455 research outputs found

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    Planar Shape Interpolation Based on Local Injective Mapping

    Get PDF
    在只给出用简单多边形表示的两输入形状的情况下,实现一种简单易用、自然高效的形状插值方法.首先利用基于形状感知的特征匹配算法生成源形状和目标形状之间的匹配;之后在源形状上构造三角剖分,并通过求解映射到目标形状上的尽量刚体的局部单射得到同构三角剖分;最后利用扭曲有界的插值方法得到中间序列.实验结果表明,该方法构造的形变结果能较好地体现源形状和目标形状的特征对应信息,形变过程自然,扭曲较小.This paper presents an efficient and easy-to-use planar shape interpolation method, given two input shapes represented by simple polygons. We firstly used a perception-based feature matching algorithm to match the feature points in the source shape with the target shape, then built compatible triangulations by constructing a locally injective mapping between the source and target shapes. Finally, an interpolation method with bounded distortion was adopted to get intermediate frames. Experimental results show that the interpolation results by our method can well reflect the feature correspondences between the source and the target shapes, and the resultant deformation is visually pleasing with less distortion.国家自然科学基金(61472332);; 中央高校基本科研业务费专项基金(20720140520

    Coronal Mass Ejection Reconstruction from Three Viewpoints via Simulation Morphing. I. Theory and Examples

    Full text link
    The problem of reconstructing the three-dimensional (3D) density distribution of a coronal mass ejection (CME) from three simultaneous coronagraph observations is timely in that the COR1 and COR2 coronagraphs on the dual-spacecraft STEREO mission complement the LASCO coronagraphs on the SOHO satellite and the Mk4 on Mauna Loa. While the separation angle between the STEREO spacecraft and the Earth depends on the time since the launch in 2006, the reconstruction problem is always severely underinformed. So far, all 3D reconstruction efforts have made use of relatively simple parameterized models in order to determine the 3D structure of the CME. Such approaches do not utilize the power of 3D MHD simulation to inform the reconstruction. This paper considers the situation in which a specific CME event observed in coronagraphs from three viewpoints is later simulated by solving MHD equations. The reconstruction is then subjected to an invertible morphological operator chosen so that morphed MHD simulation is most consistent with the three-viewpoint coronagraph data. The morphological operations are explained mathematically and synthetic examples are given. The practical application to reconstructing CMEs from STEREO and SOHO data is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98585/1/0004-637X_761_1_24.pd

    Patterning nonisometric origami in nematic elastomer sheets

    Get PDF
    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies

    Métamorphose de maillage 3D

    Get PDF
    Cette thèse de doctorat aborde spécifiquement le problème de la métamorphose entre différents maillages 3D, qui peut assurer un niveau élevé de qualité pour la séquence de transition, qui devrait être aussi lisse et progressive que possible, cohérente par rapport à la géométrie et la topologie, et visuellement agréable. Les différentes étapes impliquées dans le processus de transformation sont développées dans cette thèse. Nos premières contributions concernent deux approches différentes des paramétrisations: un algorithme de mappage barycentrique basé sur la préservation des rapports de longueur et une technique de paramétrisation sphérique, exploitant la courbure Gaussien. L'évaluation expérimentale, effectuées sur des modèles 3D de formes variées, démontré une amélioration considérable en termes de distorsion maillage pour les deux méthodes. Afin d aligner les caractéristiques des deux modèles d'entrée, nous avons considéré une technique de déformation basée sur la fonction radial CTPS C2a approprié pour déformer le mappage dans le domaine paramétrique et maintenir un mappage valide a travers le processus de mouvement. La dernière contribution consiste d une une nouvelle méthode qui construit un pseudo metamaillage qui évite l'exécution et le suivi des intersections d arêtes comme rencontrées dans l'état-of-the-art. En outre, notre méthode permet de réduire de manière drastique le nombre de sommets normalement nécessaires dans une structure supermesh. Le cadre générale de métamorphose a été intégré dans une application prototype de morphing qui permet à l'utilisateur d'opérer de façon interactive avec des modèles 3D et de contrôler chaque étape du processusThis Ph.D. thesis specifically deals with the issue of metamorphosis of 3D objects represented as 3D triangular meshes. The objective is to elaborate a complete 3D mesh morphing methodology which ensures high quality transition sequences, smooth and gradual, consistent with respect to both geometry and topology, and visually pleasant. Our first contributions concern the two different approaches of parameterization: a new barycentric mapping algorithm based on the preservation of the mesh length ratios, and a spherical parameterization technique, exploiting a Gaussian curvature criterion. The experimental evaluation, carried out on 3D models of various shapes, demonstrated a considerably improvement in terms of mesh distortion for both methods. In order to align the features of the two input models, we have considered a warping technique based on the CTPS C2a radial basis function suitable to deform the models embeddings in the parametric domain maintaining a valid mapping through the entire movement process. We show how this technique has to be adapted in order to warp meshes specified in the parametric domains. A final contribution consists of a novel algorithm for constructing a pseudo-metamesh that avoids the complex process of edge intersections encountered in the state-of-the-art. The obtained mesh structure is characterized by a small number of vertices and it is able to approximate both the source and target shapes. The entire mesh morphing framework has been integrated in an interactive application that allows the user to control and visualize all the stages of the morphing processEVRY-INT (912282302) / SudocSudocFranceF

    A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint

    Get PDF
    3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy term. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which is naturally data-driven. We mainly survey recent research works from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed

    Frustration Propagation in Tubular Foldable Mechanisms

    Full text link
    Shell mechanisms are patterned surface-like structures with compliant deformation modes that allow them to change shape drastically. Examples include many origami and kirigami tessellations as well as other periodic truss mechanisms. The deployment paths of a shell mechanism are greatly constrained by the inextensibility of the constitutive material locally, and by the compatibility requirements of surface geometry globally. With notable exceptions (e.g., Miura-ori), the deployment of a shell mechanism often couples in-plane stretching and out-of-plane bending. Here, we investigate the repercussions of this kinematic coupling in the presence of geometric confinement, specifically in tubular states. We demonstrate that the confinement in the hoop direction leads to a frustration that propagates axially as if by buckling. We fully characterize this phenomenon in terms of amplitude, wavelength, and mode shape, in the asymptotic regime where the size of the unit cell of the mechanism~rr is small compared to the typical radius of curvature~ρ\rho. In particular, we conclude that the amplitude and wavelength of the frustration are of order r/ρ\sqrt{r/\rho} and that the mode shape is an elastica solution. Derivations are carried out for a particular pyramidal truss mechanism. Findings are supported by numerical solutions of the exact kinematics.Comment: 7 figures, added figures and references, corrected typo
    corecore