

Spécialité : Informatique et Télécommunications

 Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Bogdan Cosmin MOCANU

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Métamorphose de maillages 3D

Soutenue le 29 Novembre 2012

devant le jury composé de :

Président de jury : Madame le Maître de Conférences, HDR Catherine ACHARD
Rapporteur : Monsieur le Professeur Danco DAVCEV
Rapporteur : Monsieur le Professeur Malik MALLEM
Examinateur : Monsieur le Professeur Teodor PETRESCU
Directeur de thèse : Monsieur le Professeur Titus ZAHARIA

These No : 2012TELE0049

3D Mesh Morphing

i

 Acknowledgement

First and foremost, I am especially grateful to my thesis supervisor, Professor Titus
Zaharia, for his guidance throughout my PhD thesis, and especially for giving me the
freedom to pursue my own ideas in the area of computer vision (video indexing). Professor
Titus Zaharia offered me invaluable help, starting from his academic advice and very
helpful hints in the research proposed in this thesis.

Special thanks I would like to address to the members of my Ph.D. defense committee.

First, I would like to express all my gratitude to Professors Danco Davcev from University
for Information Science and Technology and Malik Mallem, from Université d'Evry Val
d'Essonne for accepting the task of being reviewers. Their reviews, comments and fruitful
suggestions helped me to improve the manuscript and to give its final shape.

To Professor Catherine Achard, from Université Pierre et Marie Curie – Paris VI, I would
like to express all my thanks for her interest in my research work.

My warm thanks are also going to Professor Teodor Petrescu, from the University
Politehnica of Bucharest, for his support and advices during all these years.

Being a part of the ARTEMIS Department within Institut Mines-Télécom/Télécom SudParis
was for me a great experience. I have worked closely with many members of the
department. In particular, I would like to thank here Raluca, Adriana, Afef and Andrei for
providing me with such an enjoyable and stimulating working environment. Also, I would
like to thank Marius Preda, Mihai Mitrea and Cătălin Fetiţa, Associate Professors within the
ARTEMIS department, for their attentive listening and stimulating help.

To Madame Evelyne Taroni I would like to express my gratitude for her help, patience and
inexhaustible energy in solving all administrative problems. Also, I would like to thank
Madame Marilyn Galopin from the Doctoral School EDITE de Paris, for her invaluable help
in administrative issues.

I would finally like to thank my family and friends, both near and far, for providing me
endless support, motivation, and inspiration. The unconditional love of my parents and
sister was an unwavering source of strength throughout the writing of this thesis. Last, but
not least, I would like to acknowledge the never-ending patience and support of my
fiancée, Ruxandra. Without her support, none of my achievements would have been
possible.

ii

iii

 Table of Contents

I. INTRODUCTION .. 1

II. 3D MODEL REPRESENTATIONS .. 5

II.1. THE 3D VIRTUAL WORLD ... 6

II.2. 3D MESH REPRESENTATIONS .. 8

II.2.1. Definitions and terminology ...10

II.2.2. File formats for mesh storage..14

II.3. CONCLUSIONS ...16

III. AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES ..17

III.1. MORPHING IN GENERAL ..18

III.2. VISUALLY PLAUSIBLE MORPHING ..19

III.3. 2D IMAGE MORPHING ..20

III.4. 3D OJECT MORPHING ..25

III.4.1. 3D volume based morphing ...25

III.4.2. 3D mesh morphing ..29

III.5. OVERVIEW OF THE PROPOSED 3D MESH MORPHING FRAMEWORK48

III.6. CONCLUSIONS ..49

IV. MESH PARAMETERIZATION ..51

IV.1. INTRODUCTION ..52

IV.2. PLANAR PARAMETERIZATION OF TRIANGULAR MESHES55

IV.2.1. Selection of the boundary’s shape ...58

IV.2.2. Spring weights specification ..60

IV.2.3. Edge length ratio preserving (ELRP) planar parameterization73

IV.2.4. Objective experimental evaluation of planar mesh parameterization methods ...75

IV.3. SPHERICAL PARAMETERIZATION OF TRIANGULAR MESHES79

IV.3.1. State of the art on spherical embedding ..79

IV.3.2. Curvature-driven spherical parameterization ...89

iv

IV.3.3. Experimental evaluation ..94

IV.4. CONCLUSIONS ...98

V. MESH DEFORMATION FOR FEATURE ALIGNMENT .. 101

V.1. INTRODUCTION ... 102

V.2. RELATED WORK .. 103

V.2.1. Space deformations .. 103

V.2.2. Free-form deformations .. 104

V.2.3. Skeletal deformation ... 106

V.2.4. Multiresolution mesh editing ... 107

V.2.5. Laplacian mesh editing ... 108

V.2.6. Radial basis functions ... 112

V.3. MESH QUALITY METRICS ... 115

V.4. EXPERIMENTAL EVALUATION .. 117

V.4.1. Deformation in 2D test cases .. 118

V.4.2. Deformation in 3D test cases .. 125

V.5. FEATURE ALIGNMENT BASED ON MESH WARPING .. 131

V.6. CONCLUSIONS ... 132

VI. SUPERMESH CONSTRUCTION AND INTERPOLATION .. 133

VI.1. INTRODUCTION .. 134

VI.2. TOPOLOGY MERGING FOR MESH MORPHING .. 134

VI.3. ADAPTIVE PSEUDO-METAMESH CONSTRUCTION ... 144

VI.4. MESH INTERPOLATION .. 150

VI.5. CONCLUSIONS ... 153

VII. CONCLUSIONS AND FUTURE WORK ... 154

List of publications .. 157

REFERENCES ... 159

v

 List of Figures

Figure II.1. 3D Model. .. 6

Figure II.2. Cartesian coordinate system: (a) with the x-axis pointing toward the viewer,

(b) with the z axis pointing toward the viewer (used in computer graphics) 7

Figure II.3. World space, model space and camera space .. 7

Figure II.4. 3D model represented as a triangular mesh. ... 9

Figure II.5. Face - vertex meshes representation. ...10

Figure II.6. 3D models with various topologies. ..11

Figure II.7. Two manifold meshes: (a) closed fan; (b) open fan. ...12

Figure II.8. Non manifold meshes. ..12

Figure II.9. The concept of orientable mesh: (a) orientable mesh; (b) non orientable mesh. .12

Figure III.1. Two morphing sequences between a fish and a duck model [Ath10]. 18

Figure III.2. Volume representation of a stack of images: (a) without, (b) with interpolated

images [Rup94a]. ...21

Figure III.3. Image Morphing: (a) Cross-dissolve; (b) Warping and cross dissolve [Gom99]. 22

Figure III.4. Different types of warps: (a) original image; (b) shift to the right; (c) scaling in

the vertical direction; (d) shear; (e) scaling in the horizontal direction; (f) rotation;

(g) quadratic. ..22

Figure III.5. Image mesh warping [Wol98]. ...23

Figure III.6. 3D cross dissolve based morphing [Efr11]. ..26

Figure III.7. Wavelet Domain Volume Morphing[He94]. ..26

Figure III.8. A volumetric field morphing sequence: (a) source volume; (b)-(h) in-between

volumes; (i) target volume; (j) disk fields that control the sphere-to-head morphing[Che99]. 27

Figure III.9. Morphing by mesh warping[Efr11]. ..28

Figure III.10. Examples of 3D mesh parameterizations. ..29

Figure III.11. Overlaid parameterization of two spherical mappings. 30

Figure III.12. Morphing between the models of a young pig and a grown-up pig. In the

upper row, no feature is specified, which leads to unpleasant effects (8 legs). In the lower

row, the eyes, ears, legs, and the tail are put into correspondence yielding a more natural

transformation [Ale02]. ...31

Figure III.13. Generic 3D mesh morphing scheme. ...32

Figure III.14. Maps overlapping and boundary control vertex alignment. 33

Figure III.15. Supermesh construction. ...33

Figure III.16. (a) Source model; (b) the base domain of the source model; (c) target model;

(d) the base domain of the target model; [Lee99] ...35

vi

Figure III.17. Morph sequence depending on location [Lee99]. ...36

Figure III.18. MIMesh algorithm: (1) Base interpolation mesh construction; (2) Mesh

interpolation and parameterization; (3) Subdivision fitting scheme [Mic01]. 37

Figure III.19. Normal Map [Mic01]. ..37

Figure III.20. MIMesh approximation: (a) input model; (b) interpolated mesh without normal

maps; (c) interpolated mesh using normal maps [Mic01]. ...37

Figure III.21. Local morphing: (a) source model; (b) locally interpolated mesh; (c) target

model [Ale02]. ..38

Figure III.22. Morphing of scheduled interpolation in wavelet domain [Yu03]. 39

Figure III.23. Multi-target morphing [Yu03]. ...39

Figure III.24. (a) Pyramid coordinates; (b) tangential components in the projection plane П;

(c) normal component β ...41

Figure III.25. Primitive operations used to transform the mesh connectivity: (a) ESO – edge

swap operation; (b) VRO – vertex removal operation; VSO – vertex split operation. 43

Figure III.26. The process of connectivity transformation employed in [Cha05]. 44

Figure III.27.The process of metamesh construction [Ath12]. ...47

Figure III.28. Steps involved in our morphing process. ...48

Figure IV.1. Vertex to vertex correspondences. ..52

Figure IV.2. Mesh parameterization. ...53

Figure IV.3. Fold-overs which lead to an invalid parameterization: (a) Boundary

intersection; (b) Triangle flip. ..54

Figure IV.4. Isometric parameterization of a cylinder. ...55

Figure IV.5. Parameterization of a spring model: (a) original spring system;

(b) parameterization with fixed boundary; (c) system relaxation. ..56

Figure IV.6. Parameterization with different bounding polygons[Lee02]: (a) 3D original

mesh; (b) circle; (c) square; (d) free boundary. ...59

Figure IV.7. Angles used for weights computation. ...61

Figure IV.8. Edge and angle notation used in [Hor00]. ...62

Figure IV.9. Angles used in the case of the circle patterns method. 63

Figure IV.10. Incompatibility of edge length in a wheel paradigm [She01]. 65

Figure IV.11. Equiareal mapping [Flo05]: In the three cases, the areas of the corresponding

cells are identical. ...67

Figure IV.12. 𝑝𝑝𝑖𝑖 vertex projection into the triangle 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝U ...70

Figure IV.13. Local straightest path. ...71

Figure IV.14. Parameterizing the boundary over the unit circle. ..73

Figure IV.15. The one-ring neighbors of vertex pi and the associated lengths. 74

Figure IV.16. Comparative visual evaluation of 3D mesh planar parameterization (1). 77

Figure IV.17. Comparative visual evaluation of 3D mesh planar parameterization (2). 78

vii

Figure IV.18. Planar parameterization of a closed genus-0 3D mesh by cuts [She02]. 79

Figure IV 19. Shape projection on a circle. (a) Kent method applied on a convex shape;

(b) Kent method applied on a non convex shape; (c) kernel approach. 80

Figure IV.20. Problems encountered in sphere parameterization: (a) Collapsed mapping;

(b) Overlapped triangles in sphere parameterization [Ale00]. ...81

Figure IV.21. Spherical parameterization using relaxation approach proposed by

Alexa[Ale00]. ..81

Figure IV.22. Spherical parameterization using the Haker’s approach [Hak00]. 82

Figure IV.23. Curvilinear Spherical Parameterization [Zay06]. (a) mesh cut along the date

line; (b) the initial parameterization in curvilinear coordinates (with high distortions); (c) the

improved mapping taking into account spherical distortion; (d) the final spherical

parameterization. ..83

Figure IV.24. Two textured meshes after a spherical parameterization with Birkholz

approach [Bir04]. ..86

Figure IV.25. Planar parameterization of meshes with arbitrary genus. 87

Figure IV 26. The curvature in a point for a: (a) curve; (b) 3D surface. 90

Figure IV.27. Iterative curvature-driven flattening. ..92

Figure IV.28. Vertex split operation. (a) inner vertex; (b) border vertex. 93

Figure IV.29. Vertex insertion operation: (a) initial configuration; (b) polygon subdivision;

(c) set of valid positions; (d) final retained position and the new configuration. 94

Figure IV.30. Visual evaluation of our 3D mesh spherical parameterization (1). 96

Figure IV.31. Visual evaluation of our 3D mesh spherical parameterization (2). 97

Figure V.1. 3D Mesh models and associated feature points. .. 102

Figure V.2. Illustration of two parameterizations where feature are not aligned:

(a), (d) original models; and (b), (c) their embeddings. ... 103

Figure V.3. Space deformations [Bar84]: (a) rotation in z – twist; (b) scale – taper;

(c) rotation in y – bend. ... 104

Figure V.4. Free form deformation. ... 105

Figure V.5. Wires: A geometric deformation technique [Sin98]. .. 105

Figure V.6. Skeleton based deformation [Yan08b]. ... 106

Figure V.7. An example of a triangular mesh and its associated symmetric Laplacian

matrix. .. 109

Figure V.8. Test mesh and the control rectangle with the (a) initial position and ((b), (c), (d))

final positions of rectangle corresponding to the three test cases considered. 118

Figure V.9. Quality of the worst triangle of the mesh for (a) CTPS C2
a and (b) CP C2

(Case 1). .. 119

Figure V.10. The mean quality of all triangles in the mesh for (a) CTPS C2
a and (b) CP C2

(Case 1) ... 119

viii

Figure V.11. Accuracy displacement of the control points for (a) CTPS C2
a and (b) CP C2

(Case 1). .. 119

Figure V.12. CPU computational time for (a) CTPS C2
a and (b) CP C2 (Case 1). 120

Figure V.13. Quality of the worst triangle of the mesh for (a) CTPS C2
a and (b) CP C2

(Case 2). .. 120

Figure V.14. The mean quality of all triangles in the mesh for (a) CTPS C2
a and (b) CP C2

(Case 2). .. 120

Figure V.15. Accuracy displacement of the control points for (a) CTPS C2
a and (b) CP C2

(Case 2). .. 120

Figure V.16. CPU computational time for (a) CTPS C2
a and (b) CP C2 (Case 2). 120

Figure V.17. Quality of the worst triangle of the mesh for (a) CTPS C2
a and (b) CP C2

(Case 3). .. 121

Figure V.18. The mean quality of all triangles in the mesh for (a) CTPS C2
a and (b) CP C2

(Case 3). .. 121

Figure V.19. Accuracy displacement of the control points for (a) CTPS C2
a and (b) CP C2

(Case 3). .. 121

Figure V.20. CPU computational time for (a) CTPS C2
a and (b) CP C2 (Case 3). 121

Figure V.21. The influence of the number of steps on the deformed mesh. 122

Figure V.22. RBF mesh deformation on steps. ... 123

Figure V.23. Visual analysis of mesh deformation in 2D space. .. 124

Figure V.24. The impact of the support radius r and the number of intermediate steps over

the mesh deformation for CTPS C2
a function (Test case 3). ... 128

Figure V.25. Visual analysis of mesh deformation in 3D case for the RBF functions: CTPS

