41 research outputs found

    Automatic Link Balancing Using Fuzzy Logic Control of Handover Parameter

    Get PDF
    Postprint (published version

    Automatic Link Balancing Using Fuzzy Logic Control of Handover Parameter

    Get PDF
    Postprint (published version

    Overview of UMTS network evolution through radio and transmission feature validation

    Get PDF
    This project is based on several UMTS network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for HSPA data users and transport network evolution towards the All-IP era.Hardware and software validation is a key step in the relationship between the mobile network operator and the vendor. Through this verification process, while executing that functionality or testing a specific hardware, the difference between the actual result and expected result can be better understood and, in turn, this in-depth knowledge acquisition is translated into a tailored usage of the product in the operator’s live network. As a result, validation helps in building a better product as per the customer’s requirement and helps satisfying their needs, which positively impacts in the future evolution of the vendor product roadmap implementation process for a specific customer. This project is based on several Universal Mobile Telecommunication Services (UMTS) network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for High Speed Downlink Packet Access (HSPA) data users and transport network evolution towards the All-IP era.Las campañas de validación hardware y software son un paso clave en las relaciones comerciales establecidas entre un operador de telecomunicaciones y su proveedor de equipos de red. Durante los procesos de certificación, mientras se ejecuta una funcionalidad software o se valida un determinado hardware, se obtiene un conocimiento profundo de la diferencia entre el resultado obtenido y el esperado, repercutiendo directamente en un uso a medida de dicha funcionalidad o hardware en la propia red del cliente. Como consecuencia de lo anterior, podemos aseverar que los procesos de validación permiten en gran medida al proveedor adaptarse mejor a los requerimientos del cliente, ayudando a satisfacer realmente sus necesidades. Esto implica directamente un impacto positivo en la futura evolución del portfolio que el fabricante ofrece a un determinado cliente. Este proyecto está basado en la validación de diferentes funcionalidades de red UMTS, cuyo objetivo es proporcionar un conocimiento global de distintos aspectos que conforman el funcionamiento de una red de telecomunicaciones 3G, como son los procesos de movilidad de acceso radio (acampado de red y handover inter-sistema), las mejoras en la calidad de servicio para usuarios de datos HSPA y la convergencia de la red de transporte hacia la era IP.Els processos de validació hardware i software són un punt clau en les relacions comercials establertes entre un operador de telecomunicaciones i el proveïdor d'equipament de la xarxa. En el transcurs dels processos de certificació, a la mateixa vegada que s'executa una funcionalitat software o es valida un determinat hardware, s'obtenen grans coneixements respecte la diferència entre el resultat obtingut i l'esperat, que són d'aplicació directa a l'hora d'establir un ús adpatat a la xarxa del client. En conseqüència, podem asseverar que les campanyes de validació permeten en gran mesura al proveïdor adaptar-se millor als requeriments del client, ajudant a satisfer realment les seves necessitats. Això implica directament un impacte positiu en la futura evol.lució del portfoli que el fabricant ofereix a un determinat client. Aquest projecte es basa en la presentació d'un procès de validació de diferents funcionalitats relacionades amb la xarxa UMTS, amb l'objectiu de proporcionar un coneixement global de la varietat d'aspectes que conformen el funcionament d'una xarxa de telecomunicacions 3G, com són els processos de mobilitat en accès radio (acampat de l'usuari i handover inter-sistema), millores en la qualitat de servei per a usuaris de dades HSPA i la convergència de la xarxa de transport cap a l'era IP

    Quality of Service Differentiation in Heterogeneous CDMA Networks : A Mathematical Modelling Approach

