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Abstract

In the past decades, the Research on humanoid robots made progress forward accomplishing
exceptionally dynamic and agile motions. Starting from the DARPA Robotic Challenge
in 2015, humanoid platforms have been successfully employed to perform more and more
challenging tasks with the eventual aim of assisting or replacing humans in hazardous and
stressful working situations. However, the deployment of these complex machines in realistic
domestic and working environments still represents a high-level challenge for robotics. Such
environments are characterized by unstructured and cluttered settings with continuously
varying conditions due to the dynamic presence of humans and other mobile entities, which
cannot only compromise the operation of the robotic system but can also pose severe risks
both to the people and the robot itself due to unexpected interactions and impacts. The ability
to react to these unexpected interactions is therefore a paramount requirement for enabling
the robot to adapt its behavior to the task needs and the characteristics of the environment.
Further, the capability to move in a complex and varying environment is an essential skill for
a humanoid robot for the execution of any task. Indeed, human instructions may often require
the robot to move and reach a desired location, e.g., for bringing an object or for inspecting
a specific place of an infrastructure. In this context, a flexible and autonomous walking
behavior is an essential skill, study of which represents one of the main topics of this Thesis,
considering disturbances and unfeasibilities coming both from the environment and dynamic
obstacles that populate realistic scenarios. Locomotion planning strategies are still an open
theme in the humanoids and legged robots research and can be classified in sample-based
and optimization-based planning algorithms. The first, explore the configuration space,
finding a feasible path between the start and goal robot’s configuration with different logic
depending on the algorithm. They suffer of a high computational cost that often makes
difficult, if not impossible, their online implementations but, compared to their counterparts,
they do not need any environment or robot simplification to find a solution and they are
probabilistic complete, meaning that a feasible solution can be certainly found if at least
one exists. The goal of this thesis is to merge the two algorithms in a coupled offline-online
planning framework to generate an offline global trajectory with a sample-based approach
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to cope with any kind of cluttered and complex environment, and online locally refine it
during the execution, using a faster optimization-based algorithm that more suits an online
implementation. The offline planner performances are improved by planning in the robot
contact space instead of the whole-body robot configuration space, requiring an algorithm
that maps the two state spaces. The framework proposes a methodology to generate whole-
body trajectories for the motion of humanoid and legged robots in realistic and dynamically
changing environments. This thesis focuses on the design and test of each component
of this planning framework, whose validation is carried out on the real robotic platforms
CENTAURO and COMAN+ in various loco-manipulation tasks scenarios.
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Chapter 1

Introduction

1.1 Motivations

The aim of robotics has always been the design of automatic systems able to help and simplify
tedious and dangerous tasks for humans. The first robots to be introduced, and that still
make up the majority of the robotic systems in the industry, are fixed-based manipulators.
Indeed, thanks to their flexibility, they can be employed in a wide set of cyclic and heavy
tasks relaxing the load on the human operator. However, fixed-base manipulators work in a
restricted and fixed workspace and they are not designed to be moved around.

Modern companies are moving towards a more flexible automation, with autonomous
warehouses that can move goods, limiting human responsibilities to supervision only. To
this end, mobile-base robots, generally made by mounting a manipulator on a wheeled base,
offer a theoretically unlimited workspace thanks to their mobility, and it is not surprising
that one of the most important e-commerce companies in the world has one of the most
advanced research teams in the field. Indeed, Amazon Robotics in Fig. 1.1, has extensively
utilized mobile robots in structured industrial and warehouse environments with flat terrains
and specifically dedicated paths. On the contrary, legged robots can move in more complex
environments by stepping and interacting with the environment.

A special class of legged robots are the humanoid robots, multi-articulated robots that
associate a kinematic chain to a limb, with a structure similar to a human. Problems in
controlling these complex machines come from their bipedal nature. Humanoid robots have
a small support polygon compared to their size, and the CoM is usually higher than any other
robot, making them prone to fall or fail during the execution of a task. The Darpa Robotic
Challenge (DRC) held in 2015 (Fig. 1.2), pushed the interest and research on these machines,
which are now able to execute complex and spectacular motions, outwitting humans in
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Figure 1.1 The mobile base robot Kiva designed and built by Amazon Robotics. This image
was retrieved from https://aws.amazon.com/it

certain cases [Atkeson et al., 2018]. Despite the incredible progress of the last decade, the
deployment of these complex legged robots in a domestic or working environment is still
hard to accomplish. Indeed, these kinds of environments are characterized by cluttered and
continuously varying conditions due to the dynamic presence of humans and other mobile
obstacles, which can not only compromise the operation of the robotic system but can also
pose severe risks both for the people and the robot itself, due to unexpected interactions and
impacts.

Recently, companies like Apptronik1 with Astro, Agility Robotics2 with Digit and
Halodi3 with Eve, are focusing on building humanoids able to be employed in this kind
of environment to work side by side with humans in structured and controlled working
environments. Not for nothing, their mottos "Robots for Humans", and "Made for Work"

reflect their intentions.
When thinking to humanoids, the lower body has always been assigned to navigation

tasks while the upper-body manipulates objects interacting with the environment. However,
humanoids have the unique capability to take advantage also of the upper body to move in
particularly narrow and challenging passages, for instance, crawling below short obstacles
or climbing high ones switching between the bipedal and multi-contact locomotion. Since,
historically, locomotion and manipulation tasks were accomplished using the lower and
upper body respectively, this peculiar kind of multi-contact locomotion belongs to the family
of loco-manipulation tasks, shown in Fig. 1.3, and it is still a challenging problem both

1https://apptronik.com/
2https://agilityrobotics.com/
3https://www.halodi.com/

https://aws.amazon.com/it
https://apptronik.com/
https://agilityrobotics.com/
https://www.halodi.com/
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(a) Atlas (MIT) (b) WALK-MAN (IIT) (c) RoboSimian (JPL)

Figure 1.2 Humanoid robots participating in the Darpa Robotics Challenge (DRC) in 2015

from a planning and a control point of view. From the planning perspective, most of the
difficulties derive from solving the dual problem of (i) finding a contact sequence e.g., in
which location and when a contact must be established, and (ii) generating a dynamically
feasible motion compliant with the contact sequence. Indeed, it is easy that this dual problem
can explode when considering at the same time the contact sequence and all the possible
feasible whole-body paths. At the same time, the execution of the planned trajectory is a
non-trivial issue that must guarantee robustness from external disturbances and early/late
contact establishment w.r.t. the planned contact timing.

This thesis tackles this problem proposing a solution for the generation of acyclic multi-
contact trajectories for loco-manipulation tasks coupled with a robust control layer able to
adjust the planned motions to react to changes in the robot and environment state during its
execution.

Figure 1.3 A loco-manipulation task represented as the joining of a manipulation task and a
locomotion task.
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1.2 Previous Work

After years of research, humanoid robots can safely walk in an environment with flat and
cluttered terrains with a certain autonomy, but still, their locomotion is an open research
theme in the scientific community. Humanoid and legged robots offer severe challenges from
their modeling and control point of view like under-actuation and varying constraints deriving
from the sequence of interactions with the environment. For this reason, some simplification
of the complicated multi-body dynamics to incorporate the essential information can be useful.
Examples of these simplifications are the Linear Inverted Pendulum (LIP) [Englsberger et al.,
2015] and Centroidal Dynamics (CD) [Winkler, 5 14].

Humanoids, as humans, can access arguably more environments compared to wheeled
and other mobile robots by jumping, running, swimming, and climbing. Humanoid robots
can potentially accomplish complex locomotion tasks by breaking and establishing multiple
non-coplanar contacts with their hand and possibly any other parts of their body. Compared
to the more classic walking planners where the gait generation is implicitly defined by the
alternation of left and right steps, using multiple contacts improves the motion capability
of the robot allowing more complex gait sequences. Most of the complexity derives from
contact planning, i.e., the decision process that picks the contact sequence and their location.
Compared with the walking case where the choice of the new end-effector in contact with
the ground is trivial, an acyclic multi-contact problem has every time infinite possibilities to
establish a new contact. Additionally, each contact defines dynamic and kinematic constraints,
and we say that the contact manifold is foliated [Siméon et al., 2004] and the robot motion
moves through the intersection of these manifolds. Due to this complexity, many previous
works solved the contact generation problem separately from the dynamically feasible motion
generation compliant with the planned contact sequence. This procedure, called contact-

before-motion planning, is based on a sample-based planner that expands a search to connect
a user-defined start and goal configuration [Escande et al., 2013]. The main issue of this
approach is the computational cost, but it guarantees theoretical probabilistic completeness,
meaning that a solution is certainly found if at least a feasible one exists [Karaman and
Frazzoli, 2011]. Sample-based planners explore the robot’s configuration space by expanding
a search tree sampling configurations probabilistic or randomly [LaValle, 2006]. However, the
sampled configurations must belong to the foliated topology to be acceptable, resulting in an
inefficient random process where many samples are rejected. A solution consists in explicitly
projecting the sampled configuration in contact with the environment and consequently
belongs to the contact manifold, but this is a very costly and inefficient operation since
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many “free-flying” configurations share the same projection. More advanced techniques
reduced the inefficiency of the process sampling states directly on manifold tangent atlases or
spaces [Kingston et al., 2018]. Recently, Tonneau et al. [2018] presented an efficient acyclic
contact planner for multiped robots breaking the complexity of the problem and introducing
the concept of the reachability condition.

Other previous work explored alternatives for solving the dual problem of finding the
sequence of contact position and a trajectory for the base link using local optimizations. To
keep the computational cost low, these methods use simplifications of the robot dynamics and
simplify the environment using simpler convex shapes to include them in the optimization
problem. Compared to their counterparts, the optimization-based planners rely on more and
more performing linear and non-linear solvers but they are affected by local minima that may
hinder the optimality of the solution. Additionally, the solver may fail to find a solution due
to the non-convexity of the planning problem, which especially derives from the collision
avoidance constraint. Thus, the algorithm is non-probabilistic complete. [Deits and Tedrake,
2014] took advantage of the binary state of the contact to solve the combinatory problem in
one stage, but it is limited to bipedal walking and does not consider any interaction with the
upper limbs. Some other approaches solve an optimal control problem to find a continuous
global trajectory to move the robot in an arbitrarily complex environment, namely trajectory

optimization (TO). This last approach has been used both assuming the contact sequence
known as in [Ruscelli et al., 2022] and adapting contemporary the gait sequence and contact
position as in [Winkler et al., 2018]. Even if the optimization-based motion planner were
able to find a solution in a considerably lower amount of time compared to the counterpart
sample-based approach (order of seconds vs order of minutes), this approach is still far from
being an online implementation, particularly useful for realistic environments in presence of
dynamic environmental conditions.

Recently Model Predictive Controllers (MPCs) gained attention for their capability to
online generate walking trajectories to react to external disturbances closing the loop on the
robot’s state. Romualdi et al. [2022], Ding et al. [2022], and Scianca et al. [2020] showed a
consistent methodology based on a simplified dynamic template model for planning contact
and CoM trajectories and a whole-body tracking controller. Galliker et al. [2022] presented
preliminary work on a non-linear whole-body MPC-based planning strategy. Despite the
promising results obtained, MPCs consider a fixed gait sequence and are not suitable for
temporally global plans because they plan on a short receding time horizon.
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1.3 Contributions

Previous works highlighted the complementary between sample-based and optimization-
based planners regarding computational cost and probabilistic completeness. Sample-based
planners have a high theoretical complexity leading to a high computational cost and are dif-
ficult to implement on floating-base robots with a high number of DoF that move interacting
with the surrounding environment establishing and breaking contacts. On the other hand,
optimization-based planners manage the contact alternation by adding and removing Carte-
sian and force constraints, speeding up the planning process, but requiring a user-defined gait
sequence to be real-time implementable. Also, these planners are prone to local minima and
failures due to the non-convexity of the problem and their performances are strictly related to
the provided initial guess.

This thesis aims to take advantage of this complementary by designing and testing a
complete framework that combines the sample and optimization-based planning techniques
to generate and adapt acyclic multi-contact trajectories for humanoid and multi-limbed robots.
Recently, a planning algorithm that merges sampling and optimization-based approaches
has been proposed in Jelavic et al. [2021] generating a contact sequence and a whole-body
feasible trajectory for a hybrid wheeled-legged excavator with information computed both
offline and online.

The sample-based planner acts offline, finding a complete and global contact and joint
space trajectory for the execution of an acyclic loco-manipulation task in a general complex
and cluttered scenario. To tackle the computational problem deriving from the high number
of DoF (i.e., curse of dimensionality) the configuration space is downsized considering the
pose of the contacts only. Of course, this cost reduction comes with a drawback: at each
iteration, the planner requires a map that moves back to the robot configuration space to
find a whole-body robot’s configuration compliant with a specific set of contacts. Apart
from the clear necessity of moving back to the joint space to generate references that can be
executed by the robot, collision, self-collision, and stability are constraints that the planner
must consider when generating a posture projected onto the planned contacts, with the risk
of invalidating the sampled contact state if a feasible configuration can not be found. Thus,
the problem of posture generation is a key aspect of the offline sample-based planner with a
strong influence on the efficiency of the planner, and it is widely discussed throughout the
thesis.

During the execution of the global offline planned trajectory, an optimization-based
planner locally refines the nominal solution depending on the dynamic conditions of the
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environment and the robot itself. The sample-based multi-contact planner generates a solution
both in the joint and contact space. Locally planning on the robot’s joint space means solving
an optimization problem in a space whose dimension is proportional to the number of DoF of
the robot, increasing the computational cost and making harder to satisfy the requirements for
the online applicability. But the joint state space vector defines the position, and eventually
velocity, of each robot’s joint, simplifying the definition of stability and collision avoidance.
On the other hand, planning in contact space reduces the state vector dimension to the only
pose of each contact, widely simplifying the problem but also losing information about
the robot’s state. Indeed, differently from the previous method, the collision avoidance
constraint uses heuristics, such as relative distance constraints to avoid feet crossing or long
and unfeasible steps. Additionally, re-planning the contact sequence requires an additional
step that computes a new whole-body trajectory compliant with the new contacts. In this
thesis, the optimization of both the state spaces has been carried out, highlighting the benefits
and drawbacks of each methodology.

This thesis contributes by:

• Solving the posture generation problem of Multi-Contact Planners (MCP) by propos-
ing a novel and efficient posture generation algorithm named Null-Space Posture
Generation (NSPG) presented in Rossini et al. [2021].

• Proposing and validating a sample-based acyclic multi-contact planner for humanoids
robots presented in Chapter 3.

• Coupling the offline sample-based planner with an online optimization-based local
planner presented in Rossini and Tsagarakis [2022] that adjust the nominal trajectory
computed by the MCP both in the joint and contact space.

• Proposing a Model Predictive Control (MPC) in Chapter 5 that generates a whole-body
trajectory on the adjusted contact sequence, and improves the robustness of the motion
execution to external disturbances.

The introduced framework proposes an algorithm that can plan an acyclic multi-contact
trajectory and adapt it online to avoid moving obstacles and react to external disturbances.
This work goes beyond the state of the art considering the real-time adaptation of complex
and acyclic multi-contact trajectories instead of simpler cyclic walking ones, to execute
loco-manipulation tasks with humanoid robots.
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1.4 Structure of the Thesis

The thesis is divided into two parts, each one divided into two chapters, with each chapter
describing a layer of the proposed framework. Part I introduces the offline layer addressing
the problem of the posture generation in contact space sample-based planners proposing, in
Chapter 2, the Null Space Posture Generator (NSPG) as an effective way of mapping whole-
body robot’s configurations with the planned set of contacts. The algorithm has been tested
on the hybrid wheeled-legged robot CENTAURO. Chapter 3 describes the Multi-Contact
Planner and Controller (MCPC) that generates the discrete set of contacts and whole-body
motions composing the solution of the offline planning layer. The MCPC has been tested
both in several simulation use cases and validated with an experimental campaign using the
biped humanoid robot COMAN+.

