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M.S., Computer Engineering, University of New Mexico, 2019

Abstract

In this diploma thesis, the combined problem of power company selection and De-

mand Response Management in a Smart Grid Network consisting of multiple power

companies and multiple customers is studied via adopting a distributed learning and

game-theoretic technique. Each power company is characterized by its reputation

and competitiveness. The customers who act as learning automata select the most

appropriate power company to be served, in terms of price and electricity needs’

fulfillment, via a distributed learning based mechanism. Given customers’ power

company selection, the Demand Response Management problem is formulated as a

two-stage game theoretic optimization framework, where at the first stage the op-

timal customers’ electricity consumption is determined and at the second stage the

optimal power companies’ pricing is calculated. The output of the Demand Response
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Management problem feeds the learning system in order to build knowledge and con-

clude to the optimal power company selection. A two-stage Power Company learning

selection and Demand Response Management (PC-DRM) iterative algorithm is pro-

posed in order to realize the distributed learning power company selection and the

two-stage distributed Demand Response Management framework. The performance

of the proposed approach is evaluated via modeling and simulation and its superiority

against other state of the art approaches is illustrated.

This work has been published in:

P.A. Apostolopoulos, E.E. Tsiropoulou and S. Papavassiliou: Demand

Response Management in Smart Grid Networks: A Two-Stage Game-

Theoretic Learning-based Approach in Mobile Networks and Applica-

tions, Springer, 2018.
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Chapter 1

Introduction

1.1 Smart Grid Networks and Related Work

It is a fact that nowadays there is a revolution in the energy distribution networks.

The growing number of users and their demands, as well as the ever-increasing com-

petitive environment in which electricity providers are called upon to coexist, testify

that new smart distribution networks need to be studied and developed. The exist-

ing network is therefore under great pressure from the various challenges and needs

arising from the environment, consumers, market and infrastructure issues. These

challenges and needs are more important and urgent than ever, and have led the

network to expand and enhance its functions to smarter features with the help of

fast-growing technologies. The shift in the development of transmission networks to

be smarter has been briefly defined as ”Smart Network”. Some of the key goals of

these new smart energy distribution networks are to optimally serve the needs of

consumers as well as the healthy profitability of electricity companies [1].

The term ”Smart Network” has been in use since the end of 2003 and the first

appearance of the term dates back much earlier. There are several definitions of

1



Chapter 1. Introduction

the ”Smart Network” that focus on either its operation or its technology. The com-

mon point of all, is the application of digital processing and communications to the

electricity grid, with data flow and management being done by a centralized system

called ”Smart Grid” [2].

The idea of a smart grid is an electricity grid that can intelligently integrate the

actions of all users connected to it, generators or consumers, in order to provide

efficient, economical and secure electricity supply. A smart network, uses innovative

products and services, combined with intelligent monitoring of the network status [3].

The Smart Network connects supply and demand by enabling both producers and

consumers to set their operating needs more flexible and sophisticated. For example,

consumers are only able to consume at high prices for extremely important reasons

and to shape their consumption according to the information they have about the

present consumption price. On the other hand, producers with high flexibility can

adjust their sales price to maximize their profits, while at the same time depending on

their electricity generation costs, they can offer consumers discount periods, thereby

expanding their advertising influence and gaining more users.

Coupled with the smart grid features offered, the liberalization of the electricity

market that began last decade, or even earlier, especially in the United States of

America, has led to the increasing establishment of smart grids. Consumers now

have the option of choosing the company from which they purchase electricity. In

Massachusetts, the electricity market was liberalized in 1997 [4], in Maryland in 1999

and in Texas in 2002 [5]. The liberalization of the electricity market forces to create

a more effective, flexible and reliable electricity system.

2



Chapter 1. Introduction

1.2 Utility Theory and Related Work

The utility functions have been widely used in recent literature to model various

resource allocation problems and to reflect the consumers’ satisfaction. Single vari-

able resource allocation problems have been studied using game theory, where utility

maximizers players coexist and compete [6–13], as well as multi variable resource al-

location problems requiring a different mathematical approach [14–19]. In addition,

utility functions have been used to model complex and multilevel network structures,

as in the case of smart networks as discussed in the following chapters [20–25]. More-

over, the resources of a network to be shared with consumers may differ in their na-

ture and properties, for example, continuous and discrete resources. For this reason,

appropriate models have been proposed in the literature, so that the utility functions

are related to the characteristics of the network resources and to the satisfaction of

the consumers [26, 27]. Utility functions have been used to even model consumer

behavior and visualize the psychological parameters that characterize them [28].

Based on the above analysis, it is concluded that utility functions are a way of

showing the degree of satisfaction of both consumers and electricity companies. From

the consumers’ point of view, the degree of satisfaction is related to the perceived

quality of service that the consumers receive compared to what is required, while in

the case of electricity companies, the utility function represents the satisfaction of

the companies with respect to the profit that a company perceives by using a specific

electricity pricing policy. The utility functions were first introduced from the study

of financial systems, but because of their widespread use and effectiveness, they are

now widely used as a robust mathematical tool, and they have been applied in many

research fields.

In [29] the implementation of utility functions helps meet challenges in business

management and development, system and software security, while in [30] utility

3



Chapter 1. Introduction

functions are used for risk analysis and for describing the rate of investment in

financial models based on multiple stochastic processes.

Completely different use of the utility functions is made in [31], where their

effectiveness is used for identification purposes, as from a set of classifiers, a selection

of the most appropriate one happens according to the value of their utility functions,

so that they can be used for dealing with the difficulties of identifying faces in large

volumes of data and in low resolution images.

In addition, one of the most important issues in the world of the electricity market

is cyber security and how the national electricity infrastructure can be protected by

ensuring the privacy of users. The use of utility functions in relevant remarkable

research [32], indicates the importance of the role of utility functions in this area. A

similar implementation of utility functions is achieved in [33], in which appropriate

utility functions are designed for the purposes of secure use of cloud computing

resources.

Finally, it is quite important the use of utility functions for designing robust,

functional, and secure systems [34]. Utility functions for these purposes are used

in [35], where they are combined with economical expressions to design robust sys-

tems for Wireless Personal Area Network (WPAN) devices in accordance with IEEE

802.15.4.

1.3 Motivation

The need to develop new smart energy distribution networks to meet all the growing

demands has become an urgent need in modern society. The customers’ demands

are now directly linked to smart electricity distribution networks, where the use of

utility functions and the demand response management with new theoretical models,

4



Chapter 1. Introduction

demonstrate a vital role.

In such smart grids the characteristics of the Demand Response Management

(DRM), Network Economics (NE), and electricity company choice, shape the mar-

ket [36]. The theory of Network Economics aims to determine the price of electricity,

in order a successful penetration on the electricity market to be achieved [37]. The

process of selecting electricity companies aims to bridge the gap between the electric-

ity companies and the customers, while at the same time enables consumers to make

the best choice in terms of saving money, and the companies to meet the electricity

demands of the network [38].

In [39], the problem of managing the demand response is dealt with only the

customers’ point of view, as the authors study the problem of the load control by

applying a distributed energy consumption planning to customers and a dynamic

pricing strategy to companies. Real-time power planning is calculated by adopting

a Stackelberg game model, where the power company is the leader, setting real-

time price and customers planning their devices’ electricity consumption. A similar

approach is discussed in [40]. The problem of load balancing and peaks avoidance

is studied in [41], where an incentive-based algorithm for home load management is

proposed, reducing overall energy costs and taking into account the satisfaction of

the users. Also, aiming at load balancing, the authors in [42] propose an optimal

game pricing strategy for smart grid networks, by optimizing the value per day time

period, so that the electricity load of the network remains in an equilibrium state

rather than in peak values.

The home demand response management problem is studied in [43], taking into

account the underlying power distribution network and the associated constraints.

The Demand Response Management problem is formulated as a flow power problem,

and a distributed algorithm is proposed to determine the optimal demand planning,

while allowing communications between the electricity supplier and the households.

5



Chapter 1. Introduction

The direct interaction between the electricity company and the customer is studied

in [44], where the problem of allocating a certain amount of load adjustment by the

electricity company to the customers is examined, with the aim of minimizing the

total loss of the consumer.

In [45], the authors study the interaction between an energy provider and multiple

customers through a Stackelberg game approach, and propose an algorithm that aims

to control the loads of the users’ devices. A similar approach is being studied in [46]

and [47], involving multiple electricity companies and multiple customers, where the

aim of the Stackelberg game is to maximize the revenue of each electricity company

and minimize the amount of payment that each customer makes.

