
A Duality-Aware Calculus for Quantified Boolean Formulas

Katalin Fazekas, Martina Seidl, Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz, Austria

Abstract—Learning and backjumping are essential features
in search-based decision procedures for Quantified Boolean
Formulas (QBF). To obtain a better understanding of such
procedures, we present a formal framework, which allows to
simultaneously reason on prenex conjunctive and disjunctive
normal form. It captures both satisfying and falsifying search
states in a symmetric way. This symmetry simplifies the
framework and offers potential for further variants.

I. INTRODUCTION

Quantified Boolean Formulas (QBF) extend the language
of propositional logic by quantifiers over the proposi-
tional variables. In consequence, the decision problem be-
comes PSPACE-complete making QBF solving interesting
for many applications in verification, synthesis, artificial
intelligence, etc. (see [1] for a survey). The combination
of conflict-driven clause and solution-driven cube learning
(QCDCL, see e.g., [2], [3]) is the most successful approach
for search-based QBF solving [4], [5], lifting conflict-driven
clause-learning (CDCL), originating in SAT [6], to QBF.
However, if a QBF solver only gets a QBF in prenex
conjunctive normal form (PCNF) as input, the search is
biased towards conflicts. This asymmetry impedes the whole
search process. To overcome this asymmetry, duality-aware
QCDCL solving considers not only a representation of
the input in PCNF but also in prenex disjunctive normal
form (PDNF), treating solution and conflict states symmet-
rically [7]. In [8] it was shown that duality-aware reasoning
can easily be added to PCNF-based QCDCL solvers. This
paper gives a concise characterization of the behavior of such
solvers exploiting the symmetry in the search for conflicts
and solutions.

Related Work: The seminal paper of Nieuwenhuis, Oliv-
eras, and Tinelli [9] introduced a rule-based calculus to
concisely model the classical CDCL approach for SAT. This
work forms the basis of many theoretical investigations on
SAT and SMT solving, for instance the recent formalization
of CDCL-SAT solving in Isabelle [10]. For QBF, however,
we are not aware of any similar rule-based formulation of
QCDCL. The abstract QBF solver presented rather infor-
mally in [11] lacks non-chronological backtracking (back-
jumping) and learning, i.e., the essential rules of QCDCL.
The literature on QCDCL (e.g., [2], [3]) is missing a precise
formalization too. In [12] the focus is on the relation of
QCDCL with Q-resolution instead of capturing the search
precisely.

Outline: We introduce a new calculus which formally
captures the behavior of QCDCL solvers. To this end, we
first provide generic rules defining a state transition system.
Then we introduce a strategy that describes how to apply
these rules to get a duality-aware QBF solver which is
correct and terminates. Finally, we relate our calculus to
standard PCNF QCDCL solvers.

II. PRELIMINARIES

A propositional formula over variables V is in conjunctive
normal form (CNF) if it is a conjunction of clauses. A
clause is a disjunction of literals and a literal is a variable
or its negation. A propositional formula is in disjunctive
normal form (DNF) if it is a disjunction of cubes, where
a cube is a conjunction of literals. If literal ` is v or ¬v,
then var(`) = v. A quantified Boolean formula (QBF)
Q(ϕ) consists of the propositional matrix ϕ over V and
the quantifier prefix Q = Q1V1 . . . QnVn where Vi are
disjoint sets of variables, Qi ∈ {∃,∀}, and Qi 6= Qi+1.
In this paper, we assume V =