Part II addresses the online local re-planning problem solved with the optimization-based
approach both in the joint and contact space. Chapter 4 focuses on the joint space local re-
planning, validating the proposed methodology with simulations and experiments carried out
on the CENTAURO robot. Chapter 5, instead, solves the same problem in the contact space,
presenting an MPC-based algorithm to generate whole-body trajectories compliant with the
adjusted contact sequence. Simulations were carried out using the biped humanoid robot
DRACO 3, during my 5-month long internship spent in the Humanoid Centered Robotics
Lab (HCRL) at the University of Texas at Austin, hosted by Professor Luis Sentis.

The CENTAURO robot, as well as the COMAN+ robot, has been designed and built
at the Humanoid and Human-Centered Mechatronics Laboratory (HHCM) at the Italian
Institute of Technology (IIT). DRACO 3 has been designed and built at the HCRL together
with Apptronik.
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Offline Planning Strategies



Chapter 2

The Problem of Posture Generation

2.1 Introduction

Effective motion planning on highly redundant robots with a large number of Degrees of
Freedom (DoFs) requires to satisfy multiple objectives and constraints concerning loco-
manipulation and stability, while avoiding internal (self) and external collisions with the
environment. As a consequence, the computational cost of a motion planning algorithm
dramatically increases depending on the dimension of the state-space (i.e. DoFs number). For
motion planners which directly search on joint space configurations, this could often lead to
the impossibility to find a solution within a reasonable time (a.k.a. curse of dimensionality).

To overcome this issue, previous works adopt simplifying assumptions to reduce the state
space dimension or use a discrete control space (i.e., actions) [Cognetti et al., 2015; Ferrari
et al., 2018; Hauser et al., 2008]. However, these methods suffer from the trade-off between
a small action set, which can reduce the branching factor of the search tree inhibiting specific
motions, and a large action set, which increases the branching factor of the search tree that
becomes harder to explore. Alternatively, continuous optimization based approach planners
are used [Deits and Tedrake, 2014; Kuindersma et al., 2016; Ratliff et al., 2009] but they
do not guarantee completeness or global optimality and it is non-trivial to generate optimal
collision-free trajectories within time-frames acceptable for online planning, especially in
complex environments.

A further possibility is to use footstep/multi-contact planners [Bouyarmane and Kheddar,
2012; Hauser et al., 2005; Kuffner et al., 2001; Tonneau et al., 2018], which have been
widely applied in biped robots. For these approaches, the state space is reduced to consider
only position and orientation of each contact as working variable. The price to pay is the
necessity to move back to the configuration space through a map that associates a whole-body
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configuration of the robot to a specific set of contacts (i.e., stance) coming from the planner.
Indeed, collision with the ambient, self-collisions and equilibrium are constraints to be
considered when generating a posture projected onto the planned contacts, with the risk
to invalidate the sampled state if a feasible configuration cannot be found. Furthermore,
adjacent configurations, with small differences between one another should be preferred in
order to minimize avoidable motions during the transition between two consecutive stances.

Hence, footstep and multi-contact planners relies heavily on posture generators that
have to satisfy not only the aforementioned constraints, but also being able to efficiently
generate new postures. This Chapter introduces a novel and computationally efficient method
to generate collision-free whole-body configurations of any kind of multi-limbed robots,
while satisfying both kinematics, i.e. contacts and joint limits, static balance, and contacts
stability constraints. The algorithm has been designed to be used coupled with footsteps
and multi-contact planners in order to speed-up the whole contact and motion planning
phase. The proposed method is first validated in simulations on the hyper-redundant hybrid
wheeled-legged quadrupedal robot CENTAURO [Kashiri et al., 2019], and on the biped
robot COMAN+ [Ruscelli et al., 2020] to prove the generality of the algorithm independently
from the number of considered end-effectors or complexity of the robotic platform. An
experimental assessment of the proposed method is also carried out employing CENTAURO’s
perception system (Lidar sensor) for perceiving the environment in front of the robot.

2.2 Related Work

The generation of feasible whole-body configurations for a legged robot, coupled with foot-
steps or multi-contact planners has been widely investigated in the past years. Previous
works are based on pre-computed paired forward-inverse Dynamic Reachability Maps
(DRM/iDRM) to sample among the reachable workspace those configurations that could
accomplish a loco-manipulation task while guaranteeing stability and collision safeness
on flat [Yang et al., 2017] and cluttered [Ferrolho et al., 2018] terrains. This method is
characterized by big computational and memory costs, which are limited solving for the
upper and lower body separately. Additionally, it requires the computation and discretiazion
of the reachable workspace which becomes computationally heavier when the number of
contacts increase.

In Hauser et al. [2005] an Iterative Constraint Enforcement algorithm (ICE) was used
to generate statically-stable and collision free configurations using Newton-Raphson. The
generated postures are subject to Cartesian constraints for the contacts and CoM position to
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guarantee stability, starting from randomly sampled initial configurations. However, random
seed configurations do not take into account the problem of minimal displacement between
adjacent postures and this could lead to unfeasibilities during the transition motion.

Other approaches explore fixed-size [Deits and Tedrake, 2014; Gutmann et al., 2005] or
variable-size [Buchanan et al., 2019] bounding-boxes to find the best collision free walking-
posture. This whole-body posture is then projected onto the contacts found during the
planning phase. However, these methods do not take advantage of the capability to reshape
the whole body of the robot to facilitate and eventually permit locomotion in scenarios where
the dimensions of the free passage are closely the physical dimensions of the robot body.

Bouyarmane and Kheddar [2012] used a non-linear optimization to compute IK with
static stability, collision avoidance, torque limits and joint limits as constraints. In this work,
no further modifications are carried out when the solver is not able to find a solution, leading
to a possible avoidable discard of the sampled contact state.

A different approach was used by Tonneau et al. [2018]. The contact planner problem is
addressed first finding a guide path for the floating base in the SE(3) configuration space while
satisfying a reachable condition to guarantee collision safeness and workspace reachability of
the end-effectors. Then, a sequence of discrete configurations is computed using an iterative
algorithm that satisfies a specific contact transition, stability and collision safeness starting
from the root guide path. Ultimately, the contact sequence is retrieved from the configuration
sequence. However, this method relies on a pipeline which may suffer of a necessary fine
tuning of its parameters, especially for the effectiveness of the reachable condition which
strictly depends on the kinematic characteristics of the robot.

Recently, Shigematsu et al. [2019] developed a posture generator to plan whole-body
trajectories for a humanoid robot moving heavy suitcases. The approach is based on a
non-linear program where several key postures are optimized all together with the centroidal
statics, joint limits and self-collision constraints. Despite the impressive results obtained on
the real platform, the method does not account for environmental collisions and it still needs
several minutes to compute a sequence of configurations.

To address these concerns, this Chapter proposes a novel posture generator algorithm
based on the hierarchical inverse kinematics (HIK), called Null-Space Posture Generator

(NSPG), able to generate collision-free and statically balanced configurations for arbitrarily
complex floating-base robots. In particular, the NSPG exploits the null-space of the robot,
which is used to locally correct its posture around a nominal configuration, generated starting
from the history of previously computed feasible postures. Further, the previous configuration
becomes also the seed configuration of the HIK solver, guaranteeing minimal differences
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between adjacent postures. If a chain of the robot is in contact with the environment or in
self-collision, instead of generating a new whole posture, only the involved kinematic chain
is moved in order to avoid the collision, in the neighborhood of the nominal configuration.
Hence, the algorithm takes advantage of the kinematic structure of multi-limbed robots to
restore the feasibility. Differently, when the generated posture is statically unstable, only the
floating base is moved in order to restore feasibility.

The method, compared with previous works, contributes with a smart selection of the
seed and nominal configurations for the HIK solver, seeking for a new feasible one that keeps
minimum differences between adjacent stances. Specifically, it exploits the robot workspace
in random directions, moving in the neighborhood of the nominal configuration. This allows
the posture generator to look for a feasible configuration instead of discarding the state as
soon as the first computed configuration is unfeasible, improving the performance of the
planner and the algorithm itself. Last, the number of parameters to be tuned is kept minimum
and is independent from the environment or the robot (a larger discussion will be given in
Sec. 2.5). A similar approach has been used by Yang et al. [2016] in which feasible postures
where generated using the IK randomly sampling seed configurations from the balanced
manifold. However, stability is checked using the projection of the CoM onto the support
polygon drawn by the feet, thus not considering non-co-planar contacts.

2.3 Background

In this section, the main tools used to develop the posture generator will be described.

2.3.1 Stance Generation

The aim of the NSPG is to generate whole-body configurations realizing both kinematic and
statics constraints that will be detailed in Sec. III-B and III-C. These constraints arise from
the contacts that the robot is required to establish with the environment in order to execute
an assigned task, and are generally the output of a contact planner. To this end, this section
introduces the basic notions that will be used in the following:

• A configuration qqq ∈ SE(3)×Rn = Q is an element of the robot configuration space
containing the n joint positions and the pose of the floating-base w.r.t. the inertial frame.
qqq j ∈ Rn expresses the joint positions. Additionally, Q is partitioned by two sub-set
Qfeas and Qunfeas containing the feasible and unfeasible configurations respectively so
that Qfeas∩Qunfeas = /0;
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Figure 2.1 Centroidal statics and robot configuration starting from planned contacts. The
green arrows represent the contact forces and torques. These lasts are limited to the surface
contacts only (feet). The friction cones are also shown for the three active contacts. The red
arrow are the weight force and the derivative of the angular momentum exerted directly on
the CoM of the robot. Position vectors of each contact and CoM are highlighted w.r.t. the
inertial frame Fw.
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• A stance σ = {c1, . . . ,ck} is a set of k contacts where each ck = ⟨wTTT c,k, IDc,k,CTc,k⟩
contains the pose of the k-th contact wTTT ci w.r.t. the inertial frame, the contact’s name
IDc,k and its type CTc,k (i.e., point or surface contact);

• A configuration qqq is compliant with a stance σ if it realizes all the contact poses
specified by σ , i.e., kkk(ci,qqq) = wTTT ci for all ci ∈ σ . A pair consisting of a stance σ and
a compliant configuration qqq defines a state s:

s = ⟨σ ,qqq⟩. (2.1)

For each state si, given the stance σi, the posture generator aims to find a feasible
configuration qqqi compliant with σi. The path of stances is instead found by a generic footstep
or multi-contact planner. However, the description of the planner algorithm is out of the
scope of this work.

The configuration space velocities associated to the configurations qqq are denoted with
ννν ∈ Rn+6 that contains the joint space velocities and the linear and angular base velocities:

ννν =

 ṗppb

ωωωb

q̇qq j

 . (2.2)

In addition, proper validity functions ensures to sample stances with poses of the contacts in
the workspace of the robots and not inside any obstacle.

2.3.2 Hierarchical IK

The Cartesian velocity wvvve ∈ R6 of an end-effector frame Fe w.r.t. a reference Fw is related
to ννν through the relation

wvvve =
wJJJw,e ννν , (2.3)

where wJJJw,e ∈ R6×(6+n) is the Jacobian1 of the frame Fe w.r.t. Fw expressed in Fw.
The inverse problem of (2.3), a.k.a. differential inverse kinematics, permits to compute

the configuration velocities ννν∗ which realizes a desired Cartesian velocity vvvd for a certain
end-effector. The computation of ννν∗ is classically found solving a least square problem in

1Here and in what follows, for the sake of brevity of the notation, the dependence of the matrices on the
configuration q will not be expressed.
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the form:
ννν
∗ ∈ argmin ∥JJJννν− vvvd∥2

WWW , (2.4)

with WWW ∈ R6×6 a weight matrix. In order to track Cartesian poses as well, a Closed Loop IK
(CLIK) scheme is often employed were the desired Cartesian velocity vvvd is set as:

vvvd = vvvr +λeee(TTT r,TTT ), (2.5)

with vvvr a feed-forward Cartesian velocity reference, TTT r a reference Cartesian pose, TTT the
actual Cartesian pose and λ a gain which ensures exponential convergence of the Cartesian
error eee(((···))) to zero. The configuration velocities computed using (2.4) can be integrated to
obtain the new robot configuration, through the integration function III:

qqqk = III(qqqk−1,ννν ,dt). (2.6)

The problem in (2.4) can be formulated as a Quadratic Programming (QP) problem with
the main advantage to consider equality and inequality constraints as well [Kanoun et al.,
2011]:

min
ννν
∥JJJννν− vvvd∥2

WWW + ε∥ννν∥2

s.t. AAAeqννν = bbbeq

AAAννν ≤ bbb.

(2.7)

Furthermore, hard priorities between tasks can be enforced in the QP-based IK by means of
a cascade of QPs [Kanoun et al., 2009] or using particular hierarchical orthogonal decompo-
sition of the aggregated task matrices [Escande et al., 2014].

The methodology requires the definition of the following tasks and constraints:

• Contact Task Tc that projects the robot into the manifold defined by the contact
stances σ . For example, the surface contact task is defined as:

T s
c := ∥wJJJs

cννν−λceee(wTTT c,d,
w TTT c)∥2 (2.8)

with wJJJs
c ∈ R6×(n+6), while the point contact task is defined as:

T p
c := ∥wJJJp

c ννν−λc(
w pppc,d−w pppc)∥2 (2.9)

with wJJJp
c ∈ R3×(n+6) and w pppc ∈ R3 the position of the contact.
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• Postural Task Tννν that tracks a desired configuration velocity νννd of the robot. The
postural task is defined as:

Tννν := ∥ννν−νννd∥2. (2.10)

As done in the Cartesian case (2.5), it is possible to define a desired configuration
velocity with a term that tracks a reference robot configuration qqqr:

νννd = νννr +λνννeee(qqqr,qqq). (2.11)

• Joint Limits Constraint Cqqq j permits to take into account hardware joint limits present
in the considered robotic platform. The joint limits constraint is an inequality constraint
in the form:

Cqqq j :=
qqq j−qqq j

dt
≤ q̇qq j ≤

qqq j−qqq j

dt
, (2.12)

with qqq j ∈ Rn and qqq j ∈ Rn respectively the lower and upper joint limits. The dt is the
integration time used in (2.6).

Tasks and constraint are organized in the following stack S :

S :=

[(
k

∑
i=1

Tc,i

)
/Tννν

]
≪ Cqqq j , (2.13)

where the “∑” symbol means that all the contact tasks are summed at the same priority level,
the “/” symbol means that the postural task acts in the null-space of the contact tasks. The
“≪” symbol means that all the tasks are subject to the joint limits constraint. This formulation,
known as Math of Tasks, follows the work done in [Hoffman and Tsagarakis, 2021].

2.3.3 Centroidal Statics

To grant quasi-static stability for a given robot configuration qqqi, compliant with a stance σi, a
critical role is played by the interaction forces. Static stability is checked by solving another
QP based on the stances’ information of contact position pppc, its associated normal nnnc and
CoM position pppCoM computed from the configuration to be checked.

The resulting QP in the variables xxx = FFFc, with FFFc being all the contact wrenches w.r.t.
the inertial frame2, is formulated as:

min
xxx
∥mggg+GGGCDFFFc∥2

WWW 1
+∥FFFc∥2

WWW 2
(2.14a)

2For a point contact FFFc,i ∈ R3, while for a surface contact FFFc,i ∈ R6.
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s.t.

