239 research outputs found

    An Inverse Dynamics Approach to Control Lyapunov Functions

    Get PDF
    With the goal of moving towards implementation of increasingly dynamic behaviors on underactuated systems, this paper presents an optimization-based approach for solving full-body dynamics based controllers on underactuated bipedal robots. The primary focus of this paper is on the development of an alternative approach to the implementation of controllers utilizing control Lyapunov function based quadratic programs. This approach utilizes many of the desirable aspects from successful inverse dynamics based controllers in the literature, while also incorporating a variant of control Lyapunov functions that renders better convergence in the context of tracking outputs. The principal benefits of this formulation include a greater ability to add costs which regulate the resulting behavior of the robot. In addition, the model error-prone inertia matrix is used only once, in a non-inverted form. The result is a successful demonstration of the controller for walking in simulation, and applied on hardware in real-time for dynamic crouching

    Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics

    Full text link
    Recently several hierarchical inverse dynamics controllers based on cascades of quadratic programs have been proposed for application on torque controlled robots. They have important theoretical benefits but have never been implemented on a torque controlled robot where model inaccuracies and real-time computation requirements can be problematic. In this contribution we present an experimental evaluation of these algorithms in the context of balance control for a humanoid robot. The presented experiments demonstrate the applicability of the approach under real robot conditions (i.e. model uncertainty, estimation errors, etc). We propose a simplification of the optimization problem that allows us to decrease computation time enough to implement it in a fast torque control loop. We implement a momentum-based balance controller which shows robust performance in face of unknown disturbances, even when the robot is standing on only one foot. In a second experiment, a tracking task is evaluated to demonstrate the performance of the controller with more complicated hierarchies. Our results show that hierarchical inverse dynamics controllers can be used for feedback control of humanoid robots and that momentum-based balance control can be efficiently implemented on a real robot.Comment: appears in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

    Full text link
    Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work

    Impact-Aware Task-Space Quadratic-Programming Control

    Full text link
    Generating on-purpose impacts with rigid robots is challenging as they may lead to severe hardware failures due to abrupt changes in the velocities and torques. Without dedicated hardware and controllers, robots typically operate at a near-zero velocity in the vicinity of contacts. We assume knowing how much of impact the hardware can absorb and focus solely on the controller aspects. The novelty of our approach is twofold: (i) it uses the task-space inverse dynamics formalism that we extend by seamlessly integrating impact tasks; (ii) it does not require separate models with switches or a reset map to operate the robot undergoing impact tasks. Our main idea lies in integrating post-impact states prediction and impact-aware inequality constraints as part of our existing general-purpose whole-body controller. To achieve such prediction, we formulate task-space impacts and its spreading along the kinematic tree of a floating-base robot with subsequent joint velocity and torque jumps. As a result, the feasible solution set accounts for various constraints due to expected impacts. In a multi-contact situation of under-actuated legged robots subject to multiple impacts, we also enforce standing stability margins. By design, our controller does not require precise knowledge of impact location and timing. We assessed our formalism with the humanoid robot HRP-4, generating maximum contact velocities, neither breaking established contacts nor damaging the hardware

    Offline and Online Planning and Control Strategies for the Multi-Contact and Biped Locomotion of Humanoid Robots

    Get PDF
    In the past decades, the Research on humanoid robots made progress forward accomplishing exceptionally dynamic and agile motions. Starting from the DARPA Robotic Challenge in 2015, humanoid platforms have been successfully employed to perform more and more challenging tasks with the eventual aim of assisting or replacing humans in hazardous and stressful working situations. However, the deployment of these complex machines in realistic domestic and working environments still represents a high-level challenge for robotics. Such environments are characterized by unstructured and cluttered settings with continuously varying conditions due to the dynamic presence of humans and other mobile entities, which cannot only compromise the operation of the robotic system but can also pose severe risks both to the people and the robot itself due to unexpected interactions and impacts. The ability to react to these unexpected interactions is therefore a paramount requirement for enabling the robot to adapt its behavior to the task needs and the characteristics of the environment. Further, the capability to move in a complex and varying environment is an essential skill for a humanoid robot for the execution of any task. Indeed, human instructions may often require the robot to move and reach a desired location, e.g., for bringing an object or for inspecting a specific place of an infrastructure. In this context, a flexible and autonomous walking behavior is an essential skill, study of which represents one of the main topics of this Thesis, considering disturbances and unfeasibilities coming both from the environment and dynamic obstacles that populate realistic scenarios.  Locomotion planning strategies are still an open theme in the humanoids and legged robots research and can be classified in sample-based and optimization-based planning algorithms. The first, explore the configuration space, finding a feasible path between the start and goal robot’s configuration with different logic depending on the algorithm. They suffer of a high computational cost that often makes difficult, if not impossible, their online implementations but, compared to their counterparts, they do not need any environment or robot simplification to find a solution and they are probabilistic complete, meaning that a feasible solution can be certainly found if at least one exists. The goal of this thesis is to merge the two algorithms in a coupled offline-online planning framework to generate an offline global trajectory with a sample-based approach to cope with any kind of cluttered and complex environment, and online locally refine it during the execution, using a faster optimization-based algorithm that more suits an online implementation. The offline planner performances are improved by planning in the robot contact space instead of the whole-body robot configuration space, requiring an algorithm that maps the two state spaces.   The framework proposes a methodology to generate whole-body trajectories for the motion of humanoid and legged robots in realistic and dynamically changing environments.  This thesis focuses on the design and test of each component of this planning framework, whose validation is carried out on the real robotic platforms CENTAURO and COMAN+ in various loco-manipulation tasks scenarios. &nbsp