⋃
Vi, i.e., all variables of

the matrix are quantified. Such QBFs are called closed. If
ϕ of QBF Q(ϕ) is in CNF (DNF), then Q(ϕ) is in prenex
CNF (DNF), denoted PCNF (PDNF). We also write `∀ and
`∃ for a universal or existential literal. For variable v ∈ Vi
the quantification level level(v) is i. In that way, the prefix
Q defines a partial ordering relation <Q between variables
vi and vj such that vi <Q vj if level(vi) < level(vj).
This ordering is extended to the literals over the variables,
that is, `i <Q `j if var(`i) <Q var(`j). An assignment
A is a consistent list of literals which defines a mapping
from literals to truth values as follows. If v ∈ A then v
is true under A, if ¬v ∈ A then v is false under A. An
assignment A is called total assignment of V if every v ∈ V
is assigned by A, otherwise it is called partial. Occasionally
we interpret assignments as cubes. Given an assignment A
and a CNF ϕ with a fixed quantifier prefix Q, we denote
by ϕ[A] the CNF under assignment A, where all clauses
containing ` are removed and all occurrences of ¬` are
deleted (and Q is unchanged). For DNF ϕ, ϕ[A] is defined
dually. The negation of a quantifier prefix Q (denoted with
¬Q) is the simultaneous substitution of ∀ quantifiers for ∃
quantifiers and vice versa in Q. We define tree models and
tree refutations of QBFs as in [13]. We denote an empty
clause or cube by ∅, an empty CNF (DNF) by > (⊥). A
QBF ∀xQ(ϕ) is true iff Q(ϕ)[x] and Q(ϕ)[¬x] are true. A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JKU | ePub

https://core.ac.uk/display/84431213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


QBF ∃xQ(ϕ) is true iff Q(ϕ)[x] or Q(ϕ)[¬x] is true. Two
QBFs ψ1 and ψ2 are equivalent (written as ψ1 ≡ ψ2) if they
have the same truth value.

Definition 1. QBFs Q(C) in PCNF and Q(D) in PDNF
have the duality property if Q(C) ≡ Q(D).

The duality property holds under assignment A, if
Q(C[A]) ≡ Q(D[A]). Based on the duality property, dual
search-based solvers [7], [8] use both a CNF as well as a
DNF of the input QBF (as explained e.g. in [7]) to treat
conflicts and solutions symmetrically. Note that in that case
the introduced Tseitin variables are existentially quantified in
the CNF, and universally quantified in the DNF encoding.
Therefore, the joint prefix Q of CNF and DNF has some
variables that occur only in the CNF matrix (the existential
Tseitin variables) and some that occur only in the DNF
matrix (the universal Tseitin variables).

Definition 2. Given QBF Q(ϕ) in PCNF and a clause C,
we define ϕ �Q C to hold if Q(ϕ ∧ C) ≡ Q(ϕ).

Definition 3. Given QBF Q(ϕ) in PDNF and a cube C, we
define ϕ �Q C to hold if Q(ϕ ∨ C) ≡ Q(ϕ).

Note that �Q and �Q define the entailment relation w.r.t.
prefix Q. Standard propositional entailment is denoted by �.
Immediately from the definitions we obtain:

Lemma 1. Let Q(ϕ) be a closed QBF in PCNF and C a
clause. Then ϕ �Q C iff ¬ϕ �¬Q ¬C.

In the following we fix a quantifier prefix Q together with
the ordering <Q (on all variables and literals).

Definition 4. The universally tailing literals T Q∀ (C) of
clause C are {`∀ ∈ C | `∃ <Q `∀ for all `∃ in C}.

Definition 5. The universal reduction of a clause C is
defined as RQ∀ (C) = C \ T Q∀ (C).

Analogously, existential reduction RQ∃ (C) removes the
tailing existential literals T Q∃ (C) from cube C. Universal
(existential) reduction can be extended to a set of clauses
(cubes) C as RQ∀ (C) = {RQ∀ (C) | C ∈ C} (RQ∃ (C) =
{RQ∃ (C) | C ∈ C}). W.l.o.g. we assume clauses (cubes) of
the input QBFs to be non-tautological (non-contradictory)
and ∀-reduced (∃-reduced).

The literal `∃ is an existential unit in clause C iff
RQ∀ (C) = {`∃}. Then C is called a unit clause. Unit cubes
and universal units are defined analogously. We also simply
call C a unit, if C is a unit clause or unit cube. We further
extend these definitions to clauses C (and cubes) under an
assignment A, by using C[A] instead of C. For instance, `∃
is an existential unit in C under A iff `∃ is an existential
unit in C[A]. In this case we assume that C is not satisfied
by A, i.e., C[A] 6= >. A literal is called pure in QBF Q(ϕ)
if it occurs only in exactly one polarity.