C2
a, CP C2 and Gaussian. .. 129

Figure V.26. Visual analysis of mesh deformation in 3D case for Classical Laplacian

coordinates, UFLC and TLC methods. ... 130

Figure V.27. Feature vertices correspondence through spherical embeddings warping

(Hipo-Cow case). .. 131

Figure V.28. Feature vertices correspondence through spherical embeddings warping

(Igea-ManHead case). .. 132

Figure VI.1. Constructing the supermesh: (a) embedding of the two connectivities in the

common parametric domain; (b) Edge to edge intersection; (c) Triangulation. 135

Figure VI.2. Edge intersection algorithm of [Ken92]. ... 135

Figure VI.3. Edge intersection scheme labeled according to the SMCC algorithm [Lee03]. 138

Figure VI.4. Different cases of intersection. .. 140

Figure VI.5. The three kinds of SMCC for 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 on 𝑝𝑝𝐻𝐻 : (a) first ring; (b) 4-sided

polygon; (c) a triangle. .. 141

Figure VI.6. First ring neighbors retriangulation. ... 141

ix

Figure VI.7. Quad-tree structure of MIMesh [Mic01]. .. 142

Figure VI.8. Adaptive subdivision scheme to resolve the T-vertices [Mic01]. 142

Figure VI.9. Vertices embedding: (a) original configuration of target vertices mapped onto a

source triangle; (b) result of simple embedding; (c) enhanced result after edge swaps

[Ahn04] ... 143

Figure VI.10. Pop-up effect due to edge swap: (a) original mesh; (b) swapped edge 144

Figure VI.11. Point inside triangle test. ... 145

Figure VI.12. 1-to-4 subdivision scheme. .. 147

Figure VI.13. Mesh retriangulation: (a) the pseudo-metamesh before the subdivision;

(b) the pseudo-metamesh obtained after the 1-to-4 subdivision scheme; (c) retriangulated

pseudo-metamesh. ... 148

Figure VI.14. Pseudo metameshes: (a) original models; (b) spherical parameterization;

(c) overlaid maps; (d) final pseudo metamesh. ... 149

Figure VI.15. Morphing between Igea and Head1 models. ... 150

Figure VI.16. Morphing between Cow and TRex models. ... 150

Figure VI.17. Morphing between Horse and Lion models. .. 150

Figure VI.18. Morphing between Dino and Horse models. .. 151

Figure VI.19. Morphing between Armadillo and Man models. ... 151

Figure VI.20. Morphing between DinoSkeleton and Dino models. 151

Figure VI.21. Graphical user interface: (a) view with the input models; (b) view during mesh

simplification; (c) view during parameterization; (d) view with the final spherical

embeddings. ... 152

x

xi

 List of Tables

Table IV.1. Description of planar parameterization methods ...72

Table IV.2. Comparative study concerning area, angles and length distortions. 76

Table IV.3. Comparison of spherical parameterization methods – Part 1. 88

Table IV.4. Comparison of spherical parameterization methods – Part 2. 89

Table IV.5. Comparative study concerning area and angle distortions. 95

Table V.1. Radial basis functions. .. 114

Table V.2. Mesh deformation quality analysis for 2D test cases. .. 125

Table V.3. Mesh deformation quality analysis for 3D test cases. .. 127

Table VI.1. Pseudo metamesh characteristics. ... 149

xii

I. INTRODUCTION

When investigating nature we can observe that living creatures are able to change their

shape over time in a smooth and gradual manner. Plants or animals are growing gradually.

The growth process is a highly complex mechanism that generates internal forces which

constrain organisms to modify their shape and appearance. Starting from a simple seed, a

plant can grow in a complete tree, with stem, branches and leaves. Such evolutions and

changes that occur in the natural world have attracted the attention of a significant number of

computer science researchers who have tried over time to simulate such phenomena by

computer, creating different animation techniques for shape transformation of artificial

objects. Such techniques are called morphing or metamorphosis. The word metamorphosis

has its origins in the Greek metamorphoum (meta – involving changes and morphoum –

form), the common meaning of the word being - “a change in form or nature”.

Morphing methods are today extensively used in computer graphics to simulate the

transformation between two completely different objects or to create new shapes by a

combination of other existing shapes. It has a variety of applications ranging from special

effects in film industry and other visual arts to medical imaging and scientific purposes.

The problem of constructing a smooth transition between two objects has been first

addressed in the 2D case [Sho03], [Rah07]. Image morphing or 2D morphing consists in the

construction of an image sequence representing the gradual transition between a source and

a target image. Such techniques can be applied either to whole image or to some specific

objects corresponding to regions of interest.

As prominent application domains that take advantage of such morphing methods, let us

mention those related to cinema/television industry and notably the creation of special

effects. Probably, the most popular example is the well known “Black or White” video clip

produced by Michal Jackson in the early 1990’s, where such techniques where specifically

applied on 2D images of human faces.

However, 2D morphing techniques present some limitations. Most often, 2D images/objects

represent projections of 3D scenes/objects. As a consequence, the intermediate stages of

3D MESH MORPHING 2

the 2D morphing process may not correspond to the morphing of a real 3D scene, which

might leads to visually poor results.

Moreover, 3D object representations permit to generate animation sequences which are

independent of the point of view. The user has in this case the flexibility to control the camera

position, such that the morphing sequence can be observed from arbitrary points of view.

Elaborating advanced and efficient 3D morphing methods can have a strong economical

impact on the graphics industry, specifically within the framework of content/special effects

production.

This thesis specifically deals with the issue of metamorphosis of 3D objects represented as

3D meshes. The objective is to elaborate a complete 3D mesh morphing methodology able

to ensure high quality transition sequences, which should be as smooth and gradual as

possible, consistent with respect to both geometry and topology, and visually pleasant. From

a methodological point of view, the main difficulty that has to be addressed and solved

relates to the topological aspects. Thus, existing 2D image morphing methods cannot be

extended in a straightforward manner to 3D meshes. 2D images are defined on a fixed and

regular topology, represented as rectangular lattice of pixels. Extending such methods to 3D

meshes of arbitrary and most often highly irregular connectivity, is still a challenge.

The remainder of this manuscript is organized as follows. Chapter II sets the context for

morphing animation and recalls some relevant concepts related to 3D virtual environments

and representations. We introduce here the background definitions and terminologies used in

computer graphics and related to our work.

Chapter III presents the state-of-the-art in the field of morphing algorithms. We start

analyzing the techniques proposed in the 2D morphing fields, since in this case methods

have reached a mature stage and are currently extensively used in commercial applications.

Next, the most representative and recent methods of 3D morphing are described and

analyzed in terms of advantages and limitations.

Chapter IV first provides an overview of mesh parameterization techniques. Mesh

parameterization represents a phase of outmost importance in any 3D mesh morphing

approach. After reviewing the state of the art, we introduce here two different approaches

which are able to construct valid parameterizations either for models with a disk topology or

for closed objects topologically equivalent with a sphere. Our first approach represents an

enhanced 3D object planar parameterization method introducing a new barycentric mapping

algorithm based on the length ratio preservation. The second proposed approach represents

3 INTRODUCTION

a spherical parameterization method which exploits the Gaussian curvature associated to the

mesh vertices.

Chapter V covers the issue of feature alignment between the two models considered in the

morphing process. The problem is solved in the parametric domain with the help of mesh

warping techniques. However, not all existing deformation techniques are well suited for our

purpose. Thus, we propose first an evaluation of the main warping algorithms encountered in

the literature and we retain the one that meet the constraints related to feature alignment of

meshes defined in the parametric domain and which lead to a minimum mesh distortion.

In Chapter VI we introduce a new method which build a pseudo metamesh that starts with

the target mesh structure and is adaptively refined such that to better approximate both

source and target models. Our approach avoids tracking the edge intersections between the

mesh mappings of the two models and reduces drastically the number of vertices normally

needed in a supermesh structure. Finally, the obtained pseudo metamesh is exploited for

morphing purposes, with the help of a linear interpolation technique. Several examples of

morphing between 3D objects with different characteristics are provided. Chapter VI provides

also a representation of the integrated morphing system, that allows the user to control and

visualize all the stages of the morphing process described in this thesis.

Finally, Chapter VII concludes our work, summarizing the main contributions proposed, and

opening some perspectives of future work.

3D MESH MORPHING 4

II. 3D MODEL REPRESENTATIONS

Summary: This chapter briefly recalls background definitions and terminologies related to

the 3D virtual environments, together with some popular methods exploited for model

representation and different file formats used to store such complex data.

3D MESH MORPHING 6

II.1. THE 3D VIRTUAL WORLD

A 3D model is the abstract representation of an object, including structures, attributes,

variation laws and relationships among components. A 3D model represents a 3D object

using a collection of points in the 3D space, connected by various geometric entities such as

triangles, lines, curved surfaces...

An example is presented in Figure II.1. Being a collection of data (points and other

information), 3D models can be created by hand, algorithmically (procedural modeling), or

scanned.

Figure II.1. 3D Model.

Bringing the objects from the real world into a virtual reality environment has always been an

interesting task in a wide variety of fields. Nowadays 3D model representations are used for

specific activities in different areas like:

 - in the medical industries in order to construct to detailed models of organs;

 - in the movie industry, where objects are animated in such a manner to simulate the real

world;

 - in the video gaming industries, where 3D models are used as assets for computer

games;

 - in the scientific sector, for various simulation purposes;

 - in the architecture industries, where they are needed to illustrate proposed buildings and

landscapes;

 - in CAD, in order to constructs new devices, vehicles and structures based on predefined

models.

Until recent years, the quality of 3D models was limited by the hardware and software

capabilities. Today, the general public can easily visualize and manipulate complex models.

Moreover, modern scanning technologies make it possible to generate accurate 3D models

of real-life objects.

7 3D MODEL REPRESENTATIONS

The virtual environments enable the user’s interaction with the models. He can rotate, scale,

deform, edit and observe the models under different lighting conditions, change their

appearance (color, material, etc.), and observe the interaction with another models in the

environment. Also, 3D modelers can export their models to files, which can be afterwards

imported into other applications.

In all cases, a 3D Cartesian coordinate system (Oxyz) is needed in order to specify the

location of the objects in space (Figure II.2).

Figure II.2. Cartesian coordinate system: (a) with the x-axis pointing toward the viewer, (b) with the z

axis pointing toward the viewer (used in computer graphics)

It is important to note that the coordinates axes used in computer graphics do form a right

handed coordinate system. In particular, this means that the right-hand rule applies to cross

products of vectors in IR3.

In practice, different coordinate systems are used. Most often, the following three common

coordinate spaces are encountered in the computer graphics field (Figure II.3):

Figure II.3. World space, model space and camera space

- Local space (or model space) – is the coordinate system in which an object is defined

without regard to its position, size or orientation in relation to other objects in the world. Once

3D MESH MORPHING 8

the 3D model defined in the local space, it can be inserted in a global scene, by specifying

the origin and axes of the local space coordinate system relative to the global scene.

- The world coordinate system (or world space) defines the locations of all geometric

objects as they exist at rendering time, with all applicable transforms acting on them. The

world coordinate system can be seen as a global reference system for all others coordinate

systems.

- The camera space is a coordinate system defined relative to a virtual camera or eye

that is located in world space.

Whatever the considered space, the 3D objects can be represented in various manners. In

particular, we distinguish the following two main families of modeling approaches:

- Boundary representations – an object is represented by a set of surfaces (named

also faces) that separate its interior from the rest of the environment. These faces are

regions or subsets of closed and orientable surfaces. Each face is bounded by edges and

each edge is delimited by two vertices. A boundary representation is essentially a local

representation connecting faces, edges and vertices.

- Solid representations – This type of representation gives a complete and

unambiguous definition of an object, describing not only the shape of the boundaries but also

the object’s interior and exterior regions.

In our work, we have considered solely boundary representations, and notably 3D mesh

models, which are recalled in the following section.

II.2. 3D MESH REPRESENTATIONS

Polygonal 3D meshes have become the most popular object representation technique with a

long history in computer vision. This increase in popularity is due to several factors including

advances in computer storage capacity and processing power and the development of dense

range sensors, which produce rectangular arrays of 3D points that can easily be transformed

into meshes. Meshes can faithfully approximate complex free-form objects up to any desired

accuracy, given sufficient space to store the representation.

A polygon mesh is a collection of vertices (points in 3D space), edges and faces that defines

the shape of a polyhedral object in 3D computer graphics. The faces usually consist of

triangles, quadrilaterals or other simple convex polygons, because this simplifies the

rendering process, but may also be composed of more general concave polygons. In this

9 3D MODEL REPRESENTATIONS

work, we deal only with triangular meshes since this is the most widespread mesh

representation. An example of a triangular surface model is illustrated in Figure II.4.

A valid mesh structure does not contain any isolated vertices or edges. In other words, all

vertices and edges are parts of triangles. Let us recall the mesh definition according to

[Gar99]. A polygonal surface model 𝑀𝑀(𝑉𝑉,𝐸𝐸,𝐹𝐹) is a triplet containing a set of vertices 𝑉𝑉, a set

of edges 𝐸𝐸 and a set of triangles 𝐹𝐹. The vertex list 𝑉𝑉 = 𝑉𝑉(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁𝑉𝑉) includes a number of

𝑁𝑁𝑉𝑉 elements in the form of a column vector which represent every vertex 𝑝𝑝𝑖𝑖 = [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖]𝑝𝑝. An

edge 𝑒𝑒𝑝𝑝 = 𝑒𝑒𝑝𝑝(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑝𝑝), from the edge list 𝐸𝐸 = 𝐸𝐸(𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑁𝑁𝐸𝐸) of 𝑁𝑁𝐸𝐸 elements, is defined by the

two end points 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑝𝑝 . The face list 𝐹𝐹 = 𝐹𝐹(𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑁𝑁𝐹𝐹) contains 𝑁𝑁𝐹𝐹 triangles, each one

defined as an ordered list of three vertices identifying the corners, 𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑚𝑚 (𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑝𝑝).

Figure II.4. 3D model represented as a triangular mesh.

The above definition of a polygonal model corresponds to a form of simplicial complex. In our

case, a simplex 𝜎𝜎 is either a vertex (or 0-simplex), a line segment (1-simplex), or a triangle

(2-simplex). In general, a 𝑝𝑝-simplex 𝜎𝜎𝑝𝑝 is the smallest closed convex set (i.e., the convex

hull) defined by 𝑝𝑝 + 1 linearly independent points 𝜎𝜎𝑝𝑝 = 𝑝𝑝0𝑝𝑝1 … 𝑝𝑝𝑝𝑝 which are called its vertices.

