206,759 research outputs found

    Energy, interaction, and photoluminescence of spin-reversed quasielectrons in fractional quantum Hall systems

    Full text link
    The energy and photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime are studied. The single-particle properties of reversed-spin quasielectrons (QER_{\rm R}'s) as well as the pseudopotentials of their interaction with one another and with Laughlin quasielectrons (QE's) and quasiholes (QH's) are calculated. Based on the short-range character of the QER_{\rm R}--QER_{\rm R} and QER_{\rm R}--QE repulsion, the partially unpolarized incompressible states at the filling factors =411\nu={4\over11} and 513{5\over13} are postulated within Haldane's hierarchy scheme. To describe photoluminescence, the family of bound h(h(QER)n_{\rm R})_n states of a valence hole hh and nn QER_{\rm R}'s are predicted in analogy to the found earlier fractionally charged excitons hhQEn_n. The binding energy and optical selection rules for both families are compared. The hhQER_{\rm R} is found radiative in contrast to the dark hhQE, and the h(h(QER)2_{\rm R})_2 is found non-radiative in contrast to the bright hhQE2_2.Comment: 9 pages, 6 figure

    UGENT-LT3 SCATE system for machine translation quality estimation

    Get PDF
    This paper describes the submission of the UGENT-LT3 SCATE system to the WMT15 Shared Task on Quality Estima-tion (QE), viz. English-Spanish word and sentence-level QE. We conceived QE as a supervised Machine Learning (ML) problem and designed additional features and combined these with the baseline feature set to estimate quality. The sen-tence-level QE system re-uses the word level predictions of the word-level QE system. We experimented with different learning methods and observe improve-ments over the baseline system for word-level QE with the use of the new features and by combining learning methods into ensembles. For sentence-level QE we show that using a single feature based on word-level predictions can perform better than the baseline system and using this in combination with additional features led to further improvements in performance

    Identifying the causal mechanisms of the quiet eye

    Get PDF
    Scientists who have examined the gaze strategies employed by athletes have determined that longer quiet eye (QE) durations (QED) are characteristic of skilled compared to less-skilled performers. However, the cognitive mechanisms of the QE and, specifically, how the QED affects performance are not yet fully understood. We review research that has examined the functional mechanism underlying QE and discuss the neural networks that may be involved. We also highlight the limitations surrounding QE measurement and its definition and propose future research directions to address these shortcomings. Investigations into the behavioural and neural mechanisms of QE will aid the understanding of the perceptual and cognitive processes underlying expert performance and the factors that change as expertise develops

    Eye quietness and quiet eye in expert and novice golf performance: an electrooculographic analysis

    Get PDF
    Quiet eye (QE) is the final ocular fixation on the target of an action (e.g., the ball in golf putting). Camerabased eye-tracking studies have consistently found longer QE durations in experts than novices; however, mechanisms underlying QE are not known. To offer a new perspective we examined the feasibility of measuring the QE using electrooculography (EOG) and developed an index to assess ocular activity across time: eye quietness (EQ). Ten expert and ten novice golfers putted 60 balls to a 2.4 m distant hole. Horizontal EOG (2ms resolution) was recorded from two electrodes placed on the outer sides of the eyes. QE duration was measured using a EOG voltage threshold and comprised the sum of the pre-movement and post-movement initiation components. EQ was computed as the standard deviation of the EOG in 0.5 s bins from 鈥4 to +2 s, relative to backswing initiation: lower values indicate less movement of the eyes, hence greater quietness. Finally, we measured club-ball address and swing durations. T-tests showed that total QE did not differ between groups (p = .31); however, experts had marginally shorter pre-movement QE (p = .08) and longer post-movement QE (p < .001) than novices. A group 脳 time ANOVA revealed that experts had less EQ before backswing initiation and greater EQ after backswing initiation (p = .002). QE durations were inversely correlated with EQ from 鈥1.5 to 1 s (rs = 鈥.48 - 鈥.90, ps = .03 - .001). Experts had longer swing durations than novices (p = .01) and, importantly, swing durations correlated positively with post-movement QE (r = .52, p = .02) and negatively with EQ from 0.5 to 1s (r = 鈥.63, p = .003). This study demonstrates the feasibility of measuring ocular activity using EOG and validates EQ as an index of ocular activity. Its findings challenge the dominant perspective on QE and provide new evidence that expert-novice differences in ocular activity may reflect differences in the kinematics of how experts and novices execute skills

    Photocathode Quantum Efficiency of Ultra-Thin Cs2Te Layers On Nb Substrates

    Full text link
    The quantum efficiencies (QE) of photocathodes consisting of bulk Nb substrates coated with thin films of Cs2Te are reported. Using the standard recipe for Cs2Te deposition developed for Mo substrates (220 {\AA} Te thickness), a QE ~11% - 13% at light wavelength of 248 nm is achieved for the Nb substrates, consistent with that found on Mo. Systematic reduction of the Te thickness for both Mo and Nb substrates reveals a surprisingly high residual QE ~ 6% for a Te layer as thin as 15 {\AA}. A phenomenological model based on the Spicer 3-Step model along with a solution of the Fresnel equations for reflectance, R, leads to a reasonable fit of the thickness dependence of QE and suggests that layers thinner than 15 {\AA} may still have a relatively high QE. Preliminary investigation suggests an increased operational lifetime as well. Such an ultra-thin, semiconducting Cs2Te layer may be expected to produce minimal ohmic losses for RF frequencies ~ 1 GHz. The result thus opens the door to the potential development of a Nb (or Nb3Sn) superconducting photocathode with relatively high QE and minimal RF impedance to be used in a superconducting radiofrequency (SRF) photoinjector.Comment: 12 pages, 3 figure