III. ABSTRACT QCDCL SOLVING

Our abstract QCDCL solver is described in terms of a
state transition system. It explicitly traverses the assign-
ment tree of a QBF given in CNF and DNF to prove its
(un)satisfiability. States S of the form A ‖ D ‖ C consist of
a CNF C, a DNF D, and of an assignment A (also called
trail in solver implementations) over variables of the fixed
quantifier prefix Q. The literals in A are either decided or
implied (see below). A decision literal is written as `d. The
initial state of our abstract QCDCL solver is ∅ ‖ D ‖ C,
where D contains the input QBF in DNF, while C is the
input QBF in CNF. Therefore the duality property holds,
i.e., Q(C) ≡ Q(D). Next, we introduce the rules of our
abstract QCDCL solver.

A ‖ D ‖ C ∧ C
Unit∃:

A `∃ ‖ D ‖ C ∧ C

`∃ existential unit in C[A]

A ‖ D ∨ C ‖ C
Unit∀:

A ¬`∀ ‖ D ∨ C ‖ C

`∀ universal unit in C[A]

Unit propagation extends the current assignment by unit
literals with respect to their quantifier type.

A ‖ D ‖ C
Pure∃:

A `∃ ‖ D ‖ C

`∃ ∈ RQ
∃ (D[A]) is pure

A ‖ D ‖ C
Pure∀:

A ¬`∀ ‖ D ‖ C

`∀ ∈ RQ
∀ (C[A]) is pure

Due to the duality property, we can identify pure literals
either from C or D. Note that this is not possible in decision
procedures without duality-awareness because there D is not
a complete representation of the input QBF.

A ‖ D ‖ C
Decide:

A `d ‖ D ‖ C

` is unassigned and all `′ with `′ <Q ` are assigned in A

Rule Decide adds the decision literals to the current
assignment A. The quantifier prefix restricts the set of
decision candidate variables. Further, each decision must
preserve consistency with A.

A ‖ D ‖ C
LearnCNF:

A ‖ D ‖ C ∧ C

C �Q C

A ‖ D ‖ C
LearnDNF:

A ‖ D ∨ C ‖ C

D �Q C

LearnCNF and LearnDNF describe the clause and cube
learning of the solver. The only restriction on learned
clauses, and dually for cubes, is that they are implied by
the formula w.r.t. the prefix, which by definition requires
Q(C) ≡ Q(C ∧ C). Deciding equivalence of two QBFs is



PSPACE hard. In practice polynomial derivation techniques
are used, e.g., some form of Q-resolution.

A`d∃A
′ ‖ D ‖ C

Undo∃:
A ‖ D ‖ C

A`d∀A
′ ‖ D ‖ C

Undo∀:
A ‖ D ‖ C

The Undo-rules are responsible for backtracking. These
steps have no side condition, but at least one decision
literal in the current assignment is required. Backtracking
is allowed only precisely before such a decision literal,
because backtracking to other points of the trail could lead
to unnecessary repetitions of steps.

A ‖ D ‖ C ∧ ∅
FinalCNF:

⊥
A ‖ D ∨ ∅ ‖ C

FinalDNF:
>

If the empty clause (cube) is in C (D), the formula
simplifies to ⊥ (>). We also denote such a state by ⊥ (>).
If the application of a rule causes a transition from a state
S = (A ‖ D ‖ C) to a state S′ = (A′ ‖ D′ ‖ C′), we
denote this by S ` S′. For multiple rule applications we
write S `∗ S′. Now we obtain the following lemmas from
our definitions and, for instance, using facts from [14].

Lemma 2. If S ` S′ using the Learn or Final rules, then
Q(C) ≡ Q(C′) and Q(D) ≡ Q(D′). For all other rules,
C′ = C and D′ = D.

Lemma 3. If S ` S′ using rules Unit or Pure, then
Q(C[A]) ≡ Q(C[A′]) and Q(D[A]) ≡ Q(D[A′]).

Corollary 1. Each rule preserves the duality property.

To get closer to real QBF solvers and to enforce termi-
nation, we have to restrict the application of rules based on
the actual state of the solver.

