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Abstract- Human gait recognition (HGR) shows high importance in the area of video 

surveillance due to remote access and security threats. HGR is a technique commonly used for 

the identification of human style in daily life. However, many typical situations like change of 

clothes condition and variation in view angles degrade the system performance. Lately, 

different machine learning (ML) techniques have been introduced for video surveillance which 

gives promising results among which deep learning (DL) shows best performance in complex 

scenarios. In this article, an integrated framework is proposed for HGR using deep neural 

network and Fuzzy Entropy controlled Skewness (FEcS) approach. The proposed technique 

works in two phases: In the first phase, Deep Convolutional Neural Network (DCNN) features 

are extracted by pre-trained CNN models (VGG19 and AlexNet) and their information is mixed 

by parallel fusion approach. In the second phase, entropy and skewness vectors are calculated 

from fused feature vector (FV) to select best subsets of features by suggested FEcS approach. 

The best subsets of picked features are finally fed to multiple classifiers and finest one is chosen 

on the basis of accuracy value. The experiments were done on four well-known datasets namely 

AVAMVG gait, CASIA A, B and C. The achieved accuracy of each dataset was 99.8%, 99.7%, 

93.3% and 92.2%, respectively. Therefore, the obtained overall recognition results lead to 

conclude that the proposed system is very promising. 



Keywords: Gait recognition, CNN features, parallel fusion, features selection, recognition 

1. Introduction 

Human identification using biometric technology has become essential and most important 

topic for the past few decades in the field of Computer Vision (CV) and bioinformatics (Shah, 

Chen, Sharif, Yasmin, & Fernandes, 2017; Sharif, Akram, Raza, Saba, & Rehman, 2019). Gait 

is a natural and common behaviour of all human beings but from viewpoint of analysis, it is a 

very complicated phenomenon as it works with the collaboration of nerves, brain and muscles 

(Sharif et al., 2020). Human moving gestures have been groping by orthopaedists, 

physiotherapists and neurologists for long to examine and appraise the condition of patients, 

rehabilitation and treatment plans. Usually, human gait has been examined intuitively via 

pictorial interpretations but nowadays with the improvement in technology, human gait 

exploration can be represented empirically and quantitatively (Prakash, Kumar, & Mittal, 

2018). Gait is a walking behaviour of human body that is used to distinctively recognize 

individuals at a distance from a camera even in less illuminating and dense environmental 

areas. Unlike former biometric techniques such as fingerprints, iris, hand veins and face 

(Shiraga, Makihara, Muramatsu, Echigo, & Yagi, 2016), it does not require subjects co-

operation. Because of these discriminating characteristics, it has received a lot of attention from 

researchers and hence used in various applications like visual surveillance (A. Sharif et al., 

2019), suspect identification and robot vision (Xu, Zhu, & Wang, 2018). This article has used 

gait recognition (S. L. Fernandes & Bala, 2016a), face detection (S. L. Fernandes & Bala, 

2015), face recognition (S. Fernandes & Bala, 2013) and composite sketch matching (S. L. 

Fernandes & Bala, 2016b; L Fernandes & G Bala, 2017) approaches and found them 

innovative. The results provided by authors of these approaches are interesting when tested on 

real-world datasets.  

In spite of the distinctive characteristics of gait features, there are various factors that influence 

gait recognition, for instance, camera viewpoints, load carrying, lighting condition, variation 

in clothing, walking speed and shadow under feet (Arshad, Khan, Sharif, Yasmin, & Javed, 

2019). Therefore, for correct classification of gait, it is essential to construct a system that is 

robust enough to overcome these challenges. Many DL algorithms are specifically designed to 

deal with clothing variations, carrying objects, walking speed and single viewing angle while 

some are specific for larger appearance variants due to change in viewing angle. In addition, 

some of them are utilized to deal with performance of specific types of variations but the 

performance assessment for one particular view, multiple view, interactive and non-interactive 



situations are still needed  (Siddiqui et al., 2018). These existing methods for gait recognition 

process can be divided into two groups: model and appearance based methodologies. Usually, 

appearance based approach deals with the moving gestures of human body and works on 

silhouettes by extracting gait features (Jain, Kumar, & Fernandes, 2017). Human silhouette 

extraction, detection of time interval, representation and recognition are common context that 

fall in the category of appearance based approach. Model based method is used to extract the 

individual’s foot step parameters and it uses human body silhouette for describing gait. 

Although gait recognition frequently requires realtime and valuable results at low resolution, 

this model needs images with high resolution and its computation is really very expensive (Li, 

Min, Sun, Lin, & Tang, 2017).    

Many computerized methods are proposed for video surveillance using classical feature 

transforms (Raza et al., 2018; Sharif et al., 2017; Sharif, Khan, Zahid, Shah, & Akram, 2019) 

but lately DL has been gathering attention in ML applications, for instance, biometrics, video 

surveillance and medical imaging (Alotaibi & Mahmood, 2017; M. A. Khan et al., 2020; Raza 

et al., 2018). As compared to handcrafted descriptors, a DL model tries to simulate the activities 

of human brain that come naturally. In the last few years, this kind of ML based approaches 

has achieved high level of classification accuracy that is not being obtained before. It can use 

a hierarchical method for learning of high level facts generalization. HGR using deep CNN 

models is commonly considered as an effective method as it can accurately represent training 

data and extract larger feature sets with complex patterns. A common deep network comprises 

of  input layer, at least one hidden layer and an output layer such that every single layer has to 

do particular type of ordering and sorting process (Hershey et al., 2017).  Deep networks 

contain as much as 150 hidden layers as oppose to traditional neural networks which usually 

contain only 2-3 hidden layers. DL models are also used to handle large sets of unlabelled and 

unstructured datasets (Ansari, Shah, Yasmin, Sharif, & Fernandes, 2018; Raza et al., 2018). 

These models are trained by NN architectures and larger sets of labelled data hence enabling 

them to acquire features directly from data without using handcrafted feature extraction. 

Nonlinear multiple layer processing and supervised or unsupervised feature learning are two 

main factors in DL (Vargas, Mosavi, & Ruiz). In nonlinear multi-layer processing, the current 

layer is used to take the product of former layer as input. Then, these layers are arranged in a 

hierarchical manner to extract useful data whereas supervised and unsupervised feature 

learning mainly deal with targeting class labels. Availability of these labels results in a 

supervised classification problem otherwise unsupervised one. 