We can express any point 𝑝𝑝 within this set as a convex combination of the vertices 𝑝𝑝 =

∑ 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 where ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 and 𝑝𝑝𝑖𝑖 ∈ [0,1]. Any simplex defined by a subset of the points 𝑝𝑝0𝑝𝑝1 …𝑝𝑝𝑝𝑝

is a subsimplex of the simplex 𝜎𝜎𝑝𝑝 . A 2D simplicial complex 𝐾𝐾 is a collection of vertices, edges

and triangles satisfying the conditions:

 - If 𝜎𝜎𝑖𝑖 , 𝜎𝜎𝑝𝑝 ∈ 𝐾𝐾, then they are either disjoint or intersect only at a common subsimplex.

Specifically, two edges can only intersect at a common vertex and two faces can only

intersect at a shared edge or vertex.

 - If 𝜎𝜎𝑖𝑖 ∈ 𝐾𝐾 , then all of its subsimplices are in 𝐾𝐾. For instance, if a triangle 𝑓𝑓 is in 𝐾𝐾,

then its vertices and edges must also be in 𝐾𝐾.

In practice, a 3D mesh can be completely defined only by the list of vertices and the list of

triangles. The third set, the list of edges, can be obtained implicitly from the first two sets.

This method to describe a 3D model is called face-vertex mesh representation. An example

of a mesh stored in the face-vertex form is presented in Figure II.5.

3D MESH MORPHING 10

Figure II.5. Face - vertex meshes representation.

II.2.1. Definitions and terminology

In this section we review some of the most commonly terms used and in the 3D morphing

field. Let us first to mention that in the following chapters only triangular 3D meshes will be

considered. This is without loss of generality, since any polygonal mesh can be converted

into a triangular one with the help of a triangulation method ([Bai10], [Sun09], [Nin09]).

II.2.1.1. Geometry and topology

Positions in the Euclidian space of all vertices 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) denote the mesh geometry, and

the way how such vertices are inter-connected by edges and faces indicate its topology.

Actually, the term topology has two meanings, which can be distinguished by the context in

which they are used. The first meaning, from traditional mathematics, refers to the local

neighborhood properties of the surface of an object. This can lead to global topological

characteristics, such as numbers of holes and connected components. For morphing

purposes, it is important to divide the considered 3D surfaces into classes of topologically

equivalent objects since within a given class, two different objects can be homeomorphically

mapped into each other. (cf. Section II.2.1.2)

The second meaning of the term topology, popular in the computer graphics literature, refers

to the vertex/edge/face connectivity of an object. Objects that are equivalent in this form of

topology are identical except for the x-, y-, z-positions of their vertices (i.e., the geometry of

the object).

II.2.1.2. Homeomorphism

A homeomorphism can be defined as a bijective mapping h: A→B between the surfaces of

two models A and B that is continuous and with the inverse function also continuous. If such

11 3D MODEL REPRESENTATIONS

a mapping exists, we say that models A and B are homeomorphic, or topologically

equivalent.

In Figure II.6 a number of models with various topologies are presented. Only the meshes

from Figure II.6.a and Figure II.6.e are topologically equivalent. The rest ones are not

homeomorphic to each other, since a continuous mapping between them cannot be

determined. We say that model from Figure II.6.e is topologically equivalent to the unit

sphere. Also, in Figure II.6.f we have an object topologically equivalent with the unit disk or

the unit square.

In the rest of this thesis we will operate only with objects homeomorphic to either sphere or

disk. We denote the surface of the unit sphere by S0 and we define it as:

𝐻𝐻0 = �𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3|�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1� (II.1)

Also, we denote the unit disk with D0 and we define it as:

𝐷𝐷0 = {𝜑𝜑(𝑢𝑢, 𝑣𝑣) ∈ ℝ2|�𝑢𝑢2 + 𝑣𝑣2 = 1 (II.2)

Figure II.6. 3D models with various topologies.

II.2.1.3. Two manifold meshes

In order to introduce the concept of two manifold mesh, we have to define first some other

terms used in 3D graphics field. We note by deg(pi), the degree or the valence of a vertex,

which is the number of edges incident to the considered vertex. Next, we can define the star

of the vertex pi, denoted by star(pi), as the submesh which is composed of all the faces

containing pi (i.e., the set of all points adjacent to pi). The star is also called the 1-ring of the

vertex pi.

A triangular model is two manifold if the star of any vertex is homeomorphic to a closed disk

or a half-disk (at the boundary). This results in three important consequences. First, any

edge is incident to at most one or two faces. Second, the triangles incident to a vertex form a

closed or an open fan as illustrated in Figure II.7.

Third, the degree of any interior vertex pi is equal with the number of faces sharing pi. At the

boundary, deg(pi) is equal with the number of triangles incident to vertex pi plus one. In

Figure II.8 we present some cases of non-manifold meshes.

3D MESH MORPHING 12

Figure II.7. Two manifold meshes: (a) closed fan; (b) open fan.

Figure II.8. Non manifold meshes.

II.2.1.4. Orientable meshes

The orientation of a face f is established by the sequence of its vertices. Let pi, pj and pk be

the vertices of a triangle. Although faces f(pi, pj, pk) and f’(pi, pk, pj) coincide in the Euclidian

space IR3, they have different orientations.

In order to illustrate the concept of orientable meshes, let us consider the example in

Figure II.9. We can observe that each face can have two orientations depending on the order

in which the vertices are specified. A clockwise or an anticlockwise order in which the

vertices are listed defines the directions of the corresponding normal vectors (applying the

right hand rule). We say that the orientation of two adjacent triangles is compatible, if the two

vertices of the common edge are specified in opposite order. Then, we can define an

orientable mesh as a manifold mesh with compatible orientation for any two adjacent faces.

Figure II.9.a illustrates the concept of orientable mesh where the common edge e(pi, pk) is

traversed in opposite directions in the two neighbor faces, while Figure II.9.b shows a non-

orientable mesh where the common edge e(pi, pk) is traversed in the same sense.

Figure II.9. The concept of orientable mesh: (a) orientable mesh; (b) non orientable mesh.

13 3D MODEL REPRESENTATIONS

If a mesh has at least two triangles with different orientations, the mesh is considered non-

orientable. In our work, we will consider only manifold and orientable meshes.

II.2.1.5. Closed and open meshes

An edge belonging to a single triangle of the mesh is called a border edge. Border faces are

defined as triangles including at least a single border edge. A non border-edge belongs to

two different triangles and is called an internal edge. Two faces are said to be e-neighbor

faces if they share at least a common edge. A sub-set of mesh faces is connected if between

each two component faces can be found a path of successive e-neighbor faces.

A connected mesh is said to be closed if any component edge share exactly two triangles,

i.e. it not contains any border edge. The typical example of a closed mesh is a triangle mesh

that tessellates a sphere (Figure II.6.a). It can be verified if a model is closed or not using the

Euler formula (cf. Section II.2.1.6). If a mesh is not closed, it is said to be an open mesh

(Figure II.6.f). For an open model, the set of border edges is referred to as the boundary of

the mesh.

II.2.1.6. Genus of a surface and Euler formula

The concept of genus is introduced to define the type of topology for a surface. Surfaces of

the same genus are topologically equivalent (homeomorphic) to each other. Intuitively, the

genus of a model can be interpreted as the number of holes of the given object. More

rigorously, the genus of a surface is defined as the largest number of non-intersecting simple

closed curves that can be drawn on the surface without separating it [Wei10] in multiple

connected components. The genus of a sphere is zero since no such curves can be drawn

on its surface without separating it. The genus of a torus is 1 since one, and no more than

one, such curves can be drawn on its surface without separating it. The models presented in

Figure II.6.a, b, c and d are of genus 0, 1, 2 and 3 respectively.

In the middle of the 18th century, Euler discovered a mathematical relation between faces,

edges and vertices of a simple polyhedron. The Euler’s formula can be expressed as:

𝑉𝑉 − 𝐸𝐸 + 𝐹𝐹 = 2 (II.3)

where V denotes the number of vertices, E the number of edges and F the number of faces

of a closed polyhedron.

Considering a triangular mesh with V vertices, E edges and F faces, we observe that every

face has 3 edges and every edge is shared by two faces thus it follows that:

3D MESH MORPHING 14

𝐸𝐸 =
3
2
𝐹𝐹 (II.4)

Combining the Euler formula (II.3) with equation (II.4) and knowing the number of vertices,

we may determine the number of faces and edges in a mesh:

𝐹𝐹 = 2(𝑉𝑉 − 2), (II.5)

𝐸𝐸 = 3(𝑉𝑉 − 2) (II.6)

Relation (II.3) is only valid for closed, manifold, genus 0 meshes, but can be generalized also

for meshes with a boundary:

𝑉𝑉 − 𝐸𝐸 + (𝐹𝐹 + 1) = 2, (II.7)

or for meshes with an arbitrary genus:

𝑉𝑉 − 𝐸𝐸 + 𝐹𝐹 = 2(1 − 𝐺𝐺), (II.8)

where G is the genus of the mesh.

II.2.2. File formats for mesh storage

A big amount of specification file formats have been provided in order to store and exchange

3D meshes. Let us recall some popular examples of such 3D storage formats:

• The 3D Object File Format (OFF - developed in 1986 at Digital Equipment Corporation's

Workstation Systems Engineering) for the interchange and archiving of 3D objects. OFF is

an ASCII-based format and is independent of languages, devices, and operating systems.

• The Wavefront Object Format (OBJ - a geometry definition file format first developed by

Wavefront Technologies for its Advanced Visualizer animation package),

• The Stanford University’s PoLYgon format (PLY),

• The 3D Studio Max format (3DS - Used by the AutoDesk 3D-Studio and 3D-Studio MAX

commercial modeling, rendering and animation package on the PC),

• The SMF(Simple Model Format - which is a subset of the Wavefront OBJ file format)

• The Virtual Reality Modeling Language (VRML), which became an ISO international

standard.

Their storage strategies are very similar, based on the face–vertex mesh representation

method. First, the vertices positions in the 3D space (sample points with (x, y, z) coordinates)

are presented in an unorganized way consisting on the vertex list. Then, the polygon

primitives (in the most cases - triangles) are also defined by an unorganized face list.

Each entry of the faces list defines a triangle by the indices of its vertices (indexed by their

order of appearance in the vertex list). In other words, any mesh file format will store mainly

the geometry and the connectivity of the model. However, additional information can be

included, such as color, normal vertices, transparency or texture data.

15 3D MODEL REPRESENTATIONS

Due to its early international standardization, the Virtual Reality Modeling Language (WRL

file extensions) succeeds to become highly popular in the computer graphics field. VRML has

been originally specified based on the Open Inventor API paradigm developed by Silicon

Graphics Inc. and has been first proposed to the International Organization for

Standardization (ISO) in 1994 by the Web3D Consortium in order to provide a standard

technique for modeling 3D interactive experiences over the Web. Its successor (X3D, based

on XML) has been approved for standardization in 2005, but has still less success than the

second version of VRML (proposed in 1997).

VRML's technology has very broad applicability, including web-based entertainment,

distributed visualization, 3D user interfaces to remote web resources, 3D collaborative

environments, interactive simulations for education, virtual museums, virtual retail spaces,

and more.

In the VRML format, 3D objects are specified in a dedicated node, so-called “Shape”. This

node type has several attributes, including its material appearance (for lighting modeling) and

its geometry. The “geometry” attributes can be valued with pre-defined shape primitive nodes

or with an “IndexedFaceSet” node. This latter node has two main attributes which are the

coordinates of the sample points (“coord” field, valued with a “Coordinate” node) and the face

specification (“coordIndex” valued with an array of vertex integer indices) [Sch98].

Consequently, the VRML format could cover the most basic mesh needs:

 - a list of vertices;

 - a list of faces;

 - a list of materials (texture and color);

 - a list of texture coordinates;

 - a list of lights (material, description and position).

A standard layout for surface mesh storage of a simple object (i.e., a cube) with VRML v2.0

can be written in the following way:

 #VRML V2.0 utf8

DirectionalLight {
 ambientIntensity 1
 color 1 1 1
 direction 0 0 -1
 intensity 0
 on TRUE
}
DEF MATERIAL Material {
 diffuseColor 1 1 1
}

 Shape {
 geometry IndexedFaceSet {
 coord Coordinate {
 point [
 # sample point coordinate (x, y, z) list

3D MESH MORPHING 16

 0 0 0
 1 0 0
 ...
]
 }
 texCoord TextureCoordinate {
 point [
 0.1291 0.3485
 0.1706 0.3248
 ...
]
 }
 coordIndex [
 # face list: vertex indices (face separator: “-1”)
 0 1 2 -1
 0 1 5 -1
 ...
]
 }
 }

II.3. CONCLUSIONS

We have presented in this chapter the theoretical background related to 3D mesh

representations. We defined the terms of triangular polygonal mesh, which will be considered

all over our work. Several requirements, in terms of topological and geometric properties

have been identified. In particular, a closed mesh M has to meet the following conditions:

 - M is homeomorphic (topologically equivalent) to the sphere;

 - M is two manifold;

 - M has no border edges or faces;

 - M is an orientable mesh;

 - the number of vertices, faces and edges of M has to satisfy the Euler formula (II.3) and

equations (II.4), (II.5), (II.6).

Finally, we have also presented some features of the Virtual Reality Modeling Language

(VRML) standard that we have adopted for 3D mesh representation.

III. AN OVERVIEW OF 3D MESH MORPHING
TECHNIQUES

Summary: This chapter first states the problem of object metamorphosis, enouncing the

main principles and necessary steps involved in a morphing method. After a brief synthesis

of the 2D image morphing techniques, we provide an overview of the main 3D mesh

morphing approaches proposed in the state of the art. The study reveals the necessity of

designing morphing techniques able to gradually transform two 3D objects while maintaining

aligned the corresponding features of interest. Finally, the morphing framework adopted in

our work is here presented.

3D MESH MORPHING 18

III.1. MORPHING IN GENERAL

The word morphing is derived from the word “metamorphosis”, which according with the

Oxford Dictionary [All91] has the following meaning:

“A change of the form or nature of a thing or person into a completely different one”

Thereby, in the case of 3D meshes, the term morph can be interpreted as the change of

appearance of a graphical object. The morphing process is then defined as the construction

of an animated sequence corresponding to the gradual transition between two different

objects, so-called source (initial) and target (final) models. The objective of a morphing

method is to compute a transformation ensuring a visually pleasant transition between the

two, source and target shapes.

Existing professional animation environments, such as 3DS Max or Lightwave, propose

some basic morphing techniques. However, such methods cover only partially the aspects

that need to be taken into account. In particular, they are able to morph solely meshes with

the same topology and number of vertices and thus severely restrict the field of possible

applications. Thus, one important objective is to make possible to morph 3D models

described by different topologies, numbers of vertices and connectivities.

The concept of morphing is illustrated in Figure III.1 where the leftmost object is morphed

into the rightmost. The upper and lower sequences show the metamorphosis in two possible

manners. Obviously, there is no unique solution for the morphing process and a set of criteria

and evaluation measures/protocols has to be defined in order to validate the various

solutions. One important (and ultimate) criterion is the visual quality, in terms of smoothness

and fluidity of the obtained transitions.