Definition 6 (Leaf Condition). State A ‖ D ‖ C has

(Conflict Condition) L⊥ iff ∅ ∈ RQ∀ (C[A])
(Satisfaction Condition) L> iff ∅ ∈ RQ∃ (D[A])

(Leaf Condition) L iff L>∨ L⊥

The duality property guarantees L⊥ and L> to be mu-
tually exclusive. Whenever the solver finds a satisfying or
falsifying assignment, we say that it reached a leaf of the
assignment tree. Then L is true in that state.

Definition 7. A state has the Propagation Condition, denoted
P , if one of the Unit or Pure rules can be applied.

Definition 8 (Driving Condition). In AA′ ‖ D ‖ C assume
A′ contains a decision `d, where `d is existential if C is a

Table I
ADDITIONAL STRATEGY CONSTRAINTS.

Rule Pre-condition Post-condition
Unit ¬F ∧¬L∧¬D
Pure ¬F ∧¬L∧¬D
Decide ¬F ∧¬L∧¬D∧¬P
Learn ¬F ∧ L∧¬D D∨F
Undo ¬F ∧ L∧ D ¬D
Final F

clause in C and universal if C is a cube in D.

(Driving Clause) D⊥(C) iff C[AA′] = ∅, C[A] unit

(Driving Cube) D>(C) iff C[AA′] = ∅, C[A] unit

(Driving Condition) D(C) iff D⊥(C) ∨D>(C)

The driving condition holds (i.e., D is true) in a state AA′ ‖
D ‖ C iff there is a clause (cube) C in C (D) s.t. D(C)
holds. Then C is a driving clause (cube) and C is driving
the existential (universal) unit literal `′ ∈ C[A].

If a driving clause C is learned in state AA′ ‖ D ‖ C, then
the Undo rule can be applied to remove A′ from the trail
and then the Unit rule can be used to add C[A] (the driven
literal) to the current assignment. In that way, backjumping
can be simulated with a sequence of small steps. This makes
the whole process more transparent.

Definition 9 (Final Condition). In state A ‖ D ‖ C we define
the following final conditions:

(Inconsistency Condition) F⊥ iff ∅ ∈ C
(Tautology Condition) F> iff ∅ ∈ D

(Final Condition) F iff F> ∨ F⊥

Lemma 4. If in A ‖ D ‖ C, F or D holds, then also L.

Now, to guarantee termination, a strategy for applying our
rules is enforced by further restricting their side conditions
(see Table I). Our strategy requires to stop propagation as
soon as a leaf is reached (which in turn is required for
learning to be applied). In SAT it has been considered to
lift this requirement, which however requires additional care
during learning [15]. It is unclear at this point whether this
also applies to our calculus or QBF. Decisions can be made
(rule Decide) only when no other rule is applicable but the
Final Condition does not hold yet. The strongest constraint
is introduced for the Learn rules. It ensures that learning
prunes the search space. Hence, the learned clause (or cube)
is either empty or driving. The Undo-rules force the solver
to backtrack exactly where the driving clause (cube) leads.
Below we assume the constraints of Table I.

Lemma 5. If in A ‖ D ‖ C there is no existential (universal)
decision literal in A and ¬F ∧¬D and L⊥ (L>) hold, then
C �Q ∅ (D �Q ∅).

Proof: By semantics of QBF and Lemma 3.



Lemma 6. If in A ‖ D ‖ C there is an existential (universal)
decision literal in A and ¬F ∧¬D and L⊥ (L>) hold, then
there exists a driving clause (cube) C s.t. C �Q C (D �Q C).

Proof: Given A ‖ D ‖ C where ¬F ∧ L⊥ ∧ ¬D holds,
i.e., ∅ /∈ C, but ∅ ∈ RQ∀ (C[A]) and there is no driving
clause in C. Then A has the form L0`

d
1L1...`

d
nLn for some

n > 0, where `d1, ..., `
d
n are the existential decision literals of

A and L0, ..., Ln contain the implied literals (from Unit and
Pure rules) and the universal decision literals. Let C ′ be the
clause (¬`d1 ∨ ... ∨ ¬`dn). Then by construction C ′[A] = ∅
and ¬`dn is an existential unit in C ′ under the assignment
A′ = {L0`

d
1L1...`

d
n−1Ln−1} (which is a prefix of A), thus

C ′ is driving `dn. We further have to show that C �Q C ′,
i.e.Q(C) ≡ Q(C∧C ′). Due to Lemma 3 and QBF semantics,
if Q(C) is true, then there is no tree model with a branch
that contains `d1, ..., `

d
n. Therefore, conjoining (¬`d1 ∨ ... ∨

¬`dn) to Q(C) is satisfiability preserving. The case L> is
analogous.