1.1. Motivation 

The increasing number of crime rates and terror attacks in numerous locals generates alarming 

conditions to security organizations for the sake of citizens’ security (Sharif, Raza, Shah, 

Yasmin, & Fernandes, 2019). Moreover, a large number of CCTV cameras commonly mounted 

in many roads, buildings and traffic signals require constant checking. The manual checking 

and identification of humans is considerably a difficult task; additionally, the biometric 

information extracted visually can be affected very deficiently because of poor biometric 

techniques, crime locations and image quality (M. Sharif, M. Raza, et al., 2019). This research 

has used the approaches introduced in (Martis, Gurupur, Lin, Islam, & Fernandes, 2018; Raza 

et al., 2018; M. Sharif, M. Raza, et al., 2019) and implemented the state-of-art technique 

presented in (S. L. Fernandes & Bala, 2016a). To overcome the limitations discussed in these 

articles, an automated HGR method has been proposed using advanced DL technique while 

taking into account the unique characteristics of humans under both controlled and 

uncontrolled environments. 

1.2. Problem Statement 

Enormous research work for human identification by gait has been conducted which comprises 

tasks of pre-processing, silhouette based feature extraction and classification. There are many 

problematic factors that affect HGR and also degrade its performance such as object carrying 

posture, dressing, illumination effects, walking speed and shadow under feet (M. Khan et al., 

2019). However, in this research work, following problems were taken into consideration: i) 

Covariate factors such as dressing and carrying variations and view angles that can degrade 

HGR performance, ii) Difficulty to discriminate unidentified inter-group dissimilarities and 

intra-group variants of human gait in real world scenarios, iii) Viewing angles variations that 

can adversely affect the recognition process, iv) Many ML methods did not give better results 

for selection of handcrafted gait features, v) Changes in human posture that typically occur 

while using smart phones and carrying objects hence bringing intra-class variations that cause 

difficulty in gait recognition, vi) Incomplete gait cycle acquisition because of occlusions that 

can degrade recognition performance, and  vii) View-invariant gait features also bring 

difficulty in gait recognition. 

1.3. Contribution 

Major contributions of this work are listed below. 



I. To extract deep features, two pre-trained CNN models are applied and their information is 

fused via a parallel approach. In the proposed parallel fusion approach, both feature vectors are 

compared with each other and a strongly correlated feature is added into a fused matrix.  

II. Entropy and Skewness vectors are computed from the fused matrix and a new approach 

FEcS is proposed to select the best subsets of features.  

III. The best subsets of features are supplied to various classifiers to select a strong classifier 

based on their higher accuracy value.  

IV. A feature based comparison was conducted and the performance of fused FV, 70% selected 

features and 50% selected features accuracy was compared for evaluation. 

This article is organized as: In section 2, the related work for HGR is presented; section 3 

contains a description of CNN model while the proposed methodology is discussed in section 

4. In section 5, the experimental results, discussion and comparison of results with existing 

methods are described. Finally, section 6 concludes the article.  

2. Related Work 

Nowadays, DL is showing improved performance in the field of CV (Bokhari, Syedia, Sharif, 

Yasmin, & Fernandes; Muhammad Attique Khan et al., 2018; Rashid et al., 2018). Recently, 

many DL approaches are applied for human gait recognition that outperforms well-known 

handcrafted descriptors (Ben et al., 2019; Gadaleta & Rossi, 2018; Wolf, Babaee, & Rigoll, 

2016). Ozen et al. (Ozen, Boulgouris, & Swash, 2017) introduced a Holoscopic based HGR 

where one simple array of lenses is used to attach with the traditional cameras and Holoscopic 

gait energy image (HGEI) is built instead of traditional imaging process. This method gives 

better performance in complex and crowded scenarios as well as it enhances the competency 

of background subtraction. Chen et al. (Q. Chen, Wang, Liu, Liu, & Huang, 2017) presented a 

cross view HGR method based on combination of CNN and Siamese net. In this approach, 

CNN is used to take the image of random length as input to extract similar attributes. Feature 

vector pooling method is applied to get cumulative of extracted features. Then a system alike 

to Siamese is applied for classification. A large sample dataset OU-ISIR is utilized for the 

validation of the network so that it can efficiently extract and aggregates features from 

silhouette of gait image sequences. Sahak et al. (Sahak, Tahir, Yassin, & Kamaruzaman, 2017) 

presented a frontal and oblique view gait recognition method where Kinect is used for feature 

extraction, orthogonal least square for attribute selection and multi-layer perceptron for 



classification. Then the optimized Multi-Layer Perceptron (MLP) with two feature sets 

(orthogonal least square gait features and direct gait features) is used for the recognition of gait 

and evaluated its effectiveness by using neural network classifier that provides best 

classification results. Tang et al. (Tang, Luo, Tjahjadi, & Guo, 2017) presented a view invariant 

HGR technique using partial likeness between the individual’s correspondences. A 3D 

framework is utilized in this method and a gait model is built with 2D gait patterns using 

individual’s body pattern that contains posture and silhouette distortion. A GPSM model is 

presented for extraction of multiple views partial likeness features and then multiple linear 

subspace classifiers are combined with high weighted selection to get correct detection of 

individuals. The trial outcomes for the proposed method have proved that it is strong enough 

for various covariant factors. Shiqi et al. (Yu, Chen, Wang, Shen, & Huang, 2017) introduced 

a uniform deep model for gait recognition based on an auto encoder to extract covariant 

features. In this approach, multi view gait sequences are converted into any single view. It also 

eliminates the effect of wearing and carrying objects by individuals that affect the gait 

identification. The effectiveness of proposed model was assessed on the gait databases SZU 

RGB-D and CASIA B and obtained good recognition results. Chen et al. (C. Wu, Zhang, & 