Figure III.1. Two morphing sequences between a fish and a duck model [Ath10].

The next section introduces some useful criteria that have been established to evaluate a

valid morphing.

19 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

III.2. VISUALLY PLAUSIBLE MORPHING

In order to obtain a “good” morph, the geometric and topological properties of the two, source

and target objects during the transformation should be preserved as much as possible. This

implies the set-up of a highly smooth transformation process.

From a more rigorous point of view, the main principles that have to be considered for

ensuring a visually pleasant shape transformation relate to topology preservation, feature

preservation, rigidity preservation, smoothness and monotonicity, as introduced by

Gomes et al. in [Gom99]. Let us briefly recall them here below:

• Topology preservation: Various definitions of topology preserving transformations

have been proposed [Kon89], [Lie04], [Sah96]. Two objects have the same topology if they

have the same number of connected components and genus. Intuitively, in the case of a

morphing process, preserving the topology of both source and target objects requires to

ensure that no holes or other artifacts appear during the transformation. Let us note that

most of the time, the source and target objects are required to have the same global

topological properties in order to enable the morphing process.

• Feature preservation: means that the shapes of important features which are present

both in the original object and in the target object are preserved during the morphing

transition. In particular, this requires a good correspondence between them. For example, in

Figure III.1, the first row represents a morphing transition from a fish to a duck, realized with

no feature preserving. Here, the different features are completely unaligned, which leads to

an unnatural transition sequence. The second row presents a morphing sequence where the

mouth of the fish corresponds to the one of the duck and both remain aligned during the

transition. Establishing in an automatic manner, pertinent correspondences between features

of interest is however a highly challenging task. Some automatic solutions are proposed in

[Urt04], [Ath10], [Gil09]. Such techniques are useful in the case of source and target objects

with a sufficient number of similar features that can be put effectively into correspondence.

However, in a more general framework the human interaction is mandatory. For this reason,

the user should be allowed to specify and control the feature correspondences in an

interactive manner. Some examples of works that require user interaction are presented in

[Ros94], [Ler95], [Zhu09], [Kan98], [Gre98]. The control should be neither time-consuming

nor labor-intensive and adapted to user's knowledge and skills. Providing such a control is

also a nontrivial task and requires the elaboration and development of appropriate,

ergonomic user interfaces with all the necessary interactivity features.

3D MESH MORPHING 20

• Rigidity preservation: this principle refers to the facts that in certain cases, some

metrics should be preserved during the transformation. Typical examples considered in the

literature include angles between edges/faces, lengths or convexity measures.

• Smoothness: the shape transformation should be fluent, avoiding discontinuities and

artifacts. If we view the transformation as a function f that maps vertices from the source

mesh onto the target mesh, we have to impose for the f function to have continuous

derivatives up to some desired order over the deformation domain. The number of

continuous derivatives, will influence the smoothness of the transition function and thus, of

the morphing process.

• Monotonicity: this principle states that the volumes, areas, or parts of the source

shape should change monotonically during the interpolation process. In other words, it is not

allowed that parts of the model to decrease (/increase) so that later to increase (/decrease)

back. The monotonicity principle makes it possible to avoid local self-interactions of the

intermediates meshes obtained.

Jointly satisfying the set of all these constraint is a difficult problem and the existing methods

are privileging some of the above-mentioned aspects, depending of the application

considered and of the specific morphing effects that are targeted.

Historically, the first morphing techniques of visual entities appeared in the case of static 2D

images. Such approaches set the general principles and methodologies useful for morphing

of any graphical entities. So, before considering the case of 3D mesh morphing, let us first

analyze the traditional techniques proposed in the field of 2D image morphing, which are

today mature and extensively used in commercial applications.

III.3. 2D IMAGE MORPHING

Image (or 2D) morphing can be defined as the construction of sequence corresponding to a

gradual transition between a source image and a target one. Such techniques have been

intensively used to produce visual effects for various entertainment applications. A lot of

examples can be provided from the movie industry, starting with the first movie that

implemented morphing, “Le Magicien” in 1898, and continuing with films like “Indiana Jones”,

“Terminator”, or the more recent one “Transformers”.

A particular case of morphing/interpolation is encountered in the field of medical imaging, in

the case of MRI scans. Here, the acquired slices are available at a fixed inter-slice resolution.

The distance between such slices is usually higher than the spatial resolution within each

slice. For rendering and surface reconstruction, some interpolation between slices is

21 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

mandatory. Methods using image morphing to create intermediate images between slices

are presented in [Rup94a][Rup94b]. Figure III.2 illustrates such an example, where the stack

of original images completed with those created by morphing techniques looks much more

smooth and realistic.

Figure III.2. Volume representation of a stack of images: (a) without, (b) with interpolated

images [Rup94a].

Generally, the morphing effects are obtained with the help of the well known cross dissolve

or fading techniques which permit to achieve a smooth change of an image content (i.e.

texture and/or color) from source to target frames. The color of each image pixel is

interpolated over time from the source image value to the corresponding target image value.

Most often, linear interpolation is utilized. This process is called cross-dissolve interpolation.

Unfortunately, such naïve approaches do not allow obtaining a pleasant visual effect,

because the two images (source and target) overlap gradually without any preliminary

alignment of the main features of interest present in the content. This problem is illustrated in

Figure III.3.a. Here, on the intermediate images obtained we can notice the presence of

overlapped features (e.g., nose, eyes, mouth…) from both source and target models, which

is visually uncomfortable.

This example shows the interest of applying a global transformation between source and

target images that can be able to align the main features involved. Such an alignment can be

achieved with the help of the so-called warping methods [Gom99]. Image warping applies 2D

geometric transforms to the images in order to obtain a geometric alignment of their features

of interest, followed then by a color interpolation to blend their corresponding colors.

The effectiveness of introducing warping methods in the morphing process is illustrated in

Figure III.3.b. Here, image warping is combined with the classical cross dissolving. As the

morphing process progresses, the source image is gradually warped into the destination

image and faded out, while the target is gradually warped into the early picture and faded in.

In this way, the first images in the morph sequence will be similar to the source, the middle

images of the sequence will correspond to an average of the two source and target models

and the last images will be similar to the target picture.

3D MESH MORPHING 22

Figure III.3. Image Morphing: (a) Cross-dissolve; (b) Warping and cross dissolve [Gom99].

We can observe that the obtained sequence is visually more pleasant that in the case of a

simple cross-dissolve, the transition between corresponding features being more natural. We

also note that the middle images strongly determine the overall quality of the morphing

process.

Creating a morph using the deformation technique involves specifying a warp, i.e. a bijective

(and so, invertible) transform of the source image into the target one. Some examples of

basic geometric transforms that can be jointly used for warping purposes are illustrated in

Figure III.4, for a checker board image.

Figure III.4. Different types of warps: (a) original image; (b) shift to the right; (c) scaling in the vertical

direction; (d) shear; (e) scaling in the horizontal direction; (f) rotation; (g) quadratic.

The issue of constructing a smooth warping field between two different images has been

extensively studied in the rich literature dedicated to the subject. Different approaches model

the image with the help of a 2D elastic mesh and are known under the name of mesh

23 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

warping techniques [Wol90], [Sho03], [Kan97]. Multilevel free-form deformations [Lee95],

field morphing [Bei92], [Nis93], radial basis functions [Edg03], or energy minimization [Lee96]

can also be used to achieve 2D morphing.

The warping-based morphing technique proposed in [Wol90], uses two 2D meshes MS and

MT which are respectively associated with the source IS and the target IT images. The two

meshes share the same connectivity and are thus defined with the same number of faces

and vertices. A set of control features is determined starting from each source and target

images and then associated with each mesh. The meshes are used to define the spatial

transform, by linear interpolation, mapping all points in source image onto target image, while

keeping initial and transformed meshes topologically equivalent, i.e., no folding, self-

intersection or discontinuities are permitted. Furthermore, for simplicity, the meshes are

constrained to have fixed boundaries.

Figure III.5 illustrates the morphing process in the case of two faces. Feature points

correspond here to eyes, nose, cheeks and lips. In the top row, the mesh MS is deformed to

mesh MT, producing an intermediate mesh M for each frame. These meshes are used to

warp the source image into increasingly deformed images, thereby deforming IS from its

original state to those defined by the intermediate meshes. The same process is presented in

reverse order in the bottom row of Figure III.5, where IT is shown deforming from its original

state.

Figure III.5. Image mesh warping [Wol98].

The purpose of this procedure is to establish the feature alignment between IS and IT as they

both deform to some intermediate state, producing the pairs images shown in the top and

3D MESH MORPHING 24

bottom rows, respectively. Once the alignment is performed, the cross-dissolve between

successive image pairs is applied, yielding the morphing sequence illustrated in the middle

row.

The field morphing technique proposed by Beier and Neely [Bei92] simplifies the task of

feature specification by establishing a set of line segments in both images. For example,

rather than requiring the correspondence points to lie on a mesh, line segments can be

drawn along the mouth, nose, eyes, and cheeks of the source and target images.

Therefore only a set of key features needs to be provided. Although this approach simplifies

the specification of feature correspondence, the generation of the warping transform

becomes more complex. This is due to the fact that all feature pairs must be considered

before the mapping of each source point is known.

The algorithm warps only the set of pixels (lines) specified by user, moving them exactly

where the user want and everything else is blended smoothly based on those positions. This

approach can lead to unexpected displacement between the control lines, which manifest by

hiding parts of the image or showing them up in some other regions of the interpolated

picture. Additional control line pairs must sometimes be supplied to counter the ill effects of

the previous set.

Edge and Maddock [Edg03] propose a more general form for feature specification that

permits to specify landmarks on both images that consist of points, lines and curves. The

authors use then radial basis functions [Dyn89] to put in correspondence the feature points,

deforming the two input images accordingly.

The above-described techniques do not guarantee the one-to-one property of the generated

warp functions. When a deformation is applied to an image, the one-to-one property prevents

the warped image from folding-over. Lee et al. [Lee96] propose an energy minimization

approach in order to obtain a one-to-one warp function. The technique allows feature

specification primitives such as points, segments and curves which are sampled and reduced

to a set of points. Such points are then used to generate a warp function that is interpreted

as a 2D deformation of a rectangular plate. The constraints for a one-to-one warp are

represented in terms of energy minimization. The technique generates natural deformations

since it is based on physically meaningful energy terms. The main limitation of the method is

related to its high computational cost.

A simpler and faster method is presented in [Lee95]. Multilevel free-form deformation

(MFFD) is here applied across a hierarchy of control lattices in order to generate one-to-one

and C2-continuous warp function. In particular, deformations are obtained from positional

25 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

constraints by introducing the MFFD as an extension to free-form deformation. Lee et al. use

the bivariate cubic B-spline tensor product to define the free form deformation function. A

new direct manipulation technique for free form deformations, based on 2D B-spline

approximation, is applied to a hierarchy of control lattices to exactly satisfy the positional

constraints. To guarantee the one-to-one property of a warp, a sufficient constraint for a 2D

cubic B-spline surface to be one-to-one is presented. The MFFD generates C2-continuous

and one-to-one warps that yield fluid image morphing sequences.

However, the problem of the two dimensional images is that they do not take into account

any information related to the shape of the objects present in the scenes. This results in a

number of shortcomings in the transformation processes, due mainly to occlusion

phenomena: since the 2D images often represent projections of virtual 3D scenes, the

intermediate results of a 2D image morphing process may not correspond to the rendering of

a morphed 3D scene. Thus, in the case of 2D morphing, pixel values are simply interpolated

between source and target images. On the other hand; in the case of 3D morphing, for each

intermediate stage a complete 3D representation of the scenes/shape is determined. Then,

the intermediate shape is rendered and the associated photometric information is

represented according to the 3D shape, lights and camera position.

Thus, 3D representation of objects allows animation to be independent of any projection

transformation and user to have the flexibility to change the position of camera during a

certain transition, so that the morphing can be observe from different points of view.

III.4. 3D OJECT MORPHING

Let us first briefly overview the volume-based morphing approaches, which represent in a

certain manner the direct extension of 2D image morphing techniques.

III.4.1. 3D volume based morphing

Depending of the way the control features required for guiding the morphing process is used,

the following three families of volume-based morphing approaches are identified:

 - cross dissolving - no control features are required in this case;

 - field morphing - where control features are used to specify coordinate mappings;

 - mesh warping - where control features define both volume subdivisions and coordinate

mappings.

Analogously to the case of 2D images, the cross dissolving technique involves a direct

interpolation of the source and target 3D representations, without any geometric deformation

3D MESH MORPHING 26

of the corresponding volumes (Figure III.6). The simplest cross dissolving method is a linear

interpolation between source and target volumes [Pay92]. Without surprise, such a technique

is too simplistic to yield satisfactory results.

Figure III.6. 3D cross dissolve based morphing [Efr11].

To enhance the smoothness of the in-between volumes, a Fourier transform may be

exploited within the framework of a non-linear interpolation scheme [Hug92]. In this case, the

high frequencies of the source model are gradually removed during the morphing while the

low frequencies are interpolated to those of the target and the high frequencies of the second

model are gradually added in.

Wavelet transform, which provide a multi-resolution space-frequency representation, can

also be used in morphing purposes as proposed in [He94] (Figure III.7). The idea is to

decompose the models into a set of frequency bands, apply smooth interpolation between

the volumes to each band, and then reconstruct the morphed volume. Furthermore, the

decomposition and reconstruction processes are accomplished in a multiresolution manner

so that high frequency distortion can be adjusted to the desired level.

Although they are easy to use and fast to run, such methods have difficulties in producing

high quality results in most cases, especially when the transformations between two volumes

involve scaling or rotation.

Figure III.7. Wavelet Domain Volume Morphing[He94].

In the case of field morphing approaches, a set of control features is used to specify key

regions of interest of the volumetric data that are exploited for performing in-between

mappings. Such control features are represented as sets of points (point field)[Rup94b], lines

27 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

(line field) [Che95] or disks (disk field)[Che99] defined in the 3D volume. Most often, a user

interaction is required to specify such control features. 3D feature-based morphing

techniques naturally extend 2D image methods were they have demonstrated their flexibility

and controllability in metamorphoses [Bei92].

Given a starting volume 𝑉𝑉𝑝𝑝 and a final volume 𝑉𝑉𝑏𝑏 , both represented as a collection of voxels

organized in the form of a three dimensional grid, the morphing process generates a

sequence of in-between volumes 𝑉𝑉𝑛𝑛 which represent a smooth transformation from 𝑉𝑉𝑝𝑝 to 𝑉𝑉𝑏𝑏

(Figure III.8).

Figure III.8. A volumetric field morphing sequence: (a) source volume; (b)-(h) in-between volumes; (i)

target volume; (j) disk fields that control the sphere-to-head morphing[Che99].