FFF ≤ FFFc ≤ FFF (2.14b)

CCCFFFc ≤ 000 (2.14c)

if ci is surface contact :

PPPFFFc,i ≤ 000 (2.14d)

NNNFFFc,i ≤ 000. (2.14e)

The first term in (5.28) ensures static stability, under quasi-static conditions, based on the
Centroidal Statics (CS) of the robot, where the terms ggg ∈ R6 and m ∈ R are the vector of the
gravity acceleration and momentum variation, and the mass of the robot, respectively, and
GGGCD ∈ R6×k is the the centroidal dynamics grasp matrix:

GGGCD =

[
III3 · · · III3

SSS×(pppCoM− pppc,1) · · · SSS×(pppCoM− pppc,k)

]
, (2.15)

with SSS× the skew-symmetric matrix operator.
This reduced description assumes fixed contact placements with associated linearized

friction models and unilaterality of the contact force (5.21), Center of Pressure (CoP) inside
contact surface (3.12) and bounded contact yaw torque (2.14e) [Caron et al., 2015]3, to
obtain the interaction forces required to compensate for gravity, achieve static balancing
and non-slippage of surface contacts. Matrices CCC, PPP and NNN are expressed as CCC =CCCi ·RRRadj,
NNN = NNNi ·RRRadj and PPP = PPPi ·RRRadj with:

CCCi =


1 0 −µi

−1 0 −µi

0 1 −µi 0005×3

0 −1 −µi

0 0 −1

 , (2.16a)

PPPi =


0 0 x 0 1 0
0 0 −x 0 −1 0
0 0 y −1 0 0
0 0 −y 1 0 0

 , (2.16b)

3Constraints (3.12) and (2.14e) are considered only for surface contacts
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NNNi =



−y −x −µ(x+ y) −µ −µ 1
−y x −µ(x+ y) −µ µ 1
y −x −µ(x+ y) µ −µ 1
y x −µ(x+ y) µ µ 1
−y −x −µ(x+ y) µ µ −1
−y x −µ(x+ y) µ −µ −1
y −x −µ(x+ y) −µ µ −1
y x −µ(x+ y) −µ −µ −1


, (2.16c)

RRRadj,i =

[
wRRRi 0003×3

0003×3
wRRRi

]
, (2.16d)

where CCCi and PPPi are the coefficient matrices of the constraints inequalities expressed in local
force frame, and RRRadj,i being the adjoint rotation matrix that transforms the wrench from
the i-th local frame Fi to the inertial frame Fw, computed from the contact normal nnnc,i. In
particular, µi is the static friction coefficient associated with the i-th contact, x and y are
half the size of the surface contact4, and wRRRi is the rotation matrix that moves from the i-th
contact frame Fi to the inertial frame Fw.

It is worth noticing that the modeling a surface contact using forces and moments, together
with the constraints (5.21), (3.12) and (2.14e) permit to save variables and constraints. In
fact, assuming 4 contact points per surface contact leads to a total of 12 pure contact forces
variables and 20 constraints in the form of (2.16a). On the other hand, assuming a single
wrench leads to 6 variables to describe contact forces and torques, and 17 constraints. A
graphical representation of the centroidal statics’ components, is given in Fig. 2.1.

The residual of the first term in the cost function (5.28) is used to decide whether a
configuration is stable or not when satisfying a specific stance, depending on a threshold
value.

2.4 Generating Transition Configurations

In a contact planner application case, a feasible sequence of adjacent postures is required
to be connectable in order to build a configuration path that moves the robot safely from
a start configuration qqqstart to a goal configuration qqqgoal. In particular, two configurations
qqqi and qqqi+1 are connectable if there exist a continuous path ϕ(l) satisfying σi, σi+1, and
the requirements of stability and collision avoidance. Further, a local planner interpolator

4Here the contact frame is assumed at the center of the surface for simplicity and modeled as rectangular.
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  a. b.
Figure 2.2 An example of how generating adjacent poses with large differences can lead
to an unfeasible colliding transition during their connection. Starting from the same robot
configuration in grey, the next posture is generated minimizing the differences w.r.t. the
parent state, on the left, or facing the opposite side of the corridor with the upper body, on
the right. Even though all the generated poses are feasible, the right scenario will lead to a
collision with the environment while connecting the two consecutive states.
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guarantees a feasible trajectory between two consecutive configurations. Having defined Qσi

the set of all configurations that satisfies σi, two consecutive configurations are connectable
if ∃ ϕ : [0, l]→Qfree such that:

ϕ ∈C0 (2.17a)

ϕ(0) ∈Qσi (2.17b)

ϕ(l) ∈Qσi+1. (2.17c)

Collision avoidance is sought generating similar adjacent poses, thus minimizing the
transition motion that moves the robot from qqqi to qqqi+1. In order to better understand this
last requirement, imagine a robot side-walking in a narrow space. In this scenario, feasible
postures can be both the one with the robot facing left-ward and right-ward. However, if two
adjacent σi and σi+1 contains configurations that face opposite sides of the narrow passage,
the transition motion between qqqi and qqqi+1 will probably collide with the environment,
see Fig. 2.2. This issue is solved using the parent state’s configuration qqqi−1 as nominal
configuration for the generation of qqqi thus forcing qqqi to be in a small neighborhood of the
qqqi−1 (Sec. 2.5). This assumption works in the hypothesis of small changes of the environment
seen by the robot, which covers the most of the considered scenarios. Indeed, when moving
in such environment, the previous feasible configuration is a first good guess to generate the
next feasible configuration. In this way, any transition motion is generated only if required.

Furthermore, in the quasi-static assumption that near stances differ by exactly one active
contact, the generated configuration qqqi must be statically stable w.r.t. the minimum contacts
number stance between σi−1 and σi [Escande et al., 2013].

2.5 Null-Space Posture Generator

The approach is based on a complete reshape of the robot configuration, obtained by adjusting
the pose of kinematic chains in collision, or moving the floating base to recover the static
stability, in the null-space of the Cartesian (contact) tasks. Specifically, each detected
unfeasibility will generate random velocities components aiming to recover the feasibility.
This section follows a pipeline going through each component of the algorithm: first, the
nominal configuration and the random velocity vector ννν are generated. The NSPG exploits
the neighborhood of the nominal configuration in the random direction defined by ννν . Then,
the procedure to adapt the velocity vector and the candidate configuration procedures are
described. The strategy used is described in Algorithm 1, while a graphical representation is
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Algorithm 1: NSPG()

1 input: si−1,σi;
2 parameters: N,dt,T;
3 take qqqi−1 ∈ si−1;
4 qqqpose = solveIK(σi,qqqi−1);
5 C← collidingChains(qqqpose);
6 iter = 0;
7 t = 0;
8 repeat
9 if iter % N == 0 then

10 qqqold = qqqi−1;
11 for i in C do
12 if i is constrained then
13 ṗppb = random();
14 ννν =

[
ṗppb 0001×3 0001×n

]
;

15 else
16 ννν =

[
0001×6 C(i) · random()

]
;

17 end
18 end
19 resCC =checkStability(qqqold);
20 if resCC > εCC then
21 ννν =

[
ṗppb 0001×3 0001×n

]
;

22 end
23 else
24 qqqnew = III(qqqold,ννν ,dt) ;
25 [qqqpose, resIK]← solveIK(σi,qqqnew);
26 if resIK > εIK then
27 iter++;
28 continue;
29 end
30 end
31 qqqold = qqqnew;
32 ννν = updateVel(C,ννν ,qqqpose);
33 iter++;
34 until checkCollision(qqqpose) ∧ checkStability(qqqpose) ∧ t < T;
35 if t < T then
36 qqqi = qqqpose;
37 return true;
38 else
39 return false;
40 end
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Figure 2.3 NSPG flow diagram: the configuration qqqi−1 is used as nominal posture for the
HIK solver and at each iteration it is modified depending on the random velocity vector ννν

generated, until a feasible configuration is found. At each iteration, the velocity vector ννν

is updated following Sec. 2.5.4. Notice that the nominal posture is reset to qqqi−1 every N
iterations. σi defines the manifold for the HIK solver while green and red arrows define the
flow when the validity checks and the HIK projector succeed or fail respectively.

given in Fig. 2.3.

2.5.1 Nominal Configuration Generation

First, the candidate configuration qqqpose is computed projecting the seed configuration qqqi−1

onto the manifold defined by the stance σi. The projection is performed by the HIK solving
the stack in (2.13) with the same qqqi−1 used as reference for the postural task (line 4)5. In the
case the first candidate configuration qqqpose is feasible, and no further adjustment are required,
the NSPG will return qqqi = qqqpose. Oppositely, qqqpose will be used as nominal configuration in
which neighborhood the NSPG will look for a new feasible configuration.

2.5.2 Adaptive Random Velocity Vector Generation

In the following, the procedure to generate the random velocity vector ννν will be described,
depending on the unfeasibility.

Collisions

This phase takes advantage of the kinematic structure of a multi-limbed robot to avoid
collisions while keeping minimum differences between adjacent configurations. Indeed, the
motion of a kinematic chain is independent with respect to the others, assuming that its

5The qqqstart ∈ sstart is chosen as the homing configuration
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end-effector is not constrained onto a contact pose. In this way, only the chain(s) involved
in the unfeasibility will be moved, preventing avoidable motions that could lead to other
collisions. In the details, when qqqpose is in (self-)collision, the colliding kinematic chains are
detected (line 5) and collected into the set C. For each of the joints belonging to those chains,
a random bounded velocity vector, is generated as written in line 16. The random velocity
vector comes from a uniform random distribution bounded between the joint velocity limits.
C(i) returns a 1×n vector that extracts the aforementioned joints from the whole joints’ list.

It is worth mentioning that collisions/self-collisions can be avoided also integrating
specific cost functions or constraints in the HIK [Fang et al., 2015; Stasse et al., 2008].
Despite appealing, this inclusion may have a not negligible computational cost which is
avoidable when HIK is used as posture generator. For kinematic chains fully constrained
onto the set of contacts defined by σi, their reshape is obtained through a linear displacement
of the floating base as shown in line 14.

With this methodology, the NSPG moves the only joints involved in the unfeasibility
preventing from avoidable motions of the rest of the body.

Stability

A second scenario occurs when qqqpose is not statically stable (line 21). The static stability is
checked solving the QP problem as written in (2.14) comparing the residual of the first term
of the cost function with a threshold value εCS.

In this case linear velocities of the floating base are generated from a uniform random
distribution bounded between two arbitrarily big numbers (±50m

s ).
It has been chosen to move the floating base joints instead of the CoM directly since a

motion of this last could imply an undesired whole-body motion involving non-colliding
kinematic chains or deviating the motion of the colliding ones in an umpredictable way.

2.5.3 Candidate Configuration Update

The postural task reference is then updated according to the new velocity vector (line 24) and
the HIK is solved generating a new robot configuration qqqpose according to the new postural
reference qqqnew (line 25). This procedure is repeated every N iterations, until a feasible pose
is found, according to εIK and εCS which are chosen to be sufficiently small in order to
guarantee the stable configurations, well projected onto the contacts manifold. The algorithm
exploits the robot workspace in the direction defined by ννν for N iterations, after which the
reference posture of the robot is reset to the starting one qqqi−1 (line 10).
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2.5.4 Velocity Vector Adaptation

While running, the algorithm will generate configurations with arbitrarily small differences
which depends on its parameters and velocity vector ννν .

Collision and stability checks strictly depends on the current candidate configuration of
the robot that changes at each iteration of the algorithm. Thus, the velocity vector ννν must be
updated and adapted depending on the state of the robot throughout each iteration.

Specifically, at each iteration, the colliding chains are updated, and two new sub-sets are
defined:

Cnew← collidingChains(qqqpose) (2.18a)

Cmore = Cnew \C (2.18b)

Cless = C \Cnew (2.18c)

with Cmore and Cless containing the set of the new and old colliding chains, respectively,
depending on the new candidate configuration. In correspondence of Cmore, random velocity
components are added to ννν , while velocity components are removed depending on Cless:

ννν +=
[
0001×6 Cmore(i) · random()

]
(2.19a)

ννν =
[

ṗppb 0001×3 Cless(i) · q̇qq j

]
(2.19b)

with Cmore(i) returning a 1×n vector containing 1 in correspondence of the joints belonging
to the new colliding chains and 0 elsewhere, while Cless(i) returns a 1×n vector containing 0
in correspondence of the old colliding chains’ joints and 1 elsewhere. Additionally, stability
can be lost or recovered while generating new candidate configurations. In these cases, the
velocity vector must be updated adding or removing velocity components corresponding to
linear floating base velocities as follows:

ννν +=
[

ṗppb = random() 0001×3 0001×n

]
(2.20a)

ννν =
[
0001×6 q̇qq j

]
(2.20b)

At each iteration, this method seeks minimal differences between the generated posture
and the parent one. The NSPG algorithm moves only the joints involved in the unfeasibility
of about a quantity that depends on the NSPG parameters, listed in Table 2.1. Increasing N
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N Reset condition

dt Integration time

T NSPG timeout

εCS Centroidal statics threshold

εIK IK threshold

Table 2.1 NSPG parameters

dt N T t̄ [s] t̄HIK [ms] t̄CS [ms] t̄CC [ms] ī % success

CENTAURO 0.005 10
0.5 0.1248

0.4296 0.3585 0.1301
136 89.9%

1 0.1337 146 95.0%
2 0.3029 330 92.3%

COMAN+ 0.005 10
0.5 0.1617

0.5173 0.1875 0.2375
172 85.0%

1 0.2161 230 91.6%
2 0.2927 311 93.9%

Table 2.2 Results from the scenario in Section 2.6.2: dt, N and T are the three parameters
of the NSPG and t̄HIK, t̄CS, and t̄CC are the average time required by the HIK solver, the
Centroidal Statics and the Collision Check respectively, averaged on the three experiments,
which do not depend on the parameter T. The average number of NSPG iterations to find a
feasible solution are shown in the second-last column.

allows the robot to explore a larger range of motion around the nominal configuration. The
parameter dt is the integration time involved in line 24: the smaller this parameter, the smaller
will be the motion between two generated configurations during a single call of the NSPG. In
addition, keeping N constant, the integration time dt will also influence the maximum range
of motion around the nominal configuration. Ultimately, the timeout T sets a time threshold
for the search of a feasible configuration.

2.6 Results

The proposed NSPG algorithm has been tested in two scenarios with increasing difficulty,
applied on two different types of legged redoundant robots: the hybrid wheeled-legged
quadrupedal robot CENTAURO, and the biped robot COMAN+. CENTAURO is a robot
with 39 DoFs distributed between a quadrupedal lower body and a bimanual humanoid upper
body, while COMAN+ is a biped humanoid robot with 28 DoFs.

The first considered scenario consists in multiple tiles, placed at different heights and
orientations, where the robot has to step on, or place its limbs, while the second one is a
narrow corridor on flat terrain. Additionally, an experiment of this last scenario has been
carried out on CENTAURO.
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(a)

(b)

Figure 2.4 Screenshots of the CENTAURO 2.4a) and COMAN+ 2.4b) robots passing through
the high narrow corridor
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Figure 2.5 Screenshots from the experiment carried out on CENTAURO robot. From top left
to bottom right: the robot first approaches the narrow corridor keeping the homing position
as far as no collisions are detected. As soon as the robot starts entering the corridor, the
NSPG reshapes the support polygon and the upper body at the same time.

The NSPG implementation is based on the OpenSoT [Hoffman et al., 2017] and CartesI/O [Lau-
renzi et al., 2019] frameworks for the computation of the whole-body HIK and centroidal
statics QP problems, depicted in Sections 2.3.2 and 2.3.3 respectively. In particular, QPs are
efficiently solved using well-known QP solvers such as qpOASES [Ferreau et al., 2014] or
OSQP [Stellato et al., 2020]. Collisions are detected exploiting the Flexible Collision Library

(FCL) [Pan et al., 2012] using convex-hull approximations of the links of the robot.
All video showing the presented simulations and real experiments are included in the

material accompanying this thesis 6.

2.6.1 Non Co-Planar Contacts Scenario

The NSPG has been tested in the scenario where an external planner returns a series of
feasible stances only. In this case, the contact state can be written as:

s = ⟨σ⟩. (2.21)

Specifically, the humanoid robot has to climb a stair of three steps on a sequence of 18
stances. The first two steps are flat while the last two are rotated of 0.25 rad along the x-axis

6https://youtu.be/eEQbz8r5Z3s

https://youtu.be/eEQbz8r5Z3s
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Figure 2.6 Captures of COMAN+ moving on a sequence of predefined stances while the
NSPG generates feasible configurations
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Figure 2.7 Results from the scenario in Section 2.6.1

(see Fig. 2.6). The stances are so that they respect the principle of connectivity described
in Section 2.4 and the NSPG has to find a series of feasible configuration qqqi, each one
corresponding to a specific stance σi, in the hypothesis that a feasible configuration exists
for each stance. Differently from the previous scenario, the sequence of stances includes
contacts with both the hands to enhance static stability. The NSPG is used after the planner
and generates a sequence of configurations starting from a sequence of stances. Following
the algorithm described in Section 2.5, the previous configuration qqqi−1 has been used as
nominal configuration for the generation of qqqi, starting from a known homing configuration
qqqstart.

This scenario stresses the capability of the NSPG to find collision-free and stable config-
urations while stepping on non-co-planar stances, using a whole-body approach.