Song, 2018) presented a multiple view gait recognition technique. In this approach, a two 

dimensional enhanced GEI technique is used for feature extraction by preserving the structural 

information of human silhouette through remodelling of 2DPCA. After this, non-negative 

pattern decomposition is applied to acquire organized local features for precision loss during 

view variation. At the end, 2DLDA is taken for feature estimation in a discriminant space for 

improvement of classification. Introduced method was applied on the CASIA B multi view gait 

dataset and compared it with Stack Aggressive AutoEncoder (SPAE) and deep CNN 

approaches to validate its effectiveness. Huimin et al. (H. Wu, Weng, Chen, & Lu, 2018) 

presented deep convolutional location weight descriptor technique for merging deep and simple 

features into a generally unified pre-trained architecture for classification. From the input layer, 

deep feature vectors are extracted first and then the filtered function is trained with guiding 

weights in accordance with fully connected (FC) layer for input layer. The handcrafted features 

are extracted through these guiding weights. Two publicly available datasets OU-ISIR and 

CASIA B were used to validate the effectiveness of presented method. Battistone and Petrosino 

(Battistone & Petrosino, 2018) introduced a deep learning model for gait recognition named as 

time based chart for long term memory. This model learns time changes in chart and 

collaboratively utilizes temporal information and structured data based on deep network. This 

network then learns long and short term dependences collectively using graph pattern. Chen et 



al. (X. Chen, Weng, Lu, & Xu, 2018) presented a multi-gait recognition method for recognizing 

gait of the individual walking alone or with other people. LCRF method is presented to 

determine unchanged and unknown gait features of single and multi-gait. Features created 

using dense trails are taken out to enhance the effectiveness of acquired features for 

recognition. 

2.1. Real-Time Processing 

The real time HGR using video processing is an active research area due to the famous 

application intelligent video surveillance (Lai, Yang, & Chen, 2007) performing real time 

security monitoring with multiple cameras in the defence systems.  But due to high 

complexities in this area like video analysis or understanding, a better system is still not 

available. The real time video processing is also used in sports especially in football and cricket 

to take decisive action upon violence (Fenil et al., 2019). Although more recent real time gait 

recognition techniques are introduced but still they have many limitations to achieve required 

performance (Do, Nguyen, & Kim, 2019; Sien, Lim, & Au, 2019).  

2.2.  Low quality Video Processing 

HGR under low quality video sequences is a difficult task due to cluttered background and 

hidden information. Image compression is an important aspect in video processing because the 

information in video is compressed which may lead to the loss of important features (Kamble, 

Thakur, & Bajaj, 2018). Therefore, it is essential to perform enhancement techniques to get 

better video frames leading to a significant recognition rate (Damahe & Thakur, 2019). 

3. Convolutional Neural Network (CNN) 

A common CNN model is divided into two parts containing different layers where each layer 

performs distinct role. Feature learning part contains convolutional layers, activation or ReLU 

layers and pooling layer whereas classification part contains FC and softmax layers. Each CNN 

layer converts an input size to an output size of neuron initiation that is finally given to FC 

layer by mapping the input data in to 1D feature vector (Voulodimos, Doulamis, Doulamis, & 

Protopapadakis, 2018). The general architecture of a CNN is presented in Figure 1.  

 



 

Figure 1: General architecture of a DCNN 

4.  Proposed Methodology 

A new integrated system for HGR is proposed in this article by using DCNN features fusion 

and best subsets of features selection. The features are extracted from two well-known pre-

trained CNN models known asAlexNet and VGG. The selection of these models was based on 

their excellent performance in previous studies. The main flow of the proposed method is 

presented in Figure 2.  

4.1. AlexNet 

AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) is a deep CNN model that has significantly 

improved the classification performance as compared with other models thus provoking the 

researchers interest in various CV applications. The input size of this network is 227×227×3. 

It is considered as a deeper network because it contains many filters at each layer. It has a total 

of 5 convolutional layers for feature extraction, max pooling layers, drop out, data 

augmentation, ReLU or activation layers, stochastic gradient descent (SGD) algorithm and 3 

FC layers in order to classify with almost 60 million free parameters. The size of the first 

convolutional layer is 11×11 with 96 kernels and the second convolutional layer of size 5×5 

with kernel size 256 came after max pooling layer. The third and fourth convolutional layers 

of size 3×3 with kernel size 384 are directly connected. The fifth convolutional layer with size 

3×3 and kernel size 256 is followed by max pooling layer. The FC-6 and FC-7 layers contain 

4096 neurons and FC-8 layer contains 1000 neurons for classification, therefore, a total of 1000 

channels are possible for each class. Moreover, a drop out layer is used after each FC layer to 

decrease the problem of over fitting. In this work, FC layer 7 is used to perform activation for 

feature extraction. The size of the extracted FV is N×4096 which is utilized for the next step.   



 

Figure 2: Proposed flow of HGR using Deep NN features fusion and FEcS based selection 

 

 

4.2. VGG19 

VGG (Visual Geometry Group) (Simonyan & Zisserman, 2014) is a simple deep network of 

16 and 19 learnable weight layers with 16 convolutional layers of 64, 128, 256, 512 filter sizes 

and 3 FC layers of which two FC layers contain 4096 features and a third FC layer comprises 

of 1000 features. Final layer is softmax classification layer. The convolutional layers of size 

3×3 and pooling layers of size 2×2 are used all over the net. FC layer 7 is utilized to extract 

deep features through the activation function. The resultant FV of size N×4096 is obtained 

which is used in the next step.  

4.3. Higher Index Features Fusion 

Features fusion is a traditional research area in the field of CV (Majid et al., 2020; Sharif, 

Tanvir, Munir, Khan, & Yasmin, 2018). It means to combine the patterns information of multi-

properties features in one matrix. There are several advantages and limitations of features 

fusion. Major advantage is that the system accuracy is enhanced and redundant information is 

removed from the features (Akram, Khan, Sharif, & Yasmin, 2018; Liaqat et al., 2018). But 

the main limitation is efficiency of the system which means that overall execution time of 

system is increased while combining multiple features. In this article, a novel parallel features 

fusion method named as high index value selection (HIVS) is presented. In this approach, 

entropy and skewness vectors are calculated by utilizing original deep FVs like AlexNet and 



VGG19. After vector construction, each index of both vectors is fused one by one by applying 

higher value index. The key condition of this technique is equal length of both vectors. The 

mathematical formulation of entropy and skewness is given as follows:         

Entropy- In terms of mathematics, entropy is applied to determine the variability of issues. In 

information learning, entropy is applied to compute the average variability of data. It is used to 

evaluate non-uniform positions, for instance, variations and irregularity in vibrant parts of 

human gait. Entropy using a Markov process is termed as: 

H(W) = −∑p)log-p)      (6) 

Where,	p) is probability of k. In first order, the probability of selecting features of a Markov 

model is directly dependent on the prior entropy feature selection rate given as: 

H(W) = −∑ p) ∑ p)(j)log-p1(j)1)      (7) 

Where, k is the state of certain prior features and p2(j) is the probability for j given k as prior 

features. In second order of Markov model, the entropy rate is defined: 

H(W) = 	−∑ p) ∑ p)(j) ∑ p),1(u)log-p),1(u)51)    (8) 

Simply the t binary entropy of an individual is derived as E = (E, P) with derived character 

object E = {i;, … , i)} and probability distribution P = {j;, … , j)}. Here, j> is probability of i2 

that is termed as: 

H?(W) = −∑ p)log?p)@
)A;       (9) 

Where, binary entropy t is the total number of features that are used as a standard feature 

measure for source features. The length of the resultant entropy vector is K × 4096. 

