10 research outputs found

    Detailed comparative analysis of PESQ and VISQOL behaviour in the context of playout delay adjustments introduced by VOIP jitter buffer algorithms

    Get PDF
    The default best-effort Internet presents significant challenges for delay-sensitive applications such as VoIP. To cope with non determinism, receiver playout strategies are utilised in VoIP applications that adapt to network condition. Such strategies can be divided into two different groups, namely per-talkspurt and per-packet. The former make use of silence periods within natural speech and adapt such silences to track network conditions, thus preserving the integrity of active speech talkspurts. Examples of this approach are described in [1, 2]. Per packet strategies are different in that adjustments are made both during silence periods and during talkspurts by time-scaling of packets, a technique also known in the literature as time-warping. This approach is more effective in coping with short network delay changes because the per talkspurt approach can only adapt during recognized silences even though the duration of many delay spikes may be less than that of a talkspurt. This approach however introduces potential degradation caused by the scaling of speech packets. Examples of this approach are described in [3, 4] and such techniques are frequently deployed in popular VoIP applications such as GoogleTalk and Skype. In this research, we focus on applications that deploy per talkspurt strategies, which are commonly found in current telecommunication networks

    Detailed comparative analysis of PESQ and VISQOL behaviour in the context of playout delay adjustments introduced by VOIP jitter buffer algorithms

    Get PDF
    The default best-effort Internet presents significant challenges for delay-sensitive applications such as VoIP. To cope with non determinism, receiver playout strategies are utilised in VoIP applications that adapt to network condition. Such strategies can be divided into two different groups, namely per-talkspurt and per-packet. The former make use of silence periods within natural speech and adapt such silences to track network conditions, thus preserving the integrity of active speech talkspurts. Examples of this approach are described in [1, 2]. Per packet strategies are different in that adjustments are made both during silence periods and during talkspurts by time-scaling of packets, a technique also known in the literature as time-warping. This approach is more effective in coping with short network delay changes because the per talkspurt approach can only adapt during recognized silences even though the duration of many delay spikes may be less than that of a talkspurt. This approach however introduces potential degradation caused by the scaling of speech packets. Examples of this approach are described in [3, 4] and such techniques are frequently deployed in popular VoIP applications such as GoogleTalk and Skype. In this research, we focus on applications that deploy per talkspurt strategies, which are commonly found in current telecommunication networks

    Impact of media-related SIFs on QoE for H.265/HEVC video streaming

    Get PDF
    Long term evolution (LTE) is the fastest-deployed mobile broadband technology driven by demand for improved user experience. It has distinguished itself compared to other mobile broadband technologies in its ability to handle the growth of video traffic that has become an important part of user’s mobile broadband experience. Growing trend of video consumption implies that that media-related system influence factors (SIFs) should be identified and well-understood in order to determine how they affect the user’s quality of experience (QoE). Therefore, this paper aims to provide a deeper understanding of media-related SIFs and their impact on QoE for video streaming. Experimental study has included two phases, i.e., H.265/ high efficiency video coding (HEVC) coded video streaming emulation over LTE network and end-user survey for collecting mean opinion score (MOS). Results obtained from statistical analysis imply that there exists strong and statistically significant impact of individual media-related SIFs and their interaction on QoE for video streaming

    Vision-Based Eye Image Classification for Ophthalmic Measurement Systems

    Get PDF
    : The accuracy and the overall performances of ophthalmic instrumentation, where specific analysis of eye images is involved, can be negatively influenced by invalid or incorrect frames acquired during everyday measurements of unaware or non-collaborative human patients and non-technical operators. Therefore, in this paper, we investigate and compare the adoption of several vision-based classification algorithms belonging to different fields, i.e., Machine Learning, Deep Learning, and Expert Systems, in order to improve the performance of an ophthalmic instrument designed for the Pupillary Light Reflex measurement. To test the implemented solutions, we collected and publicly released PopEYE as one of the first datasets consisting of 15 k eye images belonging to 22 different subjects acquired through the aforementioned specialized ophthalmic device. Finally, we discuss the experimental results in terms of classification accuracy of the eye status, as well as computational load analysis, since the proposed solution is designed to be implemented in embedded boards, which have limited hardware resources in computational power and memory size

