170 research outputs found

    Demand Response Management in Smart Grid Networks: a Two-Stage Game-Theoretic Learning-Based Approach

    Get PDF
    In this diploma thesis, the combined problem of power company selection and Demand Response Management in a Smart Grid Network consisting of multiple power companies and multiple customers is studied via adopting a distributed learning and game-theoretic technique. Each power company is characterized by its reputation and competitiveness. The customers who act as learning automata select the most appropriate power company to be served, in terms of price and electricity needs’ fulfillment, via a distributed learning based mechanism. Given customers\u27 power company selection, the Demand Response Management problem is formulated as a two-stage game theoretic optimization framework, where at the first stage the optimal customers\u27 electricity consumption is determined and at the second stage the optimal power companies’ pricing is calculated. The output of the Demand Response Management problem feeds the learning system in order to build knowledge and conclude to the optimal power company selection. A two-stage Power Company learning selection and Demand Response Management (PC-DRM) iterative algorithm is proposed in order to realize the distributed learning power company selection and the two-stage distributed Demand Response Management framework. The performance of the proposed approach is evaluated via modeling and simulation and its superiority against other state of the art approaches is illustrated

    Distributed Sensing, Computing, Communication, and Control Fabric: A Unified Service-Level Architecture for 6G

    Full text link
    With the advent of the multimodal immersive communication system, people can interact with each other using multiple devices for sensing, communication and/or control either onsite or remotely. As a breakthrough concept, a distributed sensing, computing, communications, and control (DS3C) fabric is introduced in this paper for provisioning 6G services in multi-tenant environments in a unified manner. The DS3C fabric can be further enhanced by natively incorporating intelligent algorithms for network automation and managing networking, computing, and sensing resources efficiently to serve vertical use cases with extreme and/or conflicting requirements. As such, the paper proposes a novel end-to-end 6G system architecture with enhanced intelligence spanning across different network, computing, and business domains, identifies vertical use cases and presents an overview of the relevant standardization and pre-standardization landscape

    An adaptive trust based service quality monitoring mechanism for cloud computing

    Get PDF
    Cloud computing is the newest paradigm in distributed computing that delivers computing resources over the Internet as services. Due to the attractiveness of cloud computing, the market is currently flooded with many service providers. This has necessitated the customers to identify the right one meeting their requirements in terms of service quality. The existing monitoring of service quality has been limited only to quantification in cloud computing. On the other hand, the continuous improvement and distribution of service quality scores have been implemented in other distributed computing paradigms but not specifically for cloud computing. This research investigates the methods and proposes mechanisms for quantifying and ranking the service quality of service providers. The solution proposed in this thesis consists of three mechanisms, namely service quality modeling mechanism, adaptive trust computing mechanism and trust distribution mechanism for cloud computing. The Design Research Methodology (DRM) has been modified by adding phases, means and methods, and probable outcomes. This modified DRM is used throughout this study. The mechanisms were developed and tested gradually until the expected outcome has been achieved. A comprehensive set of experiments were carried out in a simulated environment to validate their effectiveness. The evaluation has been carried out by comparing their performance against the combined trust model and QoS trust model for cloud computing along with the adapted fuzzy theory based trust computing mechanism and super-agent based trust distribution mechanism, which were developed for other distributed systems. The results show that the mechanisms are faster and more stable than the existing solutions in terms of reaching the final trust scores on all three parameters tested. The results presented in this thesis are significant in terms of making cloud computing acceptable to users in verifying the performance of the service providers before making the selection

    Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey

    Get PDF
    : Integration of high volume (high penetration) of photovoltaic (PV) generation with power grids consequently leads to some technical challenges that are mainly due to the intermittent nature of solar energy, the volume of data involved in the smart grid architecture, and the impact power electronic-based smart inverters. These challenges include reverse power flow, voltage fluctuations, power quality issues, dynamic stability, big data challenges and others. This paper investigates the existing challenges with the current level of PV penetration and looks into the challenges with high PV penetration in future scenarios such as smart cities, transactive energy, proliferation of plug-in hybrid electric vehicles (PHEVs), possible eclipse events, big data issues and environmental impacts. Within the context of these future scenarios, this paper reviewed the existing solutions and provides insights to new and future solutions that could be explored to ultimately address these issues and improve the smart grid’s security, reliability and resilienc

    Evaluating the Robustness of Resource Allocations Obtained through Performance Modeling with Stochastic Process Algebra

    Get PDF
    Recent developments in the field of parallel and distributed computing has led to a proliferation of solving large and computationally intensive mathematical, science, or engineering problems, that consist of several parallelizable parts and several non-parallelizable (sequential) parts. In a parallel and distributed computing environment, the performance goal is to optimize the execution of parallelizable parts of an application on concurrent processors. This requires efficient application scheduling and resource allocation for mapping applications to a set of suitable parallel processors such that the overall performance goal is achieved. However, such computational environments are often prone to unpredictable variations in application (problem and algorithm) and system characteristics. Therefore, a robustness study is required to guarantee a desired level of performance. Given an initial workload, a mapping of applications to resources is considered to be robust if that mapping optimizes execution performance and guarantees a desired level of performance in the presence of unpredictable perturbations at runtime. In this research, a stochastic process algebra, Performance Evaluation Process Algebra (PEPA), is used for obtaining resource allocations via a numerical analysis of performance modeling of the parallel execution of applications on parallel computing resources. The PEPA performance model is translated into an underlying mathematical Markov chain model for obtaining performance measures. Further, a robustness analysis of the allocation techniques is performed for finding a robustmapping from a set of initial mapping schemes. The numerical analysis of the performance models have confirmed similarity with the simulation results of earlier research available in existing literature. When compared to direct experiments and simulations, numerical models and the corresponding analyses are easier to reproduce, do not incur any setup or installation costs, do not impose any prerequisites for learning a simulation framework, and are not limited by the complexity of the underlying infrastructure or simulation libraries