1.4 Contributions

In this thesis, we jointly study the combined problem of optimal power company

selection by the customers based on a reputation and competitiveness distributed

learning framework, and the problem of demand response management based on a

game theoretic approach. We assume the existence of an open electricity market,

and we formulate it as a Smart Grid Network, which consists of multiple power

companies and customers. Each power company is associated with a reputation

and competitiveness factor per timeslot, while the customers adopt the stochastic

learning automata methodology [48–50] in order to select the power company that

they will served from. The learning power company selection algorithm runs once at

the beginning of each timeslot. To fully capture the interaction between the power

companies and the customers in the Smart Grid Network, the demand response man-

agement problem is modeled as a two-stage non-cooperative game. At the first stage,

the customers by considering the companies’ pricing policies, determine their optimal

electricity consumption that maximizes their utility, while at the second stage, given

6



Chapter 1. Introduction

the optimal customers’ consumption, the power companies evaluate their optimal

pricing policies that maximize their profit. Moreover, in our work the non-shiftable

and shiftable customers’ demands are treated with different priority. Following the

proposed two-stage non-cooperative game theoretic approach, the customers and the

power companies can interact and finally reach the Nash Equilibrium point, if proper

strategies are selected on both sides. It is noted also, that the demand response man-

agement optimization problem consists of multiple iterations at the beginning of each

timeslot, thus it is of different time scale compared to the distributed learning power

company selection algorithm.

The following specific contributions and innovations of this paper are described

in detail, in order to achieve the aforementioned key objective.

1. A distributed learning framework is proposed towards implementing the cus-

tomers’ power company selection at the beginning of each timeslot. The selec-

tion probabilities of each customer are updated by considering power compa-

nies’ reputation and competitiveness factor. The reputation and competitive-

ness factor of each power company reflects the provided discount, its achievable

peak-to-average ratio, and its penetration to the electricity market.

2. Representative power companies’ and customers’ profit and utility functions,

respectively, are introduced to capture their behavior within the electricity

market. Specifically, power companies’ profit function reflects the tradeoff be-

tween company’s revenue and its corresponding electricity generation cost. On

the other hand, each customer’s utility function reflects the tradeoff between

the satisfaction of its electricity demands and its corresponding total cost based

on a fair pricing policy by considering the electricity consumption of the rest

of the customers in the Smart Grid Network.

3. Following the distributed learning based power company selection process by

7



Chapter 1. Introduction

the customers, the optimization problem of maximizing customers’ utility func-

tion and power companies’ profit function, is formulated as a two-stage game.

The Nash Equilibrium point of the two-stage game is achieved based on the

selection of appropriate strategies from the customers and power companies,

while a distributed algorithm that obtains the aforementioned equilibrium

point, is proposed .

The rest of the thesis is organized as follows. In Section 2.1 the Demand Response

Management problem and its related work in the literature are provided, while in

Section 2.2 the Smart Grid Network is presented. Specifically, in Sections 2.2.1,

and 2.2.2 the characteristics of the customers and power companies are presented.

Furthermore, in Section 2.3 the Smart Grid Network is formulated as a learning

system and the proposed power company selection process based on the stochastic

learning automata methodology, is described. In Chapter 3 the Demand Response

Management problem is formulated as a two-stage non-cooperative game among

the customers and the power companies, and the customers’ optimal consumption

response and power companies’ optimal pricing policy, are determined. In Chapter

4, the Power Company selection and Demand Response Management (PC-DRM) is

presented, while detailed numerical and comparative performance evaluation results

of the proposed PC-DRM framework are provided in Chapter 5. Finally, Chapter 6

indicates our future work and concludes the thesis.

8



Chapter 2

Description of the Demand

Response Management Problem -

DRM

2.1 Demand Response Management and Related

Work

With the increasingly demanding challenges of the growing electricity needs, aging

infrastructure and the integration of renewable green energy resources, a new way

of addressing these demands will need to be developed by electricity distribution

networks. As we have already mentioned, new smart electricity distribution networks

face these challenges by managing the concept of demand response. Essentially, the

demand response management refers to the implementation of techniques to control

energy consumption by consumers, improve energy efficiency and reduce the cost of

electricity generation from electricity companies [51–54]. One of the key objectives

of demand response management is to reduce the differences between electricity

9



Chapter 2. Description of the Demand Response Management Problem - DRM

consumption and average consumption in the network so that there is a balance

between demand and supply [55].

Modeling the problem of managing the demand response is very important for

achieving the goals of the Smart Grid Network. Specifically, there are several dif-

ferent modelings of this problem, but the common point is the aim of balancing

consumers’ demand for electricity and determining the best plan for electricity sup-

ply and pricing from companies’ side, in order to increase and reduce companies’

profit and generation cost, respectively.

In [56] the authors study the demand response management problem in a central-

ized manner, by using a finite-horizon Markov decision process (MDP) and a linear

programming technique, in order to maximize companies’ profit and determine the

energy load in a real-time electricity market. On the other hand, a decentralized

approach of the demand response management problem is studied in [57], where the

authors formulate the problem of managing the demand response as a non-convex

optimization problem, where convex relaxation techniques are applied, and the com-

panies’ optimal pricing is determined.

A different formulation of the demand response management problem is followed

in [58], where the notion of micro-grids is developed in the electricity market in order

to fulfill power demand in specific regions. The authors address the problem of de-

mand response management by constructing a Stackelberg game with a unique equi-

librium solution. The notion of micro-grids is also studied in [59], where the authors

examine the demand response management problem for multiple energy resources

(i.e., Fuel cells, PhotoVoltaic modules), and they propose a two-stage stochastic

programming approach to minimize the operational cost in energy management.

In [60], a price prediction model with the use of an Artificial Neural Network

is introduced by the authors, while the costumers adopt a Reinforcement Learning

10



Chapter 2. Description of the Demand Response Management Problem - DRM

mechanism in order to deal with the uncertainty in the feature prices and make op-

timal decisions regarding their home appliances. A quite similar method, in terms of

the construction of a predictive model is followed in [61], where the customers use the

prediction control in order to manage in an autonomous manner their ON/OFF pe-

riods and determining their optimal decisions for the demand response management

problem. A neural network is also used in [62], where the authors introduce a smart

grid model that considers the power consumption and the customers’ satisfaction,

while a projection neural network is used for minimizing the electricity cost for all

the users. Furthermore, the demand response management is studied also in [63],

as the costumers utilize renewable energy resources, which are controlled by cloud

servers, and the use of current security mechanisms (i.e., RSA, AES, ECC) is studied

for security purposes.

An incentive-based demand response management optimization framework is in-

troduced in [64], where the customers efficiently determine their optimal households’

energy consumption during peak hours, while in [65] the authors address the peak

loads in an electricity market by introducing quality of service metrics for the cus-

tomers, and a data analytical management scheme. The proposed scheme is based

on the analysis of consumers’ consumption data gathered from smart homes. On the

other hand, in [66] the authors implement a heuristic demand response technique

for consumption scheduling of appliances, in order to decrease peak to average ratio

of power demand. The authors use stochastic programming, and communication

requirements, in order to schedule customers’ consumption in real time.

The authors in [67] highlight the importance of the use of auto-configured devices,

and based on that they design an adaptable energy management system, in order to

determine the customers’ demand response. The pareto optimal demand response

management based on energy costs and load factor is studied in [68], where the

authors introduce a multi-objective optimization problem and its pareto optimality

11
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is determined. The demand response management problem has been studied also in

the era of multiple datacenters, where in [69] the authors introduce an approach to

dynamically adjust the datacenters’ load to balance the unstable solar input into the

energy grid.

Moreover, in [70] the authors implement a large-scale optimization approach in a

distributed manner, in order to control and support the demand response of residen-

tial appliances. This scheme is based on a hierarchical control and a coordination

system, that enables the exchange of information between the utility and the man-

agement system. A hierarchical based system is also used in [71], where the authors

introduce a dynamic pricing response algorithm, that considers both the service

providers’ profit and customers’ costs. The hierarchical decision making is made

based on a Reinforcement Learning mechanism, where the Q-learning algorithm is

adopted to solve the decision making problem.

In [72] the authors examine and consider models from the market place in order

to design demand response management to match power supply and meet customers’

demands. The authors in [73] propose distributed algorithms for electricity compa-

nies and consumers, in order to maximize the social welfare. [74] presents a new

algorithm for finding the optimal time of use of electricity.