Skewness- Skewness measure defined by Pearson gives information about the aggregate and 

direction for departure from symmetry. The values for symmetrical distribution can be positive 

and negative or may be undefined. If the absolute value for the measure of skewness is high, it 

gives more asymmetric distribution. This asymmetric distribution is used to discriminate 

humans who walk slowly or fast. 

Central or k?H raw moments for the random variable G is EIG)K, where E is the estimated value 

of random variable with k?H power. The first raw moment for the random variable Y is mean 

and it is symbolised by µ. 



µ = E(G)        (10) 

Where, G denotes total pixels and µ is the mean value of those pixels. The second raw moment 

is named as variance and it is symbolised by σ- and its square root is standard deviation (SD) 

denoted by σ. 

σ- = O[QRS]U

VU
        (11) 

= OWQUXRSU

VU
        (12) 

σ = YO[QU]RSU

VU
        (13) 

The measuring ratio between SD and mean V
S
 is also known as coefficient of variation. The 

ratio for the 3rd central moment with the cube of SD is known as Pearson’s coefficient of 

skewness and it is usually denoted by β;: 

β; =
S[
V[
= OW(QRS)[X

V[
       (14) 

β; =
OIQ[KR\SVURS[

(VU)
[
U]

       (15) 

Hence, the resultant feature vector is of dimension L × 4096. Now for fusion of both Entropy 

and Skewness vectors K × 4096	and	L × 4096, the index of each one is compared and higher 

feature is put into new matrix which denotes HIVS fusion. The fusion process is illustrated in 

Figure 3 where it is shown that originally features are computed from VGG19 and AlexNet for 

matrices of features. Later, from the original vectors, entropy and skewness vectors are 

calculated which are fused based on parallel high index value feature to obtain a new vector of 

dimension Lb × 4096.    



 

Figure 3: Proposed parallel features fusion working 

4.4. Fuzzy Entropy Controlled Skewness 

Several features selection techniques are implemented in literature by using the concept of 

entropy, skewness and Genetic Algorithm (GA) (M Attique Khan et al., 2018; Nasir et al., 

2018; Sharif, Khan, Faisal, Yasmin, & Fernandes, 2018; Sharif, Khan, Iqbal, et al., 2018) but 

the fuzzy approach is not utilized which performs efficiently for video sequences. In this article, 

a novel technique is introduced named as FEcS to select best subsets for features selection. In 

information theory, Shannon entropy (Rajinikanth, Thanaraj, Satapathy, Fernandes, & Dey, 

2019; Shannon, 1948) is broadly used to distinguish the impurities from sample spaces and 

compute the unpredictability related with an arbitrary variable. Fuzzy entropy is an extended 

idea of Shannon entropy with fuzzy sets which is used for entropy estimation. The concept of 

fuzzy entropy is entirely diverse from traditional Shannon entropy as fuzzy entropy is 

comprised of fuzzy unpredictability whereas Shannon entropy consists of random 

unpredictability (Kosko, 1986). In statistic, the conventional method to measure entropy uses 

the idea of probabilities created by histograms. The fuzzy logic or fuzzy entropy based entropy 

is measured through minimum time than it is passed through statistical methods with more 

suitable evaluations.  



Suppose a random variable R with limited set of m components,R = {r;, r,… , rf}, where R 

describes the fused FV. If component r> occurs with probabilityp(r>) then the information set 

Y(r>) related with r> is termed as: 

Y(r>) = −log-p(r>)       (16) 

Entropy E(R) of R is defined as: 

E(R) = −∑ p(r>)log-p(r>)f
>A;      (17) 

Where, m is the number of components and p(r>) represents the resultant probability of 

component r>. Zadeh (Zadeh, 1976) introduced fuzzy entropy over a fuzzy set Lb  for a finite set 

R = {r;, r, … , rf} using approximate probability distribution P = {p;, p-,… , pf} represented 

as: 

E = −∑ µhi(r>)p>log	p>f
>A;       (18) 

Where, µh	i  represents the membership function of Lb , µhi(r>) means the category of association 

of r> related to the fuzzy set Lb, p> represents the probability r> and 1 ≤ i ≤ m. The difference in 

Equation (17) and Equation (18) is the expression µhi(r>) that can be used as a weighted 

multiplier.  

Assume R is a fuzzy set on discourse X = {x;, x-, … , xf},	the association vector of R	is R =

(r;, r-,… , rf)n, where r> = µo(x>) ∈ [0,1], then the fuzzy entropy for distance of R is given 

as: 

Eq(R) =
-
f
∑ |r> − µos(x>)|f
>A;           (19) 

Where, Rt is a crisp group with minimum distance to	R, the feature function for Rt is 

represented as: 

µos(x>) = u0							r> < 0.5
1						r> ≥ 0.5             (20) 

The features with index greater or equal to 0.5 are selected and multiplied by Skewness vector 

for ultimate classification. The selected FV is given to random forest (RF) classifier {Pal, 2005 

#146} for final recognition. The proposed labelled outcomes are shown in Figures 4 and 5 for 

all selected datasets.    



