81 research outputs found

    Service Performance Pattern Analysis and Prediction of Commercially Available Cloud Providers

    Get PDF
    The knowledge of service performance of cloud providers is essential for cloud service users to choose the cloud services that meet their requirements. Instantaneous performance readings are accessible, but prolonged observations provide more reliable information. However, due to technical complexities and costs of monitoring services, it may not be possible to access the service performance of cloud provider for longer time durations. The extended observation periods are also a necessity for prediction of future behavior of services. These predictions have very high value for decision making both for private and corporate cloud users, as the uncertainty about the future performance of purchased cloud services is an important risk factor. Predictions can be used by specialized entities, such as cloud service brokers (CSBs) to optimally recommend cloud services to the cloud users. In this paper, we address the challenge of prediction. To achieve this, the current service performance patterns of cloud providers are analyzed and future performance of cloud providers are predicted using to the observed service performance data. It is done using two automatic predicting approaches: ARIMA and ETS. Error measures of entire service performance prediction of cloud providers are evaluated against the actual performance of the cloud providers computed over a period of one month. Results obtained in the performance prediction show that the methodology is applicable for both short- term and long-term performance prediction

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Faculty of Engineering and Design. Research Review

    Get PDF
    STUDENTS AND ACADEMICS - This publication introduces you to the department or school and then each faculty member’s research areas, research applications, and their most recent activities. A comprehensive index can be found at the back of this publication to help guide you by specific areas of interest, as well as point out interdisciplinary topics and researchers. INDUSTRY LEADERS - This publication includes information regarding specific facilities, labs, and research areas of departments and schools as well as individual faculty members and researchers. A comprehensive index can be found at the back of this publication to help guide you by specific areas of interest, as well as point out interdisciplinary topics and researchers

    Wave Propagation

    Get PDF
    A wave is one of the basic physics phenomena observed by mankind since ancient time. The wave is also one of the most-studied physics phenomena that can be well described by mathematics. The study may be the best illustration of what is “science”, which approximates the laws of nature by using human defined symbols, operators, and languages. Having a good understanding of waves and wave propagation can help us to improve the quality of life and provide a pathway for future explorations of the nature and universe. This book introduces some exciting applications and theories to those who have general interests in waves and wave propagations, and provides insights and references to those who are specialized in the areas presented in the book

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science
    corecore