 
process that integrates above points of view. We have 
identified four basic modelling activities that must be 
integrated into general development processes: 
• Quality Requirements. Quality requirements will 

be integrated in use cases models and goal models to 
represent extra-functional requirements. 

• Quality Model. A quality-aware project includes 
specific quality characteristics, or can reuse some 
general characteristics. The quality model defines the 
set of characteristics that define the quality language 
for the project.  Quality characteristics model the 
quantitative and qualitative dimensions for the 
specification of extra-functional requirements. 

• Quality Interfaces of Quality Software Elements. 
UML interface specification includes the functional 
properties of some software elements (e.g. classes 
and components). Quality interface extends this 
specification to define quality dependencies of 
software element, from user and implementation 
perspectives. 

• Quality Behaviour. The quality behaviour models 
the specific behaviour of software elements that 
support the qualities provided. 

 
5. State of the Art and Advances in Quality-

Based Service Composition 
Service composition is concerned with the 

aggregation of multiple services into a single 
composite service.  Resulting composite services may 
be used by service as basic services in further service 
compositions or may be offered as complete 
applications/solutions to service clients. Service 
aggregators thus become service providers by 
publishing the service descriptions of the composite 
service they create. Service aggregators develop 
specifications and/or code that permit the composite 

567

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.



service to perform functions that are based on features 
such as meta-data descriptions, standard terminology 
and reference models and service conformance.  

The Web, as the dominating Internet service, has 
evolved into the most popular and widespread platform 
for world wide global information systems. Because of 
its diffusion, the Web has been widely used as a 
platform for dynamic, distributed applications. 
Different areas (i.e., e-science, e-business, e-learning, 
etc.) are adopting the Web protocols as a basis for their 
service oriented middleware infrastructures. The Web 
Service Architecture (WSA) and the Open Grid 
Service Architecture (OGSA) are both Web based 
instances of SOA related, respectively, to the e-
business and e-science scenario. In the Web, the terms 
“orchestration” and “choreography” have been used to 
describe business interaction protocols comprising 
collaborative services. While orchestration 
characterizes executable business processes that 
embody the perspective of a particular party, 
choreography describes the interaction pattern among 
different distributed business processes. 

Some of the research effort in service composition 
has been concentrated on solving the problem of 
dynamic composition [Yan04], modularising 
compositions [Cha04] and formal verification of 
service composition [Sol04]. There are also some 
efforts in applying AI techniques to automate the 
retrieval and composition of Web services [Pis05].  

However, many of the approaches to service 
composition neglect the context in which the 
composition takes place. This is still a challenge that 
needs to be overcome if we want to have full adoption 
of service-oriented technology. The service 
composition needs to understand and respect 
participants’ policies, performance levels, security 
requirements, SLA stipulations, and so forth.  Initial 
efforts to deal with quality in service composition 
include [Zen03, Mac02, Mes02]. In [Zen03], it is 
proposed a global planning approach to optimally 
select component services during the execution of a 
composite Web service considering quality criteria, 
and global constraints and preferences set by the user. 
The concept of Quality of Business is introduced in 
[Mac02], where it is introduced a methodology to 
direct service composition taking into account quality 
by using ideas from utility computing. [Mes02] 
develops a probability model for composing Web 
services taking into consideration quality of services 
attributes. 
5.1 Advance in Quality-Based Service 
Composition 

Quality-based service composition has been 
identified as one of the research challenges of the 

Service-Oriented Computing Research Roadmap 
[Pap06]. New issues tackle this challenge by 
developing methods and tools for design-time and run-
time composition of services. In contrast to previous 
work, especially important are dynamic services where 
quality attributes can vary throughout the execution of 
a system. 
 