    Get PDF
    Next-generation cellular networks are expected to enable the coexistence of macro and small cells, and to support differentiated quality-of-service (QoS) of mobile applications. Under such conditions in the cell, due to a wide range of supported services and high dependencies on efficient vertical and horizontal handovers, appropriate management of handover traffic is very crucial. Furthermore, new emerging technologies, such as cloud radio access networks (C-RAN) and self-organizing networks (SON), provide good implementation and deployment opportunities for novel functions and services. We design a multi-threshold teletraffic model for heterogeneous code division multiple access (CDMA) networks that enable QoS differentiation of handover traffic when elastic and adaptive services are present. Facilitated by this model, it is possible to calculate important performance metrics for handover and new calls, such as call blocking probabilities, throughput, and radio resource utilization. This can be achieved by modelling the cellular CDMA system as a continuous-time Markov chain. After that, the determination of state probabilities in the cellular system can be performed via a recursive and efficient formula. We present the applicability framework for our proposed approach, that takes into account advances in C-RAN and SON technologies. We also evaluate the accuracy of our model using simulations and find it very satisfactory. Furthermore, experiments on commodity hardware show algorithm running times in the order of few hundreds of milliseconds, which makes it highly applicable for accurate cellular network dimensioning and radio resource management

    UMTS RADIO NETWORK PLANNING FOR BATU GAJAH AREA

    Get PDF
    This report is a primary step towards planning a high quality communication network providing users with sufficient coverage and capacity. The main goal of the project is to plan a network that can efficiently serve the maximum possible number of users simultaneously. It concerns mainly about third generation (3G) mobile communication systems and UMTS standard that uses UTRAN radio access network, it also concerns about the service level that users can experience. The project is implemented using a Matlab Implementation named as Network Planning Strategies for Wideband CDMA (NPSW), and the most significant results are a best possible coverage of 87.91% and a capacity of approximately 61% which is considered to be acceptable with a possibility of further improvements. The objectives of this work have been successfully achieved and this benefits the users by providing a satisfactory level of communication service

    Telecommunications Wireless Generations: Overview, Technological Differences, Evolutional Triggers, and the Future

    Get PDF
    This study expands on prior studies on wireless telecommunication generations by examining the technological differences and evolutional triggers that characterise each Generation (from 1G to 5G). Based on a systematic literature review approach, this study examines fifty (50) articles to enhance our understanding of wireless generation evolution. Specifically, this study analyses i) the triggers that necessitated the evolution of wireless telecommunication generations and ii) makes a case regarding why it is imperative to look beyond the fifth Generation (5G) network technologies. The authors propose areas for future research

    Radio resource management for OFDMA systems under practical considerations.

    Get PDF
    Orthogonal frequency division multiple access (OFDMA) is used on the downlink of broadband wireless access (BWA) networks such as Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution (LTE) as it is able to offer substantial advantages such as combating channel impairments and supporting higher data rates. Also, by dynamically allocating subcarriers to users, frequency domain diversity as well as multiuser diversity can be effectively exploited so that performance can be greatly improved. The main focus of this thesis is on the development of practical resource allocation schemes for the OFDMA downlink. Imperfect Channel State Information (CSI), the limited capacity of the dedicated link used for CSI feedback, and the presence of a Connection Admission Control (CAC) unit are issues that are considered in this thesis to develop practical schemes. The design of efficient resource allocation schemes heavily depends on the CSI reported from the users to the transmitter. When the CSI is imperfect, a performance degradation is realized. It is therefore necessary to account for the imperfectness of the CSI when assigning radio resources to users. The first part of this thesis considers resource allocation strategies for OFDMA systems, where the transmitter only knows the statistical knowledge of the CSI (SCSI). The approach used shows that resources can be optimally allocated to achieve a performance that is comparable to that achieved when instantaneous CSI (ICSI) is available. The results presented show that the performance difference between the SCSI and ICSI based resource allocation schemes depends on the number of active users present in the cell, the Quality of Service (QoS) constraint, and the signal-to- noise ratio (SNR) per subcarrier. In practical systems only SCSI or CSI that is correlated to a certain extent with the true channel state can be used to perform resource allocation. An approach to quantifying the performance degradation for both cases is presented for the case where only a discrete number of modulation and coding levels are available for adaptive modulation and coding (AMC). Using the CSI estimates and the channel statistics, the approach can be used to perform resource allocation for both cases. It is shown that when a CAC unit is considered, CSI that is correlated with its present state leads to significantly higher values of the system throughput even under high user mobility. Motivated by the comparison between the correlated and statistical based resource allocation schemes, a strategy is then proposed which leads to a good tradeoff between overhead consumption and fairness as well as throughput when the presence of a CAC unit is considered. In OFDMA networks, the design of efficient CAC schemes also relies on the user CSI. The presence of a CAC unit needs to be considered when designing practical resource allocation schemes for BWA networks that support multiple service classes as it can guarantee fairness amongst them. In this thesis, a novel mechanism for CAC is developed which is based on the user channel gains and the cost of each service. This scheme divides the available bandwidth in accordance with a complete partitioning structure which allocates each service class an amount of non-overlapping bandwidth resource. In summary, the research results presented in this thesis contribute to the development of practical radio resource management schemes for BWA networks

