29 research outputs found

    Pyramidal Fisher Motion for Multiview Gait Recognition

    Full text link
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent `AVA Multiview Gait' dataset. The results show that this new approach achieves promising results in the problem of gait recognition.Comment: Submitted to International Conference on Pattern Recognition, ICPR, 201

    Pyramidal Fisher Motion for Multiview Gait Recognition

    Get PDF
    Submitted to International Conference on Pattern Recognition, ICPR, 2014The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent `AVA Multiview Gait' dataset. The results show that this new approach achieves promising results in the problem of gait recognition

    Automatic learning of gait signatures for people identification

    Get PDF
    This work targets people identification in video based on the way they walk (i.e. gait). While classical methods typically derive gait signatures from sequences of binary silhouettes, in this work we explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (i.e. optical flow components). We carry out a thorough experimental evaluation of the proposed CNN architecture on the challenging TUM-GAID dataset. The experimental results indicate that using spatio-temporal cuboids of optical flow as input data for CNN allows to obtain state-of-the-art results on the gait task with an image resolution eight times lower than the previously reported results (i.e. 80x60 pixels).Comment: Proof of concept paper. Technical report on the use of ConvNets (CNN) for gait recognition. Data and code: http://www.uco.es/~in1majim/research/cnngaitof.htm

    Fisher Motion Descriptor for Multiview Gait Recognition

    Get PDF
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to de ne custom spatial con gurations of the descriptors around the target person, obtaining a rich representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the di erent spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on `CASIA' dataset [3] (parts B and C), `TUM GAID' dataset [4], `CMU MoBo' dataset [5] and the recent `AVA Multiview Gait' dataset [6]. The results show that this new approach achieves state-of-the-art results in the problem of gait recognition, allowing to recognize walking people from diverse viewpoints on single and multiple camera setups, wearing di erent clothes, carrying bags, walking at diverse speeds and not limited to straight walking paths

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition

    Get PDF
    Human gait recognition (HGR) shows high importance in the area of video surveillance due to remote access and security threats. HGR is a technique commonly used for the identification of human style in daily life. However, many typical situations like change of clothes condition and variation in view angles degrade the system performance. Lately, different machine learning (ML) techniques have been introduced for video surveillance which gives promising results among which deep learning (DL) shows best performance in complex scenarios. In this article, an integrated framework is proposed for HGR using deep neural network and fuzzy entropy controlled skewness (FEcS) approach. The proposed technique works in two phases: In the first phase, deep convolutional neural network (DCNN) features are extracted by pre-trained CNN models (VGG19 and AlexNet) and their information is mixed by parallel fusion approach. In the second phase, entropy and skewness vectors are calculated from fused feature vector (FV) to select best subsets of features by suggested FEcS approach. The best subsets of picked features are finally fed to multiple classifiers and finest one is chosen on the basis of accuracy value. The experiments were carried out on four well-known datasets, namely, AVAMVG gait, CASIA A, B and C. The achieved accuracy of each dataset was 99.8, 99.7, 93.3 and 92.2%, respectively. Therefore, the obtained overall recognition results lead to conclude that the proposed system is very promising

    View and clothing invariant gait recognition via 3D human semantic folding

    Get PDF
    A novel 3-dimensional (3D) human semantic folding is introduced to provide a robust and efficient gait recognition method which is invariant to camera view and clothing style. The proposed gait recognition method comprises three modules: (1) 3D body pose, shape and viewing data estimation network (3D-BPSVeNet); (2) gait semantic parameter folding model; and (3) gait semantic feature refining network. First, 3D-BPSVeNet is constructed based on a convolution gated recurrent unit (ConvGRU) to extract 2-dimensional (2D) to 3D body pose and shape semantic descriptors (2D-3D-BPSDs) from a sequence of gait parsed RGB images. A 3D gait model with virtual dressing is then constructed by morphing the template of 3D body model using the estimated 2D-3D-BPSDs and the recognized clothing styles. The more accurate 2D-3D-BPSDs without clothes are then obtained by using the silhouette similarity function when updating the 3D body model to fit the 2D gait. Second, the intrinsic 2D-3D-BPSDs without interference from clothes are encoded by sparse distributed representation (SDR) to gain the binary gait semantic image (SD-BGSI) in a topographical semantic space. By averaging the SD-BGSIs in a gait cycle, a gait semantic folding image (GSFI) is obtained to give a high-level representation of gait. Third, a gait semantic feature refining network is trained to refine the semantic feature extracted directly from GSFI using three types of prior knowledge, i.e., viewing angles, clothing styles and carrying condition. Experimental analyses on CMU MoBo, CASIA B, KY4D, OU-MVLP and OU-ISIR datasets show a significant performance gain in gait recognition in terms of accuracy and robustness
    corecore