For the nth in-between volume 𝑉𝑉𝑛𝑛 , an intermediate control dataset is firstly obtained by linear

interpolation of the original control features pairs. Thus, under the influence of the new

control dataset, two deformed volumes 𝑉𝑉𝑛𝑛𝑝𝑝 and 𝑉𝑉𝑛𝑛𝑏𝑏 are obtained corresponding to 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑏𝑏 .

The in-between volume 𝑉𝑉𝑛𝑛 is then simply an interpolation of those two volumes using a cross

dissolving technique as previously presented.

A method using a combination of different fields, which include points, lines and boxes, has

been reported in [Ler95] and [Man99]. The naive extensions of point and line fields suffer

from the inability to specify arbitrary 3D coordinate mappings. The problem can be solved by

introducing a supplementary vector in each line field (or two vectors in each point field)

[Che99], or by solving a set of error functions [Rup94b]. However, in contrast with the 2D

case, such fields are generally difficult to define and manipulate.

The mesh warping techniques are also based on a control feature set and extend the method

proposed in [Wol98] for 2D images, where the control features are based on a planar

subdivision associated to each image, typically a parametric grid or a triangular mesh. Two

volume warping methods presented in [Che95] extrapolate such an approach for the case of

3D volumes. Given a set of points, a volume subdivision can be automatically generated, for

3D MESH MORPHING 28

instance, by 3D triangulation. In mesh warping, the distortion is constrained by individual

elements, and it is therefore relatively easier to achieve a desired transformation without

causing “ghost shadows” effects [Bei92] (i.e. no triangles overlapping) (Figure III.9).

Figure III.9. Morphing by mesh warping[Efr11].

Volumes 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑏𝑏 are first partitioned respectively by two spatial subdivisions that are of an

equal number of elements. Deformed subdivisions are then obtained for in-between volumes

by interpolation. A voxel in an in-between volume is mapped onto a voxel in each of 𝑉𝑉𝑝𝑝

and 𝑉𝑉𝑏𝑏 . The values of voxels in the in-between volume are determined by linearly

interpolating those of the corresponding voxels in 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑏𝑏 .

However, in most cases, both field morphing and warping-based methods require a high

number of control elements, in order to avoid undesirable visual artifacts [Che95]. In addition,

the manipulation of 3D subdivisions with dedicated user interfaces cannot be handled in a

straightforward manner.

The volume-based techniques offer the advantage of being less sensitive to different object

topologies when compared with the surface based morphing techniques, since the objects

are here defined on a fixed, voxelized topology.

However, volumetric representations are useful in the case of some specific applications

(i.e., medical imaging), but less used for general public applications, because of the

bandwidth and storage capabilities required. In addition, the corresponding volume morphing

approaches suffer in general from their high computational complexity.

In the rest of this thesis we will focus on surface representation techniques and in particular

on 3D meshes.

29 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

III.4.2. 3D mesh morphing

Intensive research has been dedicated to the issue of 3D mesh morphing techniques, as

testifies the rich literature on this subject.

III.4.2.1. Problem statement

Triangular 3D meshes are discrete 3D object representations that offer the advantage of

being able to represent a large variety of complex geometries. In contrast with 2D images or

3D volumes, which are defined on a fixed topology (i.e., 2D or 3D lattices), 3D meshes may

exhibit significant differences in terms of topological properties. Thus, they can present

different numbers of vertices/faces and are often defined on highly irregular connectivities.

Because of such specificities, an initial stage is here required, which consists of establishing

a correspondence between the two source and target 3D discrete surfaces defined by the

meshes. Such a correspondence cannot be directly defined, because of the complexity of the

topological and geometric information involved. Instead, the correspondence is achieved in

an indirect manner with the help of parameterization techniques, which consists of

establishing a bijective mapping between the mesh surface and a common 2D domain.

The parameterization can be defined as a map Ω:𝑀𝑀 → 𝐷𝐷 of a 3D model 𝑀𝑀 to a parametric

domain 𝐷𝐷. Most often, the domain 𝐷𝐷 is either the unit disc (planar parameterization), or the

unit sphere (spherical parameterization) (Figure III.10).

Figure III.10. Examples of 3D mesh parameterizations.

The planar parameterization is useful in the case of 3D meshes that define an open surface

with a unique connected component and border. Spherical parameterizations are necessary

in the case of closed, connected 3D surfaces with genus-0 topology. Other parametric

domains (e.g., torus, atlases, object-dependent …) can also be used for objects with more

complex topologies.

The parameterization represents a mandatory and important step in the morphing process

and they condition the overall quality of the metamorphosis. Let us also note that such

algorithms are generally time consuming and intractable in the case of complex 3D models

3D MESH MORPHING 30

with hundreds of thousands of vertices. In this case, mesh simplification procedures may be

required in order to reduce the computational complexity.

However, parameterizing the source and target meshes on a common parametric domain

does not entirely solve the correspondence problem. The mesh geometry (i.e., position of the

mesh vertices in the 3D space) can be defined in arbitrary coordinate systems. Thus,

preliminary normalization and alignment processes are required. Most often, such techniques

exploit Principal Component Analysis (PCA) in order to define coordinate systems linked to

the considered geometries that need to be aligned.

Moreover, as in the case of 2D images, a feature alignment process is necessary in order to

guarantee a successful morphing process. This comes to (1) define a set of features of

interest on both source and target models and (2) apply a warping/deformation of the

parametric domain in order to guarantee that the parametric position of the corresponding

features are as closed as possible for both models. We speak in this case of overlaid

parameterizations (Figure III.11).

Figure III.11. Overlaid parameterization of two spherical mappings.

The features of interest are in general sets of points, lines, curves, regions, defined over the

models to be morphed. They correspond to intuitive, semantic morphological characteristics.

As examples, in the case of morphing models of human faces such features may correspond

to the regions of eyes, nose, mouth and ears on both objects. In the case of morphing

models of animals they might correspond to the regions of limbs, tails, heads…

In order to illustrate the necessity of specifying a number of correspondent features and to

maintain them aligned through the transformation sequence, Figure III.12 presents an

example of two different morphing sequences between two models of pigs (a young and an

adult one). In the upper row, no features were specified and the resulting morph is

unacceptable (8 legs are appearing in the middle models). The lower row of Figure III.12

31 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

shows a morph produced with a set of features (ears, eyes, hoofs, and the tail) put into

correspondence. The result is visually more realistic.

Figure III.12. Morphing between the models of a young pig and a grown-up pig. In the upper row, no
feature is specified, which leads to unpleasant effects (8 legs). In the lower row, the eyes, ears, legs,

and the tail are put into correspondence yielding a more natural transformation [Ale02].

We have to note that the need of feature alignment becomes more obvious in the case

where the models are from the same semantic category. This is because the user has a

strong a priori expectation of that transformation, and expects that common features of the

models (head, legs, tails...) to be preserved.

Let us also note that establishing correspondences between features of interest requires, in

general, a significant user interaction. Even some attempts to automate the process have

been proposed in the case of some specific object classes [Urt04][Ath10], feature alignment

need the development of appropriate user interfaces where features can be specified,

selected and put into correspondence in an ergonomic manner.

Once the source and target models are parameterized and aligned with respect to their

corresponding features of interest, the final step necessary in the morphing process is the

interpolation between objects. This can be done simply by determining the trajectory of the

corresponding vertices on the representation obtained in the previous step. At the moment

t = 0 (t = 1) the vertex positions with respect to the source (resp. target) object are known.

The simplest way to interpolate between these points is a linear interpolation.

Most of the morphing approaches are based on linear interpolation, but according with

[Ale02] this works well only for objects which are rather similar and oriented in the same

direction. Linear interpolation of vertices can lead to undesirable effects such as shortening

the boundary parts during the transition or self intersections. An interpolation of higher

degree is also possible. It yields smoother vertex trajectories, but on the other side it requires

some additional information. An interesting idea is introduced in [Gre99], where the user is

allowed to specify tangent vectors to define a path for some specific vertices. The modified

trajectory is then propagated to the neighboring vertices. By a proper tangent vector

specification some cases of self-intersection can be avoided.

3D MESH MORPHING 32

The pipeline of a generic 3D mesh morphing scheme, including the various phases involved,

is presented in Figure III.13.

Figure III.13. Generic 3D mesh morphing scheme.

Let us now analyze the solutions to each of the phases involved in a morphing process by

the various 3D morphing techniques proposed in the literature.

III.4.2.2. 3D mesh morphing techniques: state of the art

Let us first mention the approach proposed by Kanai et al. [Kan98] which are among the first

who used the harmonic mapping method in morphing of arbitrary triangular meshes with a

topology equivalent to a sphere or to a disk.

For open models the method follows the next principle. First, the user has to specify a

boundary loop for each object together with a boundary control vertex, which allows the

models alignment. Then, each mesh is embedded into a planar unit disk with the help of

harmonic maps [Eck95].

The boundary vertices are mapped into the unit disc border, such that angle formed by two

successive vertices and the domain center point is proportional with the arc length

determined by the considered vertices. The remaining (interior) vertices are mapped into the

interior of the unit disc by minimizing the total energy function defined in equation (III.1):

2

)(},{
, ||}{||

2
1)(∑

∈
−=

HEdgesji
jijiharm ppkpE (III.1)

where i, j denotes the indices of two adjacent vertices, pi, pj represent their geometric position

into the unit circle H and p is the set of all interior vertices pi. Edges(H) denotes the set of

edges in H and {i, j} is an edge connecting vertices i and j. ki,j is a weight associated to each

interior edge {i, j}, and defined as described in relation (III.2).

33 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

2

22

1

11

,,

2
,

2
,

2
,

,,

2
,

2
,

2
,

,
kji

jikjki

kji

jikjki
ji A

lll
A

lll
k

−+
+

−+
= (III.2)

where li,j denotes the length of edge {i, j} and Ai,j,k1 , Ai,j,k2 - the areas of adjacent triangles.

Once the harmonic maps (𝑝𝑝𝐻𝐻 and 𝑝𝑝𝑝𝑝) of both source (𝑀𝑀𝐻𝐻) and target (𝑀𝑀𝑝𝑝) 3D meshes are

computed, a new object, denoted by 𝑝𝑝𝑀𝑀 is created by overlapping and merging 𝑝𝑝𝐻𝐻 and 𝑝𝑝𝑝𝑝.

𝑝𝑝𝑀𝑀, also called supermesh or metamesh, shares the connectivity of both original models and

defines one-to-one correspondence between each position of 𝑀𝑀𝐻𝐻 to that of 𝑀𝑀𝑝𝑝. Kanai et al.

[Kan98] starts the construction of the supermesh by rotating 𝑝𝑝𝐻𝐻 around the center of the unit

disk so that a given boundary control vertex from 𝑝𝑝𝐻𝐻, selected by user, becomes coincident

with the one specified for the target mesh 𝑝𝑝𝑝𝑝 (Figure III.14).

Figure III.14. Maps overlapping and boundary control vertex alignment.

Next, the corresponding 3D positions of the source vertices relatively to the target model are

computed. First, to determine the 3D position at 𝑀𝑀𝑝𝑝 for each vertex 𝑝𝑝𝐻𝐻 from 𝑝𝑝𝐻𝐻, the triangle in

𝑝𝑝𝑝𝑝 that includes 𝑝𝑝𝐻𝐻 is established. If 𝑝𝑝𝐻𝐻 is included in a face 𝑓𝑓(𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑏𝑏 , 𝑝𝑝𝑐𝑐) of 𝑝𝑝𝑝𝑝 , the

barycentric coordinates (𝛼𝛼,𝛽𝛽, 𝛾𝛾) are computed relative to 𝑓𝑓 . Using this coordinates a

corresponding 3D position 𝑝𝑝𝑝𝑝 of vertex 𝑝𝑝𝐻𝐻 in 𝑀𝑀𝑝𝑝 is computed as follows:

𝑝𝑝𝑝𝑝 = 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽𝑝𝑝𝑏𝑏𝑝𝑝 + 𝛾𝛾𝑝𝑝𝑐𝑐𝑝𝑝 (III.3)

where 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1. In a similar way, for each vertex in 𝑝𝑝𝑝𝑝 its corresponding 3D position in

the source mesh 𝑀𝑀𝐻𝐻 is calculated. Then, an edge-to-edge intersection between the

connectivities of 𝑝𝑝𝐻𝐻 and 𝑝𝑝𝑝𝑝 is computed. For a given pair of intersecting edges, both edges

are adequately divided and the mesh is re-triangularized. First, for each vertex, the incident

edges are sorted in counterclockwise order. A new face 𝑓𝑓(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝) is generated using two

continuous edges 𝑒𝑒(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑝𝑝) and 𝑒𝑒(𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝) if there is no edge between 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑝𝑝 . This

operation continues until all 𝑝𝑝𝑀𝑀 edges have two adjacent faces. Figure III.15 illustrates the

mesh merging process.

Figure III.15. Supermesh construction.

3D MESH MORPHING 34

The resulting super-mesh has a total number of vertices equal to 𝑁𝑁𝑀𝑀1 + 𝑁𝑁𝑀𝑀2 + 𝑁𝑁𝐼𝐼𝑛𝑛𝑝𝑝 , where

𝑁𝑁𝑀𝑀1 and 𝑁𝑁𝑀𝑀2 are the number of vertices in source and target respectively, and 𝑁𝑁𝐼𝐼𝑛𝑛𝑝𝑝 is the

number of edge intersections. This will obviously leads to huge meshes in the case of objects

described by a large number of faces/vertices. A second drawback of the method consists in

the fact that excepting the boundary loop and the boundary control vertex no other feature

vertex is set up. Thus, the feature preservation principle cannot be effectively satisfied.

In order to overcome such limitations, an extension of the method is proposed in [Kan00].

Here, the user is allowed to select multiple feature points in the two meshes. Based on this

set of vertices, the models are cut into correspondent patches (also called tiles) such that the

control points remain on the boundaries. By allocating such corresponding vertices to the

boundaries of the tiles, the vertex correspondence is satisfied automatically. Next, the mesh

patches are individually parameterized into the plane and the supermesh is constructed in a

similar way as presented in [Kan98].

Let us note that the specification of the feature vertices and the way the models are cut into

patches have to be performed manually, which is poorly intuitive for the user. However, the

quality and precision of this process has a great impact on the resulting correspondence.

Finally, in order to interpolate between the source and target model a linear interpolation

technique is applied.

Since closed, genus-0 3D meshes are topologically equivalent to a sphere,

Alexa et. al [Ale00], propose two solve the correspondence problem by a mapping the

meshes into the spherical domain. Authors extend the straight-line embedding algorithm

proposed by [Tut63] for planar mappings, to the case of spherical parameterizations. This

transforms the problem into a nonlinear one, but which can be still solved through a

relaxation process. The algorithm iteratively places each vertex at the center of its neighbors

and then projects it to the unit sphere. In order to avoid the triangles overlapping or mesh to

collapse into a single point, Alexa defines sets of anchor points in the parametric domain

which changes at different times during the relaxation process. However, the final embedding

is not guaranteed to be valid in all cases.

