2,574 research outputs found

    Securing Interactive Sessions Using Mobile Device through Visual Channel and Visual Inspection

    Full text link
    Communication channel established from a display to a device's camera is known as visual channel, and it is helpful in securing key exchange protocol. In this paper, we study how visual channel can be exploited by a network terminal and mobile device to jointly verify information in an interactive session, and how such information can be jointly presented in a user-friendly manner, taking into account that the mobile device can only capture and display a small region, and the user may only want to authenticate selective regions-of-interests. Motivated by applications in Kiosk computing and multi-factor authentication, we consider three security models: (1) the mobile device is trusted, (2) at most one of the terminal or the mobile device is dishonest, and (3) both the terminal and device are dishonest but they do not collude or communicate. We give two protocols and investigate them under the abovementioned models. We point out a form of replay attack that renders some other straightforward implementations cumbersome to use. To enhance user-friendliness, we propose a solution using visual cues embedded into the 2D barcodes and incorporate the framework of "augmented reality" for easy verifications through visual inspection. We give a proof-of-concept implementation to show that our scheme is feasible in practice.Comment: 16 pages, 10 figure

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    Mobile Authentication with NFC enabled Smartphones

    Get PDF
    Smartphones are becoming increasingly more deployed and as such new possibilities for utilizing the smartphones many capabilities for public and private use are arising. This project will investigate the possibility of using smartphones as a platform for authentication and access control, using near field communication (NFC). To achieve the necessary security for authentication and access control purposes, cryptographic concepts such as public keys, challenge-response and digital signatures are used. To focus the investigation a case study is performed based on the authentication and access control needs of an educational institutions student ID. To gain a more practical understanding of the challenges mobile authentication encounters, a prototype has successfully been developed on the basis of the investigation. The case study performed in this project argues that NFC as a standalone technology is not yet mature to support the advanced communication required by this case. However, combining NFC with other communication technologies such as Bluetooth has proven to be effective. As a result, a general evaluation has been performed on several aspects of the prototype, such as cost-effectiveness, usability, performance and security to evaluate the viability of mobile authentication

    An Efficient QR Code Based Web Authentication Scheme

    Get PDF
    Nowadays, web authentication is the main and important measure which guarantees the information security and data privacy. Web authentication provides the basis of user accessibility and data security. In the last few years, frequent outbreaks in the password databases lead to a main concern in the data security. The default method for the web authentication is password only mechanism. There are many security problems associated with the password only approach. Many users have a tendency to reuse the same password in different websites. So when one password is being compromised, it may lead to the password break of the other websites due to the password reuse. In order to improve the security, Two factor authentication (TFA) is strongly recommended. But despite of this, TFA has not been widely accepted in the web authentication mechanism. Due to the high scale and drastic popularity of the mobile phone and an inbuilt function of the barcode scanning through camera lead to a new two factor authentication method. In this paper, the proposed two factor authentication protocol uses mobile phone with one or more camera as the second factor for the authentication. The proposed TFA in web authentication counter various attacks such as man in the middle attack (MITM), phishing attacks and so on. Here password is the first factor and mobile is used as the second factor for the web authentication. The communication between the mobile phone and the PC is with the help of visible light. Visible light communication has many advantages as compared with other communication mechanisms. There is a less cellular cost in this scheme which indicates the user does not need cellular network or Wi-Fi for the authentication

    Printed document integrity verification using barcode

    Get PDF
    Printed documents are still relevant in our daily life and information in it must be protected from threats and attacks such as forgery, falsification or unauthorized modification. Such threats make the document lose its integrity and authenticity. There are several techniques that have been proposed and used to ensure authenticity and originality of printed documents. But some of the techniques are not suitable for public use due to its complexity, hard to obtain special materials to secure the document and expensive. This paper discuss several techniques for printed document security such as watermarking and barcode as well as the usability of two dimensional barcode in document authentication and data compression with the barcode. A conceptual solution that are simple and efficient to secure the integrity and document sender's authenticity is proposed that uses two dimensional barcode to carry integrity and authenticity information in the document. The information stored in the barcode contains digital signature that provides sender's authenticity and hash value that can ensure the integrity of the printed document

    How Can We Provide Additively Manufactured Parts with a Fingerprint? A Review of Tagging Strategies in Additive Manufacturing

    Get PDF
    Additive manufacturing (AM) is rapidly evolving from “rapid prototyping” to “industrial production”. AM enables the fabrication of bespoke components with complicated geometries in the high-performance areas of aerospace, defence and biomedicine. Providing AM parts with a tagging feature that allows them to be identified like a fingerprint can be crucial for logistics, certification and anti-counterfeiting purposes. Whereas the implementation of an overarching strategy for the complete traceability of AM components downstream from designer to end user is, by nature, a cross-disciplinary task that involves legal, digital and technological issues, materials engineers are on the front line of research to understand what kind of tag is preferred for each kind of object and how existing materials and 3D printing hardware should be synergistically modified to create such tag. This review provides a critical analysis of the main requirements and properties of tagging features for authentication and identification of AM parts, of the strategies that have been put in place so far, and of the future challenges that are emerging to make these systems efficient and suitable for digitalisation. It is envisaged that this literature survey will help scientists and developers answer the challenging question: “How can we embed a tagging feature in an AM part?”
    corecore