In practice the learned clause or cube is not built as in
the proof above. Conflict and solution analysis of QCDCL
solvers rely on some form of Q-resolution, where the derived
clause or cube can be safely added to the formula by
construction. We further obtain the following facts, without
complete proofs, due to space constraints.

Lemma 7. There are no infinite derivations of the form
(∅ ‖ D ‖ C) ` S1 ` S2 ` · · · ` Si ` · · ·

Lemma 8. If (∅ ‖ D ‖ C) `∗ S and no rule applies to S
then S is either ⊥ or >.

Lemma 9. If (∅ ‖ D ‖ C) `∗ S ∈ {⊥,>}, Q(C) ≡ S.

Theorem 1. Our abstract QCDCL calculus is sound and
complete. Applying the additional strategy constraints al-
ways produces terminating derivations.

IV. EXTENSIONS

In our framework termination depends on learning of
the empty clause or cube. Thus, in its basic form, it can
not simulate pure search-based solvers without learning.
Further, as memory is limited in practice, it is necessary to
forget learned clauses and cubes which became irrelevant.
Moreover, in practice, it can be beneficial to stop the current
search and start over again with an empty trail. Extending
the framework with further rules, we can easily capture also
these aspects of practical solvers.

A ‖ D ‖ C ∧ C
ForgetCNF:

A ‖ D ‖ C
C �Q C

A ‖ D ∨ C ‖ C
ForgetDNF:

A ‖ D ‖ C

D �Q C

The side conditions of the Forget-rules guarantee that
only redundant information is discarded. With these addi-
tional rules we can also simulate solvers without learning, if

the strategy enforces to apply Forget right after backtracking
(Undo) and propagation (Unit & Pure). Obviously, as soon
as an empty clause or cube is learned, Final termination
rules have to be applied immediately. Restart of the search
has no side condition, but on the strategy level additional
care is necessary in order to maintain termination.

A ‖ D ‖ C
Restart:

∅ ‖ D ‖ C
A ‖ D ‖ C

Learn′DNF:
A ‖ D ∨ C ‖ C

D �Q C or C � C

Usually the input of a QBF solver is only available in
PCNF, therefore we can not assume the duality property as
invariant. However, the following weaker invariant over the
clauses and cubes serves a similar purpose: Q(D)⇒ Q(C).
This invariant ensures that whenever the DNF is satisfied,
the CNF is satisfied as well. To adapt our framework to
this new invariant, some modifications are necessary. For
instance, Pure∃ has to search for the existential pure literals
in the clause set (instead of the cube set). Moreover, since in
that case the DNF is incomplete, ForgetDNF can be applied
without side condition, and the constraints of learning new
cubes has to be weakened (see Learn′DNF). There are now
two possible solution scenarios (as in [3]). First, one of the
cubes in the database is satisfied. In that case we learn as
we did before and the driving cube construction remains
the same. Second, all the clauses in the clause database
are satisfied but no satisfied cube exists. Note that the
Satisfaction Condition in Def. 6 has to be updated.

Definition 10 (Satisfaction Condition). A ‖ D ‖ C has

(DNF Satisfaction) SDNF iff ∅ ∈ RQ∃ (D[A])
(CNF Satisfaction) SCNF iff C[A] = >

(Satisfaction Cond.) L> iff SCNF ∨ SDNF

Since we can learn cubes which are weakening the DNF,
Lemma 2 ceases to hold. Instead we obtain:

Lemma 10. If S ` S′ using the Learn or Final rules, then
Q(C) ≡ Q(C′) and Q(D′)⇒ Q(C′).

V. CONCLUSION AND FUTURE WORK

We presented a formal framework for concisely capturing
search-based QBF solving. Such a framework is useful for
better understanding of various types of QCDCL solvers.