In addition, it is equally important to apply game theory for modeling the de-

mand response management problem, as game theory is proved to be quite effective

in dealing with complex interactions. The authors in [36] formulated the problem as

a non-cooperative N-person game, and a distributed demand response management

strategy is proposed in order to achieve the minimum energy cost. Network conges-

tion is also studied in [39] and a load management strategy modeled as a ”Smart

Network” game is proposed. The authors in [75] studied the planning of home energy

consumption through a Stackelberg game, in which the electricity companies are the

leaders of the network and the consumers adjust their demands.

12



Chapter 2. Description of the Demand Response Management Problem - DRM

The key point of all the above research is that in smart electricity distribution

networks, there is only one company that supplies electricity to consumers. However,

as we have already pointed out, the liberalization of the electricity market now gives

consumers the option to choose between many energy providers [46], [76], [77], which

brings new challenges to the interaction between companies and consumers. It is

therefore imperative to study the problem of managing the demand response in an

environment where many electricity companies coexist. A first survey in this multi-

company and multi-consumer environment is presented in [74], but the authors do

not take into account the power functions of the electricity companies.

In this work we study the problem of managing the demand response when there

are multiple electricity companies and multiple consumers in the Smart Grid Net-

work. To fully analyze the interactions between electricity companies and customers,

demand response problem management is modeled as a two-stage game, the con-

sumers’ stage and the companies’ stage. At the customer level, every customer

wants to maximize its utility function, which is directly dependent on the electric-

ity price, which is expressed by appropriate fairness criteria with respect to other

consumers in the network. It is worth noting that in the proposed framework, the

non-changing demand has been treated with a different priority compared to the

changing demand. As far as the electricity companies is concerned, by considering

the required electricity consumption of the customers, that was set in the first stage,

each company determines the price that it will announce to the consumers in order

to maximize its welfare function. After the two-stage theoretical optimization frame-

work, customers they can interact with each other and eventually strike a balance if

appropriate strategies are selected from both sides.

13
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Figure 2.1: Smart Grid Network

2.2 Modeling of the System

Figure 2.1 shows a graphical representation of the considered Smart Grid Network,

consisting of multiple users and multiple power companies. There is a two-way com-

munication between companies and consumers that is achieved through a centralized

Service Provider (SP) management system. In essence, this centralized management

system acts as an intermediary connection between power companies and customers,

with which customers and companies are connected through power connection (solid

lines), while two-way communication connections (dotted lines), enable the connec-

tivity between companies and customers. The centralized management system allows

for the exchange of information, including the power companies’ prices and cus-

tomers’ load demand. Each customer is equipped with an Energy Management Con-

troller (EMC), which coordinates the power consumption among customer’s smart

appliances and is aware of appliances’ shiftable and non-shiftable electricity demand

and consumption.

A fundamental novelty that differentiates this work from the recent relevant liter-
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ature, is that each consumer is informed through the centralized management system

about the network’s total energy consumption, and as a result each customer’s pri-

vacy is maintained. The information of the energy consumption, allows us to apply

price fairness criteria regarding the consumption price of each customer and so in the

Smart Grid Network can coexist harmonious consumers of different economic levels.

We define as J = {1, · · · , j, · · · , J} the set of electricity power companies, and

with I = {1, · · · , i, · · · , I} the set of customers that exist in the Smart Grid Network.

The whole operation time is divided in T timeslots, where T = {1, · · · , t, · · · , T}

denotes the corresponding set. Moreover, As,i, Ans,i denote the set of appliances

characterized by shiftable and non-shiftable electricity consumption of customer i, i ∈

I, respectively, while customer’s i overall set of appliances is denoted as Ai = As,i ∪

Ans,i.

2.2.1 Utility and Characteristics of Customers

The considered Smart Grid Network consists of multiple customers and power com-

panies. Each customer i, i ∈ I is characterized by its demand d
(t)
i [KWh] of electricity

units per operation timeslot t towards meeting the needs of its appliances a, a ∈ Ai.

Based on the availability of the generated electricity by the power companies and

its corresponding price, customer i consumes e
(t)
i,j [KWh] amount of electricity via se-

lecting the power company j, j ∈ J. At each operation timeslot t, each customer i is

served exclusively from one company, while the power company selection of each cus-

tomer i can vary for different timeslots. In this work, we assume that the power com-

panies are able to cover customers’ demands, thus e
(t)
i,j ≤ d

(t)
i , ∀i ∈ I,∀j ∈ J,∀t ∈ T.

We denote as x
(t)
a,i the demand of customer’s i appliance a ∈ Ai for the timeslot t,

and x
(t)
a,i,j the corresponding electricity consumption of customer’s i appliance a, a ∈

Ai from the jth power company. Then, the shiftable and non-shiftable electricity
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consumption of customer i in timeslot t from jth power company are determined

as X
(t)
s,i,j =

∑
a∈As,i

x
(t)
a,i,j and X

(t)
ns,i,j =

∑
a∈Ans,i

x
(t)
a,i,j. Thus, it is concluded that e

(t)
i,j =

X
(t)
s,i,j +X

(t)
ns,i,j ≤ X

(t)
s,i +X

(t)
ns,i = d

(t)
i , where X

(t)
s,i =

∑
a∈As,i

x
(t)
a,i and X

(t)
ns,i =

∑
a∈Ans,i

x
(t)
a,i.

At each operation timeslot t, every customer i aims at satisfying its needs for

electricity consumption, while giving higher priority to its non-shiftable appliances’

electricity needs X
(t)
ns,i. It is noted that in a competitive market, as the one assumed

here, though the customer i requests and buys electricity from a power company j,

it should also consider the total electricity consumption of the rest of the customers,

i.e., E
(t)
−i =

∑
j∈J

∑
i′∈I,i′ 6=i

e
(t)
i′,j, in the current timeslot t, as the electricity consumption of

the rest of the customers in the Smart Grid Network contributes to the configuration

of the prices announced by the power companies, as it is presented in the following

subsection. This key feature is one of the essentials elements of this work, which

differentiate it from similar research work, where each customer’s utility function

has been formulated considering only its personal electricity consumption. Each

customer i is informed about the total electricity consumption E(t) =
∑
j∈J

∑
i∈I
e
(t)
i,j in

the Smart Grid Network via the centralized SP and through the communication

network. As a result, each customer i is able to deduct its personal consumption

e
(t)
i,j , i.e., E

(t)
−i = E(t) − e

(t)
i,j , and no privacy issues are related to this broadcasted

information (i.e., E(t)) by the SP, since each customer’s consumption e
(t)
i,j is hidden

with the total consumption.

Each customer’s i satisfaction function is formulated as an increasing concave

function si(r
(t)
i ) with respect to the relative customer’s consumption, i.e., r

(t)
i =

e
(t)
i,j

E
(t)
−i

. As Figure 2.2 demonstrates, customer’s i satisfaction increases rapidly till

its relative non-shiftable consumption, i.e.,
X

(t)
ns,i

E
(t)
−i

, is satisfied, while after that point

its satisfaction increases slowly till it fulfils its relative shiftable electricity needs,

i.e.,
X

(t)
s,i

E
(t)
−i

. Also, for values greater than its overall relative consumption, i.e.,
d
(t)
i

E
(t)
−i

, its
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Relative Consumption
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Figure 2.2: Customers’ Satisfaction Function

satisfaction is saturated, because there are no other real needs to cover via consuming

additional electricity.

In this work, without loss of generality, we adopt a logarithmic customer’s satis-

faction function with respect to its relative electricity consumption, as:

si(r
(t)
i ) = si(e

(t)
i,j , e

(t)
−i ) = k · log(1 + λ · r(t)i ) (2.1)

where e
(t)
−i denotes the vector of all customers’ electricity consumption excluding

customer i, and the parameters k, λ ∈ R+ determine the slope of the concave function

to reflect its priority to fulfill its relative non-shiftable consumption prerequisities.

Furthermore, another major novelty introduced in this work, is the proposal of a

relative fair pricing policy for the customers that is applied by the power companies

that exist in the Smart Grid Network. Specifically, the power companies charge each

customer i based on its relative electricity consumption, i.e., r
(t)
i =

e
(t)
i,j

E
(t)
−i

, and not

based only on its overall consumption e
(t)
i,j . Based on this pricing policy, the power

companies provide the incentive even to the low budget customers to buy affordable
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amount of electricity in terms of cost, thus still satisfying, while limiting the high

budget customers’ greedy behavior who aim to dominate the Smart Grid Network.