6. State of the Art and Advances in Run-Time 

Quality Management for Services 
During the last decade quality management has been 

integrated in different types of middleware 
infrastructures. The integration of QoS facilities into 
middleware systems was identified as a challenge for 
the middleware infrastructures [Gei01][Sch00], and 
during the last years it has been integrated in 
component and object oriented middleware. But the 
integration in service run-time infrastructures (e.g. 
SOA) does not have well established solutions for the 
quality management.  In some solutions, QoS 
middleware cooperates with existing solutions at 
Operating System and network levels, and proposes the 
middleware layer to support other facilities. Some 
proposals study the integration of QoS facilities in 
component models such as CCM and EJB. 

 
6.1 Advance in Run-Time Quality 
Management for Services 

New innovative solutions for some research 
challenges in quality management in service run-time 
infrastructures are: 
• QoS dynamic composition of services. Quality-aware 

service composition is a basic objective and it will 
propose solutions for the dynamic composition 
integrated in run-time infrastructures. 

• QoS run-time negotiation of QoS, and service level 
agreements. Quality contracts can change 
dynamically, and the negotiation of service level 
agreements at run-time provides support for this 
dynamic reconfiguration.  

• Integration of QoS management for services and 
network level quality support. Basic networking and 
operating systems infrastructures include solutions 
for handling quality. 

• Compatibility of quality modelling concepts and run-
time concepts. Quality modelling elements and 
quality management concepts must be compatible 
and coordinated based on model driven solutions. 

 
7. Final Remarks 
The integration of QoS modelling frameworks and 
Services management infrastructures requires the 
assimilation of service management concepts into QoS 
modelling elements. The analysis methods used during 

568

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.



design of modelling phases (e.g. analysis of QoS 
composition) must be compatible with run-time 
processes (e.g. QoS negotiation). 
QoS composition in modeling frameworks and service 
management require specific advances that verify the 
quality compatibility of components. The model of 
QoS composition must be the same model for 
compositions described in model and the dynamic 
composition supported at run-time. 
  
8. References 
[Aaf02] J. Aagedal and E. Ecklund, “Modeling QoS: Toward 
a UML Profile”, Proc. UML-2002 Conference, Springer 
Verlag (2002). 
[Ant94] A.I. Anton, W.M. McCracken, C. Potts. Goal 
Decomposition and Scenario Analysis in Business Process 
Engineering. CAiSE’94, LNCS 811, Springer-Verlag. 
[Ase00] J. Asensio and V. Villagrá, “A UML Profile for QoS 
Management Information Specification in Distributed 
Object-based Applications”, Proc. 7th Workshop HP Open 
View University Association (2000). 
 [Bor00] M. Born, A. Halteren and O. Kath, “Modeling and 
Runtime Support for Quality of Service in Distributed 
Component Platforms”, Proc. 11th Annual IFIP/IEEE 
Workshop on Distributed Systems: Operations and 
Management, (December 2000). 
[Bra02] G. Brahnmath, R. Raje, A. Olson, M. Auguston, B. 
Bryant and C. B¡urt, “A Quality of Service Catalog for 
Software Components”, Proc. Southeastern Software Engi-
neering Conference 2002, (April 2002). 
[Cys04] L.M. Cysneiros, J.C.S. do Prado Leite, J C S 
Nonfunctional Requirements: From Elicitation to Conceptual 
Models. IEEE Transactions on Software Engineering. Vol. 
30, no. 5, pp. 328-350. May 2004 
 [Chu04] L. Chung, S. Supakkul: Representing NFRs and 
FRs: A Goal-Oriented and Use Case Driven Approach. 
Software Engineering Research, Management and 
Applications, Lecture Notes in Computer Science, 3647, 
Springer, 2005. 
[Fea98] M.S. Feather, S. Fickas, A. van Lamsweerde, C. 
Ponsard, Reconciling System Requirements and Runtime 
Behaviour Proceedings de IWSSD'98 - 9th International 
Workshop on Software Specification and Design, IEEE, 
Isobe, Japan, April 1998. 
[Fro98] S. Frolund and J. Koistinen, “Quality of Service 
Specification in Distributed Object Systems”, Distributed 
Systems Engineering Journal, Vol. 5(4), (December 1998). 
 [Lam03] A. van Lamsweerde. From System Goals to 
Software Architecture. In Formal Methods for Software 
Architectures, M. Bernardo & P. Inverardi (eds), LNCS 
2804, Springer-Verlag, 2003, 25-43. 
[Lam00] A. van Lamsweerde. Requirements Engineering in 
the Year 00: a Research Perspective. International 
Conference on Software Engineering, 5-19, 2000. 
[Mas05] P. Massonet, C. Ponsard. “A Scenario and Goal 
based Approach for Guaranteeing Quality of Service for 
Negotiated GRID Service Level Agreements: An Experience 
Report”. Proceedings 1 rst International Workshop on 
Service-Oriented Computing: Consequences for Engineering 