    Multi-contact planning and control for humanoid robots: Design and validation of a complete framework

    Get PDF
    In this paper, we consider the problem of generating appropriate motions for a torque- controlled humanoid robot that is assigned a multi-contact loco-manipulation task, i.e., a task that requires the robot to move within the environment by repeatedly establishing and breaking multiple, non-coplanar contacts. To this end, we present a complete multi-contact planning and control framework for multi-limbed robotic systems, such as humanoids. The planning layer works offline and consists of two sequential modules: first, a stance planner computes a sequence of feasible contact combinations; then, a whole-body planner finds the sequence of collision-free humanoid motions that realize them while respecting the physical limitations of the robot. For the challenging problem posed by the first stage, we propose a novel randomized approach that does not require the specification of pre-designed potential contacts or any kind of pre-computation. The control layer produces online torque commands that enable the humanoid to execute the planned motions while guaranteeing closed-loop balance. It relies on two modules, i.e., the stance switching and reactive balancing module; their combined action allows it to withstand possible execution inaccuracies, external disturbances, and modeling uncertainties. Numerical and experimental results obtained on COMAN+, a torque-controlled humanoid robot designed at Istituto Italiano di Tecnologia, validate our framework for loco-manipulation tasks of different complexity

    Predictive Whole-Body Control of Humanoid Robot Locomotion

    Get PDF
    Humanoid robots are machines built with an anthropomorphic shape. Despite decades of research into the subject, it is still challenging to tackle the robot locomotion problem from an algorithmic point of view. For example, these machines cannot achieve a constant forward body movement without exploiting contacts with the environment. The reactive forces resulting from the contacts are subject to strong limitations, complicating the design of control laws. As a consequence, the generation of humanoid motions requires to exploit fully the mathematical model of the robot in contact with the environment or to resort to approximations of it. This thesis investigates predictive and optimal control techniques for tackling humanoid robot motion tasks. They generate control input values from the system model and objectives, often transposed as cost function to minimize. In particular, this thesis tackles several aspects of the humanoid robot locomotion problem in a crescendo of complexity. First, we consider the single step push recovery problem. Namely, we aim at maintaining the upright posture with a single step after a strong external disturbance. Second, we generate and stabilize walking motions. In addition, we adopt predictive techniques to perform more dynamic motions, like large step-ups. The above-mentioned applications make use of different simplifications or assumptions to facilitate the tractability of the corresponding motion tasks. Moreover, they consider first the foot placements and only afterward how to maintain balance. We attempt to remove all these simplifications. We model the robot in contact with the environment explicitly, comparing different methods. In addition, we are able to obtain whole-body walking trajectories automatically by only specifying the desired motion velocity and a moving reference on the ground. We exploit the contacts with the walking surface to achieve these objectives while maintaining the robot balanced. Experiments are performed on real and simulated humanoid robots, like the Atlas and the iCub humanoid robots

    An Inverse Dynamics Approach to Control Lyapunov Functions

    Get PDF
    With the goal of moving towards implementation of increasingly dynamic behaviors on underactuated systems, this paper presents an optimization-based approach for solving full-body dynamics based controllers on underactuated bipedal robots. The primary focus of this paper is on the development of an alternative approach to the implementation of controllers utilizing control Lyapunov function based quadratic programs. This approach utilizes many of the desirable aspects from successful inverse dynamics based controllers in the literature, while also incorporating a variant of control Lyapunov functions that renders better convergence in the context of tracking outputs. The principal benefits of this formulation include a greater ability to add costs which regulate the resulting behavior of the robot. In addition, the model error-prone inertia matrix is used only once, in a non-inverted form. The result is a successful demonstration of the controller for walking in simulation, and applied on hardware in real-time for dynamic crouching
    corecore