As a result, the benefits of the proposed fair pricing policy are two-fold:

1. customers are satisfied due to fair charges of electricity consumption

2. the power companies attract more customers, thus increase their profit in a

long-term period and improve their penetration in the market.

This fair pricing policy for each customer i based on its relative consumption r
(t)
i , is

formulated as:

FPPi(r
(t)
i ) = FPP (e

(t)
i,j , e

(t)
−i ) = γ

(t)
i · r

(t)
i · p

(t)
j (2.2)

where, p
(t)
j [ $

KWh
] is the price that is announced by the power company j, j ∈ J for

the timeslot t, t ∈ T, and γ
(t)
i is a time-varying parameter capturing the dynamics

of customer’s i behavior, i.e., smaller γ
(t)
i reflects customer’s i dynamic behavior to

spend money in order to buy more electricity.

Finally, each customer’s i, i ∈ I utility function is formulated via capturing its

satisfaction, i.e., si(r
(t)
i ) with respect to its relative electricity consumption, as well

as its dissatisfaction due to the associated charges (i.e., pricing), as follows:

U
(t)
i (e

(t)
i,j , e

(t)
−i ,p

(t)) = si(r
(t)
i )− FPPi(r(t)i )

= si(e
(t)
i,j , e

(t)
−i )− FPPi(e

(t)
i,j , e

(t)
−i )

= k · log(1 + λ · r(t)i )− γ(t)i · r
(t)
i · p

(t)
j

(2.3)

where p(t) = (p
(t)
1 , · · · , p

(t)
j , · · · , p

(t)
J ) denotes the vector of the announced prices by

the power companies in timeslot t, t ∈ T.
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2.2.2 Welfare and Characteristics of Power Companies

Each power company j, j ∈ J generates an amount g
(t)
j [KWh] of electricity units

per timeslot t, while the generation cost of each electricity unit from the jth power

company in timeslot t is c
(t)
j [ $

KWh
]. In this work, we assume that each power com-

pany j is able to generate the overall needed amount of electricity, thus g
(t)
j = E

(t)
j =∑

i∈I
e
(t)
i,j . The peak customers’ electricity consumption in the jth power company is

EPj
= max

t∈T
E

(t)
j = max

t∈T

∑
i∈I
e
(t)
i,j , while the corresponding average consumption over T

operation timeslots in the jth power company is Eavgj =

∑
t∈T

E
(t)
j

T
=

∑
t∈T

∑
i∈I

e
(t)
i,j

T
. More-

over, using the peak customers’ electricity consumption EPj
and the corresponding

average consumption Eavgj , we define the peak-to-average (PAR) ratio in customers’

electricity consumption of the jth power company as PARj =
EPj

Eavgj
.

Each power company aiming to achieve a low peak-to-average ratio power con-

sumption, so as to maintain the smooth electricity generation during the day. Also,

customers prefer to be served by companies that maintain low peak-to-average ra-

tions, as through this way they ”feel” more ”safe” that they will be satisfied effectively

and fulfil their electricity requirements.

A fairly effective way for the power companies to maintain low peak-to-average

ratio, is to provide incentives to the customers to shift their consumption from high-

peak to off-peak for specific periods of the day. Moreover, the power companies

could benefited by the policy of announcing discounts to the customers, regarding

their billing prices. Through this way, it is able the electricity needs among the

customers to be balanced, and as a result the power companies to maintain low peak-

to-average ratio, and at the same time the announcements of discounts to provide

incentives to the customers to select the power company, which will result in a long-

term improvement of the power company’s profit.
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Discount strategy is a fairly common technique with which companies manage to

win more customers and improve their profit in a long term period. The effectiveness

of this technique has already been studied in literature and has been applied in several

different fields, as in tourism. The power companies of the Smart Grid Network

by studying and analyzing the consumption habits of the customers, are able to

determine the most appropriate and effective discounts for their electricity prices.

Each power company is interested to increase its reputation and competitiveness

in the electricity market. In a nutshell, each power company’s reputation increases as

the total price discounts, i.e.,
∑

t∈T f
(t)
j , offered to the customers increases, through-

out the day, as well as if the company maintains low peak-to-average ratio. In this

work, we formulate the competitiveness of each power company j, j ∈ J via its pen-

etration to the electricity market, which is translated to the electricity consumption

served by the jth power company over the total electricity consumption in the Smart

Grid Network, i.e., Compj =

∑
t∈T

E
(t)
j

E(t) =

∑
t∈T

∑
i∈I

e
(t)
i,j∑

j∈J

∑
t∈T

∑
i∈I

e
(t)
i,j

Consequently, each power company j, j ∈ J is characterized by a reputation and

competitiveness score RCj, which is considered by the customers throughout the

power company selection process, and is formulated as follows:

RCj =
∑
t∈T

f
(t)
j ·

1

PARj

· Compj (2.4)

where, f
(t)
j is the discount that is announced by the power company j, j ∈ J to the

customers during the timeslot t, t ∈ T.

The profit of each power company is constructed by considering the revenue and

the costs of the power company by billing its customers and generating the needed

electricity, respectively. Specifically, each power company’s j, j ∈ J profit function is

formulated as follows:

P
(t)
j (E

(t)
j , p

(t)
j ) = R

(t)
j (E

(t)
j , p

(t)
j )− C(t)

j (E
(t)
j ) (2.5)
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where, R
(t)
j and C

(t)
j express the revenue and the generation cost of the jth power

company, respectively. The power company’s j revenue R
(t)
j per timeslot t depends

on the amount of sold electricity to the customers that selected to be served by the

specific company, i.e., E
(t)
j =

∑
i∈I
e
(t)
i,j , the company’s price p

(t)
j per electricity unit, and

the discount f
(t)
j that the company announces to the customers on that timeslot. As

a result, the power company’s j revenue is formulated as:

R
(t)
j (E

(t)
j , p

(t)
j ) = (1− f (t)

j ) · p(t)j ·
∑
i∈I

e
(t)
i,j

= (1− f (t)
j ) · p(t)j ·

∑
i∈I

∑
a∈Ai

x
(t)
a,i,j

(2.6)

On the other hand, the power company’s j cost for generating the overall amount

of electricity that the customers demand, is expressed as:

C
(t)
j (E

(t)
j ) = c

(t)
j · E

(t)
j = c

(t)
j ·

∑
i∈I

e
(t)
i,j (2.7)

where c
(t)
j denotes the power company’s j electricity production cost per unit of

electricity for the timeslot t.

2.3 Modeling of the Smart Grid Network as a Dis-

tributed Learning System

Power companies build their reputation and competitiveness for a long time to attract

more customers and increase their profits. On the other hand, each company’s repu-

tation and competitiveness factor contribute significantly on the customers’ choices

regarding the power company that they select to be served by. Consequently, the

Smart Grid Network can be studied as a learning system, where the customers act

as learning automata that interact with the environment to determine which power
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Figure 2.3: Smart Grid Network as a Learning System

company to select to be served from. Figure 2.3 presents the the Smart Grid Net-

work as a learning system and the relationship between the learning automata and

the environment. Specifically, each customer/learning automaton at each opera-

tion timeslot t has an action vector αi(t) = (α1
i , · · · , α

j
i , · · · , αJi ), where

∑
j∈J

αji = 1,

thus the action vector αi(t) represents the customer’s i power company selection

for the timeslot t. Towards making their decision, the learning automata consider

the output set β(t) = (e(t),p(t)), i.e., e(t) is the vector of all customers’ electric-

ity consumption, and p(t) the pricing vector that contains the power companies’

prices, as this is determined by solving the Demand Response Management problem,

which is analyzed in Chapter 3. The solution of the Demand Response Manage-

ment problem refers to customers’ and companies’ optimal electricity consumption

and prices, respectively. Based on the learning automata chosen actions and the

corresponding reaction of the environment, the reward probability rj(t) that is as-

sociated with the power company that the customer selected to be served by, is

obtained as rj(t) =
RCj∑

j∈J
RCj

, thus 0 ≤ rj(t) ≤ 1, ∀j ∈ J. Essentially, the reward

probability rj(t) updates with a higher or a lower probability the customer’s selec-

tion, regarding the power company j that was selected and with which its reward

probability rj(t) is associated with. The action probability vector of customer i is

defined as Pri(t) = (Pri,1(t), · · · , P ri,j(t), · · · , P ri,J(t)), where Pri,j represents the
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probability of the customer i to select the power company j for the timeslot t. Each

customer’s i probability vector is updated based on the concept of stochastic learning

automata [78], and the update rules are formulated as follows:

Pri,j(t+ 1) = Pri,j(t)− b ·
RCj∑

j∈J
RCj

· Pri,j(t), if j(t+1) 6= j(t) (2.8)

Pri,j(t+ 1) = Pri,j(t) + b · RCj∑
j∈J

RCj
· (1− Pri,j(t)), if j(t+1) = j(t) (2.9)

where 0 < b < 1 is the learning step parameter that controls the convergence and

the complexity of the learning algorithm. Essentially, Eq. 2.8 represents customer’s

selection probability update rule for the next timeslot for the company that was

selected, while Eq. 2.9 represents the update rule that is followed for the rest selection

probabilities of the customer, thus for the ones that are associated with the rest power

companies. In that way, the customer acting as a learning automaton, increases its

probability of selecting the same power company j based on the achievable reward

probability rj(t) of that company, thus the customer explores its environment and

converges to the power company that provides a good reward (i.e., reputation score).