The NSPG performance is tested on 10 runs using the same sequence of stances. Results
are collected in Fig. 2.7: the NSPG is always able to find all the 18 feasible configurations,
changing the active links accordingly, in approximately 2.2 seconds with an average of 0.12
seconds for each generated configuration.

2.6.2 Corridor Scenario

The NSPG has been also tested in a scenario particularly tricky scenario for a sampled-based
planner algorithm: a narrow corridor [Kingston et al., 2018]. In particular, CENTAURO
and COMAN+ are asked to traverse a narrow corridor 0.7 m wide and and 1.8 m high.
Taking advantage of the capability of CENTAURO to roll through the next stance instead of
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taking a step, its active contacts do not change during the whole planning. In this scenario,
CENTAURO proves the effectiveness of the methodology to generate (self-)collision free
postures being the corridor wide approximately as the robot itself.

When planning with COMAN+ instead, locomotion is achieved by continuously switch-
ing between the two feet, i.e., the walking pattern. In particular, a sequence of single and
double stances is computed by the planner and connectivity is guaranteed generating single-
stance statically stable configurations. Indeed, the next double-stance configuration can be
reached if and only if it is single-stance stable, avoiding the robot to go through an unstable
region while walking (see Section 2.4). This is particularly challenging both from a stability
and collision-safety point of view, since the robot has to move its CoM between the two
stance-feet while moving in the corridor.

In this scenario, the NSPG is used inside a planner routine, implemented using OMPL [Şu-
can et al., 2012], to validate the sampled stances. Every time a new stance σi is sampled, the
contact state si = ⟨σi,qqqi⟩ is added to the search tree if the NSPG has been able to compute a
feasible whole-body configuration qqqi in the given time T.

Three parameter setups were tried in this scenario to test how the performance of the
NSPG changes. This was evaluated collecting data about the average time employed to find
a feasible posture:

t̄ =
∑ ti
m

, (2.22)

with ti being the time taken by the NSPG in a single call and m being the total NSPG calls.
Additionally, the NSPG performance is evaluated considering also its rate of success and the
average number of iterations the NSPG takes to find a feasible solution computed as:

ī =
t̄

tHIK + tCS + tCC
, (2.23)

with tHIK, tCS and tCC being the average time required by the HIK and the stability/collision
check respectively. The integration time is kept fixed dt = 0.005 seconds, as well as the pa-
rameter N = 10 to guarantee small differences between adjacent configurations. The timeout
T is varied between 0.5, 1, and 2 seconds. Intuitively, this variation in T should guarantee a
higher success rate of the algorithm that is allowed to search a feasible configuration for a
longer time. On the other hand, the mean time to find a single feasible posture increases the
more the timeout is increased.

Results are collected in Table 2.2, which confirm the observations just done. Screenshots
on the simulations with both COMAN+ and CENTAURO, are shown in Fig. 2.4. Real
experiments with CENTAURO in this scenario are shown in Fig. 2.5. Both in the simulated
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and real experiments, the surrounding environment is detected using perception data based
on a 3D point cloud generated by a Lidar sensor. The data are collected following the work
in [Hornung et al., 2013].

2.7 Conclusions

This first chapter presents a novel algorithm, named Null-Space Posture Generator (NSPG),
able to efficiently generate stable and (self-)collision free whole-body postures for a generic,
multi-limbed, floating-base robot, given a sequence of stances. The NSPG has been de-
veloped to speed up the whole-body motion planning of complex robotic systems when
passing through particularly challenging environments keeping the tuning procedure as light
as possible, proposing a solution for the problem of posture generation in multi-contact
planning scenarios. Furthermore, it can be also used independently as a posture generator,
given the active contacts as shown in Sec. 2.6.1 Multiple experiments on two profoundly
different robotic platforms, COMAN+ and CENTAURO, demonstrated that the NSPG is
capable to quickly generate stable and collision-free configurations for a legged robot in
contact with the environment, exploiting null-space motions. In particular, CENTURO
represents a challenging platform for planning considering the high number of DoFs. Real
experiments were also carried out on CENTAURO using a Lidar to perceive the environment,
demonstrating the applicability of the proposed approach to a real scenario.

Currently, the NSPG is able to generate approximately 1000 configurations per second,
guaranteeing a good exploration despite using a light randomic approach able to adapt while
exploiting the robot’s workspace depending on the unfeasibility occurrence. The proposed
method, even if based on a random approach, presents a good level of reliability, which is
observed on the result obtained in the two considered scenarios. Additionally, it does not
require big effort to tune its parameters, which do not depend on the robotic platform in use,
as it has been seen by the general applicability of the algorithm to two profoundly different
robotic platforms.

Comparing the obtained results to the recent work proposed in [Shigematsu et al., 2019],
in the cluttered scenario (Section 2.6.1) we were able to double the configurations with an
average time that is smaller of 3 orders of magnitude, guaranteeing minimal differences
between adjacent postures. Future works will involve the use of the NSPG in a multi-contact
planner scenario similar to the one used to generate stances for the scenario 2.6.1. Further,
the stability check could be improved considering centroidal dynamics, allowing higher
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dynamic motions and enlarging the set of possible feasible configurations and application,
i.e. kinodynamic planning.



References

Bouyarmane, K. and Kheddar, A. (2012). Humanoid robot locomotion and manipulation
step planning. Advanced Robotics, 26(10):1099–1126.

Buchanan, R., Bandyopadhyay, T., Bjelonic, M., Wellhausen, L., Hutter, M., and Kottege, N.
(2019). Walking posture adaptation for legged robot navigation in confined spaces. IEEE

Robotics and Automation Letters (RAL), 4(2):2148–2155.

Caron, S., Pham, Q., and Nakamura, Y. (2015). Stability of surface contacts for humanoid
robots: Closed-form formulae of the contact wrench cone for rectangular support areas. In
IEEE International Conference on Robotics and Automation (ICRA), pages 5107–5112.

Cognetti, M., Mohammadi, P., and Oriolo, G. (2015). Whole-body motion planning for
humanoids based on com movement primitives. In IEEE-RAS International Conference

on Humanoid Robots (HUMANOIDS), pages 1090–1095.

Deits, R. and Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-integer
convex optimization. In 2014 IEEE-RAS International Conference on Humanoid Robots

(HUMANOIDS), pages 279–286.

Escande, A., Kheddar, A., and Miossec, S. (2013). Planning contact points for humanoid
robots. Robotics and Autonomous Systems, 61(5):428–442.

Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierarchical quadratic programming:
Fast online humanoid-robot motion generation. The International Journal of Robotics

Research (IJRR), 33(7):1006–1028.

Fang, C., Rocchi, A., Hoffman, E. M., Tsagarakis, N. G., and Caldwell, D. G. (2015).
Efficient self-collision avoidance based on focus of interest for humanoid robots. In 2015

IEEE-RAS 15th International Conference on Humanoid Robots (HUMANOIDS), pages
1060–1066.



References 37

Ferrari, P., Cognetti, M., and Oriolo, G. (2018). Anytime whole-body planning/replanning
for humanoid robots. In IEEE-RAS International Conference on Humanoid Robots

(Humanoids), pages 1–9.

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and Diehl, M. (2014). qpOASES: a
parametric active-set algorithm for quadratic programming. Mathematical Programming

Computation, 6(4):327–363.

Ferrolho, H., Merkt, W., Yang, Y., Ivan, V., and Vijayakumar, S. (2018). Whole-body
end-pose planning for legged robots on inclined support surfaces in complex environments.
In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (HUMANOIDS),
pages 944–951.

Gutmann, J.-S., Fukuchi, M., and Fujita, M. (2005). Real-time path planning for humanoid
robot navigation. In International Joint Conferences on Artificial Intelligence (IJCAI),
pages 1232–1237.

Hauser, K., Bretl, T., and Latombe, J. . (2005). Non-gaited humanoid locomotion planning.
In IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS), pages 7–12.

Hauser, K., Bretl, T., Latombe, J.-C., Harada, K., and Wilcox, B. (2008). Motion planning
for legged robots on varied terrain. The International Journal of Robotics Research (IJRR),
27(11-12):1325–1349.

Hoffman, E. M., Rocchi, A., Laurenzi, A., and Tsagarakis, N. G. (2017). Robot control for
dummies: Insights and examples using opensot. In 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (HUMANOIDS), pages 736–741.

Hoffman, E. M. and Tsagarakis, N. G. (2021). The math of tasks: A domain specific
language for constraint-based task specification. International Journal of Humanoid

Robotics, 18(03):2150008.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013). OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Springer Autonomous

Robots.

Kanoun, O., Lamiraux, F., and Wieber, P.-B. (2011). Kinematic control of redundant manip-
ulators: Generalizing the task-priority framework to inequality task. IEEE Transaction on

Robotics (TRO), 27(4):785–792.



References 38

Kanoun, O., Lamiraux, F., Wieber, P.-B., Kanehiro, F., Yoshida, E., and Laumond, J.-P. (2009).
Prioritizing linear equality and inequality systems: application to local motion planning for
redundant robots. In IEEE international conference on robotics and automation (ICRA),
pages 2939–2944.

Kashiri, N., Baccelliere, L., Muratore, L., Laurenzi, A., Ren, Z., Hoffman, E. M., Kamedula,
M., Rigano, G. F., Malzahn, J., Cordasco, S., Guria, P., Margan, A., and Tsagarakis, N. G.
(2019). Centauro: A hybrid locomotion and high power resilient manipulation platform.
IEEE Robotics and Automation Letters (RAL), 4(2):1595–1602.

Kingston, Z., Moll, M., and Kavraki, L. E. (2018). Sampling-based methods for motion
planning with constraints. Annual Review of Control, Robotics, and Autonomous Systems,
1(1):159–185.

Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., and Inoue, H. (2001). Footstep planning
among obstacles for biped robots. In IEEE-RSJ International Conference on Intelligent

Robots and Systems (IROS), volume 1, pages 500–505.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T.,
Marion, P., and Tedrake, R. (2016). Optimization-based locomotion planning, estimation,
and control design for atlas. Autonomous Robots, 40(3):429–455.

Laurenzi, A., Hoffman, E. M., Muratore, L., and Tsagarakis, N. G. (2019). CartesI/O: A ros
based real-time capable cartesian control framework. In 2019 International Conference on

Robotics and Automation (ICRA), pages 591–596.

Pan, J., Chitta, S., and Manocha, D. (2012). Fcl: A general purpose library for collision and
proximity queries. In IEEE International Conference on Robotics and Automation (ICRA),
pages 3859–3866.

Polverini, M. P., Laurenzi, A., Hoffman, E. M., Ruscelli, F., and Tsagarakis, N. G. (2020).
Multi-contact heavy object pushing with a centaur-type humanoid robot: Planning and
control for a real demonstrator. IEEE Robotics and Automation Letters (RAL), 5(2):859–
866.

Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S. (2009). Chomp: Gradient opti-
mization techniques for efficient motion planning. In IEEE International Conference on

Robotics and Automation (ICRA), pages 489–494.



References 39

Ruscelli, F., Parigi Polverini, M., Laurenzi, A., Mingo Hoffman, E., and Tsagarakis, N. G.
(2020). A multi-contact motion planning and control strategy for physical interaction tasks.
In IEEE - RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3869–3876.

Shigematsu, R., Murooka, M., Kakiuchi, Y., Okada, K., and Inaba, M. (2019). Generating a
key pose sequence based on kinematics and statics optimization for manipulating a heavy
object by a humanoid robot. In 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3852–3859.

Stasse, O., Escande, A., Mansard, N., Miossec, S., Evrard, P., and Kheddar, A. (2008). Real-
time (self)-collision avoidance task on a hrp-2 humanoid robot. In IEEE International

Conference on Robotics and Automation (ICRA), pages 3200–3205.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2020). OSQP: an
operator splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637–672.
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Chapter 3

Global Offline Planning Strategy

Thanks to their structure, humanoid robots have the potential to accomplish complex tasks that
require to move within unstructured and confined environments by repeatedly establishing
and breaking multiple, non-coplanar contacts, using feet, hands and possibly other parts of
the body. Examples of these multi-contact loco-manipulation tasks include crawling under
low obstacles, climbing a ladder, and standing up exploiting the environment as support. The
latter example is shown in Fig. 3.1.

To effectively fulfill these tasks, the humanoid must be able to autonomously decide
and execute appropriate motions that respect several crucial constraints such as balance,
collision avoidance, and kinematic/dynamic limitations. This problem needs to be addressed
both at the planning and control level, and is therefore known as Multi-Contact Planning

and Control (MCPC) problem [Bouyarmane et al., 2019]. Although MCPC is a very active
research field for almost two decades, humanoids are still far from being able to perform
complex multi-contact loco-manipulation tasks in real-world scenarios, as highlighted by the
2015 DARPA Robotics Challenge [Atkeson et al., 2018].

3.0.1 Previous works

At the planning level, the MCPC problem requires to compute a discrete sequence of
contact combinations, called stances, together with a sequence of continuous whole-body
motions to realize them. The stance-before-motion paradigm introduced by Bretl [2006], i.e.,
choosing first the sequence of stances and subsequently a sequence of compatible motions,
is recognized as the most suitable in multi-contact scenarios. The problem of planning the
stance sequence is particularly challenging due to its combinatorial nature: the sequence of
contact combinations is in fact acyclic, differently from the case of pure biped locomotion in
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Figure 3.1 An example of multi-contact loco-manipulation task: COMAN+ stands up
exploiting the environment, in particular the wall and the ground, as support.
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which the identity of the foot in contact with the ground regularly alternates between the right
and left. Early approaches, such as Hauser et al. [2008], deal with the problem complexity
by first creating a stance-adjacency graph based on a set of predesigned possible contacts
between robot and environment points, and then searching it to find an appropriate sequence
of stances, each one having an associated, kinematically consistent robot configuration.

Other methods (e.g, Bouyarmane and Kheddar [2012]; Escande et al. [2013]) avoid
the specification of predesigned potential contact points, thus allowing contacts anywhere
in the environment. These methods first find a guide path, via a standard sampling-based
method, for a free-floating robot model that does not collide with obstacles but keeps the
limbs sufficiently close to them. Then, the stance sequence is computed through a best-first
search in which the generation of associated configurations is driven by the guide path. A
more recent work [Tonneau et al., 2018], adopting a similar approach, impressively improves
the search efficiency by precomputing a feasible set of configurations for each kinematic
chain of the robot.

In contrast to the stance-before-motion paradigm, techniques like contact-consistent
elastic strips (CES) [Chung and Khatib, 2015] and contact-invariant optimization (CIO)
[Mordatch et al., 2012] plan the stance sequence simultaneously to the associated configu-
rations and the motions between them, respectively. To make the problem tractable, CES
involves a preliminary phase in which a sequence of contact-regions is computed, while CIO
assumes that the number of stances is given and no actuation limits exist.

Except for coupled planners like the latter, once the sequences of stances and associated
configurations are found, the next step consists in generating the motions between them.
In literature, this is done either in online or offline fashion. With online approaches, when
moving from the current stance to the next, the robot configuration is regulated to that
associated to the latter using a whole-body controller [Bouyarmane and Kheddar, 2011].
Clearly, this approach works only if the consecutive configurations are reasonably close;
for more complex motions, the whole-body controller shall track the trajectory of the robot
center of mass that is typically produced using Model Predictive Control (see, e.g., Caron
and Kheddar [2016]; Carpentier et al. [2016]). On the other hand, offline approaches (e.g.,
Ruscelli et al. [2020]), involve constrained versions of sampling-based planners (see Kingston
et al. [2018] for a recent review) to compute the complete robot motion before execution.