    Video Quality Assessment in Underwater Acoustic Networks

    Get PDF
    Fecha de Lectura de Tesis Doctoral: 23 de mayo de 2018.Las imágenes subacuáticas reciben una atención cada vez mayor por parte de la comunidad científica dado que las fotografías y los vídeos son herramientas de gran valor en el estudio del entorno oceánico que cubre el 90% de la biosfera de nuestro planeta. Sin embargo, las Redes de Sensores Submarinas deben enfrentarse al canal hostil que el agua de mar constituye. Las comunicaciones de medio rango son sólo posibles con modems acústicos de capacidades muy limitadas con tasas binarias de pico de unas decenas de kbps. En transmisión de vídeo, estas reducidas tasas binarias fuerzan una compresión elevada que produce niveles de distorsión mucho mayores que en otros entornos. Además, los usuarios de vídeo submarino son oceanógrafos u otros especialistas con una percepción de la calidad diferente a la de un grupo genérico de usuarios. Las peculiaridades descritas exigen un estudio dedicado de la evaluación de calidad de vídeo para redes submarinas. Esta tesis doctoral aborda el problema de la evaluación de calidad de vídeo y presenta contribuciones en las dos áreas principales de esta disciplina: evaluación subjetiva y evaluación objetiva. La referencia para la percepción de calidad en cualquier servicio es la opinión de los usuarios y, por tanto, un análisis de la calidad subjetiva es el primer paso en este trabajo. Se presentan el diseño experimental y los resultados de un test de acuerdo a métodos psicométricos estándares. Los participantes del test fueron científicos del océano y las secuencias de vídeo utilizadas fueron grabadas en campañas de exploración y procesadas para simular las condiciones de las comunicaciones submarinas. Los resultados experimentales muestran como los vídeos son útiles para tareas científicas incluso en condiciones de muy baja tasa binaria. Los métodos de evaluación de la calidad objetiva son algoritmos diseñados para calcular puntuaciones de calidad

    Quality of Experience in Immersive Video Technologies

    Get PDF
    Over the last decades, several technological revolutions have impacted the television industry, such as the shifts from black & white to color and from standard to high-definition. Nevertheless, further considerable improvements can still be achieved to provide a better multimedia experience, for example with ultra-high-definition, high dynamic range & wide color gamut, or 3D. These so-called immersive technologies aim at providing better, more realistic, and emotionally stronger experiences. To measure quality of experience (QoE), subjective evaluation is the ultimate means since it relies on a pool of human subjects. However, reliable and meaningful results can only be obtained if experiments are properly designed and conducted following a strict methodology. In this thesis, we build a rigorous framework for subjective evaluation of new types of image and video content. We propose different procedures and analysis tools for measuring QoE in immersive technologies. As immersive technologies capture more information than conventional technologies, they have the ability to provide more details, enhanced depth perception, as well as better color, contrast, and brightness. To measure the impact of immersive technologies on the viewersâ QoE, we apply the proposed framework for designing experiments and analyzing collected subjectsâ ratings. We also analyze eye movements to study human visual attention during immersive content playback. Since immersive content carries more information than conventional content, efficient compression algorithms are needed for storage and transmission using existing infrastructures. To determine the required bandwidth for high-quality transmission of immersive content, we use the proposed framework to conduct meticulous evaluations of recent image and video codecs in the context of immersive technologies. Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently, researchers have developed objective metrics to automatically predict quality. To measure the performance of objective metrics in assessing immersive content quality, we perform several in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this aim, we use ground truth quality scores, which are collected under our subjective evaluation framework. To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D displays in particular. The proposed systems can help reducing the artifacts generated at the visualization stage, which impact picture quality, depth quality, and visual comfort. To demonstrate the effectiveness of these systems, we use the proposed framework to measure viewersâ preference between these systems and standard 2D & 3D modes. In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in immersive technologies. To address these problems, we build a rigorous framework and we apply it through several in-depth investigations. We put essential concepts of multimedia QoE under this framework. These concepts not only are of fundamental nature, but also have shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG standardization bodies have adopted these concepts to select technologies that were proposed for standardization and to validate the resulting standards in terms of compression efficiency

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Artificial Intelligence for Data Analysis and Signal Processing

    Get PDF
    Artificial intelligence, or AI, currently encompasses a huge variety of fields, from areas such as logical reasoning and perception, to specific tasks such as game playing, language processing, theorem proving, and diagnosing diseases. It is clear that systems with human-level intelligence (or even better) would have a huge impact on our everyday lives and on the future course of evolution, as it is already happening in many ways. In this research AI techniques have been introduced and applied in several clinical and real world scenarios, with particular focus on deep learning methods. A human gait identification system based on the analysis of inertial signals has been developed, leading to misclassification rates smaller than 0.15%. Advanced deep learning architectures have been also investigated to tackle the problem of atrial fibrillation detection from short length and noisy electrocardiographic signals. The results show a clear improvement provided by representation learning over a knowledge-based approach. Another important clinical challenge, both for the patient and on-board automatic alarm systems, is to detect with reasonable advance the patterns leading to risky situations, allowing the patient to take therapeutic decisions on the basis of future instead of current information. This problem has been specifically addressed for the prediction of critical hypo/hyperglycemic episodes from continuous glucose monitoring devices, carrying out a comparative analysis among the most successful methods for glucose event prediction. This dissertation also shows evidence of the benefits of learning algorithms for vehicular traffic anomaly detection, through the use of a statistical Bayesian framework, and for the optimization of video streaming user experience, implementing an intelligent adaptation engine for video streaming clients. The proposed solution explores the promising field of deep learning methods integrated with reinforcement learning schema, showing its benefits against other state of the art approaches. The great knowledge transfer capability of artificial intelligence methods and the benefits of representation learning systems stand out from this research, representing the common thread among all the presented research fields
    corecore