 

Figure 4: Proposed labelled outcomes for CASIA A and CASIA B datasets 

 

Figure 5: Proposed labelled outcomes for CASIA C and AVAMVG datasets 

 



5.  Experimental Results and Analysis 

5.1. Experimental Setup 

The validation of proposed system is presented in this section by using different datasets and 

performance metrics. Four publicly available datasets were utilized for this purpose and a 70:30 

approach was applied for training and testing. After splitting the data, pre-trained model was 

loaded and cross entropy function was performed for activation. A mini batch size was 

initialized as 64 and learning rate was 0.001. This process was implemented on 

MATLAB2018a using Matconvnet deep learning toolbox (Vedaldi & Lenc, 2015). The 

measures used for system performance were sensitivity, precision rate, FNR, FPR, Area under 

Curve (AUC), F1-score and accuracy. Further, overall classification time of the proposed 

system was also calculated. 

5.2. Performance Validation 

The performance of proposed approach was compared in different steps. In the first step, 

extracted VGG and AlexNet features were fused and classification was performed. In the 

second step, the results of introduced FEcS based 70% features were selected and classification 

was performed. Likewise, in the third step, FEcS based 50% features were chosen for 

classification. The description of all steps is given below. 

5.3.  Datasets 

Four publicly available datasets were utilized in this work: CASIA A gait dataset (Wang, Tan, 

Ning, & Hu, 2003), CASIA B gait dataset (Yu, Tan, & Tan, 2006), CASIA C gait dataset (Tan, 

Huang, Yu, & Tan, 2006) and AVAMVG multi-view gait dataset (López-Fernández, Madrid-

Cuevas, Carmona-Poyato, Marín-Jiménez, & Muñoz-Salinas, 2014). The sample frames of 

each dataset are shown in Figure 6. The brief description for related datasets is as follows: 

CASIA A gait dataset was recorded in an outdoor environment and in two alternate days. In 

this dataset, 20 subjects were involved to perform four gait sequences in three distinct views 

as laterally (0°), obliquely (45°) and frontal (90°). Hence the dataset contains 20×4×3=240 

number of gait sequences recorded in 25 fps (frames per second) with 352 ×240 image 

resolution and average length of each gait sequence is about 90 frames. In this work, 168 video 

sequences were utilized for training the system and others for testing. 



CASIA B gait dataset is broadly used as a multi-view gait recognition dataset. Gait videos 

were recorded in an indoor environment through 11 different views using USB cameras and 

124 subjects are included in recording that includes a total of 93 males and 31 females. The 

difference between each view angle direction is 18° arranged as 0º, 18º, 36º, 54º, 72º, 90º, 108º, 

126º, 144º, 162º and 180º. Gait sequence for multi-view were recorded with three variations 

that include 6 video sequences for a normal walk (NW), 2 video sequences by wearing a coat 

(WC) and 2 video sequences by carrying bag (CB). The videos were recorded with a 320×240 

frame size at the rate of 25 fps. Hence, the entire video sequences for the dataset is 10 

×11×124=13640. In this article, only 90º view was considered which includes a total of 1240 

video sequences. Similar to CASIA A dataset, 70:30 approach was performed for validation.   

CASIA C gait dataset is Infrared Night Gait Dataset recorded with a thermal infrared camera. 

Gait sequences for the dataset were recorded in an outdoor environment and 153 subjects were 

included (130 males and 23 females). In each gait sequence, four types of variations were 

recorded that includes walk with carrying-bag (CB), slow walk (SW), normal walk (NW) and 

quick walk (QW). In recording session, each individual had to walk in the sequence of 4 times 

normal walk, 2 times with carrying bag, 2 times walk slowly and 2 times walk quickly. Hence 

1530 number of gait sequences was recorded with 320×240 resolution at the rate of 25 fps. 

Further, 1071 video sequences were used for training the proposed system and others for 

testing.    

AVA multi-view gait dataset was recorded in an indoor environment and from six multiple 

views that gives a view of 360°. In recording session, 10 walking sequences were performed 

by 20 subjects that include 4 females and 16 males. Gait sequences were recorded in 4:3 

formats with 640×480 image resolution at a rate of 25 fps. Each walking sequence includes 3 

straight walking sequences, six curved sequences and finally walks in a straight path. In 

addition, 20,000 total numbers of extracted frames with image resolution 256×141 were 

considered for evaluation. 



 

Figure 6: Sample frames of the selected gait recognition datasets 

5.4.  Results 

The effectiveness of the proposed deep learning method is addressed in this section by applying 

10-fold cross validation (10CV) on selected FV. The selected FV was randomly divided into 

10 subgroups from which one group was utilized for testing and remaining nine groups for 

training. This method was repeated 10 times and single average value was calculated after 10 

repetitions. Eight classification methods including Fine Tree (FT), Linear Discriminant 

Analysis (LDA), Linear SVM (LSVM), Quadratic SVM (QSVM), Cubic SVM (CSVM), Fine 

KNN (FKNN), Weighted KNN (WKNN) and RF are utilized for classification.  

The recognition outcomes for the CASIA A dataset are presented in Table 1. The results are 

shown in three distinct feature sets such as fused FV, selection of only 70% features by 

proposed FEcS approach and selection of top 50% features. The best achieved accuracy of 

CASIA A dataset was 99.7% on RF classifier whereas other classification methods also 

achieved better accuracy on 50% selected features. From results, the accuracy of 70% selected 

features and fused FV was 99.3% which is also verified by the confusion matrices (CM) in 

Figure 7. The selection of features had effects on the efficiency of introduced framework which 

can be observed in Figure 8. In Figure 8, the best Execution Time (ET) was 34.29 seconds for 

RF. 



Table 1: Classification outcomes of the proposed technique for CASIA A gait dataset. The words Sen denotes 

sensitivity rate, Pre denotes precision rate, FNR is false negative rate, Acc denote accuracy and C* denotes the 

classification method. 