At the control level, the MCPC problem consists of choosing online the inputs for
the robot actuators in such a way to track at best the open-loop planned motion while
guaranteeing closed-loop balance at any time instant. These inputs correspond to the torque
commands when dealing with torque-controlled robots. While motion tracking can be
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achieved using classical compliance/impedance-based techniques [Park, 2019], instantaneous
balance requires adjusting the distribution of contact forces among the contacting robot
links and consequently the joint torques to realize them. In literature, this problem was
solved by single- and double-stage methods. The first approach (used for instance in Herzog
et al. [2016]; Saab et al. [2013]) simultaneously optimize contact forces and joint torques
exploiting the full-body inverse dynamics of the robot. On the contrary, double-stage methods
either pre- or post-optimize the contact forces. Approaches based on pre-optimization (such
as Henze et al. [2016]; Lee and Goswami [2012]; Stephens and Atkeson [2010]) first solve
the optimal contact force distribution problem, and then maps them to joint torques. Such
strategy requires the (quite tricky) specification of a reference angular momentum. This is
avoided with approaches based on post-optimization (such as Laurenzi et al. [2018]; Polverini
et al. [2019]) which first computes the joint torques treating the humanoid as a fully-actuated
fixed-base system, and then maps them to contact forces for the actual underactuated system.

Each of the works mentioned above focuses on a specific aspect of the MCPC problem,
either related to planning or control. In literature, the few works addressing the complete
MCPC problem propose techniques that are specifically designed for a single task such as
climbing stairs using a handrail [Werner et al., 2016], climbing a ladder [Vaillant et al., 2016],
or pushing a heavy object [Polverini et al., 2020].

3.1 Background

Before formally defining the problem of interest, this section recalls some basic notions that
will be used throughout the chapter.

3.1.1 Definitions and notation

The configuration of the humanoid robot is described by the vector of generalized coordinates
qqq = [qqqT

fb,qqq
T
jnt]

T , where qqqfb = [pppT
fb,ooo

T
fb]

T ∈ SE(3) is the pose, with pppfb and ooofb the position
and orientation1 coordinates, of the floating-base frame F fb w.r.t. the inertial world frame
F w, and qqqjnt is the n-vector of joint angles. The dimension of the configuration space C is
dim(C ) = 6+n.

Two types of contacts, i.e., point and surface contacts, may occur between the robot and
the environment, and they can be maintained in the fixed mode. With a point/surface contact,

1Throughout the chapter it is assumed that a singularity-free representation is used for describing orienta-
tions.
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a point/surface on the exterior of a robot link touches a point/surface of the environment.
Moreover, maintaining a point/surface contact in the fixed mode fully constrains the posi-
tion/pose of the contacting robot point/surface. Contact types other than the point and surface
ones, e.g. edge contacts, and contact modes other than the fixed one, e.g. sliding or rolling
contacts, are out of the scope of this chapter.

A stance is a set σ = {c1, . . . ,cm} of m contacts. Each contact is defined by a triplet
ci = ⟨ti,Fi,rrrc,i⟩, whose fields are described below:

• ti ∈ {P,S} is the contact type. In particular, ti = P if ci is a point contact, and ti = S

if ci is a surface contact.

• Fi is the contact frame, i.e., a reference frame rigidly attached to the contacting robot
point or surface. The pose rrri = [pppT

i ,ooo
T
i ]

T , with pppi and oooi the position and orientation
coordinates, of Fi w.r.t. F w is related to the robot configuration qqq by a forward
kinematic map rrri = kkki(qqq). At differential level, it becomes ṙrri = JJJi(qqq)q̇qq, with JJJi(·) the
contact Jacobian, i.e., the Jacobian matrix of kkki(·) w.r.t. qqq. In the following, kkkp,i(·) and
kkko,i(·) denote, respectively, the position and orientation components of kkki(·), and by
JJJp,i(·) and JJJo,i(·) their corresponding Jacobian matrices.

• rrrc,i = [pppT
c,i,ooo

T
c,i]

T is the pose of Fi w.r.t. F w when ci is established. While maintained,
ci yields a kinematic constraint of the form:

kkkp,i(qqq) = pppc,i, if ti = P, (3.1)

kkki(qqq) = rrrc,i, if ti = S. (3.2)

In a stance σ , each contact ci involves a different contact frame. The set {F1, . . . ,Fm} of
contact frames involved at a stance σ is retrieved by a function Ψ(σ).

A stance σ defines a submanifold Cσ of C , called stance submanifold, containing all
configurations qqq that satisfy the kinematic constraints (3.1)-(3.2) for all contacts. Let mP and
mS be the number of, respectively, point and surface contacts in σ , such that m = mP+mS.
Then, the dimension of Cσ is dim(Cσ ) = dim(C )−3mP−6mS.

The manifold Cσ contains a subspace Dσ , called feasible subspace, of feasible con-
figurations. For a configuration qqq ∈ Cσ to belong to Dσ , it must satisfy the following
conditions:

• Joint limits are respected, i.e.,

qqqmin
jnt ≤ qqqjnt ≤ qqqmax

jnt . (3.3)
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• Collisions with the environment, with the exception of the robot points and surfaces
involved in the contacts specified by σ , and self-collisions are avoided.

• Static balance is guaranteed (related conditions are discussed in Sect. 3.1.2).

Two stances σ and σ ′ are adjacent if both the following conditions are satisfied:

• σ and σ ′ differ by a single contact, i.e., σ ′ can be reached by either removing (σ ⊃ σ ′)
or adding a contact (σ ⊂ σ ′) from/to σ .

• Dσ ∩Dσ ′ ̸= /0, i.e., there exists (at least) one configuration qqq, called transition, that
belongs to both Dσ and Dσ ′ . In particular, if σ ⊂ σ ′ (σ ⊃ σ ′), qqq is a transition if
it satisfies the kinematic constraints yielded by the contacts in σ ′ (σ ), and the static
balance conditions using the contacts in σ (σ ′), in addition to satisfy joint limits and
collision avoidance.

3.1.2 Conditions for static balance

Consider a stance σ and, for each contact ci ∈ σ , denote by wwwc,i = [ fff T
c,i,τττ

T
c,i]

T the contact
wrench (expressed in F w) exerted by the environment on the contacting robot point (if ti = P)
or surface (if ti = S). Here, fff c,i = [ f x

c,i, f y
c,i, f z

c,i]
T and τττc,i = [τx

c,i,τ
y
c,i,τ

z
c,i]

T are, respectively,
the resultant of the applied contact forces and the moment of these forces around the origin
of Fi. Clearly, τττc,i = 0 if ti = P.

In the following, wwwi
c,i = [ fff i T

c,i ,τττ
i T
c,i ]

T , with fff i
c,i = [ f x,i

c,i , f y,i
c,i , f z,i

c,i ]
T and τττ i

c,i = [τx,i
c,i ,τ

y,i
c,i ,τ

z,i
c,i ]

T ,
denotes the contact wrench wwwc,i expressed in frame Fi at a configuration qqq, i.e.,

wwwi
c,i =

[
RRRT

i 03×3

03×3 RRRT
i

]
wwwc,i, (3.4)

where RRRi is the rotation matrix associated with kkko,i(qqq).
Collect in vector WWW c = [wwwT

c,1, . . . ,www
T
c,m]

T the contact wrenches at all ci ∈ σ . The robot
motion is related to WWW c and the n-vector τττ of actuated joint torques by the Lagrangian
equations

MMM(qqq)q̈qq+ ccc(qqq, q̇qq)+ggg(qqq) = SSSτττ + JJJT
c (qqq)WWW c, (3.5)

where MMM(qqq) is the robot inertia matrix, ccc(qqq, q̇qq) the Coriolis and centrifugal term, ggg(qqq) the
gravity term, SSS defined as

SSS = [0n×6 IIIn×n]
T (3.6)
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models the system under-actuation, and JJJc(qqq) = [JJJT
1 (qqq), . . . ,JJJ

T
m(qqq)]

T stacks all the contact
Jacobians.

The humanoid at a configuration qqq∈Cσ is in static balance if there exist contact wrenches
WWW c and actuated torques τττ satisfying the following conditions:

C1 The gravity is compensated. This condition is given by

gggu(qqq) = JJJT
c,u(qqq)WWW c, (3.7)

ggga(qqq) = τττ + JJJT
c,a(qqq)WWW c, (3.8)

which are obtained by considering (3.5) under quasi-static conditions, i.e., q̈qq = q̇qq = 000,
and explicitly separating the system unactuated (subscript u) and actuated (subscript a)
parts associated to, respectively, the first 6 and last n rows of (3.5). Note that, condition
(3.8) implicitly requires that the actuated torques τττ are within their limits, i.e.,

τττ
min ≤ τττ ≤ τττ

max. (3.9)

C2 For each contact ci ∈ σ , the contact force fff c,i lies inside the Coulomb friction cone
having apex at pppc,i and directed by the unit normal nnnc,i at pppc,i pointing from the
environment to the robot, i.e.,

fff c,i ·nnnc,i > 0,

∥ fff t
c,i∥ ≤ µi( fff c,i ·nnnc,i),

(3.10)

which imposes unilaterality and non-slippage of ci, with fff t
c,i = fff c,i−(nnnc,i · fff c,i) ·nnnc,i the

tangential component of fff c,i, and µi the static friction coefficient. By approximating
the Coulomb friction cone with an inscribed pyramid (see Bouyarmane et al. [2019];
Trinkle et al. [1997]), condition (3.10) takes the linear form

f z,i
c,i > 0,

∣∣∣ f x,i
c,i

∣∣∣≤ µ̃i f z,i
c,i ,

∣∣∣ f y,i
c,i

∣∣∣≤ µ̃i f z,i
c,i , (3.11)

where µ̃i = µi/
√

2.

C3 For each surface contact ci ∈ σ (ti = S), the Center of Pressure (CoP) lies inside the
contacting robot surface, i.e.,

∣∣xi
CoP,i

∣∣≤ dx
i ,

∣∣yi
CoP,i

∣∣≤ dy
i , (3.12)
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where the CoP coordinates in frame Fi are given by

xi
CoP,i =−

τ
y,i
c,i

f z,i
c,i

, yi
CoP,i =

τ
x,i
c,i

f z,i
c,i

, (3.13)

and dx
i , dy

i are the half-dimensions of the CoP rectangular2, admissible region.

C4 For each surface contact ci ∈ σ (ti = S), the yaw moment τ
z,i
c,i is bounded as

τ
z,min
c,i ≤ τ

z,i
c,i ≤ τ

z,max
c,i , (3.14)

with

τ
z,min
c,i =−µ̃i(dx

i +dy
i ) f z,i

c,i +
∣∣∣dy

i f x,i
c,i − µ̃iτ

x,i
c,i

∣∣∣
+
∣∣∣dx

i f y,i
c,i − µ̃iτ

y,i
c,i

∣∣∣ , (3.15)

τ
z,max
c,i = µ̃i(dx

i +dy
i ) f z,i

c,i −
∣∣∣dy

i f x,i
c,i + µ̃iτ

x,i
c,i

∣∣∣
−
∣∣∣dx

i f y,i
c,i + µ̃iτ

y,i
c,i

∣∣∣ . (3.16)

C1 is usually referred to as centroidal statics condition, while C2-C4 are known as
contact-stability conditions (for details about their derivation see Caron et al. [2015]).

3.2 Problem formulation

Consider a torque-controlled humanoid robot that is assigned a multi-contact loco-manipulation
task, i.e., a task that requires the robot to move within the environment by repeatedly estab-
lishing and breaking multiple, non-co-planar contacts. In the proposed formulation, the task
is specified as a desired final stance σfin that the robot must reach from its initial stance σ ini,
which is given together with its initial configuration qqqini and contact wrenches WWW ini

c .
The objective of this chapter is to design and validate a complete MCPC framework that

enables the humanoid to autonomously plan and execute the quasi-static motions required to
fulfill the assigned task. To this end, it is required to tackle three fundamental challenges that
will be solved by the MCPC framework, adopting the stance-before-motion paradigm, in the
following order:

2Humanoid surfaces that are allowed to establish contacts are typically rectangular (e.g., a foot sole). In
general, a rectangular region can also be involved as an inner approximation of a contacting surface having a
more complex shape.
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Figure 3.2 The predefined set U of potential contact frames. In this example, U =
{F lf,F rf,F lh,F rh} contains the frames rigidly attached on the left/right foot/hand. Feet
and hands can, respectively, establish surface and point contacts, i.e., ϕ(F lf) = ϕ(F rf) = S

and ϕ(F lh) = ϕ(F rh) = P. The robot is at a stance σ such that Ψ(σ) = {F1 = F lf,F2 =
F rf,F3 = F rh}.
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Figure 3.3 Block scheme of the proposed MCPC framework. The single modules are
described in Sects. 3.4-3.6.

1. to find an appropriate sequence of adjacent stances leading to the desired one, together
with their associated transitions;

2. to compute a sequence of feasible whole-body motions compatible with the sequence
of stances, passing through the associated transitions (as graphically shown in Fig.
3.4);

3. to generate torque commands for the humanoid in order to realize the planned motions,
while guaranteeing closed-loop balance at any time instant.

Under the following assumptions:

A1 The environment is static and known. Its geometry is represented by a point cloud
P , and the unit normal nnn pointing from the environment to the robot can be readily
computed at any point ppp ∈P whenever needed.

A2 Contacts can be established anywhere in the environment by using a predefined set
U = {F a,F b,F c, . . .} of potential contact frames, henceforth referred to as end-

effectors. Each Fh ∈ U is rigidly attached to a point/surface on the exterior of a
robot link that is allowed to establish point/surface contacts and is oriented so that
the xy-plane is tangent/parallel to it and the z-axis points inward (see Fig. 3.2). The
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function ϕ(Fh) retrieves the type of contact that an end-effector Fh ∈U can establish,
with ϕ(Fh) = P or ϕ(Fh) = S depending on whether Fh can establish point or surface
contacts, respectively.

3.3 Proposed framework

To solve the described problem, this chapter proposes the MCPC framework whose underly-
ing architecture is shown in Fig. 3.3. It is composed of two layers dedicated to, respectively,
multi-contact motion planning and control.

The planning layer works offline and consists of two sequential sub-planners: the stance

planner and the whole-body planner. Figure 3.4 illustrates the role of these two planning
modules and the necessary existence of transitions to move through consecutive feasible
subspaces.

The stance planner is in charge of finding three sequences

Sσ = {σ0, . . . ,σN},

Sq = {qqq0, . . . ,qqqN},

SW = {WWW c,0, . . . ,WWW c,N},

where Sσ is the sequence of N + 1 stances leading to the desired final stance σfin, i.e.,
σN = σfin, while Sq and SW are sequences of transitions and contact wrenches, respectively.
More precisely, for each j = 1, . . . ,N, stance σ j ∈Sσ is adjacent to σ j−1; configuration
qqq j ∈Sq is a transition associated to stance σ j, i.e., qqq j ∈Dσ , j−1∩Dσ , j, with Dσ , j−1 and Dσ , j

the feasible subspace at σ j−1 and σ j, respectively; vector WWW c, j ∈SW collects the contact
wrenches that guarantee static balance at qqq j using the contacts specified by σ j. Clearly,
σ0 = σ ini, qqq0 = qqqini, and WWW c,0 =WWW ini

c . Note also that N and qqqN are not preassigned and will
be autonomously determined by the stance planner.

The whole-body planner, for each pair of consecutive configurations qqq j and qqq j+1 ( j =

0, . . . ,N−1) belonging to Sq, computes a feasible whole-body motion sss j, i.e., a configuration
space trajectory in Dσ , j that connects the two and has duration δ j, which is determined by
the planner itself. Then, the result of this planner consists of a sequence of motions

Ss = {sss0, . . . ,sssN−1}.
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Figure 3.4 Role of the two planning modules. The stance planner generates the sequences of
adjacent stances, associated transitions, and contact wrenches. Here, the feasible subspaces
associated with three consecutive stances are depicted in cyan, orange, and pink. Transitions
(blue bullets) belong to the intersection of feasible subspaces associated with adjacent
stances. The whole-body planner generates the sequence of trajectories (blue paths) between
consecutive transitions. Sample configurations (blue squares) along them are also shown. In
the five snapshots: the colored end-effectors satisfy the kinematic constraints that define the
feasible subspace having the same color, while red arrows indicate non-null contact forces
(moments are not shown). In the considered example, the robot is performing a quadrupedal
walk: in particular, it is moving the right hand. Note how at transitions, four end-effectors
are kinematically constrained but static balance is guaranteed using only three of them (the
contact wrench exerted at the right hand is null).
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The control layer is responsible for generating online the torque commands τ̄ττ for the
humanoid actuators to execute the planned sequence Ss of whole-body motions throughout
the planned sequence Sσ of stances. To this end, it uses two cooperating modules: the stance

switching and reactive balancing module. During execution, the control layer maintains
information about the index j of the last achieved stance in the sequence Sσ . Then, according
to j, stances σ j, σ j+1, contact wrenches WWW j

c and motion sss j are sequentially selected from the
corresponding planned sequences.