We plan to use our framework to close the gap between
QCDCL solving and other approaches, including expansion-
based techniques [16], [17]. Currently, it is not clear how
these approaches relate to one another w.r.t. solving strength.
While there is some work on relating proof systems (e.g.,
[18]), the actual search strategies have not been compared
yet. Especially when different techniques are integrated as
currently proposed in [19], a better understanding of the
individual solving techniques is indispensable.



VI. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments. This research has been supported
by the Austrian Science Fund (FWF) under projects W1255-
N23 and S11408-N23.

REFERENCES

[1] M. Benedetti and H. Mangassarian, “QBF-Based Formal
Verification: Experience and Perspectives,” JSAT, 2008.

[2] E. Giunchiglia, M. Narizzano, and A. Tacchella, “Clause/term
resolution and learning in the evaluation of quantified Boolean
formulas,” JAIR, 2006.

[3] L. Zhang and S. Malik, “Towards a symmetric treatment
of satisfaction and conflicts in quantified Boolean formula
evaluation,” in CP, 2002.

[4] F. Lonsing and A. Biere, “DepQBF: A Dependency-Aware
QBF Solver,” JSAT, vol. 7, 2010.

[5] E. Giunchiglia, P. Marin, and M. Narizzano, “Reasoning with
Quantified Boolean Formulas,” in Handbook of Satisfiability,
2009.

[6] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-Driven Clause
Learning SAT Solvers,” in Handbook of Satisfiability, 2009.

[7] L. Zhang, “Solving QBF with combined conjunctive and
disjunctive normal form,” in AAAI, 2006.

[8] A. Goultiaeva, M. Seidl, and A. Biere, “Bridging the gap
between dual propagation and CNF-based QBF solving,” in
DATE, 2013.

[9] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–
Logemann–Loveland procedure to DPLL (T),” JACM, 2006.

[10] J. C. Blanchette, M. Fleury, and C. Weidenbach, “A Verified
SAT Solver Framework with Learn, Forget, Restart, and
Incrementality,” in IJCAR, 2016.

[11] R. Brochenin and M. Maratea, “Abstract Solvers for Quan-
tified Boolean Formulas and their Applications,” in AI*IA,
2015.

[12] M. Janota, “On Q-resolution and CDCL QBF solving,” in
SAT, 2016.

[13] A. Van Gelder, “Contributions to the theory of practical
quantified Boolean formula solving,” in CP, 2012.

[14] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi,
“An algorithm to evaluate quantified Boolean formulae and
its experimental evaluation,” JAR, 2002.

[15] A. Goultiaeva and F. Bacchus, “Off the Trail: Re-examining
the CDCL Algorithm,” in SAT, 2012.

[16] M. Heule, M. Järvisalo, F. Lonsing, M. Seidl, and A. Biere,
“Clause elimination for SAT and QSAT,” JAIR, 2015.

[17] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke,
“Solving QBF with counterexample guided refinement,” Artif.
Intell., 2016.

[18] M. Janota and J. Marques-Silva, “Expansion-based QBF
solving versus Q-resolution,” Theor. Comput. Sci., vol. 577,
2015.

[19] F. Lonsing, U. Egly, and M. Seidl, “Q-Resolution with
Generalized Axioms,” in SAT, 2016.

APPENDIX

Example 1. Consider the QBF ψ = ∃x∀y. x⇔ y. It can be
transformed to CNF as ∃x∀y∃p. p∧(¬p∨¬x∨y)∧(¬p∨x∨
¬y), and to DNF as ∃x∀yq. q∨ (¬q∧¬x∧¬y)∨ (¬q∧x∧
y), where p and q are newly introduced Tseitin-variables.
Given these two representations of the input formula ψ, the
initial state of the abstract solver is ∅ ‖ D ‖ C, where

Q = ∃x∀y∃p∀q, D = q∨ (¬q∧¬x∧¬y)∨ (¬q∧x∧y) and
C = p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y). Note that p and q
are interchangeable in the prefix, thus ∃x∀yq∃p is another
possible prefix for that example. A possible derivation from
that state would be as follows.