It should be noted that initially the overall Smart Grid Network needs no prior

knowledge of the reward and action probabilities, and thus the initial power company

selection by the users can be simply assumed as Pri,j(t) = 1
J

, ∀j ∈ J. The customers,

in a long-term period converge to the most cost-efficient solution of power company

selection per operation timeslot t, given also that the overall policies of the power

companies (i.e., c
(t)
j , p

(t)
j , f

(t)
j ,∀j ∈ J,∀t ∈ T) do not change rapidly within a long

time period. Finally, it is also highlighted that other learning techniques, such as

exponential learning, Q-learning, etc., could be also adopted instead of the learning

automata approach that was selected in that work due to the scalable and low-

complexity nature.

23



Chapter 3

Demand Response Management

Problem

3.1 Problem Formulation

The Demand Response Management (DRM) porblem is formulated considering the

iterations and interactions of both the power companies and the customers. Before

the DRM problem, the customers have already selected the power companies that

they want to served by, based on their stochastic learning methodology described in

Section 2.3. Each power company j, j ∈ J aims at maximizing its profit (i.e., Eq.

2.5), by considering the customers’ electricity consumption, and it aims to converge

to the optimal announced price p
(t)∗
j per timeslot t, t ∈ T. On the other hand, each

customer’s i, i ∈ I goal is to maximize its personal utility function (i.e., Eq. 2.3),

given the announced electricity prices by the power companies, and determine in a

distributed manner its optimal electricity consumption e
(t)∗
i,j . The distributed nature

in determining both the optimal prices p
(t)∗
j ,∀j ∈ J, and each customer’s optimal

consumption e
(t)∗
i,j ,∀i ∈ I is a key component in the formulation and solution of
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the DRM problem in order to support the vision of independent and deregulated

electricity markets, where no centralized entity is required, as both the customers

and the power companies act as distributed decision makers.

Each power company’s j, j ∈ J, and each customer’s i, i ∈ I DRM optimization

problem, is formulated as follows:

p
(t)∗
j = argmax

p
(t)
j

P
(t)
j (E

(t)
j , p

(t)
j ) = R

(t)
j (E

(t)
j , p

(t)
j )− C(t)

j (E
(t)
j )

= (1− f (t)
j ) · p(t)j ·

∑
i∈I

e
(t)
i,j − c

(t)
j ·

∑
i∈I

e
(t)
i,j

 (3.1)

e
(t)∗
i,j = argmax

e
(t)
i,j


U

(t)
i (e

(t)
i,j , e

(t)
−i ,p

(t)) = si(r
(t)
i )− FPPi(r(t)i )

= s
(t)
i (e

(t)
i,j , e

(t)
−i )− FPPi(e

(t)
i,j , e

(t)
−i )

= k · log(1 + λr
(t)
i )− γ(t)i · r

(t)
i · p

(t)
j

 (3.2)

As Eq. 3.1 and Eq. 3.2 depict, the decisions about the optimal prices by the

power companies and the optimal electricity consumption by the customers are in-

terconnected problems, as the decision of the one (i.e., power companies) should act

as an input to the other (i.e., customers) and vice versa. As a result, the DRM prob-

lem is studied as a two-stage game, where at the first stage, the optimal electricity

consumption of the customers is determined via formulating the maximization prob-

lem of their utilities (i.e., Eq. 3.2) as a non-cooperative game among the customers.

At the second stage, each power company, given the optimal electricity consump-

tion of the customers, determines its optimal pricing policy that maximizes its profit

(i.e., Eq. 3.1). The interaction and feedback among power companies and customers

endure until both conclude to their optimal decisions.
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3.2 Customers’ Optimal Consumption Response

In the first stage of the DRM problem, each customer i, i ∈ I determines its opti-

mal electricity consumption for timeslot t, t ∈ T, by considering its power company

selection and the announced price by the corresponding company. We define as

G =
[
I, {S(t)

i }, {U
(t)
i }

]
the non-cooperative consumption response game among the

customers, which consists of the infinite set of customers I = {1, · · · , i, ·, I}, the

strategy space S
(t)
i = [0, d

(t)
i ] of each customer i, ∀i ∈ I and its utility function U

(t)
i .

The non-cooperative consumption response game G can be expressed as follows:

max
e
(t)
i,j∈Si

U (t)
i = si(r

(t)
i )− FPPi(r(t)i )

= k · log(1 + λr
(t)
i )− γ(t)i · r

(t)
i · p

(t)
j


s.t. 0 ≤ e

(t)
i,j ≤ d

(t)
i

(3.3)

The commonly used concept in solving game-theoretic problems is the Nash Equi-

librium (NE) at which no customer can improve its utility by unilaterally changing

its electricity consumption.

Definition 1 An electricity consumption vector e(t)∗ = (e
(t)∗
1,ch

(t)
1

, · · · , e(t)∗
I,ch

(t)
I

), where

ch
(t)
i is the customer’s i selected power company, is the NE point for the game G, if

and only if U
(t)
i (e

(t)∗
i,j , e

(t)∗
−i ) ≥ U

(t)
i (e

(t)
i,j , e

(t)∗
−i ), ∀e(t)i,j ≤ d

(t)
i .

Towards proving the existence and uniqueness of the NE of the non-cooperative

game G, it suffices to show that for every timeslot t, t ∈ T, each customer’s i strategy

space S
(t)
i is a non-empty, convex and compact subset of the Euclidean space RI , and

the utility function U
(t)
i (e

(t)
i,j , e

(t)
−i , p

(t)
j ) is continuous in e

(t)
i,j and quasi-concave in S

(t)
i

as explained in [14].

Theorem 1 In the non-cooperative consumption response game G, customer’s i best

response strategy to a given electricity consumption vector e
(t)
−i is BRi(e

(t)
−i ) = e

(t)∗
i,j ,
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as provided in Eq. 3.4, where s
′−1
i is the inverse function of the first derivative of

the customer’s i satisfaction function si, and τ = lim
r
(t)
i →∞

s
′−1
i

BRi(e
(t)
−i ) = e

(t)∗
i,j =


d
(t)
i if 0 ≤ γ

(t)
i · p

(t)
j ≤ τ

min{d(t)i , E
(t)
−i · s

′−1
i (0)} if τ < γ

(t)
i · p

(t)
j ≤ s

′−1
i (0)

0 if γ
(t)
i · p

(t)
j > s

′−1
i (0)

(3.4)

Proof See Appendix A

Based on Theorem 1 that determines each customer’s i, i ∈ I best responses

strategy BRi(e
(t)
−i ) = e

(t)
i,j and considering the quasi-concavity property with respect

to r
(t)
i of customer’s utility function U

(t)
i , the existence and uniqueness of the NE of

the non-cooperative game G is derived as follows.

Theorem 2 The Nash Equilibrium of the non-cooperative consumption response

game G exists and is unique.