To successfully accomplish the assigned task it is essential that contacts are actually
established/broken in accordance with the planned stance sequence. To this end, the stance
switching module computes a feedback action τττ jnt aimed at realizing the motion sss j while
ensuring that stance σ j+1 is eventually achieved despite any execution inaccuracy. In
particular, to continuously monitor the achievement of σ j+1, this module makes use of
the measured/estimated contact wrenches ŴWWU at all the end-effectors in U . Once σ j+1 is
eventually achieved, index j is incremented.

The reactive balancing module, which works synchronously with the stance switching
module, computes a feedforward action τττbal aimed at ensuring static balance by online
adjusting the planned contact wrenches WWW c, j to absorb possible external disturbances or
modeling uncertainties.

Proprioceptive sensing is used for both control modules. In particular, measured joint
positions q̂qqjnt, velocities ˙̂qqqjnt, and floating-base orientation ôoofb, which is obtained through
an Inertial Measurement Unit (IMU) mounted in the humanoid torso, are provided to both
modules. Measured joint torques τ̂ττ are instead provided, together with all the measurements
mentioned above, to a contact wrenches estimation module which determines ŴWWU assuming
again quasi-static conditions

ŴWWU = (JJJT
U,a(q̂qq))

†(ggga(q̂qq)− τ̂ττ), (3.17)

where JJJU,a(·) consists of the last n columns of JJJU(·) which stacks the Jacobian matrices
associated to all end-effectors in U ; both JJJU,a(·) and ggga(·) are evaluated at the current
humanoid configuration q̂qq3. Obviously, for end-effectors equipped with force/torque sensors
(as in the case of COMAN+ feet), the corresponding contact wrenches in vector ŴWWU are
simply set to the measured values.

The next sections will discuss in detail the mentioned modules constituting the proposed
MCPC framework.

3The position of the floating-base, whose estimation is not foreseen, is left unspecified in q̂qq; the rationale
being that none of the configuration-dependent terms depends on pppfb.
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3.4 Stance planning

This section proposes a novel randomized method for planning the sequence Sσ of adjacent
stances leading to the desired one, together with the sequences Sq and SW of associated
transitions and contact wrenches.

To compute these sequences, the stance planner receives as input the humanoid initial
stance σ ini, configuration qqqini and contact wrenches WWW ini

c , together with the point cloud P

and the desired final stance σfin.

3.4.1 Tree construction

The proposed stance planner, whose pseudocode is given in Algorithm 2, uses an RRT-
like strategy to iteratively construct a tree T in the search space. In this tree, a vertex
v = ⟨σ ,qqq,WWW c⟩ consists of a stance σ , a configuration qqq ∈ Dσ , and a vector WWW c ∈ IR6m of
contact wrenches, with m = |σ |. An edge going from vertex v to vertex v′ indicates that σ

and σ ′ are adjacent (in the sense formally defined in Sect. 3.1.1); consequently, qqq′ specified
in v′ is a transition belonging to Dσ ∩Dσ ′ . At the beginning, the tree T is rooted at the
vertex vini = ⟨σ ini,qqqini,WWW ini

c ⟩ (lines 1-2). The generic iteration of the planner consists of the
four steps described in the following.

Selecting a vertex for expansion (lines 5-6): The iteration starts by choosing an end-
effector F rand and a point ppprand. The planner is allowed to randomly choose between
exploration and exploitation, to bias the growth of the tree towards unexplored regions of
the search space and the goal, respectively. In the first case, F rand and ppprand are randomly
picked from the set U and the workspace, respectively. In the second case, a contact
cfin = ⟨tfin,F fin,rrrfin

c ⟩ is randomly picked among those in σfin; then, F rand and ppprand are
chosen as F fin and pppfin

c , respectively.
Then, the planner assigns to each vertex v in T a probability that is inversely proportional

to the Euclidean distance ∥kkkrand
p (qqq)− ppprand∥ between the position of F rand at qqq (the configu-

ration specified by v) and ppprand. The resulting probability distribution is used to randomly
choose a vertex vnear = ⟨σnear,qqqnear,WWW near

c ⟩ of T for a tree expansion attempt. ◀

Generating a candidate stance (lines 7-15): Once vnear has been selected, the planner
decides whether to attempt the expansion of T from vnear by removing or adding a contact.
To this end, it checks if σnear contains a contact involving F rand, i.e., F rand ∈ Ψ(σnear).
Based on the outcome of this check, a candidate stance σ cand is generated (and subsequently
validated) as follows.
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• If F rand ∈ Ψ(σnear), σ cand is generated by removing from σnear the contact crem =

⟨trem,F rem,rrrrem
c ⟩ involving the selected end-effector F rand, i.e., σ cand = σnear \ crem.

Contact crem is simply that in σnear such that F rem = F rand.

• If F rand ̸∈ Ψ(σnear), σ cand is generated by adding to σnear a novel contact cadd =

⟨tadd,F add,rrradd
c ⟩ involving the selected end-effector F rand, i.e., σ cand = σnear∪ cadd.

To build the additional contact cadd, the planner first identifies the portion of the
workspace that the humanoid, at configuration qqqnear, can reach with end-effector F rand.
Such reachable workspace W is approximated as the set of points of the point cloud
P that lie inside a sphere4 centered at kkkrand

p (qqqnear), with radius r determined by the
planner itself: starting from a lower bound rmin, it iteratively checks increasing values
for r up to an upper bound rmax, until the resulting reachable workspace W is not
empty 5. Bounds rmin and rmax are predefined for each end-effector according to
the kinematic limits of the robot. Once the workspace W has been computed, the
point pppadd

c ∈ W that is the closest to ppprand is selected, and cadd is built by setting
tadd = ϕ(F rand), F add = F rand, and rrradd

c = [(pppadd
c )T , /0]T , with the orientation oooadd

c

purposely left unspecified, as it will be automatically determined by the planner once
σ cand is validated. ◀

Generating an associate transition (line 16): At this point, the transition generation
procedure described in Sect. 3.4.2 is invoked with the aim of producing a new stance σnew

and a transition qqqnew ∈Dnear
σ ∩Dnew

σ , with Dnear
σ and Dnew

σ the feasible subspace at σnear and
σnew, respectively. In particular, the stance σnew will consist of an updated version of σ cand

in which the orientation of contact frames involved in point contacts already present in σnear

(if any) and the (possibly) newly added contact cadd are updated to their values attained at the
simultaneously generated qqqnew. ◀

Adding a new vertex (lines 17-21): If the transition generation procedure succeeds, σnear

and σnew are adjacent, as both the related conditions (see Sect. 3.1.1) are satisfied. In fact,
σnew differs from σnear by a single contact (by construction of σ cand), and Dnear

σ ∩Dnew
σ ̸= /0

thanks to the existence of qqqnew. The procedure described in Sect. 3.4.3 is invoked to compute
the vector WWW new

c , collecting the contact wrenches that guarantee static balance at qqqnew using
the contacts specified by σnew. A new vertex vnew = ⟨σnew,qqqnew,WWW new

c ⟩ is then created and
added in tree T as a child of vnear. ◀

4More sophisticated methods for approximating the reachable workspace (e.g., Guan and Yokoi [2006];
Jamone et al. [2012]) can be involved without affecting the overall planning strategy.

5In case the upper bound rmax is exceeded, the current expansion attempt is aborted, and the planner starts a
new iteration. For the sake of illustration, this is not explicitly shown in Algorithm 2.
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Algorithm 2: Stance Planner
1 vini← ⟨σ ini,qqqini,WWW ini

c ⟩;
2 AddVertex(T , vini, /0);
3 l← 0;
4 repeat
5 [F rand, ppprand]← PickRandom();
6 vnear← FindNearestVertex(T , F rand, ppprand);
7 if F rand ∈Ψ(σnear) then
8 crem← ExtractContact(σnear, F rand);
9 σ cand← σnear \ crem;

10 else
11 W ← ComputeReachableWorkspace(qqqnear, F rand);
12 pppadd

c ← PickRandomPoint(W , ppprand);
13 cadd← ⟨ϕ(F rand),F rand, [(pppadd

c )T , /0]T ⟩;
14 σ cand← σnear∪ cadd;
15 end
16 [σnew,qqqnew]← GenerateTransition(σnear, σ cand, qqqnear);
17 if qqqnew ̸= /0 then
18 WWW new

c ← ComputeContactWrenches(σnew, qqqnew);
19 vnew← ⟨σnew,qqqnew,WWW new

c ⟩;
20 AddVertex(T , vnew, vnear);
21 end
22 l← l +1;
23 until σnew = σfin or l = lmax

σ ;
24 if σnew = σfin then
25 [Sσ ,Sq,SW ]← RetrieveSolution(T );
26 return [Sσ ,Sq,SW ];
27 end
28 return [ /0, /0, /0];

Construction of T stops when the desired final stance is reached, i.e., σnew = σfin, or a
maximum number lmax

σ of iterations has been performed. In the first case, the sequences Sσ ,
Sq, and SW are directly retrieved from the vertices along the branch of T joining the root
vertex vini to vnew (line 25) and passed to the whole-body planner. In the second case, the
stance planner returns a failure.

3.4.2 Transition generation

The proposed transition generator consists of an adaptation of the method presented in
Rossini et al. [2021] for the specific case in which adjacency conditions between stances
must be accounted for. It receives in input the stance σnear, its associated transition qqqnear,
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Procedure 3: GenerateTransition(σnear, σ cand, qqqnear)
1 if

∣∣σ cand
∣∣> |σnear| then

2 σ lar← σ cand, σ sma← σnear;
3 else
4 σ lar← σnear, σ sma← σ cand;
5 end
6 qqqnom← SolveIK(σ lar, qqqnear, qqqnear);
7 qqqcand← qqqnom;
8 l← 0;
9 while not (CollisionFree(qqqcand) and Balanced(qqqcand, σ sma)) do

10 if mod(l, lmax
tran ) = 0 then

11 qqqref← qqqnom;
12 q̇qqrand← GenerateRandomVelocity();
13 end
14 qqqref← Integrate(qqqref, q̇qqrand);
15 qqqcand← SolveIK(σ lar, qqqcand, qqqref);
16 l← l +1;
17 end
18 σ cand← UpdateStance(σ cand,qqqcand);
19 return [σ cand,qqqcand];

and the candidate stance σ cand. The aim is to produce a configuration qqqcand that belongs to
Dnear

σ ∩Dcand
σ , and is close to qqqnear.

Let σ lar and σ sma be, respectively, the largest and smallest stance between σnear and
σ cand. Denote by C lar

σ and C sma
σ their associated stance submanifolds, and by D lar

σ and D sma
σ

their corresponding feasible subspaces. Recall that, a configuration qqq belongs to D lar
σ ∩D sma

σ

if it (i) satisfies the
∣∣σ lar

∣∣ kinematic constraints yielded by σ lar, (ii) respects the joint limits,
(iii) avoids (self-)collisions, and (iv) guarantees humanoid static balance using the |σ sma|
contacts in σ sma, all at the same time.

The transition generator, whose pseudo-code is given in Procedure 3, works in an iterative
fashion by repeatedly invoking an Inverse Kinematics (IK) solver. In the following, first the
overall transition generation procedure is presented, then, the details of the IK solver will be
discussed.

Procedure

Once σ lar and σ sma have been identified between σnear and σ cand (line 1-5), the procedure
invokes the IK solver (line 6) to generate a nominal configuration qqqnom that complies with
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requirements (i)-(ii) and is as close as possible to qqqnear. Such qqqnom represents the initial
candidate configuration qqqcand.

Then, the procedure enters a cycle that repeatedly generates new versions of qqqcand,
exploiting the humanoid kinematic redundancy, to explore C lar

σ with the objective of finding
a configuration that also satisfies requirements (iii)-(iv). The generic iteration starts by
checking whether the current qqqcand satisfies such requirements (line 9). In particular, to
evaluate (iv), the procedure described in Sect. 3.4.3 is invoked. It verifies if there exists a
vector WWW cand

c , collecting the contact wrenches that guarantee static balance at qqqcand using the
contacts specified by σ sma.

In case (iii)-(iv) are not both satisfied, the IK solver is invoked (line 15) to generate a
new version of qqqcand that complies with requirements (i)-(ii) and is as close as possible to a
reference configuration qqqref, which is obtained by numerically integrating a constant velocity
q̇qqrand (line 14). Every lmax

tran iterations (line 10), qqqref is reset to qqqnom and a new velocity q̇qqrand is
randomly generated with bounded norm (line 12). With this strategy, q̇qqrand will be maintained
fixed over lmax

tran iterations, while qqqref will consequently change in the neighbourhood of qqqnom.
This, combined with the fact that qqqnom is generated as close as possible to qqqnear, aids the
overall planning layer to produce qualitatively graceful motions. More informed strategies for
generating the velocity q̇qqrand can also be employed in the transition generator; for example,
one may generate a non-null velocity only for those kinematic chains that are in collision
at the current qqqcand. For further details about efficient strategies for selecting q̇qqrand refer to
Rossini et al. [2021].

In case (iii)-(iv) are both satisfied, the cycle is left and, for each ci ∈ σ cand, the procedure
updates the pose rrrc,i of contact frame Fi to kkki(qqqcand) (line 18). Then, the updated stance
σ cand and the configuration qqqcand, which now represents a transition in Dnear

σ ∩Dnew
σ , are

returned to the stance planner.
The cycle is interrupted as soon as a predefined time budget ∆T tran expires without finding

a transition or the IK solver returns a failure. In these cases, which for sake of illustration are
not shown in Procedure 3, a failure is reported to the stance planner.

IK solver

At the generic invocation, the IK solver is provided with a stance σ , a starting configuration
qqqstart, and a reference configuration qqqref. It aims to compute a configuration qqqcand that lies in
Cσ and is as close as possible to qqqref. To compute qqqcand, the IK solver proceeds iteratively; at
each iteration, it numerically integrates the velocities q̇qq produced by solving two sequential
QP problems. Integration starts from qqqstart.
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The first QP problem is

min
q̇qq
∥JJJσ (qqq)q̇qq−KKKσ eeeσ (qqq)∥2 +α ∥q̇qq∥2 (3.18a)

s.t.

joint limits constraint (3.18b)

where the first term of the cost function aims at fulfilling the kinematic constraints yielded by

σ , while the second is included for regularization purposes. Here, α is a positive scalar, KKKσ a
positive definite matrix, JJJσ (qqq)= [JJJT

σ ,1(qqq), . . . ,JJJ
T
σ ,m(qqq)]

T and eeeσ (qqq)= [eeeT
σ ,1(qqq), . . . ,eee

T
σ ,m(qqq)]

T ,
where m = |σ | and JJJσ ,i(qqq), eeeσ ,i(qqq) are defined according to the contact ci ∈ σ and the current
configuration qqq, respectively, as

JJJσ ,i(qqq) =

JJJp,i(qqq), if ti = P or oooc,i = /0

JJJi(qqq), otherwise,

and

eeeσ ,i(qqq) =

pppc,i− kkkp,i(qqq), if ti = P or oooc,i = /0

rrrc,i− kkki(qqq), otherwise.

Note the following points.

• If the stance planner generated σ cand by adding a contact to σnear, the stance σ provided
to the IK solver coincides with σ cand. In this case, the orientation of the contact frame
corresponding to the added contact (even in case it is a surface one) is not accounted
for in the cost function, letting the IK solver explore the different possibilities.

• In view of the choice made about the contact frames placement (see assumption A2,
Sect. 3.3), for a configuration qqq ∈ Cσ to be collision-free it is necessary (but not
sufficient) that the z-axis of each contact frame Fi involved either in a point or surface
contact ci ∈σ , is coincident with the normal at point pppc.i pointing from the environment
to the robot. Based on this observation, in order to increase the chances of the IK
solver finding a collision-free configuration, the cost function of the first QP has been
augmented of an extra term that attempts to align the z-axis of those contact frames
involved in σ whose orientation is either not explicitly constrained (i.e., point contacts)
or unspecified (i.e., an added surface contact) with the associated normal. For sake of
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illustration, the formulation of such a term has been omitted, whose structure is similar
to that of the first.