Based on the feature pair vertices specified manually by user in both source and target

models, the problem of feature alignment is established in the parametric domain with the

help of a mesh deformation technique based on radial basis functions (RBF) [Ara95]. Given a

vertex 𝑝𝑝 that should move to 𝑝𝑝′ the transformation 𝑓𝑓 is defined as:

𝑓𝑓(𝑥𝑥) = �𝑥𝑥 + (𝑑𝑑 − ‖𝑥𝑥 − 𝑝𝑝‖)(𝑝𝑝′ − 𝑝𝑝) if ‖𝑥𝑥 − 𝑝𝑝‖ < 𝑑𝑑
 𝑥𝑥 if ‖𝑥𝑥 − 𝑝𝑝‖ ≥ 𝑑𝑑

� (III.4)

35 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

The pair of vertices p and p’ are iteratively displaced to the same position on the unit sphere

through an iterative process. In the same time, the set of vertices included in the radius of

influence d of the considered RBF (equation (III.4)) are also displaced. The amount of this

displacement is less than the displacement of the vertex moved, though. However, if the

control vertices are forced to reach their final position, the resulting mapping could be invalid.

Thus, the features are displaced only as far as their movement did not introduce any

foldover.

In order to be able to transform from one object to another, a supermesh is constructed by

overlapping the spherical embedding of the two models. Here, the problem of edge-to-edge

intersection transforms into a problem of arc-to-arc intersection. Finally, the morphing

sequence is obtained using a linear interpolation scheme.

Lee et al. [Lee99] employ a multiresolution analysis in order to solve the correspondence

problem by generating coarse, simplified models of the two input meshes which are used as

base domains (Figure III.16).

Here, MAPS (Multiresolution Adaptive Parameterization of Surfaces) [Lee98]

parameterizations of the source and target objects are first constructed. The MAPS algorithm

uses a course mesh built through successive removal of a maximally independent set of

vertices, followed by re-triangulation of the resulting holes. A set of feature points specified

by the user is here needed. Such feature points are never removed in the simplification

process, thus guaranteeing that they are included in the base domain. Let us note that in

addition to control vertices, user can specify also lines of correspondence (e.g., set of edges)

to define similar features in the two models. In this case, the parameterization maps all points

of the original feature line to a sequence of edges (possibly one) in the base domain.

Figure III.16. (a) Source model; (b) the base domain of the source model; (c) target model;

(d) the base domain of the target model; [Lee99]

After the base domains are aligned, semiautomatic or manually (if the objects are

significantly different from each other), the source map is projected into the target base

domain. The initial projection is improved through an iterative relaxation procedure similar to

3D MESH MORPHING 36

the technique introduced in [Tur92]. The two final parameterizations of the source and target

meshes are obtained using a harmonic map approach in the base domain. Then the meta-

mesh including the whole set of source and target vertices is constructed.

The method can morph between relatively dissimilar objects with higher genus manifold (but

which share the same genus). The positions of intermediate meshes in the morph sequence

are computed based on a linear interpolation. However, the user may have the possibility to

control the acceleration of the process or to morph first certain regions before others. This

property is illustrated in Figure III.17, where the hair of the character appears before the face.

Other attributes such as normal, texture and color information between the source and the

target can also be interpolated.

Figure III.17. Morph sequence depending on location [Lee99].

Another multiresolution mesh morphing approach is the MIMesh (Multiresolution Interpolation

Mesh) technique proposed by Michikawa et al. in [Mic01]. First, a base interpolation mesh

𝑀𝑀0 is manually created by the user from the input meshes 𝑀𝑀𝐻𝐻 and 𝑀𝑀𝑝𝑝, which are partitioned

into several patches according to the faces of the base interpolation mesh in a similar way as

proposed in [Kan00].

Each patch is then parameterized in the planar domain, using a shape preserving mapping

algorithm [Flo97], in order to assign a 2D parameter value to each vertex of original models.

Next, a subdivision fitting scheme, inspired from the remeshing technique of Guskov et al.

[Gus00], is applied to create hierarchical interpolation meshes 𝑀𝑀1... 𝑀𝑀𝑛𝑛 , where 𝑛𝑛 denotes the

number of subdivision levels. The method is illustrated in Figure III.18.

The multiresolution interpolation mesh has a semi-regular mesh structure obtained by

successive 4-to-1 triangle splits of the base interpolation mesh and only approximates the

input models. To achieve the desired approximation accuracy, the number of refinement

steps should be adapted to the local geometric complexity of the models. Even so, sharp

features of the models cannot be recovered perfectly. In order to overcome this drawback,

the authors propose several enhancements. Notably, they propose to exploit a so-called

normal map, which corresponds to an image that stores information related to the mesh

surface normals (Figure III.19).

37 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

Figure III.18. MIMesh algorithm: (1) Base interpolation mesh construction; (2) Mesh interpolation

and parameterization; (3) Subdivision fitting scheme [Mic01].

Figure III.19. Normal Map [Mic01].

For each vertex the normal vector 𝑛𝑛(𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧) is computed and for each normal coordinate a

value from 0 to 255 is assigned to, accordingly to its magnitude in order to create a normal

map represented as RGB image. Pixels in the image map that do not correspond to any

vertex, are computed based on barycentric interpolation. Thus, the 3D morphing algorithm

interpolates not only between geometries, but also between two normal maps. Figure III.20

presents a visual comparison between a classical MIMesh approximation and the result

obtained when applying normal maps.

Figure III.20. MIMesh approximation: (a) input model; (b) interpolated mesh

without normal maps; (c) interpolated mesh using normal maps [Mic01].

3D MESH MORPHING 38

Michikawa et al. in [Mic01] present also a non-uniform mesh interpolation technique that

permits to locally morph first certain features or regions of interest. However, the drawback

when morphing locally arises from the fact that corresponding features might not have the

same position in the two models and thus the interpolation can lead to unpleasant artifacts.

This effect is illustrated in Figure III.21 where only the nose is morphed.

Figure III.21. Local morphing: (a) source model; (b) locally interpolated mesh;

(c) target model [Ale02].

A solution to this problem consists of performing the interpolation in different spaces than the

initial coordinate system. In [Ale01] and later in [Ale03], Alexa use a rather simple scheme,

which represent the vertices in Laplacian coordinates. The Laplacian coordinates are linearly

interpolated and the absolute coordinates are computed back. However, such a technique is

suitable only for local morphing and the region of interest (ROI) has to be manually selected

by user. The ROI boundary vertices acts as delimiter between the region which is

transformed and the rest of the mesh which has to remain fix.

The key problem in approaches like [Kan00] or [Mic01] which partition the models in multiple

correspondent patches relates to the user ability to make an efficient dissection in which

each patch of one model corresponds exactly to one patch in the other 3D object. In order to

reduce the amount of manual intervention required, Yu and Chuang [Yu03] propose a similar

technique, with the difference that closed models are initially cut only into two patches by

connecting four user-specified points which are in correspondence in the source and target

objects. Additional feature points can be specified by user.

For each mesh patch, a base model is derived by applying a sequence of half-edge

collapsing operations [Gar97]. The feature vertices selected by user are included in the

decimated meshes. An initial embedding for the base mesh is constructed with the help of

the mean value coordinates parameterization method proposed by Floater in [Flo03] and

optimized using a stretch minimization scheme similar to that introduced in [San01].

Let us note that in this case, the feature correspondence problem must be solved separately.

Thus, all feature points in correspondence are aligned using a foldover-free warping

algorithm [Fuj98]. Having the initial embedding of the base mesh with the aligned feature

39 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

points and the refinement sequence, a coarse-to-fine parameterization is performed by

remeshing the models uniformly or adaptively as in [Mic01].

In order to interpolate between different models, both linear and spline interpolation

schemes, achieved in the spatial domain, are performed. Moreover, since the models are

represented at different levels of resolution, the authors propose also an interpolation in the

wavelet domain, which makes it possible to control interpolation starting time and speed at

various resolutions (Figure III.22).

Figure III.22. Morphing of scheduled interpolation in wavelet domain [Yu03].

The computational time required for parameterization and remeshing of two objects with

10000 faces each is about 38 sec (35.69 for parameterization and 2.38 for remeshing) on a

1.5Ghz AMD Athlon XP PC [Yu03].

Let us note that an advantage of the methods based on multiresolution interpolation consists

in the fact that multiple models can be morphed simultaneously, since multiple shapes can

be approximated with the same set of vertices. An example of multi-target morphing is

presented in Figure III.23.

Figure III.23. Multi-target morphing [Yu03].

3D MESH MORPHING 40

Lee and Huang [Lee03] propose the so-called called SMCC (Structures of Minimal Contour

Coverage) technique, which aims at speeding up the merging process (e.g. less than a

second between two models of almost 4000 vertices compared with 8 seconds produced

with the Alexa algorithm [Ale00]).

Given two 3D models, the user is required to select two sets of vertices on the models. The

first set specifies the features needed to decompose the input meshes into several

corresponding patches. The second one corresponds to additional control features, defined

on each patch, for a finer correspondence control. Each patch is mapped into a 𝑛𝑛-sided

regular 2D polygon. First, the 𝑛𝑛 points associated to the patch and selected by user in the

first stage are assigned to the 𝑛𝑛 corners of the planar domain. Next, the other boundary

vertices are mapped to an edge in the 2D domain. Finally, the interior vertices 𝑝𝑝𝑖𝑖 are initially

mapped to the center position (0, 0), and iteratively displaced to a new position 𝑝𝑝′𝑖𝑖 using the

following relaxation equation:

𝑝𝑝′𝑖𝑖 = (1 − 𝜆𝜆)𝑝𝑝𝑖𝑖 + 𝜆𝜆
∑ (𝑤𝑤𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝)𝑝𝑝𝑖𝑖
𝑝𝑝=1

∑ 𝑤𝑤𝑝𝑝
𝑝𝑝𝑖𝑖
𝑝𝑝=1

 (III.5)

where 𝑝𝑝𝑖𝑖 represents the number of adjacent 𝑝𝑝𝑝𝑝 vertices at 𝑝𝑝𝑖𝑖 . Parameter 𝜆𝜆 takes values

between 0 and 1 and controls the movement speed. The weights 𝑤𝑤𝑖𝑖𝑝𝑝 help to preserve the

aspect ratio of original triangles into the parametric domain.

Once the embeddings obtained, the control feature vertices have to be aligned. In order to

solve this task, a free warping scheme based on a Gaussian radial basis function is

employed. However, the warping can lead to foldovers. In this case, equation (III.5) is

reiterated, while maintaining the feature vertices fixed.

A supermesh structure is constructed by overlaying and merging the models

parameterizations. In contrast with other methods, like the one proposed by Alexa [Ale00]

which assume that none of the vertices of one embedding lies on a vertex or an edge of the

other graph, Lee and Huang [Lee03] identify and solve all intersection cases, including the

degenerate ones. The algorithm starts with the source embedding and treats each target

edge independently, by determining all its intersections and adding corresponding new

vertices. Obviously, a nontriangular planar graph is produced and additional edges must be

inserted to retriangulate it. The positions of the new vertices, relatively to the input models,

are computed based on the barycentric coordinates. Once the metamesh is constructed, the

morphing sequence is obtained by linear interpolation.

A very similar method with the one presented by Alexa in [Ale03] is proposed by Sheffer and

Kraevoy in [She04]. The main difference consist in the fact that in contrast with Alexa’s

41 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

method which make use of the Laplacian coordinates to interpolate between the models, in

[She04] is introduced a new set of coordinates, so-called pyramid coordinates.

Pyramid coordinates measure the set of angles and lengths uniquely relating a vertex to its

immediate neighbors (Figure III.24). Considering 𝑝𝑝 a vertex in 3D, let 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚 be its

adjacent vertices. Given the normal 𝑛𝑛(𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧) at 𝑝𝑝, the projection plane П can be defined

as:

Π = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) | 𝑛𝑛𝑥𝑥𝑥𝑥 + 𝑛𝑛𝑦𝑦𝑦𝑦 + 𝑛𝑛𝑧𝑧𝑧𝑧 + 𝑑𝑑 = 0}, 𝑑𝑑 = �𝑛𝑛 ∙ 𝑝𝑝𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (III.6)

Denoting with p’ and pi’ the projections of p and pi to П, the description of the vertex with

respect to its neighbors can be expressed as:

 - a set of angles αi between the projected edges {p’, pi’} and {p’, pi+1’} (Figure III.24.b);

 - a set of angles βi between n and the edges {p’, pi’} (Figure III.24.c);

 - a set of projected edge lengths li = ||p’ - pi’||.

Figure III.24. (a) Pyramid coordinates; (b) tangential components in the

projection plane П; (c) normal component β

Thus, pyramid coordinates represent a combination of tangential (α and l) and normal (β)

components which have the property that both lengths and angles are invariant under rigid

transformations.

In contrast with the Laplacian coordinates which are not invariant under rotation and scaling,

the pyramid coordinates capture the local shape (lengths and angles) of the mesh around

each vertex and help maintain this shape under various transformations.

Based on a small number of control vertices and a user-defined region of influence, the

morphing procedure generates intermediate meshes which interpolate the shape properties

of the input models. The method generates intermediate models based on interpolated

pyramid coordinates. It can also take into account the trajectories of limited number of

vertices provided by user. The user-specified vertices are linearly interpolated in time

3D MESH MORPHING 42

between the source and the target values. For the remaining vertices, their positions are

computed by a controlled reconstruction procedure using the pyramid coordinates.

As opposed to other existing methods, the proposed technique gradually transforms original

objects eliminating the risk that same features disappear and then grow again. In addition,

the technique is particularly well-suited for local morphing operations where just some parts

of the model are modified.

An important advantage of this method is that although the algorithm does not explicitly

prevent model self-intersections, the shape preservation property drastically reduces the risk

of such self-intersections.

Starting from the approach of [Kan00], Urtasun et al. proposed in [Urt04] a fully automatic

method. The two source and target meshes are aligned automatically and the feature

vertices are determined without the user intervention using a modified version of the Iterative

Closest Point algorithm (ICP) [Dew04].

The ICP algorithm orients the original meshes in the same manner and centers them at the

same position. However, only a rough correspondence of source and target vertices is

provided, particularly in the cased where the two objects to be morphed present relatively

different geometries. This can introduce disturbing artifacts in regions presenting salient

features. Hopefully, such artifacts can be corrected using a local curvature matching.

As in [Kan00], the models are partitioned into patches and projected onto the plane using the

harmonic map, with the only difference that in this case the boundary control vertices are

established automatically.

The feature vertices are aligned using the warping method presented by Alexa [Ale00],

adapted to the planar case. A supermesh is constructed with the help of a merging algorithm

similar with the one proposed in [Kan00].

The interpolation between source and target geometries is then applied on the resulting

supermesh. Here, a Slerp quaternion interpolation [Sho85] is preferred to the linear one,

which makes it possible to obtain more smooth and realistic morphing sequences.