∅ ‖ D ‖ C `Unit∃ (1)
p ‖ D ‖ C `Unit∃ (2)
p x ‖ D ‖ C `LearnCNF (3)
p x ‖ D ‖ C ∧ ∅ `FinalCNF (4)

⊥ (5)

In the initial state there is an existential unit (p) in the CNF
and there is a universal unit (q) in the DNF formula. Assume
that the solver first propagates p, that yields state (2). In that
state, there is still q as universal unit. Further, the second
and third clauses of the CNF formula are the existential
units ¬x and x respectively, since under the assignment p
the universal literals y and ¬y are reduced.

Consider the case that the solver propagates x as a
next step, which yields state (3). Here the second clause
of the CNF formula is falsified, i.e. ∅ ∈ RQ∀ (C[p, x]), so the
Conflict Condition (L⊥) holds. Since there is no decision
literal on the trail, no driving clause can be constructed,
but the empty clause can be learned. After that step, in state
(4), F⊥ holds, therefore the only rule that can be applied is
FinalCNF, that yields the state ⊥.

It is not hard to see, that if the initial formula would
have been ∀x∃y. x⇔ y (instead of ∃x∀y. x⇔ y), then the
derivation of state > could have been the dual of the above
steps (i.e. apply rules Unit∀,LearnDNF,FinalDNF instead
of the rules Unit∃,LearnCNF,FinalCNF respectively).

Example 2. Consider the initial state of the abstract solver
as ∅ ‖ D ‖ C, where Q = ∀x∃y∀z, C = (x∨ y)∧ (¬x∨¬y)
and D = (x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨
(¬x ∧ y ∧ ¬z). A possible derivation from that state would
be as follows.

∅ ‖ D ‖ C `Decide (1)

xd ‖ D ‖ C `Pure∃ (2)

xd ¬y ‖ D ‖ C `Unit∀ (3)

xd ¬y ¬z ‖ D ‖ C `LearnDNF
(4)

xd ¬y ¬z ‖ D ∨ x ‖ C `Undo (5)
∅ ‖ D ∨ x ‖ C `Unit∀ (6)
¬x ‖ D ∨ x ‖ C `Pure∃ (7)
¬x y ‖ D ∨ x ‖ C `Unit∀ (8)
¬x y ¬z ‖ D ∨ x ‖ C `LearnDNF

(9)
¬x y ¬z ‖ D ∨ x ∨ ∅ ‖ C `FinalDNF

(10)
> (11)

Initially, the only possible step is to apply rule Decide, since
¬P ∧¬F ∧¬L∧¬D holds. The only variable satisfying the



side condition of rule Decide is x. Assume it is decided
to be true. Then in state (2) there is ¬y as existential unit
in RQ∀ (C[x]) and at the same time it is pure in RQ∃ (D[x]).
Assume that pure literal propagation has higher priority and
the solver propagates then ¬y using rule Pure∃.

In state (3), although all clauses are satisfied in C by
the current assignment, there is neither an empty clause nor
empty cube in C or D, so the Leaf Condition does not hold.
But, there are z and ¬z as universal units in cubes (x∧¬y∧
z) and (x ∧ ¬y ∧ ¬z) respectively. Assume that the solver
decides to use the first cube for propagation, which extends
the current assignment with ¬z. With this step (in state (4))
the second cube becomes empty. Therefore L> (and thus L)
holds. Since there is no driving cube in the DNF (otherwise
in the very first step unit propagation instead of decision
would have been possible), the only rule that is applicable
is LearnDNF. The solver learns the driving cube x, which
yields state (5). Now there is a driving cube, so rule Undo
is applicable to backtrack. In state (6) the recently learned
cube becomes universal unit, therefore Unit∀ is a valid step
and extends the current assignment with ¬x. Then, there is y
as existential unit inRQ∀ (C[¬x]) and as pure inRQ∃ (D[¬x]).
Application of rule Pure∃ yields state (8). Just like in state
(2), z and ¬z are universal units, but this time in the cubes
(¬x ∧ y ∧ z) and (¬x ∧ y ∧ ¬z) respectively. After unit
propagation, there is an empty cube in RQ∃ (D[¬x, y,¬z]),
so L> holds. This time there is no universal decision literal
on the trail, thus the only cube to learn is ∅. Then F> (and
so F ) holds, thus, finally, the only allowed step is FinalDNF,
which terminates the derivation.