C* 

Features Performance Metrics 

Fused FEcS 
70% 

FEcS 
50% 

Sen 
(%) 

Pre 
(%) 

FNR 
(%) AUC 

F; 
Score 
(%) 

Acc 
(%) 

FT 

ü    90.67 90.67 9.5 0.94 90.67 90.5 

 ü   91.00 91.0 9.0 0.94 91.00 91.0 

  ü  90.00 90.67 9.7 0.94 90.33 90.3 

LSVM 

ü    97.67 98.0 1.9 0.99 97.83 98.1 

 ü   97.67 97.67 2.1 0.99 97.67 97.9 

  ü  98.00 98.33 1.7 0.99 98.16 98.3 

QSVM 

ü    99.00 99.33 0.7 1.00 99.16 99.3 

 ü   99.00 99.33 0.7 1.00 99.16 99.3 

  ü  99.00 99.33 0.7 1.00 99.16 99.3 

CSVM 

ü    99.00 99.00 0.7 1.00 99.00 99.3 

 ü   99.00 99.00 0.7 0.99 99.00 99.3 

  ü  99.00 99.00 0.7 0.99 99.00 99.3 

FKNN 

ü    98.33 98.00 1.4 0.99 98.16 98.6 

 ü   98.33 98.33 1.3 0.99 98.33 98.7 

  ü  99.00 100.0 0.8 0.99 99.50 99.2 

WKNN 

ü    96.67 96.67 3.6 1.00 96.67 96.4 

 ü   97.00 97.00 3.1 1.00 97.00 96.9 

  ü  97.00 97.00 3.0 1.00 97.00 97.0 

EBT 

ü    98.00 98.00 2.0 1.00 98.00 98.0 

 ü   97.00 97.33 2.5 1.00 97.16 97.5 
  ü  98.00 98.33 1.5 1.00 98.16 98.5 

RF 

ü    99.33 99.00 0.7 0.99 99.16 99.3 

 ü   99.33 99.00 0.7 0.99 99.16 99.3 

  ü  99.47 99.33 0.3 1.00 99.40 99.7 

 



 

Figure 7: Confusion matrices obtained for CASIA A dataset (a) Fused FV, (b) Selection of top 70% features 
and  

(c) Selection of top 50% features 

 

Figure 8: Classification time of the proposed technique for CASIA A dataset 

The classification outcomes of the proposed technique using the CASIA B dataset are presented 

in Table 2. Similar to CASIA A, the results were obtained using three different feature sets. 

From Table 2, the accuracy of Fused FV was 93.4% on RF classifier which is verified by CM 

shown in Figure 9 (a). Then 70% and 50% proposed FEcS approach accuracy was 93.2% and 

93.4% respectively which is also verified by Figure 9 (b) and Figure 9 (c). The change in results 

after selection of best subsets of features did not occur but the efficiency of proposed method 

was significantly improved as shown in Figure 10 where minimum ET was 98.7 seconds on 

RF whereas worst ET was 337.71 seconds on FT using fused FV. 

Table 2: Classification outcomes of the proposed technique for CASIA B gait dataset 

C* Features Performance Metrics 



Fused FEcS 
(70%) 

FEcS 
(50%) 

Sen 
(%) 

Pre 
(%) 

FDR 
(%) 

 
FNR 
(%) 

 

AUC 
F; 

Score 
(%) 

Acc 
 (%) 

FT 

ü    60.33 60.33 39.67 39.7 0.76 60.33 60.3 

 ü   61.67 62.0 38.0 38.6 0.76 61.83 61.4 

  ü  60.33 61.0 39.0 39.5 0.76 60.66 60.5 

LSVM 

ü    82.33 82.33 17.67 17.6 0.93 82.33 82.4 

 ü   82.33 82.33 17.67 17.6 0.93 82.33 82.4 

  ü  82.00 82.67 17.33 17.7 0.93 82.33 82.3 

QSVM 

ü    86.00 86.33 13.67 14.0 0.96 86.16 86.0 

 ü   86.33 86.67 13.33 13.9 0.96 86.50 86.1 

  ü  86.00 86.0 14.0 14.1 0.96 86.00 85.9 

CSVM 

ü    92.00 92.0 8.0 8.0 0.99 92.00 92.0 

 ü   92.00 91.33 8.67 8.4 0.99 91.83 91.6 

  ü  92.00 91.67 8.33 8.2 0.99 91.83 91.8 

FKNN 

ü    83.33 83.33 16.67 17.0 0.87 83.33 83.0 

 ü   83.33 83.67 16.33 16.7 0.88 83.50 83.3 

  ü  83.33 83.33 16.67 16.9 0.87 83.33 83.1 

WKNN 

ü    81.33 82.0 18.0 18.6 0.94 81.66 81.4 

 ü   81.00 82.33 17.67 18.6 0.94 81.66 81.4 

  ü  81.33 82.0 18.0 18.6 0.94 81.66 81.4 

EBT 

ü    77.0 77.33 22.67 22.8 0.92 77.16 77.2 

 ü   78.67 79.0 21.0 21.1 0.92 78.83 78.9 

  ü  77.67 78.0 22.0 22.2 0.92 77.83 77.8 

RF 

ü    93.33 93.33 6.67 6.6 0.99 93.33 93.4 

 ü   93.33 93.0 7.00 6.8 0.99 93.16 93.2 

  ü  93.33 93.33 6.67 6.6 0.99 93.33 93.4 
 



 

Figure 9: Confusion matrices obtained for CASIA B dataset (a) Fused FV (b) Selection of top 70% features and 
 (c) Selection of top 50% features 

 

Figure 10: Classification time of the proposed technique for CASIA B dataset 

The classification outcomes of the proposed technique using a CASIA C dataset are shown in 

Table 3. Fused FV, top 70% selected features and top 50% features were selected for evaluation 

and analysis of the performance of proposed solution. The results shown in Table 3 indicate 

that proposed model performed well on top 50% selected features and achieved high accuracy 

of 92.2% using RF classification method which can be observed by Figure 11 (c). Whereas the 

accuracy of Fused FV and top 70% selected features was 88.8% and 91.9% respectively, this 

is also verified by CM in Figure 11 (a) and Figure 11 (b). The results illustrate that the selection 

process improved the overall recognition accuracy on this dataset using all classification 

methods. In addition, the selection of best subsets of features rallied the efficiency of whole 

system as demonstrated in Figure 12 where the best reported ET is 23.21 seconds with RF 

classifier using top 50% of features obtained by proposed features selection approach. 