A different concept of mesh morphing is proposed by Ahn et al. [Ahn02], [Ahn04]. The

approach aims to create a morphing sequence where, in addition to the geometric

transformation, the mesh connectivity is also gradually changed. The main advantage of the

method is related to the connectivity of the obtained in-between meshes, which is much

simpler than the one of a supermesh.

43 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

Starting with the spherical embeddings proposed by Alexa [Ale00], with the feature vertices

already aligned, the two mappings are overlayed in order to establish the vertices positions

with respect to the 3D source (𝑀𝑀𝐻𝐻) and target (𝑀𝑀𝑝𝑝) shapes. Two in-between meshes (𝑀𝑀′𝐻𝐻

and 𝑀𝑀′𝑝𝑝) are constructed, each one containing a similar number of vertices (i.e., 𝑁𝑁𝐻𝐻 + 𝑁𝑁𝑝𝑝 −

𝑁𝑁𝐶𝐶 , where 𝑁𝑁𝐻𝐻 and 𝑁𝑁𝑝𝑝 are the number of vertices in source and target models while 𝑁𝑁𝐶𝐶 is the

number of coincident vertices obtained after the mappings are overlaid). The in-between

mesh 𝑀𝑀′𝐻𝐻 is constructed starting with the mapped source mesh topology to which the target

vertices are added. If a vertex 𝑝𝑝𝑝𝑝of 𝑀𝑀𝑝𝑝can be mapped into a triangle 𝑓𝑓𝐻𝐻of 𝑀𝑀𝐻𝐻, then a new

vertex 𝑝𝑝𝐻𝐻 is added on the mapped position of 𝑝𝑝𝑝𝑝. The mesh is retriangulated by connecting

the new vertex 𝑝𝑝𝐻𝐻 to the three vertices of 𝑓𝑓𝐻𝐻. 𝑀𝑀′𝑝𝑝 is constructed in a similar manner. Thus,

𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝 have an 1-to-1 correspondence, but 𝑀𝑀′𝐻𝐻 has the same shape as 𝑀𝑀𝐻𝐻 while 𝑀𝑀′𝑝𝑝

has the same shape as 𝑀𝑀𝑝𝑝.

The next step consists of defining the transformation from the converted source mesh into

the converted target. This task is accomplished through a mesh connectivity transformation

procedure that employs a sequence of edge swap operations (Figure III.25). The order in

which edges are swapped during the morphing is established based on a geometric error

that takes into consideration the distance between a given edge and the edge created by the

swap. Thus, during the morphing process, the connectivity is transformed gradually and the

vertex positions are linearly interpolated.

Figure III.25. Primitive operations used to transform the mesh connectivity: (a) ESO – edge swap
operation; (b) VRO – vertex removal operation; VSO – vertex split operation.

Lin and Lee [Lin05a], propose a similar approach that aims to progressively transform the

connectivity of the source model into that of the target during the morphing. The main

difference consists in the fact that their algorithm avoid to creates the two in-between

meshes 𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝. A list of operations to be performed over the mesh vertices/edges is

directly created on source and target embeddings using three primitives operations (Figure

III.25): ESO (edge swap operation), VRO (vertex removal operation); VSO (vertex split

operation).

The process of connectivity transformation is illustrated in Figure III.26. After the input

models are mapped onto the parametric domain using a method proposed by the same

authors in [Lee03], the two embeddings are overlapped. The almost incident vertices are

merged and only the vertices of the source embedding are used to execute VRO and VSO

3D MESH MORPHING 44

operations. Once a VSO is performed, a vertex is inserted on the source embedding. This

operation might produce narrow triangles. Thus, local refinement is performed using ESO.

Primitive operations are carried out iteratively until the source embedding is transformed into

the target one. Finally, a priority control function is defined to establish an order in which the

above operations will act during the morphing sequence.

Figure III.26. The process of connectivity transformation employed in [Cha05].

This approach is further extended in [Lin05b] for the case of spherical embeddings.

Specifically, there is a major difference required when an edge is inserted using a sequence

of ESOs. On the spheres, an edge is an arc (i.e., the shortest path) between two points.

Therefore, the arc and its intersections with other arcs defined by other edges must be

computed before the sequence of ESOs. In order to obtain the spherical parameterization

the Alexa’s algorithm [Ale00] is employed.

Kaneko et al. [Kan06] present a simple method to automatically establish a semantic

topology match between two objects that have to be morphed. The purpose of their work is

to set-up a model generation system that enables to create 3D shapes easily by morphing.

This system first decomposes both original objects into several semantic elements, by

considering the watershed method proposed in [Man99]. Here, a feature value need to be

assigned to each vertex to generate a topographic map as a height function derived from the

feature values. Usually a curvature measure associated to each vertex is utilized.

Then, the method automatically determines correspondences between each detected

element/patch based on their relative location. Such regions are morphed one into each

other independently using a simple algorithm which moves vertices from the initial surface

toward the final one without modifying the vertex correspondence.

Even it is not directly related to mesh morphing, let us also mention the method proposed by

Wu et al. [Wu07] due to its high potential for a possible morphing application. Their

framework aims to give a solution for establishing a correspondence between arbitrary

45 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

meshes by directly mapping the connectivity of the source model onto the target mesh

without needing to segment the input objects.

First, in order to establish a shape preserving correspondence between source and target

meshes, a modified mean-value Laplacian fitting scheme is used. This operation is applied

directly in the 3D space without being necessary to map the models onto a common

parametric domain. The method achieves good results even with a reduced number of

control features in the two models. In order increase accuracy, a vertex relocation approach

is proposed. Finally, each vertex is gradually projected onto the target model’s surface to

ensure a complete surface match.

Based on a spherical parameterization, Zhu and Pang [Zhu09] present a morphing algorithm

for arbitrary genus-0 models which requires the user interaction in order to specify a set of

feature pairs used to align the source and target meshes in the parametric domain.

The initial source and target models are first roughly aligned with the help of a principal

component analysis (PCA). Then, the two PCA-normalized models are parameterized onto a

common spherical domain. The spherical embedding is constructed using a relaxation

operator R(pi) defined as follows:

𝑅𝑅(𝑝𝑝𝑖𝑖) =
1
𝑑𝑑

� 𝑝𝑝𝑝𝑝 , 𝑖𝑖 ∈ {1, 2, … ,𝑁𝑁}
(𝑖𝑖 ,𝑝𝑝)∈𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝

 (III.7)

where d is the degree of vertex pi. Using the operator R(p) in an iteratively manner for each

vertex and then normalizing R(pi) to unit length in order to maintain all the vertices on the unit

sphere, the mapping of M can be achieved.

The next step consists of refining the spherical parameterizations obtained such that each

corresponding source and target feature points be placed to identical positions in the

spherical domain. Starting from the spherical parameterization obtained the pairs of source

and target feature points are first re-placed in their middle position on the unit sphere. The

rest of the vertices from both source and target meshes are then iteratively re-distributed on

the sphere with the help of the same relaxation operator R(pi). The authors claim that no

triangle overlapping occurs even if a similar method is performed in [Ale00] and additional

constraints are applied in order to avoid this problem. Based on the spherical embeddings,

the positions of the source vertices relatively to the target shape are computed using

barycentric coordinates. Finally, the morphing is obtained by interpolating the initial source

vertices position with the new computed ones, without creating a metamesh. In this case, the

target model could be only approximated with the source topology.

3D MESH MORPHING 46

In [Ath12], Athanasiadis et al. present a method that performs morphing in a completely

automatic manner, but which works well only in the case where similar source and target

models, belonging to the same category are considered. Object alignment, feature detection

and feature point matching is performed automatically with the help of a geometric local

characteristic, so-called concavity intensity, inspired from [Sta07]. This feature is combined

with an algorithm that detects the rapid variations of the surface normal, in order to obtain a

region growing method that results in sets of points corresponding to the object individual

features. The object features are then represented with the help of a connectivity graph that

captures their adjacency information.

For each graph edge the geodesic distances between the centroid of the corresponding

feature regions are computed. The graph is then simplified by collapsing edges that

correspond to large distances. In addition, small regions that can introduce noise and are not

significant are merged. The reduced adjacency graphs are used to perform a 3D alignment

of the two models and establish a correspondence between the region patches.

For the initial mapping an improved Laplacian smoothing method is employed obtaining a

spherical embedding which attempts to maintain uniform triangle areas and to avoid long

edges. The Laplacian smoothing guarantees an unfolded mapping and preserves similarities

with the initial mesh, but does not perform any triangle balancing and the mesh can

degenerate. To avoid this, the authors use a weighted sum of the centroids of the

surrounding triangles of each vertex, to determine their position.

In order to align the features of the target model with those of the source object, an objective

function has to be minimized, under a set of geometric constraints. The alignment process is

carried out on the spherical embedding. Thus, a first condition to be respected requires that

each vertex pi(xi, yi, zi) should lie on the surface of the unit sphere, as described in

equation (III.14):

𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2 = 1,∀𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) (III.8)

In order to avoid triangle flipping, for each vertex of a face 𝑓𝑓(𝑝𝑝0,𝑝𝑝1,𝑝𝑝2), it must be imposed

that the vertex remains on the same side of the plane defined by the other two vertices and

the center of the sphere:

(𝑝𝑝1 × 𝑝𝑝2) ∙ 𝑝𝑝0 > 0 (III.9)

In addition to equation (III.15), the length of each edge must be preserved during the

optimization:

𝑝𝑝𝑖𝑖𝐻𝐻 ∙ 𝑝𝑝𝑖𝑖𝑝𝑝 = �𝑀𝑀�𝑝𝑝𝑖𝑖𝐻𝐻� − 𝑀𝑀(𝑝𝑝𝑖𝑖𝑝𝑝)� (III.10)

47 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

where M(p) is the initial position of vertex p on the original meshes. In this way, the

morphology of the target object during the optimization process is preserved. This avoids

introducing very long stretches of the mesh triangles.

The objective function to be minimized represents the sum of all inner products of every

mapped feature vertex pT of the target object with their corresponding feature vertex of the

original mesh pS:

�𝑝𝑝𝑝𝑝 ∙ 𝑝𝑝𝐻𝐻

∀𝑝𝑝𝑝𝑝
 (III.11)

The optimization described in equation (III.16) is solved with the help of the method

introduced in [Wac06], which provides a nonlinear programming technique that handles

problems with a large number of inequality constraints. However, the main limitation of the

method is related to the computational bulk since the time for mapping an object with 5600

faces takes 15 minutes on an Intel Q6600 Core2 at 2.4GHz and GeForce 8600GT.

Once the spherical mapping of the two objects achieved, a merging process of the two

topologies is performed. First, for each source edge, a list of intersections with the target

topology is determined. Additionally, for each vertex, a list of the edges incident to it in

clockwise order is calculated. Based on this data each closed bounded region is traversed in

a clockwise order and the retriangulated merged topology is computed. Figure III.27

illustrates the merging process. Finally, the morphing sequence is performed based on a

linear interpolation using directly the GPU (GLSL shaders).

Figure III.27.The process of metamesh construction [Ath12].

The analysis of the state of the art shows that several phases involved in the morphing

process are crucial for ensuring the quality of the resulting metamorphosis sequence. They

notably concern:

- The parameterization method involved, which should guarantee low geometric

distortions in terms of lengths, angles and areas,

- The warping of the source and target parametric domains, which should

simultaneously guarantee a good match between corresponding feature points and a

fold-over free deformation,

3D MESH MORPHING 48

- The connectivity-related issues which should ensure a smooth and local adaptation

between source and target models.

Based on these considerations, we propose a 3D mesh morphing framework described in

the next section.

III.5. OVERVIEW OF THE PROPOSED 3D MESH MORPHING
FRAMEWORK

The main steps involved in the proposed mesh morphing framework are illustrated in

Figure III.28.

The morphing method includes the following steps:

 1. 3D model normalization - Since mesh models can be generated using a variety of

techniques (e.g., 3D designers use CAD software, optical devices of 3D scanners) and,

therefore, most of the 3D models available over the internet may have arbitrary scales,

orientations and positions in the tridimensional virtual space, we first employ a PCA-based

normalization [Jol02] in order to align the object with respect to its principal axes and scale it

to the unit sphere.

Figure III.28. Steps involved in our morphing process.

 2. Mesh simplification – Since the parameterization process may require relatively

important computational resources when dealing with highly complex meshes, described by

thousands of vertices/triangles, we introduce a pre-processing step to produce coarser

versions of the input meshes by iteratively reducing the number of vertices and triangles. In

our work, we have adopted the QME surface simplification scheme introduced in [Gar97],

and known as the QSlim method. A slight modification of the baseline technique has been

49 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES

considered. Thus, in contrast with [Gar97], which can contract arbitrary two vertices, even if

they are not connected by an edge, our method solely collapse adjacent vertices. This

guarantees the preservation of the original model topology, which is strong constraint within

the context of mesh morphing applications.

 3. Mesh parameterization – Both the source and target models are mapped in a

common parametric domain (i.e., planar domain if the models are open or spherical domain if

the models are closed) in order to establish the correspondence between the main features

of the two objects. We introduce here two novel methods: one that concerns a planar

parameterization technique, so-called edge length ratio preserving (ELRP) parameterization

and another one dedicated to spherical parameterization based on a Gaussian curvature

criterion.

 4. Feature correspondence - In order to ensure that the main characteristics of the

models are preserved during the morphing process, it is necessary to re-place the user

specified corresponding feature points such that they share the same position in the

parameter domain. Such a re-placement requires a global deformation of the whole

parametric domain, such that the corresponding meshes should be smoothly deformed

without foldovers. The process is referred to as mesh warping. In order to accomplish this

task we make use of radial basis functions that allows to displace all mesh vertices based

only on the known displacement of some control points (feature vertices).

 5. Pseudo metamesh construction - Once the two input models are parameterized in a

common domain and the main features of the objects are aligned properly, the next natural

step in a morphing framework is to establish a one-to-one correspondence between the

models shapes. In order to accomplish this task we introduce a simple yet efficient technique

to create a pseudo supermesh which avoids tracking the edge intersections. In addition, our

method reduces drastically the number of vertices normally needed in a supermesh

structure.

 6. Interpolation – The objective of the mesh interpolation step is to determine appropriate

trajectories for each vertex connecting the initial position, defined on the source surface, to

the final position, defined on the target shape. We solve this step in a simple way by adopting

a linear interpolation scheme.

III.6. CONCLUSIONS

In this chapter, we first set the generic principles of visual object metamorphosis, starting

with the case of 2D images. Then, we provided an overview of the main 3D mesh morphing

3D MESH MORPHING 50

techniques proposed in the state of the art. The analysis of the state of the art reveals that,

whatever the technique is used, the morphing process involves two different processes: the

feature mapping and the interpolation problem.