The second QP problem is

min
q̇qq

∥∥q̇qq−KKKqeeeq(qqq)
∥∥2 (3.19a)

s.t.

JJJσ (qqq)q̇qq = JJJσ (qqq)q̇qq∗1 (3.19b)

joint limits constraint (3.19c)

and attempts to bring the current configuration qqq towards the reference one qqqref. Here, KKKq is

a positive definite matrix, eeeq(qqq) = qqqref−qqq, and q̇qq∗1 is the solution of the first QP. The first
constraint ensures that the minimization of the cost function produces a solution that does
not perturb the objectives pursued by the first QP. The joint limits constraint included in both
QP problems is readily obtained by rewriting (3.3) in terms of the decision variables q̇qq.

The IK solver stops integrating when the norm of eeeσ (qqq) lowered a small threshold
εσ or a maximum number lmax

IK of integration steps have been performed. In the first
case, the kinematic constraints yielded by σ are considered satisfied, and the last obtained
configuration is returned to the transition generator; in the second case σ is considered
kinematically unrealizable, and a failure is returned to the transition generator.

3.4.3 Contact wrenches computation

Given a generic stance σ and a configuration qqq ∈ Cσ , in order to guarantee static balance,
the vector WWW c collecting the contact wrenches at all ci ∈ σ must satisfy the conditions C1-C4
described in Sect. 3.1.2. WWW c is computed solving the following QP problem

min
WWW c

∥∥gggu(qqq)− JJJT
c,u(qqq)WWW c

∥∥2
+β∥WWW c∥2 (3.20a)

s.t.

torque limits constraint (3.21) (3.20b)

friction cone constraints (3.11) (3.20c)

CoP constraints (3.12) (3.20d)

yaw moment constraints (3.14) (3.20e)
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Here, the four kinds of constraints emerge from the four conditions C1-C4, in the same order.

In particular, the system accounts separately for the centroidal statics condition (C1) on the
underactuated and actuated parts of the system. For the underactuated part, the condition
is formulated as a soft objective by the first term of the cost function (see (3.7)), in which
the second term is instead included for regularization purposes. For the actuated part, the
condition results in a simple constraint on the actuated torques (first constraint) of the form

τττ
min ≤ ggga(qqq)− JJJT

c,a(qqq)WWW c ≤ τττ
max (3.21)

that is obtained by rewriting (3.9) in terms of the decision variables. Note that, with this
formulation the actuated torques τττ are not explicitly treated as decision variables in the QP,
as they are not required during the planning stage.

For each contact in ci ∈ σ , while a friction cone constraint is enforced regardless of the
contact type, a CoP and a yaw-moment constraint are enforced only if it is a surface contact
(i.e., the constraint is not enforced for point contacts).

Recall that the computation of contact wrenches is required within the stance planner
both to check the static balance at a candidate transition qqqcand (line 9 of Procedure 3), and
obtain the remaining information needed to construct a new vertex once a transition qqqnew

has been generated (line 19 of Algorithm 2). While in the second case a solution for the QP
certainly exists (since qqqnew is a transition), in the first case the QP could prove infeasible. If
this is not the case, once the QP is solved, it is verified that the residual value of the first term
of the cost function is below a small threshold εu. Only in this case, static balance at qqqcand is
considered satisfied.

A remark is here about the choice of formulating the centroidal statics condition as a
term of the cost function, rather than as a constraint. With this choice, since the resulting
QP always admits a solution, the transition generator is more likely to validate candidate
transitions, but in a weaker sense with respect to C1, depending on the chosen value for εu.
However, the planned contact wrenches will act as suitable reference values for the controller,
which will appropriately adjust them in order to ensure reactive balance.

3.5 Whole-body planning

The whole-body planner receives in input the sequences Sσ and Sq of, respectively, stances
and associated transitions, produced by the stance planner. In the output, it provides the
sequence Ss of whole-body motions between consecutive transitions.
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The pseudocode of the whole-body planner is given in Algorithm 4. For each pair
of consecutive configurations qqq j and qqq j+1 ( j = 0, . . . ,N−1) in Sq, a configuration space
trajectory that connects the two is planned. To this end, the two-stage approach presented
in Ruscelli et al. [2020] is adopted. First, a path consisting of a sequence Sq, j of via
points (configurations) in Dσ , j joining qqq j to qqq j+1 is found (line 3); then, a continuous
(with continuous first time derivative) trajectory sss j(t), t ∈ [t j, t j + δ j), interpolating the
configurations in Sq, j is computed (line 4), simultaneously determining its duration δ j. Here,
t j indicates an arbitrary time instant at which execution of sss j will start during the control
phase. These two stages are separately discussed in detail in the next two subsections.

The sequentially generated trajectories form the sequence Ss. These, together with the
sequences SW and Sσ , produced by the stance planner, are finally sent to the control layer.

3.5.1 Via points computation

Given two consecutive configurations qqq j, qqq j+1 in Sq, and stance σ j in Sσ , the connecting
sequence

Sq, j = {qqq j,0, . . . ,qqq j,M j
},

where qqq j,0 = qqq j, qqq j,M j
= qqq j+1, and each generic element qqq j,k (k = 0, . . . ,M j) belongs to Dσ , j,

is computed using the AtlasRRT* method [Jaillet and Porta, 2012].
While constructing a tree of configurations belonging to Dσ , j using an RRT*-based

strategy, the algorithm incrementally builds an atlas of the stance submanifold Cσ , j defined
by σ j, i.e., a collection of charts, each one represented by a tangent space that locally
approximates Cσ , j to a Euclidean space. Hence, the advantage of adopting such a method is
twofold: first, its asymptotic-optimality property allows to minimize the length of the path
between qqq j and qqq j+1; second, it efficiently generates new configurations by directly sampling
Cσ , j using its atlas.

Every time a new configuration is generated, the algorithm verifies that it belongs to the
feasible subspace Dσ , j before adding it to the current tree. To this end, the satisfaction of
joint limits, collision avoidance, and static balance is checked. The latter check is performed
using the method discussed in Sect. 3.4.3, providing the generated configuration and stance
σ j.

The algorithm is allowed to run for a predefined time budget ∆T via, at the end of which
the solution sequence Sq, j is retrieved from the constructed tree and passed to the trajectory
optimization procedure.
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Algorithm 4: Whole-Body Planner
1 Ss←{};
2 for j← 0 to N−1 do
3 Sq, j← ComputeViaPoints(qqq j,qqq j+1,σ j);
4 sss j(t), t ∈ [t j, t j +δ j)← OptimizeTrajectory(Sq, j);
5 Ss←Ss∪{sss j};
6 end
7 return Ss;

3.5.2 Trajectory optimization

The trajectory sss j(t), t ∈ [t j, t j +δ j), interpolating the M j +1 configurations in Sq, j is gener-
ated by finding a spline consisting of the concatenation of M j cubic polynomials, i.e.,

sss j(t) = ρρρ j,k(t), t ∈ [t j,k, t j,k+1 = t j,k +δ j,k), (3.22)

with k = 0, . . . ,M j−1, t j,0 = t j, and δ j,k the duration of the k-th polynomial (subtrajectory),
which is defined as

ρρρ j,k(t) =
3

∑
l=0

λλλ j,k,l(t− t j,k)
l, (3.23)

with λλλ j,k,l (l = 0, . . . ,3) its coefficients. Moreover, according to (3.22), the overall duration
of trajectory sss j(t) will be

δ j =
M j−1

∑
k=0

δ j,k. (3.24)

Collect in vectors

ζζζ j = [δ j,0, . . . ,δ j,M j−1]
T ,

ξξξ j = [λλλ T
j,0,0, . . . ,λλλ

T
j,0,3, . . . ,λλλ

T
j,M j−1,0, . . . ,λλλ

T
j,M j−1,3]

T ,

the durations and coefficients of all polynomials. To obtain these, the following nonlinear
programming (NLP) problem is solved
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min
ζζζ j,ξξξ j

∥∥∥ζζζ j∥
∥∥∥2

+ γ∥ξξξ j
2 (3.25a)

s.t.

ζζζ j ≥ 000, (3.25b)

ρρρ j,k(t j,k) = qqq j,k,k = 0, . . . ,M j−1, (3.25c)

ρρρ j,k(t j,k+1) = qqq j,k+1,k = 0, . . . ,M j−1, (3.25d)

ρ̇ρρ j,k(t j,k+1) = ρ̇ρρ j,k+1(t j,k+1),k = 0, . . . ,M j−2, (3.25e)

ρ̇ρρ j,0(t j,0) = 000, (3.25f)

ρ̇ρρ j,M j−1(t j,M j) = 000, (3.25g)

q̇qqmin
jnt ≤ SSST

ρ̇ρρ j,k(t j,k)≤ q̇qqmax
jnt ,k = 1, . . . ,M j−1, (3.25h)

q̈qqmin
jnt ≤ SSST

ρ̈ρρ j,k(t j,k)≤ q̈qqmax
jnt ,k = 1, . . . ,M j−1. (3.25i)

Here, the first term of the cost function aims at minimizing the duration of the resulting

trajectory, while the second is included for regularization purposes. The constraints enforce,
respectively, non-negativity of the durations (3.25b), passage through the via points (3.25c-
3.25d), continuity of the velocity at the internal via points (3.25e), null velocity at the
initial and final points (3.25f-3.25g), limits on the resulting joint velocities and accelerations
(3.25h-3.25i), with matrix SSS defined in (3.6).

Note the following points.

• Despite a large number of decision variables, the presented NLP can be rapidly solved
thanks to its sparse structure.

• It can be reasonably assumed that each sub-trajectory ρρρ j,k(t) is completely contained
in Dσ , j when using a small stepsize in the AtlasRRT* employed in the first stage, as
consecutive configurations qqq j,k, qqq j,k+1 in Sq, j will be close to each other.

3.6 Control layer

The control layer adopted in the presented framework is mainly based on Laurenzi et al.
[2018]; Polverini et al. [2020]; Ruscelli et al. [2020]. The next section discusses it as a
possible option for executing the references produced through the offline planning phase.
However, other implementations, e.g. based on MPC or Inverse Dynamics, of the control
layer – which is not the main focus of this chapter – can potentially be involved.
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As anticipated in Sect. 3.3, a naive feedforward execution of the planned motions Ss is
generally not sufficient to guarantee the successful completion of the task. This typically
occurs due to environment and model inaccuracy, which can lead to an early or late contact
establishment/removal compromising the execution of the whole motion. For this reason,
proprioceptive and exteroceptive sensing must be used, closing the control loop and increasing
the robustness of the overall framework.

While moving between two adjacent stances σ j and σ j+1, the control layer is in charge
to track both the planned motion sss j and the contact wrench WWW c, j. This is done by generating
a torque reference τ̄ττ that takes into account two contributions:

τ̄ττ = τττbal + τττ jnt. (3.26)

The first term τττbal in (3.26) is a feedforward term to track the planned contact wrench WWW c, j

while moving toward the next stance σ j+1. This is produced by the reactive balancing module
by solving the following QP problem

min
WWW c

∥∥WWW c−WWW c, j
∥∥2 (3.27a)

s.t.

centroidal statics constraint (3.7) (3.27b)

torque limits constraint (3.21) (3.27c)

friction cone constraints (3.11) (3.27d)

CoP constraints (3.12) (3.27e)

yaw moment constraints (3.14) (3.27f)

Such QP is obtained by minor modifications of that used to compute the contact wrenches

during the planning phase (see Sect. 3.4.3). Differently from the latter, here the centroidal
statics condition on the underactuated subsystem is formulated as a constraint, while the cost
function simply attempts to keep the contact wrenches as close as possible to the planned
ones.

Then, τττbal is computed as:

τττbal = ggga(q̂qq)− JJJT
c,a(q̂qq)WWW c, (3.28)
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in such a way to realize the computed contact wrenches WWW c and compensate for the robot
links gravity, under quasi-static conditions. In (3.28), the term q̂qq = [000T

3×1 ôooT
fb qqqT

jnt]
T is the

current humanoid configuration, which is reconstructed using the IMU base orientation
measurement ôoofb, and the measured joint position qqqjnt.

The second term τττ jnt in (3.26) consists instead in a feedback term for tracking the planned
motion sss j and is produced by the stance switching module as

τττ jnt = KKKP(q̄qqjnt− q̂qqjnt)+KKKD( ˙̄qqqjnt− ˙̂qqqjnt), (3.29)

with q̄qqjnt and ˙̄qqqjnt being the joint position and velocity references extracted from the planned
motion sss j.

After the execution of sss j, to ensure that the stance σ j+1 is eventually achieved, a finishing
motion is performed in case cdiff = ⟨tdiff,F diff,rrrdiff

c ⟩, i.e., the contact by which σ j and σ j+1

differ, failed to be correctly established/broken. To this end, the stance switching module
continuously checks if the measured/estimated contact wrench wwwdiff (extracted from ŴWWU ) at
cdiff reached a certain threshold. In particular, when σ j+1⊃σ j (σ j+1⊂σ j), cdiff is considered
correctly established (broken) if ∥ŵwwdiff∥ ≥ wmax (∥ŵwwdiff∥ ≤ wmin). While such check is not
passed, the references q̄qqjnt and ˙̄qqqjnt for (3.29) are generated via kinematic control using a
scheme similar to that discussed in Sect. (19) with the idea of imposing a linear velocity
ṗppref to end-effector F diff to make it advance/retract towards/from the environment surface
on which the contact must be established/broken while maintaining all the other contacting
end-effectors at their current pose. This is obtained by simply choosing ṗppref =±KKKcnnnc, with
KKKc a positive definite matrix, nnnc the unit normal at point pppdiff

c specified by rrrdiff
c , and the sign

positive/negative if the contact must be established/broken.

3.7 Implementation details

The implementation of the proposed multi-contact motion planning and control framework
relies on various tools, which belong to the ROS ecosystem; those tools are briefly discussed
in the following.

Computations related to inverse kinematics and contact wrenches (Sects. 19, 3.6,
and 3.4.3) are managed through the CartesI/O framework [Laurenzi et al., 2019] which relies
on the OpenSoT library [Mingo Hoffman et al., 2017] for the formulation and resolution
of the corresponding QP problems. In particular, such problems can be defined through a
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simple syntax called Math of Tasks [Mingo Hoffman and Tsagarakis, 2021] and solved using
efficient QP solvers such as qpOASES [Ferreau et al., 2014] or OSQP [Stellato et al., 2020].

In the whole-body planner, the first stage (Sect. 3.5.1) is realized using the implementation
of AtlasRRT* provided by the OMPL library [Sucan et al., 2012], which is appropriately
customized in order to include the described feasibility checks. The NLP constituting the
second stage (Sect. 3.5.2) is formulated using CasADi [Andersson et al., 2019] and solved
via IPOPT [Wächter and Biegler, 2006].

Collision checks, in both the stance and whole-body planners, are performed using the
Planning Scene component of the MoveIT! framework [Görner et al., 2019], which exploits
the Flexible Collision Library (FCL) [Pan et al., 2012]. To this purpose, the point cloud P is
converted into an OctoMap [Hornung et al., 2013], encoding free and occupied space, which
is compared with the link meshes from the robot URDF.

Finally, a UI has been developed, still based on CartesI/O, that allows the user to perform
two important operations using RVIZ as a visualization interface: the creation of desired final,
or even intermediate (see Sect. 3.8.1), stances describing the tasks assigned to the humanoid,
and the inspection of solutions found by the single modules of the planning layer.

3.8 Validation

The validation of the proposed MCPC framework has been performed using COMAN+, a
torque-controlled humanoid robot designed at Istituto Italiano di Tecnologia. COMAN+ is
1.70 m tall, weights 70 kg and has 28 DoFs: 7 DoFs for each arm, 6 DoFs for each leg, with
the two related to the ankle provided by a particular four-bar actuation mechanism [Ruscelli
et al., 2018], and 2 DoFs for the torso, allowing roll and yaw rotations. For the purpose
validating the proposed method, the anthropomorphic hands of COMAN+ have been replaced
with spherical end-effectors.

