12 research outputs found

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    A Duality-Aware Calculus for Quantified Boolean Formulas

    Get PDF
    Wir präsentieren ein formales Rahmenwerk, das es ermöglicht das Verhalten von QBF-Beweisen zu beschreiben.Learning and backjumping are essential features in search-based decision procedures for Quantified Boolean Formulas (QBF). To obtain a better understanding of such procedures, we present a formal framework, which allows to simultaneously reason on prenex conjunctive and disjunctive normal form. It captures both satisfying and falsifying search states in a symmetric way. This symmetry simplifies the framework and offers potential for further variants.W1255-N23S11408-N23(VLID)193237

    Genuine Lower Bounds for QBF Expansion

    Get PDF
    We propose the first general technique for proving genuine lower bounds in expansion-based QBF proof systems. We present the technique in a framework centred on natural properties of winning strategies in the 'evaluation game' interpretation of QBF semantics. As applications, we prove an exponential proof-size lower bound for a whole class of formula families, and demonstrate the power of our approach over existing methods by providing alternative short proofs of two known hardness results. We also use our technique to deduce a result with manifest practical import: in the absence of propositional hardness, formulas separating the two major QBF expansion systems must have unbounded quantifier alternations

    Shortening QBF Proofs with Dependency Schemes

    Get PDF
    We provide the first proof complexity results for QBF dependency calculi. By showing that the reflexive resolution path dependency scheme admits exponentially shorter Q-resolution proofs on a known family of instances, we answer a question first posed by Slivovsky and Szeider in 2014 [30]. Further, we conceive a method of QBF solving in which dependency recomputation is utilised as a form of inprocessing. Formalising this notion, we introduce a new calculus in which a dependency scheme is applied dynamically. We demonstrate the further potential of this approach beyond that of the existing static system with an exponential separation

    Reasons for Hardness in QBF Proof Systems

    Get PDF
    We aim to understand inherent reasons for lower bounds for QBF proof systems, and revisit and compare two previous approaches in this direction. The first of these relates size lower bounds for strong QBF Frege systems to circuit lower bounds via strategy extraction (Beyersdorff & Pich, LICS\u2716). Here we show a refined version of strategy extraction and thereby for any QBF proof system obtain a trichotomy for hardness: (1) via circuit lower bounds, (2) via propositional Resolution lower bounds, or (3) `genuine\u27 QBF lower bounds. The second approach tries to explain QBF lower bounds through quantifier alternations in a system called relaxing QU-Res (Chen, ICALP\u2716). We prove a strong lower bound for relaxing QU-Res, which also exhibits significant shortcomings of that model. Prompted by this we propose an alternative, improved version, allowing more flexible oracle queries in proofs. We show that lower bounds in our new model correspond to the trichotomy obtained via strategy extraction

    Hard QBFs for Merge Resolution

    Get PDF
    We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [Olaf Beyersdorff et al., 2020]), a refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together with information on countermodels, which are syntactically stored in the proofs as merge maps. As demonstrated in [Olaf Beyersdorff et al., 2020], this makes MRes quite powerful: it has strategy extraction by design and allows short proofs for formulas which are hard for classical QBF resolution systems. Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of MRes. Technically, the results are either transferred from bounds from circuit complexity (for restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our results imply that the MRes approach is largely orthogonal to other QBF resolution models such as the QCDCL resolution systems QRes and QURes and the expansion systems ?Exp+Res and IR
    corecore