Proof : The NE is by definition the fixed point in the best response function set

that satisfies e
(t)∗
i,j = BRi(e

(t)
−i ). In the two cases, where 0 ≤ γ

(t)
i · p

(t)
j ≤ τ and

γ
(t)
i · p

(t)
j > s

′
i(0), the fixed point of the best response function set is unique, i.e.,

maximum electricity consumption, i.e., e
(t)∗
i,j = d

(t)
i or no consumption, i.e., e

(t)∗
i,j = 0,

respectively. In the third case, where τ < γ
(t)
i · p

(t)
j ≤ s

′
i(0), the uniqueness of the

NE point can be proved via adopting the concept of standard function [14], [79]. A

function f(x) is characterized as standard if it satisfies the following properties [9]:

1. Positivity: f(x) > 0

2. Monotonicity: if x ≥ x′, then f(x) > f(x′)

3. Scalability: ∀a > 1, a · f(x) ≥ f(a · x)
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If a fixed point exists in a standard function, then it is unique [14], [79]. As it

is shown in [9], e
(t)∗
i,j = BRi(e

(t)
−i ) for τ < γ

(t)
i p

(t)
j ≤ s

′
i(0) (i.e., Eq. 3.4) can easily be

shown that it is a standard function. Thus, in the case that τ < γ
(t)
i · p

(t)
j ≤ s

′
i(0) the

NE exists and is unique.

Finally, as we have already mentioned, the customers’ optimal electricity con-

sumption, as this is determined in Eq. 3.4 will act as input to the optimal pricing

problem, where each power company determines the optimal price.

3.3 Companies’ Optimal Pricing Response

In the first stage of the DRM optimization problem, the optimal electricity of each

customer was determined, while in the second stage each power company aims to

maximize its profit (i.e., Eq. 2.5) in a distributed manner, via calculating the optimal

price to be announced. Combining Eq. 3.1, 3.4, the optimal pricing problem based

on customers’ optimal consumption response can written as follows [18].

p
(t)∗
j = argmax

p
(t)
j



P
(t)
j = R

(t)
j (E

(t)
j , p

(t)
j )− C(t)

j (E
(t)
j )

= (1− f (t)
j ) · p(t)j ·

∑
i∈I

[
E

(t)
−i · (

k

γ
(t)
i p

(t)
j

− 1

λ
)

]

− c(t)j
∑
i∈I

[
E

(t)
−i (

k

γ
(t)
i p

(t)
j

− 1

λ
)

]


(3.5)

The optimal pricing problem in response to customers’ consumption, as it is

rewritten in Eq. 3.5, is a function only of power company’s price.

Theorem 3 Each power company’s j, j ∈ J optimal price that maximizes its profit,
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given customers’ optimal response consumption, is given as:

p
(t)∗
j =

k · λ · c
(t)
j ·

∑
i∈I

E
(t)
−i

γi(t)

(1− f (t)
j ) ·

∑
i∈I
E

(t)
−i


1
2

(3.6)

Proof See Appendix B
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Chapter 4

Power Company Selection &

Demand Response Management

Algorithm

4.1 Distributed Learning Algorithm PC-DRM

A two-stage Power Company learning selection and Demand Response Management

(PC-DRM) algorithm is proposed in this section that realizes the overall aforemen-

tioned framework. In the first part of the algorithm, the stochastic learning automata

methodology, is included, where each customer i, i ∈ I based on its selection proba-

bility vector Pr
(t)
i , determines the power company that will be served by. It is noted

that the power company selection part runs once at the beginning of each timeslot

t, t ∈ T. After the power company selection of the customers, the second part of

the PC-DRM algorithm, implements the DRM optimization problem (i.e., Chapter

3), where each customer’s optimal consumption response and each power company’s

optimal price, are determined. The DRM part of the PC-DRM algorithm, runs at
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Chapter 4. Power Company Selection & Demand Response Management Algorithm

every timeslot for several iterations until the two-stage game theoretic problem to

converge on its NE point, where neither of the customer has the incentive to change

its electricity consumption, and as a result the power companies hold their optimal

announced prices.

4.1.1 PC-DRM Algorithm

In this section, each step of the PC-DRM algorithm is presented and analyzed, and

its pseudo code is presented as well. The steps of the PC-DRM algorithm can be

summarized as follows:

1. Initialization Phase: At the beginning of the first timeslot, (i.e., t = 0),

each customer i, i ∈ I initializes its probability vector by following a normal

distribution, thus Pr
(0)
i,j = 1

J
, ∀i ∈ J,∀j ∈ J. Consequently, each customer

chooses a power company according to its initial probability vector Pr
(0)
i .

2. Power Company Selection - PC: At every other timeslot t, t ∈ T, such

that t > 0 each customer i, i ∈ I chooses a power company to be served

from, according to its probability vector Pr
(t)
i . If ∀i ∈ I, ∃j, j ∈ J such that

Pr
(t)
i,j → 1, then stop. Otherwise, ite = ite+ 1, where ite denotes the iteration

of the DRM part of the algorithm.

3. Customers’ Optimal Consumption Response: Given that all the cus-

tomers have selected their company that they will be served from, the power

companies announce their prices and the total electricity consumption (i.e.,

E(t)) in the Smart Grid Network. Each customer i, i ∈ I determines its opti-

mal consumption response based on Eq. 3.4, as e
(t)
i,j |ite

4. Companies’ Optimal Pricing Response: Given customers’ optimal elec-

tricity consumption. each power company determines its optimal prices based
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on Eq. 3.5, as p
(t)∗
j |ite

5. Checking for Convergence: if |e(t)∗i,j |ite+1 − e
(t)∗
i,j |ite| → 0 and |p(t)∗i,j |ite −

p
(t)∗
i,j |ite+1| → 0, ∀i ∈ I, ∀j ∈ J, then the two-stage non-cooperative game has

converged to its NE point. Otherwise go to Step 3.

6. Stochastic Learning Automata: Each power company j, j ∈ J determines

its reward probability r
(t)
j , and it is broadcasted to the customers. Each cus-

tomer i, i ∈ I updates its probability vector Prti based on Eq. 2.8 and 2.9.

Return to Step 2.

The PC-DRM learning distributed algorithm can be summarized as follows:

Algorithm 1 PC-DRM Algorithm

1: Input/Initialization: I, J, d(t)i , γ
(t)
i , c

(t)
j , P r

(0)
i,j = 1

J
∀i ∈ I,∀j ∈ J, ∀t ∈ T

2: Output: NE point e(t)∗ = (e
(t)∗
1 , · · · , e(t)∗I ),p(t)∗ = (p

(t)∗
1 , · · · , p(t)∗J ) ∀t ∈ T

3: for each timeslot t, t ∈ T do

4: Ite = 0, Convergence = 0

5: Each customer i, i ∈ I selects a power company based on Pr
(t)
i

6: while not Convergence do

7: Ite = Ite+ 1

8: for i = 1 to I do

9: Customer i determines its e
(t)∗
i,j based on Eq. 3.4

10: end for

11: for j = 1 to J do

12: Power Company j determines its optimal price p
(t)∗
j based on Eq. 3.5

13: end for

14: if (Ite > 0 && |e(t)∗i |ite − e(t)∗|ite−1| → 0 && |p(t)∗j |ite − p(t)∗|ite−1| → 0, ∀i ∈ I,∀j ∈ J) then

15: Convergence = 1

16: end if

17: end while

18: end for

The PC-DRM distributed algorithm can be characterized as a low complexity

algorithm (as it is also confirmed by the numerical results in Chapter 5), due to the

constant in terms of complexity operations that are made both in the customers’ and
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companies’ side. Furthermore, due to its low complexity the PC-DRM algorithm can

be installed and realized through the customers’ smart meters in a real-time manner,

while from the companies’ point of view, the proposed algorithm can run at the

companies’ management and decision-making center. Finally, in Section [Results] it is

shown that the action customers’ selection probabilities converge fast, something that

indicates and confirm the efficiency of the stochastic learning automata methodology,

that we propose on this work.
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Chapter 5

Experiments and Numerical

Evaluation

5.1 Experiment Setup

In this chapter, a detailed numerical performance evaluation and comparative study

of the proposed framework is conducted through modeling and simulations. The re-

sults illustrate the operation, features and benefits of the proposed demand response

management framework. These simulations were generated utilizing the program-

ming suite MATLAB. Initially, in Section 5.2, we focus on the operation perfor-

mance of our framework, in terms of the obtained optimal customers’ consumption

responses and companies’ prices. Moreover, the distribution of the customers to the

available companies in the Smart Grid Network is studied, and the corresponding

power companies’ profit values are presented. Furthermore, the operation and the

convergence of the distributed learning algorithm (i.e., stochastic learning automata)

is illustrated, while the Demand and Response Management optimization problem

to its stable solution, is presented as well. In addition, in Section 5.3, a detailed
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comparative evaluation of our approach against other alternative approaches is pro-

vided, and the differences with respect to the achieved customers’ and companies’

satisfaction, and customers’ electricity energy consumption, are discussed.