    Task-oriented joint design of communication and computing for Internet of Skills

    Get PDF
    Nowadays, the internet is taking a revolutionary step forward, which is known as Internet of Skills. The Internet of Skills is a concept that refers to a network of sensors, actuators, and machines that enable knowledge, skills, and expertise delivery between people and machines, regardless of their geographical locations. This concept allows an immersive remote operation and access to expertise through virtual and augmented reality, haptic communications, robotics, and other cutting-edge technologies with various applications, including remote surgery and diagnosis in healthcare, remote laboratory and training in education, remote driving in transportation, and advanced manufacturing in Industry 4.0. In this thesis, we investigate three fundamental communication requirements of Internet of Skills applications, namely ultra-low latency, ultra-high reliability, and wireless resource utilization efficiency. Although 5G communications provide cutting-edge solutions for achieving ultra-low latency and ultra-high reliability with good resource utilization efficiency, meeting these requirements is difficult, particularly in long-distance communications where the distance between source and destination is more than 300 km, considering delays and reliability issues in networking components as well as physical limits of the speed of light. Furthermore, resource utilization efficiency must be improved further to accommodate the rapidly increasing number of mobile devices. Therefore, new design techniques that take into account both communication and computing systems with the task-oriented approach are urgently needed to satisfy conflicting latency and reliability requirements while improving resource utilization efficiency. First, we design and implement a 5G-based teleoperation prototype for Internet of Skills applications. We presented two emerging Internet of Skills use cases in healthcare and education. We conducted extensive experiments evaluating local and long-distance communication latency and reliability to gain insights into the current capabilities and limitations. From our local experiments in laboratory environment where both operator and robot in the same room, we observed that communication latency is around 15 ms with a 99.9% packet reception rate (communication reliability). However, communication latency increases up to 2 seconds in long-distance scenarios (between the UK and China), while it is around 50-300 ms within the UK experiments. In addition, our observations revealed that communication reliability and overall system performance do not exhibit a direct correlation. Instead, the number of consecutive packet drops emerged as the decisive factor influencing the overall system performance and user quality of experience. In light of these findings, we proposed a two-way timeout approach. We discarded stale packets to mitigate waiting times effectively and, in turn, reduce the latency. Nevertheless, we observed that the proposed approach reduced latency at the expense of reliability, thus verifying the challenge of the conflicting latency and reliability requirements. Next, we propose a task-oriented prediction and communication co-design framework to meet conflicting latency and reliability requirements. The proposed framework demonstrates the task-oriented joint design of communication and computing systems, where we considered packet losses in communications and prediction errors in prediction algorithms to derive the upper bound for overall system reliability. We revealed the tradeoff between overall system reliability and resource utilization efficiency, where we consider 5G NR as an example communication system. The proposed framework is evaluated with real-data samples and generated synthetic data samples. From the results, the proposed framework achieves better latency and reliability tradeoff with a 77.80% resource utilization efficiency improvement compared to a task-agnostic benchmark. In addition, we demonstrate that deploying a predictor at the receiver side achieves better overall reliability compared to a system that predictor at the transmitter. Finally, we propose an intelligent mode-switching framework to address the resource utilization challenge. We jointly design the communication, user intention recognition, and modeswitching systems to reduce communication load subject to joint task completion probability. We reveal the tradeoff between task prediction accuracy and task observation length, showing that higher prediction accuracy can be achieved when the task observation length increases. The proposed framework achieves more than 90% task prediction accuracy with 60% observation length. We train a DRL agent with real-world data from our teleoperation prototype for modeswitching between teleoperation and autonomous modes. Our results show that the proposed framework achieves up to 50% communication load reduction with similar task completion probability compared to conventional teleoperation

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    A Data-Driven Strategy to Enable Efficient Participation of Diverse Social Classes in Smart Electric Grids

    Get PDF
    abstract: The grand transition of electric grids from conventional fossil fuel resources to intermittent bulk renewable resources and distributed energy resources (DERs) has initiated a paradigm shift in power system operation. Distributed energy resources (i.e. rooftop solar photovoltaic, battery storage, electric vehicles, and demand response), communication infrastructures, and smart measurement devices provide the opportunity for electric utility customers to play an active role in power system operation and even benefit financially from this opportunity. However, new operational challenges have been introduced due to the intrinsic characteristics of DERs such as intermittency of renewable resources, distributed nature of these resources, variety of DERs technologies and human-in-the-loop effect. Demand response (DR) is one of DERs and is highly influenced by human-in-the-loop effect. A data-driven based analysis is implemented to analyze and reveal the customers price responsiveness, and human-in-the-loop effect. The results confirm the critical impact of demographic characteristics of customers on their interaction with smart grid and their quality of service (QoS). The proposed framework is also applicable to other types of DERs. A chance-constraint based second-order-cone programming AC optimal power flow (SOCP-ACOPF) is utilized to dispatch DERs in distribution grid with knowing customers price responsiveness and energy output distribution. The simulation shows that the reliability of distribution gird can be improved by using chance-constraint.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Imperial College Computing Student Workshop

    Get PDF
    • …
    corecore