Table 3: Classification outcomes of proposed technique for CASIA C gait dataset using different feature sets 

C* 

Features Performance Metrics 

Fused FEcS 
(70%) 

FEcS 
(50%) 

Sen 
(%) 

Pre 
(%) 

FDR 
(%) 

FNR 
(%) AUC 

f; 
Score 
(%) 

 

Acc 
 (%) 

FT 

ü    53.25 53.00 47.00 46.8 0.710 53.12 53.2 

 ü   55.25 55.75 44.25 44.7 0.730 55.50 55.3 

  ü  61.51 61.75 38.25 38.6 0.773 61.63 61.4 

LSVM 

ü    71.75 73.00 27.00 28.2 0.900 72.37 71.8 

 ü   74.52 75.00 25.00 25.7 0.910 74.76 74.3 

  ü  74.75 75.25 24.75 25.3 0.915 74.99 74.7 

QSVM 

ü    86.25 86.75 13.25 13.6 0.970 86.50 86.4 

 ü   86.00 86.5 13.50 13.7 0.970 86.25 86.3 

  ü  87.00 87.00 13.00 13.1 0.965 87.00 86.9 

CSVM 

ü    88.00 88.50 11.50 11.9 0.970 88.25 88.1 

 ü   86.75 87.00 13.00 13.3 0.970 86.87 86.7 

  ü  87.5 87.50 12.50 12.5 0.965 87.50 87.5 

FKNN 

ü    80.00 80.25 19.75 19.9 0.870 80.12 80.1 

 ü   78.75 79.00 21.0 21.2 0.860 78.87 78.8 

  ü  78.75 79.25 20.75 21.0 0.860 78.99 78.8 

WKNN 

ü    66.25 66.75 33.25 33.7 0.865 66.50 66.3 

 ü   65.5 66.25 33.75 34.4 0.860 65.87 65.6 

  ü  67.00 68.00 32.00 32.9 0.870 67.50 67.1 

EBT 

ü    70.50 70.25 29.75 29.4 0.885 70.37 70.6 

 ü   69.25 69.75 30.25 30.8 0.890 69.50 69.2 

  ü  71.50 72.00 28.00 28.5 0.895 71.75 71.5 

RF 

ü    88.75 88.75 11.25 11.2 0.925 88.75 88.8 

 ü   91.75 92.00 8.00 8.1 0.950 91.87 91.9 

  ü  92.00 92.40 7.60 7.8 0.970 92.2 92.2 



 

Figure 11: Confusion matrices obtained for CASIA C dataset (a) Fused FV (b) Selection of top 70% features 
and  

(c) Selection of top 50% features 

 

Figure 12: Classification time of the proposed technique for CASIA C dataset 

The classification outcomes of the proposed approach using a AVAMVG gait dataset are 

indicated in Table 4. The outcomes were evaluated in distinct phases. In the first phase, features 

of both AlexNet and VGG19 were fused which were extracted from FC layer 7. The best 

obtained accuracy of this experiment was 99.8% which is verified by CM demonstrated in 

Figure 13(a). Moreover, the best ET of this phase was 139.5 seconds on CSVM. In second and 

third phases, top 70% and 50% features were selected and achieved an accuracy of 99.8% 

which is verified through Figure 13 (b) and Figure 13 (c). The major difference among fused 

and selected features was done through the efficiency of system illustrated in Figure 14 where 

high and best execution time of Fused FV was 190.1 seconds and 141.8 seconds whereas top 



70% selected features executed in 182.62 seconds and 112.9 seconds. After the selection of 

50% features, the accuracy of proposed system was still consistent and best ET was 91.96 

seconds which is most excellent as compared to both previous feature experiments.  

Table 4: Classification outcomes of proposed technique for AVAMVG gait dataset 

C* 

Features Performance Metrics 

Fused FEcS 
(70%) 

FEcS 
(50%) 

Sen 
(%) 

Pre 
(%) 

FDR 
(%) 

FNR 
(%) AUC 

f; 
Score 
(%) 

Acc 
(%) 

FT 

ü    64.75 65.25 34.7
5 35.3 0.84 64.99 64.7 

 ü   64.00 65.50 35.5
0 35.8 0.83 64.74 64.2 

  ü  64.00 65.50 34.5
0 35.9 0.83 64.74 64.1 

LSVM 

ü    99.00 99.00 1.00 0.8 1.00 99.00 99.2 

 ü   99.00 99.00 1.00 0.9 1.00 99.00 99.1 

  ü  99.00 99.00 1.00 0.9 1.00 99.00 99.1 

QSVM 

ü    92.50 92.50 7.50 7.6 0.99 92.50 92.4 

 ü   92.50 92.50 7.50 7.5 0.99 92.50 92.5 

  ü  92.50 92.50 7.50 7.5 0.99 92.50 92.5 

CSVM 

ü    98.80 98.80 1.10 1.0 1.0 98.80 99.0 

 ü   98.75 98.75 1.25 0.9 1.0 98.75 99.1 

  ü  98.75 98.75 1.25 0.9 1.00 98.75 99.1 

FKNN 

ü    99.00 99.00 1.00 0.3 1.00 99.00 99.7 

 ü   99.00 99.00 1.00 0.3 1.00 99.00 99.7 

  ü  99.00 99.00 1.00 0.3 1.00 99.00 99.7 

WKNN 

ü    98.80 99.00 1.00 1.1 1.00 98.90 98.9 

 ü   98.80 99.00 1.00 1.1 1.00 98.80 98.9 

  ü  98.75 99.00 1.00 1.1 1.00 98.87 98.9 

EBT ü    97.80 98.00 2.00 2.1 1.00 97.50 97.9 



 ü   98.00 98.00 2.00 2.1 1.00 98.00 97.9 

  ü  97.75 98.00 2.00 1.9 1.00 97.87 98.1 

RF 

ü    99.0 99.00 1.00 0.2 1.00 99.00 99.8 

 ü   99.0 99.00 1.00 0.2 1.00 99.00 99.8 

  ü  99.0 99.00 1.00 0.2 1.00 99.00 99.8 

 

 

Figure 13: Confusion matrices obtained for AVAMVG dataset (a) Fused FV (b) Selection of top 70% features 
and  

(c) Selection of top 50% features 

 

Figure 14: Classification time of proposed method for AVAMVG dataset 

5.3.  Discussion 



Deep CNN features were extracted using two pre-trained models. In general, CNN model 

comprises of different layers as Convolutional, ReLu, Pooling and FC as illustrated in Figure 

1. The proposed HGR flow architecture is given in Figure 2 which describes two major steps 

as features fusion and features selection. The experiments were performed on four datasets and 

outcomes are presented in Tables 1, 2, 3 and 4 and their confusion matrices are presented in 

Figures 7, 9, 11 and 13. Additionally, execution time of each dataset was calculated for all three 

features experiments (Figures 8, 10, 12 and 14). In the last, evaluation is also performed on 

individual features such as AlexNet and VGG19 as given in Table 5. The results indicated that 

the introduced system outperformed on selected datasets.  