On our base experimental scenario, we considered a Smart Grid Network consist-

ing of J = 5 power companies, and I = 100 customers. Also, we considered k = 1000,

λ = 100 and as a learning step b = 0.6, while the γ
(t)
i parameter of each customer is

randomly generated. Each company has constant characteristics throughout the day

(i.e, generation cost c
(t)
j , and discount policy f

(t)
j ), while the corresponding values

that were used are:

1. f = {.0285, .027, .029, 0.3, .028}

2. c = {.255, .245, .265, .285, .265}

5.2 Operation of the PC-DRM Algorithm

At first, we focus on the power companies’ selection process, via adopting the pro-

posed distributed learning framework (i.e., Section 2.3). Each power company j, j ∈ J

aims to improve its market profile by achieving a low peak to average ratio (i.e.,

PARj) and a high competitiveness (i.e., Compj). As we mentioned before, the low

PARj factor indicates that the power company j balances the customers’ electricity

consumption over the time via avoiding great consumption peaks, which may not be

able to support. On the other hand, the high competitiveness factor Compj of the

power company expresses the company’s penetration in the market, in terms of the

customers’ portion that it serves.

Specifically, Fig. 5.1 and Fig. 5.2 present each power company’s j, j ∈ J peak to

average ratio PARj and competitiveness factor Compj as a function of the PC-DRM
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algorithm’s timeslots until the convergence of the distributed learning mechanism.

Based on the considered configuration of this experimental setup, it is observed

that the power companies 1 and 5 maintain the lowest PAR and competitiveness

factor Comp. Moreover, it is noted that both the PAR and Comp factors are

determined by the solution of the DRM optimization problem, via the customers’

optimal consumption to which the two-stage game theoretic part converges at each

timeslot.
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Figure 5.1: Peak to Average Ratio
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Figure 5.2: Competitiveness Factor

Furthermore, Fig. 5.3 depicts each company’s j reputation and competitiveness
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factor RCj, (i.e., Eq. 2.4) as a function of the PC-DRM algorithm’s timeslots. The

results illustrate that the power companies 1 and 5 build a higher reputation and

competitiveness factor RC in the market, compared to the rest, since they both

achieve a lower PAR (i.e., Fig. 5.1) and a higher competitiveness factors (i.e.,

Fig. 5.2). Consequently, these two power companies create a better profile in the

market, and the customers by learning and adapting their selection via the stochastic

learning automata methodology, they have a higher average selection probability for

these two companies (i.e., Fig. 5.4, and these two companies attract a higher portion

of customers (i.e., Fig. 5.5 over the timeslots. Specifically, as Fig. 5.5 demonstrates,

these two companies serve almost 90% of the market’s customers, with company

1 absorbing almost 70%, as it achieves the highest reputation and competitiveness

score, (i.e., Fig. 5.3), while company 5 with the second best profile in the market

serves approximately 20% of the market’s customers.
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Figure 5.3: Reputation and Competitiveness Factor

Considering the DRM optimization problem, which in this work is studied via

adopting a two-stage non-cooperative game theoretic solution (i.e., Section 3), Fig.

5.6 presents two indicative customers’ optimal energy consumption as a function

PC-DRM algorithm’s timeslots until its convergence to the stable customers’ asso-

ciation to the power companies. As the customers converge to their stable power
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Figure 5.4: Average Selection Probability
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Figure 5.5: Number of Customers per Power Company

company selection, while at the same time they determine their optimal electricity

consumption (i.e., e
(t)∗
i,j - Eq. 3.2) for each timeslot by converging to the NE point of

the non-cooperative game, their optimal electricity consumption converges to feasi-

ble values, while fulfilling their non-shiftable electricity needs (i.e., Min-consumption

curves), as a higher priority is given to them, while at the same time the customers

do not over-consume electricity, thus e
(t)∗
i,j ≤ d

(t)
i ,∀t ∈ T. Moreover, as Fig. 5.6 il-

lustrates, both of the presented customers consume a higher level of electricity than

their non-shiftable demands, which confirms that the proposed framework achieves
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to satisfy both the non-shiftable and a portion of the shiftable electricity needs of

the market’s customers.
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Additionally, Fig. 5.7 and Fig. 5.8 depict the power companies’ prices and profit

values’ convergence, as a function of PC-DRM algorithms’ timeslots, respectively.

It is noted that Fig. 5.7 refers to indicative prices units per unit of electricity con-

sumption (e.g., $
KWh

). Based on Fig. 5.6, 5.7, and 5.8, it is concluded that the DRM

optimization problem converges to its final NE point, as the association between cus-

tomers and power companies converges to its stable case, where both the customers

and the power companies maximize their utilities and profits, leading them to low

feasible low energy consumption and pricing policies, respectively. Moreover, it is

worth to be noted, that company 5, which absorbs the second highest portion of the

markets’ customers, is not the company with the second lowest price in the market

(i.e., company 3 has a lower prices), which indicates that the announcement of a

lower price by a company does not guarantee the absorbing of a higher portion of

customers, as the customers select their power companies based on their market’s

profiles (i.e., reputation and competitiveness score), which depict the overall power

companies’ behavior in the market through the timeslots. In addition, as Fig. 5.7

illustrates, the companies 1 and 5 due to their higher reputation and competitive-
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ness score (i.e., Fig. 5.3) converge to higher profit values compared to the rest power

companies, as this concludes to improved customers’ preference to be served by these

companies as we mentioned in Fig.5.5. Finally, the power company 2 has not been

selected by any customer (Fig. 5.5) in the scenario under consideration, and therefore

it’s announced price is zero and it is not present in Fig. 5.7.
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5.3 Comparative Analysis

In this section, we provide a detailed comparative evaluation study of the proposed

PC-DRM framework against other approaches either from the recent literature or

different implementation alternatives, highlighting the benefits of the PC-DRM algo-

rithm in terms of customers’ energy consumption and satisfaction. It is noted that for

fairness and completeness purposes in the comparison, the power companies’ profit

values as well as the convergence time of the different frameworks are also evaluated

and discussed.

Specifically, we evaluate the proposed PC-DRM framework against to five differ-

ent approaches:

1. The demand response management algorithm (referred to as Evo) as proposed

in [37], where the association of the customers to power companies is modeled as

an evolutionary game and the customers form a population which is associated

to only one company, as outcome of the evolutionary game.

2. An alternative variation of the proposed PC-DRM algorithm-referred as MLdc,

where the customers update their selection probabilities (i.e., Eq. 2.8, 2.9)

by using the reward probability r
(t)
j =

f
(t)
j

c
(t)
j

, in order to capture the profile

of each power company j, j ∈ J, in terms of its announced discounts and

costs of the electricity generation. As a result, the customers select a power

company based only on monetary-related power companies’ characteristics (i.e.,

discount f
(t)
j , and production cost c

(t)
j ), without considering the electricity-

related characteristics of each power company, i.e., peak to average ratio PARj

and competitiveness factor Compj. The DRM optimization problem is solved

based on the DRM part of the PC-DRM algorithm.

3. A variation of the PC-DRM algorithm - referred as MLlp, by using as a reward
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probability the r
(t)
j = 1

exp p
(t)∗
j

, which is based on the power company’s j, j ∈ J

optimal price p
(t)∗
j . Specifically, the MLlp approach proposes to the customers

as the best power company choice, the one with the lowest price.

4. The Random algorithm, where each customer is associated randomly to a power

company, as each customer maintains an equal probability Pr
(t)
i,j = 1

J
of select-

ing each power company. The companies’ prices and customers’ consumed

electricity are determined based on the DRM optimization part (i.e., the non-

cooperative game) of the PC-DRM framework.

5. The best discount and cost - referred to as Bdc algorithm, which associates all

the customers with the power company j, j ∈ J that maintains the best
f
(t)
j

c
(t)
j

factor and the DRM optimization problem is also solved based on DRM part

of the proposed PC-DRM framework.