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed

    QoS management in UMTS terrestrial radio access FDD networks

    Get PDF
    This work investigates the role and importance of some of the key aspects of QoS planning, provisioning, monitoring and optimisation (QoS Management) for UMTS Terrestrial Radio Access (UTRA) FDD networks within the framework of the 3rd Generation Partnership Project (3GPP). Firstly, the differences between Quality of end user Experience (QoE) and Quality of Service (QoS) are explained. This is followed by a review of 3GPP requirements for QoS concept and architecture. Then all models and the main assumptions in this dissertation are presented. Based on these, original QoS mechanisms in the radio access network domain, means and methods for QoS provisioning, planning, monitoring and "optimisation" are discussed. Simulation results showed substantial spectral efficiency gains provided by service (or user) differentiation in UTRAN by means of priorities and differentiated parameter settings. When appropriately configured, the proposed QoS mechanisms can greatly reduce the need for bandwidth. Performance results proved also the proposed virtual time simulator to be an appropriate tool for service driven WCDMA radio interface dimensioning and detailed radio network planning. It is also shown that measuring QoS performance by a proper classification of counters (and or gauges), based on a particular subset of radio access bearer attributes, is a promising technique for assessing performances of service applications through WCDMA networks. With this new method there is no need to trace upper layer protocols at different interfaces or dumping data in mobile terminals. The proposed metrics allow operators to measure the bandwidth required for robust statistical reliability, to assess and exploit statistical sharing of resources, to configure QoS functions effectively, and to monitor QoE. The application of the proposed technique is not limited to the WCDMA Radio Network Subsystem (RNS), yet it can be deployed in any radio access and packet core network supporting mapping of performance indicators onto a particular subset of QoS attributes. Finally, in order to maximise the performance of the available services in UTRAN, at a given QoE, simulation results showed clear needs for the network administrator to adapt the parameter settings to diverse input application traffic conditions and the proposed genetic approach to be an appropriate solution space search algorithm for this purpose.reviewe

    Performance evaluation of voice handover between LTE and UMTS

    Get PDF
    M.Sc.(Eng.), Faculty of Engineering and the Built Environment, 2011The main objective of seamless mobility is to enable mobile users to stay connected while roaming across heterogeneous networks. As cellular networks evolve from the third generation Universal Mobile Telecommunication System (UMTS) to the Long Term Evolution (LTE), a new Evolved Packet Core (EPC) will support heterogeneous radio access networks on the same platform. UMTS provides voice services in the circuit switched domain; while LTE operates in the packet switched domain. Cellular network operators thus face the challenge of providing voice services during initial deployment of LTE due to difficulty in mobility between the two domains. Seamless voice handover between packet switched LTE and the circuit switched UMTS network is therefore an important tool in solving this problem. This report investigates the performance of inter-Radio Access Technology voice handover between LTE and UMTS. The schemes evaluated were Voice Call Continuity (VCC) for UMTS to LTE handover and Single Radio Voice Call Continuity (SRVCC) for LTE to UMTS handover. The performance evaluation was done using mathematical models and equations that were derived for the handover service interruption time. The resulting equations were simulated and the output was analysed and compared with the Third Generation Partnership Project (3GPP) specifications
    corecore