Table 5: Recognition outcomes for VGG16 and VGG19 models on selected datasets 

Classifiers 
CASIA A CASIA B CASIA C AVAMVG 

VGG16 VGG19 VGG16 VGG19 VGG16 VGG19 VGG16 VGG19 

FT 80.4% 88.3% 54.6% 53.2% 48.8% 43.5% 62.1% 59.7% 

LSVM 95.6% 98.8% 78.4% 75.5% 69.3% 64.9% 82.8% 83.0% 

QSVM 96.9% 99.3% 82.6% 80.1% 81.9% 75.6% 97.3% 96.8% 

CSVM 91.3% 97.0% 67.9% 65.5% 64.4% 57.8% 95.3% 94.9% 

RF 96.5% 99.2% 83.1% 81.3% 83.3% 76.9% 98.8% 98.5% 

 

A general datasets based comparison was also conducted with recent HGR techniques. A 

comparison of recognition accuracy rate of the proposed deep learning method for CASIA A 

dataset with other existing techniques is given in Table 6 by considering various variations in 

viewing angle such as 0°, 45° and 90°. The results indicate the superiority of the proposed 

approach. In Table 7, the comparison of recognition accuracy results for CASIA B dataset is 

given with other existing approaches by considering various cofactors under 90°. Rida et al. 

(Rida, Jiang, & Marcialis, 2016), Castro et al. (Castro, Marín-Jiménez, & Guil, 2016), Arora 

et al. (Arora, Hanmandlu, & Srivastava, 2015), Zhang et al. (Zhang, Zhao, & Xiong, 2010) and 

Yu et al. (Yu et al., 2017) attained recognition accuracies of 88.7%, 90.6%, 86.3%, 87.5% and 

68.01% whereas the recognition results of proposed deep learning model obtained an improved 

performance of 93.4%, 93.2% and 93.4% using fused FV, top 70% selected features and top 

50% selected features. Similarly in Table 8 and Table 9, a comparison is given for CASIA C 

and AVAMVG gait analysis datasets. The results indicate the dominance of the proposed 

technique.   



Table 6: Comparison of recognition outcomes for CASIA A gait dataset 

References 
Recognition Rate (%) 

0° 45° 90° Accuracy  

Goffredo et al. (Goffredo, 
Carter, & Nixon, 2008) 100.0 97.50 91.00 96.17 

Chen and Gao (S. Chen & 
Gao, 2007) 92.5 85.00 65.00 80.83 

Geng et al. (Geng, Wang, 
Li, Wu, & Smith-Miles, 

2007) 
90.0 95.0 90.0 91.67 

Proposed 

Fused 99.0 99.0 100 99.3 

Top 70% 
Features 99.0 99.0 99.0 99.3 

Top 50% 
Features 99.0 99.0 100 99.7 

 

Table 7: Comparison of recognition outcomes for CASIA B gait dataset 

References 
Recognition Rate (%) 

NW CB WC Accuracy  

Rida et al. (Rida et al., 
2016) 98.39 75.89 91.96 88.70 

Castro et al. (Castro et al., 
2016) 100.0 99.20 72.60 90.60 

Arora et al. (Arora et al., 
2015) 100.0 90.0 69.0 86.30 

Zhang et al. (Zhang et al., 
2010) 98.39 91.94 72.18 87.50 

Yu et al. (Yu et al., 2017) 95.97 65.32 42.74 68.01 

Proposed 

Fused 93.0 92.0 95 93.40 

Top 70% 
Features 93.0 93.0 94 93.20 

Top 50% 
Features 93.0 92.0 95 93.40 

 

Table 8: Comparison of recognition outcomes for CASIA C gait dataset 

References 
Recognition Rate (%) 

NW SW FW CB Accuracy  



Kusakunniran et al. 
(Kusakunniran, Wu, Li, 

& Zhang, 2009) 
99.02 86.39 89.56 80.72 88.92 

Tan et al. (Tan, Huang, 
Yu, & Tan, 2007) 98.4 91.3 93.7 24.7 77.03 

Marin et al. (Marín-
Jiménez, Castro, 

Carmona-Poyato, & Guil, 
2015) 

96.9 67.7 79.9 79.3 80.95 

Proposed 

Fused 86.0 86.0 84.0 99.0 88.80 

Top 70% 
Features 91.0 87.0 91.0 98.0 91.90 

Top 50% 
Features 91.0 89.0 89.0 99.0 92.20 

Table 9: Comparison of recognition outcomes for AVAMVG gait dataset 

References Recognition Rate (%) 

Castro et al. (Castro, Marín-Jiménez, 
Mata, & Muñoz-Salinas, 2017) 95.00 

Fernandez et al. (López-Fernández et 
al., 2014) 98.10 

Castro et al. (Castro, Marín-Jimenez, 
& Medina-Carnicer, 2014) 95.00 

Fernandez et al. (López-Fernández, 
Madrid-Cuevas, Carmona-Poyato, 

Muñoz-Salinas, & Medina-Carnicer, 
2015) 

98.01 

Fernandez et al. (López-Fernández et 
al., 2016) 96.10 

Proposed 

Fused 99.80 

Top 70% Features 99.80 

Top 50% Features 99.80 

 

6. Conclusion 

HGR is an active research application of video surveillance in the last two decades in the 

domain of CV and ML. In this article, a new automated HGR system was proposed using two 

primary steps: DCNN features fusion and best features selection through FEcS approach. The 

results were conducted on four gait analysis datasets: CASIA A, B, C and AVAMAG and the 

best accuracy of 99.8%, 99.7%, 93.3% and 92.2% respectively was achieved using the RF 



classifier. It can be concluded from the results that the fusion of multiple CNN frameworks 

improved the recognition accuracy. It was also observed that the selection of best features not 

only enhances the system accuracy but even minimizes the execution time.  

The performance of proposed approach is relied on the number of selected features but 

sometimes it is possible that useful features are neglected. Moreover, low resolution video 

sequences also affect the system accuracy, therefore in future; focus will be on the use of better 

resolution of video sequences and computing best features from all directions which can be 

recognized through reinforcement learning. 
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