To provide a comprehensive validation, the next two subsections analyze the performance
of the planning layer via numerical results and then showcase the effectiveness of the overall
framework through experiments on the actual robot.

3.8.1 Planning results

To illustrate the performance of the planning layer, this subsection presents numerical results
obtained on an Intel Core i7-7500U CPU running at 2.70 GHz. The four multi-contact
loco-manipulation tasks shown in Fig. 3.5 have been considered, and each provides some
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(a) Ladder climbing.

(b) Parallel walls climbing.

(c) Quadrupedal walking.

(d) Standing up.

Figure 3.5 A typical solution of the planning layer for each considered task. The Red and
blue arrows represent the force and moment sub-vectors of the planned contact wrenches
respectively.
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Table 3.1 Averaged performance data of the stance planner.

Task
Planning

time (s)

Transition

generation

time (s)

Number of

iterations

Number of

vertices

in T

Number of

stances

in Sσ

Ladder

climbing
43.60 37.64 1926.14 205.34 39.04

Parallel walls

climbing
175.37 171.01 1557.37 151.28 44.12

Quadrupedal

walking
62.69 55.99 2540.10 228.32 53.19

Standing up 7.56 6.02 459.24 62.19 17.00

snapshots of a typical solution produced by the planning layer. Moreover, the accompanying
video contains animated clips of such solutions to better appreciate the effectiveness of the
planned motions. The four tasks are described in the following.

1. Ladder climbing. The robot, starting from its homing configuration, must climb a
ladder that is located in front of it. The ladder has 10 rungs and is inclined by 63◦. The
rungs are vertically equispaced by 0.22 m, and each of them is 1 m long and 0.08 m
wide. The desired final stance requires placing both hands on the topmost rung and
both feet six rungs below.

2. Parallel walls climbing. The robot, starting from its homing configuration, must climb
vertically between two parallel walls located on its left and right flanks. The walls
are 1.4 m apart. The desired final stance requires placing the left/right hand on the
left/right wall at a height of 2.5 m above the ground, while the left/right foot must be
placed 1.4 m below the left/right hand.

3. Quadrupedal walking. The robot, starting from its homing configuration, must navigate
a narrow passage that is 0.3 m long and 1.1 m wide/high. Note that, due to its
characteristics, the passage can not be navigated by bipedal walking. The desired
final stance requires both hands and feet to be on the ground at the exit of the narrow
passage and is thus realizable only by a quadruped-like configuration.

4. Standing up. The robot, starting from a quadruped-like configuration, must stand
upright, possibly exploiting a wall located in front of it as support. In particular,
the robot’s initial configuration may represent the final configuration reached after
completing the previous task, e.g., performing a motion aimed at recovering the upright
posture.
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The point clouds representing the three scenarios in which such tasks take place (quadrupedal
walking and standing up are shown in the same scenario) have a resolution of 0.025 m. For all
the tasks, the set U of end-effectors contains both feet and hands, i.e., U = {F lf,F rf,F lh,F rh},
which can establish, respectively, surface and point contacts. The placement of potential
contact frames is that shown in Fig. 3.2, except for the ladder climbing task that uses a slightly
different placement for the hands, shown in Fig. 3.6, which allows establishing contacts with
the rungs in a more natural fashion.

For the second and third tasks, the stance planner has been provided with an intermediate
stance σ int (illustrated, respectively, in snapshot 3 of Fig. 3.5-(b) and in snapshot 2 of Fig. 3.5-
(c)) to bias the growth of the tree first towards such intermediate stance, and then towards the
desired final stance, speeding up the whole process. In particular, when the stance planner
chooses to perform a tree expansion attempt via exploitation (see Sect. 3.4.1), contact cfin is
randomly picked among those in σ int (σfin) if a vertex containing σ int does not exist (exists)
in T .

The values used for the parameters involved in the planning layer for the four tasks are
reported above. For ease of reading, Table 3.2 reports a synthetic recap of the most relevant
parameters. For an exhaustive description of each of them, the reader is referred to the
specific section.

• For the tree construction (Sect. 3.4.1), the stance planner uses lmax
σ = 5000; rmin and

rmax are set to 0.25 m and 1.5 m, both for hands and feet, for all tasks except the forth,
where rmin is set to 0.8 m for the hands and 0.3 m for the feet.

• The transition generator (Sect. 3.4.2) works with lmax
tran = 100 and ∆T tran = 1 s.

• In the IK solver (Sect. 19), KKKσ and KKKq are identities, α = 10−2, εσ = 10−4 and
lmax
IK = 1000.

• For the computation of the contact wrenches (Sect. 3.4.3), the static friction coefficient
is considered equal for all end-effectors and set to 0.8 for the first two tasks and to 0.5
for the last two tasks; half-dimensions of the CoP admissible region dx and dy for both
feet are set to 0.1 m and 0.05 m for all tasks except the forth, where they are set to
0.04 m; moreover β = 10−4 and εu = 0.05.

• Finally, the whole-body planner uses ∆T via = 1 s for all tasks except the first that uses
∆T via = 2 s.

Since the planning layer is randomized (as both the stance and whole-body planners rely
on probabilistic strategies), it was tested performing 100 runs for each of the four tasks. Thus,
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Figure 3.6 The different placement of the potential contact frame on the left hand between
the ladder climbing task (bottom) and the other tasks (top). The same applies to the right
hand.
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Table 3.2 Recap of the most relevant parameters involved in the planning layer. For each
parameter, the adopted symbol, the procedure in which it is used, and a synthetic description
of its role are reported.

Symbol Procedure Role

lmax
σ

stance planner

Maximum number of iterations

rmin Minimum radius of the spherical approximation

of the end-e�ector workspace

rmax Maximum radius of the spherical approximation

of the end-e�ector workspace

lmax
tran transition generator

Number of iterations with �xed reference con�guration

∆T tran Time budget

α

IK solver

Regularization term weight

εσ Threshold for the kinematic constraints error

lmax
IK Maximum number of integration steps

dx

whole-body planner

Half-length of the CoP admissible region

dy Half-width of the CoP admissible region

β Regularization term weight

εu Threshold for the centroidal statics term

∆T via Time budget

in each run, first the sequences Sσ , Sq, SW of stances, transitions, and contact wrenches
were produced using the stance planner; then, the whole-body planner computed the sequence
Ss of trajectories using Sσ and Sq.

Table 3.1 collects the most significant performance data, averaged over the 100 runs, of
the proposed stance planner. For each task, the time needed by the stance planner to find a
solution, the time spent in generating transitions, the number of performed iterations, the
number of vertices in the constructed tree T , and the number of stances in the solution
sequence Sσ are reported.

It is worth mentioning that the time needed by the whole-body planner to find a solution,
provided in input a sequence Sq containing N + 1 transitions, is the sum of the N times
needed to plan the N trajectories between consecutive configurations in Sq. Each of these
times is constituted by those employed by the two stages which are, respectively, fixed at
∆T via and not significant (as it has been observed that the NLP described in Sect. 3.5.2 is
always solved in few milliseconds). Then, the generic planning time of the whole-body
planner is about N ·∆T via. Eventually, the average time to complete the overall planning
phase is the sum of the average planning times of the stance and whole-body planners.
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Figure 3.7 Experiment: COMAN+ sequentially performs the quadrupedal walking and
standing-up tasks. The first snapshot reports the measures of the experimental area. See the
accompanying video.

It is worth emphasizing that the planning layer exhibited its capability of generating
appropriate humanoid motions for four different multi-contact loco-manipulation tasks
without requiring significant parameter modifications. This proves its versatility and confirms
its applicability to different contexts.

3.8.2 Experiments

The experimental validation was carried out using the XBot real-time software framework
[Muratore et al., 2020] as control middleware for the COMAN+ humanoid. All the robot
joints are equipped with torque sensors which make available the measured joint torques τ̂ττ at
each time instant. These measures are used to estimate via (3.17) the contact wrenches at
the spherical hands, which are sensorless, while the contact wrenches at the feet are directly
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Figure 3.8 Evolution of the contact forces at each end-effector during the whole experiment:
reference (dashed lines) vs estimated/measured (solid lines) values.
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provided by their force/torque sensors. Both hands and feet soles are covered by a thin layer
of rubber.

In the experiment, the robot torque commands are computed via (3.26). It is worth
noticing how the choice of the gain matrices KKKP and KKKD in (3.29) affects the behavior of the
overall control layer. Increasing the gain values, the contribution of τττ jnt in the computation
of the torque commands (3.26) becomes the most significant; as a consequence, the robot
will better track the reference joint trajectory while degrading its capability to track the
reference contact wrenches WWW c that guarantee to maintain static balance. Obviously, an
opposite behavior is obtained when reducing the gain values. As a trade-off, for the execution
of the experiments was adopted a simple variable stiffness strategy to adaptively choose the
gain values in the diagonal matrices KKKP and KKKD; in particular, when moving from one stance
to another, gain values are increased for those joints belonging to the kinematic chain ending
with the end-effector by which the two stances differ. As regards the thresholds wmin and
wmax used by the stance switching module to check the achievement of a certain stance, set
to 0 N and 30 N, respectively, for each end-effector in U .

The main experiment aims at showcasing the feasibility of the planned motions on the
real robotic platform and assessing the reliability of the presented control layer. To this
end, the third scenario (see Fig. 3.5-(c) and 3.5-(d)) described in the previous section was
reconstructed; in particular, the narrow passage is constituted by wooden panels, and the
wall is made of bricks. As mentioned before, in this scenario the robot must first traverse a
corridor-like passage to reach a destination ≈ 1.65 m far from the initial location. A passage
is placed at ≈ 0.75 m from such location and, due to its narrow dimensions, 1.1 m wide/high,
it can be overcome by the robot only by passing below it. At ≈ 1.4 m beyond the passage,
there is a wall that can be exploited as support for the final stand-up. The environment is
reconstructed as a synthetic point cloud and used in the planning layer. Then, COMAN+
was requested to sequentially perform the quadrupedal walking and standing-up motions
resulting from the planning stage.

Fig. 3.7 shows screenshots of the whole experiment in which COMAN+ successfully
managed to navigate the narrow passage and then stand up exploiting contacts with the
wall. Fig. 3.8 collects the plots representing the evolution of the reference contact forces
computed by the reactive balancing module at each end-effector in U and their corresponding
measured/estimated values. The vertical lines separate the three phases of the task execution.
In the first phase, the robot starts in the homing configuration, in which all its weight
is supported by the feet only, and moves to a quadrupedal-like configuration, in which its
weight is equally distributed among the four contacts. In the second phase, the robot performs
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multiple steps repeatedly establishing and breaking contacts using different end-effectors.
In the third phase, the robot reaches the wall and starts to establish contacts with its arm to
support the transition to the bipedal posture. In the final part of the plot, it is clear the work
performed by the feet tangential forces in counterbalancing the pushes of the hands on the
wall while standing up. No evident slippery or drifting phenomena were observed during
motion execution and the experiment was successfully carried out multiple times despite the
lack of a visual perception layer, confirming the strong reliability of the planning and control
layers.

The accompanying video 6 includes the full movie clip of the whole experiment, together
with another experiment where the humanoid successfully completes the quadrupedal walking
task even in presence of external disturbances, which shows the robustness of the control
layer granted by the joint action of the stance switching and reactive balancing modules.

3.9 Discussion

This section provides some additional comments about the proposed MCPC framework.

3.9.1 Considerations w.r.t. previous works

The two tasks successfully addressed in the experimental validation have been rarely consid-
ered in previous works.

Quadrupedal walking with a real humanoid is achieved in Yoshiike et al. [2019] using the
E2-DR robot. Different from COMAN+, E2-DR possesses hardware designed to accomplish
exactly this type of task. In particular, it is equipped with a wide-range, high-torque pitch
joint in the torso which simplifies both the passage from bipedal to quadrupedal configuration
and the consequent quadrupedal walk. Instead, the proposed methodology succeeded in
planning such complex multi-modal loco-manipulation tasks in COMAN+ even though its
hardware was not designed for this purpose. Furthermore, multiple experimental trials have
confirmed the high reliability of the control layer in executing the planned motions.

Standing up exploiting a wall as support is considered in Tonneau et al. [2018]. That
work focuses exclusively on the planning aspects and thus the result is shown solely on a
simulated humanoid. In contrast, the proposed approach was able to tackle such challenging
tasks both at the planning and control level, ultimately achieving experimental results on a
real humanoid, which can be considered a particularly relevant result.

6https://youtu.be/zS44CegGqow

https://youtu.be/zS44CegGqow
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The stance planner proposed in Tonneau et al. [2018] is, to the best of my knowledge,
the most efficient among those existing in the literature. To find a sequence of stances for
the standing-up task it needed about 2.5 s on average. Although the stance planner does not
match the same performance, its average computational time is still small and is obtained
without the need for any kind of pre-computation and heuristic specification. These two
operations are instead required with the planner in Tonneau et al. [2018] where, in order to
decide possible contacts, feasible configurations for the robot kinematic chains are extracted
from a precomputed octree data structure according to user-defined heuristics. Performing
precomputations (which are needed also in different forms with other existing planners,
e.g., Chung and Khatib [2015]) may in principle require significant time, while designing
heuristics may be tedious and task-specific. A similar observation might be done regarding
the choice of predesigned possible contacts between robot and environment points [Hauser
et al., 2008]. The stance planner has the advantage of avoiding the need for any of these
operations.

3.9.2 Limitations and possible adaptations

The presented MCPC framework proved to be capable of generating sensible humanoid
motions for different multi-contact loco-manipulation tasks proving to be usable in practical
applications. However, for the sake of completeness, below are listed three main limitations
of the proposed framework that will be tackled in future work.

1. The framework only considers static balance, still representing a valid template for
multi-contact planning. In the direction of a dynamic extension, one possibility
consists in keeping the stance planner identical, while the motions between consecutive
transitions could be generated online using the common approach (see, e.g., Caron
and Kheddar [2016]) of computing the humanoid CoM trajectory via Model Predictive
Control (using a reduced model of the robot dynamics) and tracking it with a whole-
body controller.

2. The stance planner does not account for the quality of the generated solutions. In
principle, this might produce sub-optimal behaviors; for example, the humanoid might
move the same end-effector two consecutive times, even in case this is not strictly
needed. Accounting for user-defined quality criteria, such as the minimization of
the number of stances in the produced sequence, would be possible by applying an
RRT*-like strategy.
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3. The planning layer is not equipped with a backtracking strategy to address the case
in which the whole-body planner fails to find a connection between two consecutive
configurations qqq j, qqq j+1 in the transition sequence Sq produced by the stance planner.
A simple solution would be to prune the tree T of the subtree rooted at qqq j (in the spirit
of lazy planners, see for example Ferrari et al. [2019]) and restart the stance planner
from the resulting tree; the investigation of more effective strategies will be part of
future work.

3.10 Conclusions

This chapter presented a complete multi-contact planning and control framework that allows
a torque-controlled humanoid robot to decide and execute its motions to fulfill a generic
multi-contact loco-manipulation task. The framework is constituted by two layers. The
planning layer works offline using two modules: the stance planner finds a sequence of
stances, together with associated transitions and contact wrenches, and then the whole-body
planner computes the sequence of motions to realize them. The control layer involves
two modules, i.e., the stance switching and reactive balancing module, to produce the
torque commands allowing the humanoid to execute the planned motions while guaranteeing
closed-loop balance by absorbing possible execution inaccuracies, external disturbances, and
modeling uncertainties. The proposed framework has been validated via both numerical and
experimental results obtained on the COMAN+ humanoid robot.

In addition to the adaptations mentioned in Sect. 3.9.2, the presented MCPC framework
can be further developed along several lines. A first possibility to consider is its extension to
the case of hybrid wheeled-legged quadrupedal robots such as CENTAURO [Kashiri et al.,
2019], in which also rolling contacts need to be accounted for. Furthermore, the integration of
a perception layer would be beneficial, as the full autonomy of the robot inevitably depends
on its sensing capabilities. Finally, it would be interesting to employ the proposed stance
planner as a local strategy to decide how to establish an additional contact whenever this is
required for the humanoid to increase the safety level [Scianca et al., 2021], for example in
the presence of an imminent risk of falling.
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