Figures 5.9, and 5.10 depict customers’ perceived average utility and optimal

energy consumption, respectively, as a function of the number of timeslots that all

the comparative frameworks need in order to converge to stable customers’ associ-

ation to the power companies. As it is shown, the proposed PC-DRM algorithm

achieves the highest customers’ utilities (i.e., Fig. 5.9), and among the lowest cus-

tomers’ electricity consumption (i.e., Fig. 5.10). This trend stems from the holistic

consideration of the power companies’ characteristics, i.e., both the monetary and

the electricity related characteristics, as these are captured by the reputation and

competitiveness factor Eq. 2.4. Moreover, the MLdc variation of the PC-DRM algo-

rithm, which considers only the power companies’ monetary-related characteristics

in order to perform the customers’ association with the power companies, achieves

similar customers’ utilities and electricity consumption, showing the significance of

the monetary factors. This happens mainly because the monetary factors contribute

in the optimal power companies’ pricing policy (Eq. 3.1) and customers’ consump-

tion response (Eq. 3.2), thus they affect the power companies’ electricity-related
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factors (i.e., PAR, Comp). As a result, our proposed framework consists a more

general and holistic approach compared to MLdc, by avoiding possible high peaks

of consumption in the case where power companies aim to attract the customers by

high discounts in short-term periods, thus the sufficient satisfaction of the customers’

is guaranteed by the PC-DRM approach in a long-term period.

On the other hand, the approached that do not provide the opportunity to the

customers to learn from their past decisions (i.e., Bdc, Random approaches) achieve

the lowest customers’ utility and high electricity consumption. Specifically, each

customer select its power company on a single time, by not exploring the Smart Grid

Network environment for better choices. Furthermore, the Evo [37] algorithm, which

is based on the outcome of an evolutionary game theoretic approach, associates all

the customers to only one power company, leading in that way into a monopoly

scenario where the customers achieve significantly lower average utility, while at the

same time their electricity consumption increases. Finally, the MLlp algorithm lead

the customers to select the power company with the lowest price, thus they tend

to consume more electricity, which creates a domino effect, as the customers’ cost

increases, and their perceived average utility decreases.
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Scenarios Profit Avg. Profit T(sec)
C1 C2 C3 C4 C5

PC-DRM 2338 0 273 151 756 704 1.01
MLdc 951 837 1004 349 374 703 4.86
MLlp 840 1323 784 457 974 876 0.43
Evo 0 4392 0 0 0 878 0.65

Random 479 1380 759 793 848 852 0.04
Bdc 4208 0 0 0 0 842 0.05

Table 5.1: Power companies’ welfare and algorithms’ convergence time

Table 5.1 includes in a comparative manner, the achieved power companies’ profit

values, the average profit, and the actual convergence time (in seconds) for all the

comparative approaches. As it is shown, the PC-DRM and MLdc algorithms present

similar companies’ average profit values, while the PC-DRM proposed framework

presents significantly lower complexity be achieving almost a five-fold reduction in

convergence time. This is observed, since in an open electricity market, where the

power companies have similar monetary-related characteristics (i.e., production cost,

discounts), the customers may flip among the companies, thus the MLdc approach

has a delayed convergence. The more holistic approach of the PC-DRM algorithm,

where electricity-related characteristics are also considered, contributes to customers’
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faster decision-making in selecting the most appropriate company for receiving ser-

vice from. The Random and Bdc algorithms, which allow the customers to make a

single time power company selection have the lowest convergence time compared to

all the other approaches. As we already mentioned, the last two algorithms present

quite poor performance in terms of customers’ utility and electricity consumption.

Finally, both Evo and MLlp approaches achieve similar results in terms of companies’

profit values and convergence time.
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Chapter 6

Conclusion & Future Work

In this thesis, the joint problem of power company selection and demand response

management in a competitive open electricity market of a Smart Grid Network,

consisting of multiple power companies and multiple customers is studied. Initially,

a low complexity distributed learning approach is proposed, where the customers

acting as learning automata explore the environment (i.e., market) and select a

power company to be served from in an autonomous manner. Then, the demand

response management problem - DRM, is formulated as two-stage non-cooperative,

where at the first stage the customers determine their optimal electricity consumption

that maximizes their perceived utility and a stable point (i.e., Nash Equilibrium) is

achieved, while at the second stage each power company determines its optimal

pricing policy that maximizes its profit. Moreover, a distributed iterative and low

complexity algorithm is introduced to jointly implement the power company selection

and the demand response management processes.

A detailed performance evaluation of the proposed approach was conducted via

modeling and simulation, and the presented results confirmed the superiority of the

proposed PC-DRM framework, in terms of the achieved customers’ and companies’
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satisfaction, customers’ energy consumption, and implementation complexity. Nev-

ertheless, it is noted that in this work customers’ subjectivity and individuality in

accordance with their behavioral patterns have not been considered and could be a

topic of high research and practical importance. Consequently, based on the pro-

posed framework, it is of high interest to extend this work via studying and proposing

customers’ Quality of Experience functions, which quantify customers’ behavioral

patterns based on relative frameworks, including Prospect Theory and the tragedy

of the commons [80–83]. Finally, it is among our current and future research goals

to study how the dynamic change of customers’ behavior can influence the stability

of the open market.
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Appendix A

Proof of Theorem 1

Towards determining customer’s best response strategy BRi(e
(t)
−i ) = e

(t)∗
i,j , the first

and the second order derivatives of customer’s utility function U
(t)
i with respect to

e
(t)
i,j are used.

∂U
(t)
i (e

(t)
i,j , e

(t)
−i , p

(t)
j )

∂e
(t)
i,j

=
1

E
(t)
−i

·
[
s
′

i(r
(t)
i )− γ(t)i · p

(t)
j

]
(A.1)
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=
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(t)
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2
· s′′i (r

(t)
i ) (A.2)

As stated in Section 2.2.1, customer’s satisfaction function s
(t)
i (r

(t)
i ) is an increas-

ing concave function with respect to r
(t)
i , thus s

′′
i (r

(t)
i ) < 0 and

∂2U
(t)
i (e

(t)
i,j ,e

(t)
−i ,p

(t)
j )

∂e
(t)2

i,j

< 0.

We set τ = lim
r
(t)
i →∞

s
′−1
i . Since s

′
i(r

(t)
i ) is a strictly decreasing function (due to

s
′′
i (r

(t)
i ) < 0) and as s

′
i(r

(t)
i ) > 0, we know that τ < s

′
i(r

(t)
i ) ≤ s

′
i(0) and 0 ≤ τ < s

′
i(0).

Hence, for 0 ≤ γ
(t)
i · p

(t)
j ≤ τ , we have

∂U
(t)
i (e

(t)
i,j ,e

(t)
−i ,p

(t)
j )

∂e
(t)
i,j

> 0 and thus U
(t)
i is an

increasing function of e
(t)
i,j . In this case, the best response strategy for customer

i, i ∈ I is to demand its maximum electricity consumption, i.e., d
(t)
i . So, for 0 ≤

γ
(t)
i ·p

(t)
j ≤ τ , we have BRi(e

(t)
−i ) = d

(t)
i , ∀i ∈ I. For τ < γ

(t)
i ·p

(t)
j ≤ s

′
i(0), the equation
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∂U
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i,j ,e
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Note that as s
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i(r

(t)
i ) is a strictly decreasing function, its inverse (i.e., s
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i ) exists, and

that r̂
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i is a decreasing function of γ
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j ) for

the given electricity consumption of the rest users, i.e., e
(t)
−i . An one-to-one rela-

tion exists between r
(t)
i and e

(t)
i,j , and thus the best response electricity consumption

in response to e
(t)
−i that maximizes U
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i (e
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j ) is also unique and is equal to
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For γ
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(t)
j > s

′
i(0), we have
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(t)
i

∂e
(t)
i,j

< 0, thus U
(t)
i is a decreasing function of e

(t)
i,j .

In this case, the imposed price by the companies is extremely high for customers to

afford it, thus BRi(e
(t)
−i ) = 0, ∀i ∈ I.
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Proof of Theorem 3

Given customers’ optimal consumption response that is determined in the first stage

of the DRM optimization problem, the profit function of each power company j, j ∈ J

is written as follows:
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Considering the first order derivative of P
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j with respect to p
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j , we have:
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As a result, the critical points of the profit function P
(t)
j (E
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j ) are as follows:
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The second order derivative of the profit function P
(t)
j is given as follows:
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As observed by Eq. B.4, it holds true that
∂2P

(t)
j (E

(t)
−i ,p

(t)
j )

∂p
(t)2

j

< 0, thus the p
(t)∗
j as

determined in Eq. B.3 maximizes the company’s j, j ∈ J profit function P
(t)
j .
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