Requirements (in conjunction with RE05), August 30th, 
2005, Paris, France. 
[Mes02] D.A. Menascé, “QoS Issues in Web Services,” IEEE 
Internet Computing, vol. 6, no. 6, 2002, pp. 72–75. 
[Naq06] S. Naqvi, P. Massonet, A.E. Arenas. Security 
Requirements Model for Grid Data Management Systems. 
International Workshop on Critical Information 
Infrastructures Security (CRITIS 2006), Lecture Notes in 
Computer Science, vol. 4347, 2006. 
[OMG02] Object Management Group, UML Profile for 
Scheduling, Performance, and Time, Draft Adopted 
Specification, OMG document number ptc/2006-12-03 
(November 2002). 
[OMG06] Object Management Group, UML Profile for 
Modeling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms, Revision Task Froce 
Specification, OMG document number ptc/2006-11-01 
(December 2006). 
[Pap06] M. P. Papazoglou, P. Traverso, S. Dustdar, F. 
Leymann, B. J. Krämer. Service-Oriented Computing: A 
Research Roadmap. In Service Oriented Computing, 2006. 
[Pis05] M. Pistore, P. Traverso, P. Bertoli, A. Marconi. 
Automated Synthesis of Executable Web Service 
Compositions from BPEL4WS Processes” Special Track at 
the International World Wide Web Conference, 2005. 
[Raj97] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, 
Resource Kernels: A Resource-Centric Approach to Real-
Time and Multimedia Systems, Tech. report Carnegie Mellon 
University, 1997. 
[Sel00] B. Selic. A Generic Framework for Modeling 
Resources with UML, IEEE Computer, Vol. 33(.6), (June 
2000). 
[Sol04] M. Solanki, A. Cau, H. Zedan. Augmenting 
Semantic Web Service Descriptions with Compositional 
Specification. WWW '04: 13th international conference on 
World Wide Web,New York, NY, USA, 2004. ACM Press. 
[Sta95] R. Staehli, J. Walpole and D. Maier, Quality of 
Service Specification for Multimedia Presentations, 
Multimedia Systems, Vol. 3 (5/6), 1995. 
[Ven97] N. Venkatasubramanian and K. Nahrstedt, “An 
Integrated Metric for Video QoS”, Proc. ACM Multimedia 
97, 1997. 
[Yan04] J. Yang, M.P. Papazoglou. Service Components for 
Managing the Life-Cycle of Service Compositions. 
Information Systems, vol. 28, no. 1, 2004. 
[Yue87] K. Yue, What Does It Mean to Say that a 
Specification is Complete?, Fourth International Workshop 
on Software Specification and Design, Monterey, 1987. 
[Zen03] Zeng, Liangzhao and Benatallah, Boualem and 
Dumas, Marlon and Kalagnanam, Jayant and Sheng, Quan Z. 
(2003) Quality Driven Web Services Composition. 2003.  

569

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 8, 2009 at 10:24 from IEEE Xplore.  Restrictions apply.