The correspondence problem, although intensively analyzed, remains a difficult step. In order

to establish the correspondence between the vertices of the input models a great majority of

approaches exploit a parameterization of the source and the target meshes over a common

parametric domain. The feature correspondence issue is then established in the parameter

domain, which can be either spherical (for genus 0 closed meshes)[Ale00], [Zhu09], [Ath12]

planar (generally for open surfaces) [Kan98], [Kan00], [Yu03] or object-dependent (as in the

case of MAPS parameterizations)[Lee99], [Mic01].

However, there are other approaches [Ahn04], [Lin05a], [Lin05b] which are based neither on

disk nor spherical parameterization. These methods usually avoid creating an intermediate

mesh which contain both source and target geometry as in the case of the embedding

merging and multiresolution remeshing approaches. These methods aim to create a

morphing sequence where beside the geometric transformation, the mesh connectivity is

also changed. The drawback here is related to the difficulty of interaction with the end user.

In the majority of cases, user intervention is required in order to specify some feature points

and to establish the correspondence between the two objects. Some automatic solutions are

proposed in the case of similar models, corresponding to a same category of objects [Urt04],

[Ath10]. However, in the general case where morphing between arbitrary objects is required,

such methods provide poor quality results.

Concerning the interpolation issue, the most frequently used approach is the linear

interpolation, which offers the advantages of speed and simplicity. However, this simple

method can cause self-intersection and shape degeneration which is usually not a very

pleasant effect. An interpolation of higher degree or in other spaces (i.e., Laplacian

coordinates or Pyramid coordinates) is also possible, but without guaranteeing fold-over free

morphing sequences in all cases.

Finally, we have introduced the proposed morphing framework, with the various stages

involved, which includes normalization, mesh simplification, parameterization, warping, meta-

mesh creation and interpolation.

IV. MESH PARAMETERIZATION

Summary: This chapter introduces two main contributions of our work: The first one concern

an enhanced 3D object planar parameterization method introducing a new barycentric

mapping algorithm based on the length ratio preservation. A major advantage of our method,

concerns the bijectivity property, which holds in all cases, and ensures valid and shape-

preserving embeddings for arbitrary open and triangular 3D meshes, regardless their

complexity. The second proposed approach represents a spherical parameterization method

which exploits the Gaussian curvature associated to the mesh vertices. Valid spherical

embeddings are obtained by locally flattening the mesh in an iterative manner, starting from

vertices with maximal curvature values. This principle makes it possible to define a sequence

of flattening operations that transform the initial mesh into a rounded, sphere-like surface that

can be mapped onto the unit sphere.

3D MESH MORPHING 52

IV.1. INTRODUCTION

When considering a morphing process between two different source and target 3D meshes,

the main difficulty to be overcome is related to topological problems related to different

connectivities, numbers of vertices/faces that can describe the source and target shapes.

Obviously, it is impossible to associate in a bilateral manner one vertex from the source to

one vertex in the target model. The only solution is to consider the mapping between the two

meshes as a mapping between their corresponding ℝ3 surfaces. Thus, for each vertex on the

source (resp. target) model, a correspondent point on the target (resp. source) model has to

be identified, as illustrated in Figure IV.1.

Figure IV.1. Vertex to vertex correspondences.

However, directly establishing such a correspondence is quite impossible, because of the

complexity and diversity of shapes that can be modeled with 3D meshes. Instead, an indirect

mapping method is preferred, which consist of:

1. Parameterizing both source and target models onto a common, parametric domain;

2. Warping the parametric domains in order to ensure a feature correspondence between the

two 3D shapes to be morphed.

In this chapter, we will consider solely the first of the above-mentioned stages, which

concerns the mesh parameterization.

In a general manner, the objective of any mesh parameterization method is to establish one-

to-one mapping (bijective) mapping between the surface of a given 3D models and a given

2D parametric domain.

Parameterizing the surface of a 3D model digitally represented as a collection of flat

polygons in ℝ3, was firstly used in the computer graphics field in order to map textures onto

surfaces [Hak00]. More recently, parameterization became an essential phase in numerous

mesh processing applications such as surface-fitting [Pie01], mesh-editing [Bie02], re-

meshing [Smi06], compression [All05] and morphing [Zhu09].

53 MESH PARAMETERIZATION

The interest of 3D mesh parameterization techniques comes from the fact that complex

operations that are intractable on the original 3D surface representation can be performed

easily on a simple parametric domain such as the unit disk or the unit sphere. Various

methods were developed for different kinds of parameter domains and parameterization

properties. Before detailing them, let us first briefly establish some terminology.

The parameterization of a given 3D surface S ⊂ IR3 is defined as a homeomorphism Φ:S→D

which maps the surface S over an appropriate 2D domain D ⊂ IR2. In the case of 3D meshes,

a parameterization is defined as a piece-wise linear embedding. More precisely, let

M = (V, E, F) be a 3D triangular mesh, where V, E and F respectively denote the sets of

vertices, edges and triangles.

The parameterization of the mesh surface is completely specified by a function Φ:V→D,

which associates to each vertex pi of V a point φi = φ(pi) in the 2D domain D. This process is

illustrated in Figure IV.2.

The bijection is required because each triangle of the mesh needs to have an appropriate

image in the parameter domain. In other words, the faces in the parameter domain must not

overlap.

Figure IV.2. Mesh parameterization.

With the introduction of the parameterization paradigm, we also have to distinguish two

spaces – the object domain, i.e. the space in which the mesh is defined (generally ℝ3), and

the parameter domain, i.e. the space in which the mesh is mapped onto.

The selection of an appropriate 2D parametric domain D depends in most of the cases of the

original model topology. For open triangular meshes, the intuitive way to obtain a

parameterization is to map its vertices in a planar domain. For closed, genus 0 models, a

spherical domain (i.e., the unit sphere) is more appropriate.

In practice, guaranteeing a valid parameterization (i.e., continuous and bijective mapping

function) is not straightforward. In particular, the phenomenon of triangle flipping (or mesh

folding) can occur (Figure IV.3).

3D MESH MORPHING 54

Figure IV.3. Fold-overs which lead to an invalid parameterization:

(a) Boundary intersection; (b) Triangle flip.

Numerous approaches [Des02], [Flo03], [Fri05], [Sor02], [She02] have been introduced in

order to prevent the triangles from flipping. There are different measures to avoid overlaps

depending on the type of fold. In general there are two causes for such folding:

• The boundary of the parameter domain intersect itself (Figure IV.3.a) - This happens

only in the case when the boundary is not predefined in the parametric domain, but can be

handled by cutting along the borders of the intersection as described in [She01].

• Triangle flips (Figure IV.3.b) – This is the case when two adjacent triangles have

opposite orientations. The mesh triangles orientation can be verified in the following manner:

the vertices of the two adjacent triangles fm(pi, pj, pk) ϵ F and fn(pj, pk, pl) ϵ F are ordered in such

a way that their associated coordinates in the parametric domain are in clockwise order; if we

have the same order on their common edge ec(pj, pk) then we can say that one triangle lies on

the other, i.e. their normals are flipped. Mathematically, we can check this by evaluating the

following expression:

𝑝𝑝𝑒𝑒𝑛𝑛((𝜑𝜑𝑖𝑖 × 𝜑𝜑𝑝𝑝) ∙ 𝜑𝜑𝑝𝑝) (IV.1)
where sgn is the signum function and φi, φj φk are positions of the vertices of a triangle in the

parameter domain. Relation (V.1) must be evaluated for each face. The parameterization is

valid if all the triangles are oriented in the same way, i.e., the signum of the result of the

equation (IV.1) is the same for each face.

Even if the above conditions are satisfied, we cannot always speak about a “good”

parameterization. Ideally, it is preferable that all triangles in the parametric domain have the

areas proportional to those in the original space. However, in this case, the resulting triangles

in the parametric domain risk to become degenerated / elongated and with disturbed aspect

ratios.

On the contrary, if we try to preserve the angles in the parametric domain, the area distortion

might significantly increase. As a result, the 3D surface details cannot be properly described

under such a parameterization.

55 MESH PARAMETERIZATION

In this context, Floater and Hormann [Flo05] define three types of mappings:

• Conformal mappings – If the angles of any triangle in the parameter domain D are

the same as those of the corresponding triangle in the original space M then that mapping is

called conformal or angle preserving.

• Equiareal mappings – If the area of any triangle in the parameter domain D is the

same as that of the corresponding triangle in the original space M then that mapping is called

equiareal, authalic or area preserving.

• Isometric mappings – If the length of any edge in the parameter domain D is the

same as that of the corresponding edge in the original space M then that mapping is called

isometric or length preserving.

Let us note that it can be demonstrated that every isometric mapping is conformal and

equiareal, and every conformal and equiareal mapping is isometric [Kre59].

In other words, isometric mapping is the ideal parameterization due to its zero distortions,

which fully preserves angles and areas. Unfortunately, such an ideal parameterization can be

determined solely in a small number of relatively simple cases. For example, when mapping

into the plane, only developable surfaces (such as cylinders or cones) can admit planar

isometric parameterization (Figure IV.4). For other, more general and complex surfaces,

distortions must be tolerated, but minimized.

Figure IV.4. Isometric parameterization of a cylinder.

The majority of the approaches proposed in literature attempt to determine either a conformal

mapping or an authalic mapping. In addition, they aim to minimizing some combination of

angle and area distortions. The following sections will detail such methods for both planar

and non-planar parameterizations.

IV.2. PLANAR PARAMETERIZATION OF TRIANGULAR MESHES

The first research works presented in the field of mesh parameterization concerned the

planar mapping of meshes with disk-like topology. Such approaches are based on the

principle that a mesh can be compared with a physical system where mesh edges are

3D MESH MORPHING 56

springs that are connected to the vertices. If we consider fixed the mesh boundary in the

parameter domain, then the inner vertices will relax in a configuration with minimum energy.

For illustrating this process, let us consider the 1D example presented in Figure IV.5.

Considering a sequence of n points p1, p2, ..., pn ϵ IR2 to be parameterized in an interval

[a, b]⊂IR and connecting each pair of consecutive points (pi, pi+1) with a spring, we obtain a

chain of n-1 springs (Figure IV.5.a).

If all the points are forced to lie on an imaginary line with the endpoints p1 and pn fixed on a,

respectively on b, then the result will be a contracted system with high energies stored in

springs (Figure IV.5.b).

Releasing the endpoints of the system, the springs will relax freeing the energies

(Figure IV.5.c). This principle also applies in the case of 3D meshes parameterizations over

2D domains. The difference here is that the springs energies cannot be completely

eliminated. In this case, the objective is to relax the system in a configuration with minimum

energy.

Figure IV.5. Parameterization of a spring model: (a) original spring system; (b) parameterization

with fixed boundary; (c) system relaxation.

As a first planar parameterization method, let us mention the approach introduced by Eck et

al. [Eck95], which consists of a generalization of the basic method proposed by Tutte [Tut63]

for a planar graph. The spring energy is expressed in the following form:

∑∑
∈∈

−+−=−=
Edgesji

jijiji
Edgesji

jiji vvuuwwE
},{

22
,

},{

2
,))()((

2
1||||

2
1 ϕϕ (IV.2)

where wi,j represent the spring constant defined for each edge e{i, j}, φi, φj are the vertex

positions and u and v - the coordinates in the parameter domain.

In order to obtain the minimum of this energy it is required that the partial derivatives of E

with respect to ui and vi to be zero for all interior vertices φi:

57 MESH PARAMETERIZATION

0)(2
2
1

)(
, =−=

∂
∂ ∑

∈ iNeighborsj
jiji

i

uuwE
u

 (IV.3)

0)(2
2
1

)(
, =−=

∂
∂ ∑

∈ iNeighborsj
jiji

i

vvwE
v

 (IV.4)

Again, the boundary vertices are considered fixed in the parameter domain and their

corresponding positions are pre-calculated.

If we analyze equations (IV.3) and (IV.4), we can observe that every inner vertex can be

expressed as a convex linear combination of its neighbors:

∑∑
∈∈

=⇒=−
)(
,

)(
, 0)(

iNeighborsj
jjii

iNeighborsj
jiji uuuuw λ (IV.5)

∑∑
∈∈

=⇒=−
)(
,

)(
, 0)(

iNeighborsj
jjii

iNeighborsj
jiji vvvvw λ (IV.6)

Where (ui, vj) are the 2D parametric coordinates of a vertex i, and λi,j denotes the normalized

spring weights for an edge e{i, j} expressed as:

∑
∈

=
)(
,,, /

iNeigborsk
kijiji wwλ (IV.7)

Let us observe that:

∑
∈

=
)(

, 1
iNeighborsj
jiλ (IV.8)

In equations (IV.5) and (IV.6), if we consider N the total number of points belonging to the

mesh and n the number of inner vertices (non boundary points), then we can separate the

interior and the boundary vertices in the sum in the following manner:

∑∑
>
∈

≤
∈

=−

nj
iNeighborsj

jji

nj
iNeighborsj

jjii uuu
)(
,

)(
, λλ (IV.9)

∑∑
>
∈

≤
∈

=−

nj
iNeighborsj

jji

nj
iNeighborsj

jjii vvv
)(
,

)(
, λλ (IV.10)

Here, without loss of generality, we consider that the boundary vertices are first indexed from

1 to n and that the interior vertices have corresponding indices j>n. The position of the

boundary vertices is considered as fixed.

Writing the two above equations for any interior vertices we obtain two linear systems of

equation to be solved. These two systems can be expressed in the following matrix forms:

UBUA =⋅ and VBVA =⋅ (IV.11)

where the unknown U = [u1, u2, ..., un]T and V = [v1, v2, ..., vn]T are columns vectors

corresponding to the u and v coordinates in the parameter domain D; Bu = [bu1, bu2, ..., bun]T

and Bv = [bv1, bv2, ..., bvn]T are columns vectors with coefficients:

3D MESH MORPHING 58

∑
>
∈

=

nj
iNeighborsj

jjiui ub
)(
,λ and ∑

>
∈

=

nj
iNeighborsj

jjivi vb
)(
,λ (IV.12)

njijiaA ...1,,)(∈= - is a nn× matrix with elements:

∈≠
=

=

 otherwise 0

i)Neighbors(j and j i if -
ji if 1

ji,, λjia (IV.13)

The existence and uniqueness of a solution for (IV.11) is equivalent to the non-singularity of

the matrix A and is proven by Floater in [Flo97]. He also demonstrates that if the weights are

positive and the matrix is symmetric, then the obtained parameterization exists and it is

guaranteed to be bijective (i.e. there will be no overlapped triangles in the parameter

domain). This theory is summarized by Gotsman et al. in [Got03] as the following theorem:

Theorem IV.1: Given a planar 3-connected graph with a boundary fixed to a convex shape in

ℝ2, the positions of the interior vertices form a planar triangulation (i.e., none of the triangles

overlap) if and only if each vertex position is some convex combination of its neighbor's

positions.

The above-presented principle holds for arbitrary boundary to which the border vertices can

be mapped onto. However, the selection of an appropriate shape for the boundary vertices

might have a relatively important impact on the parameterization results, as discussed in the

next section.

IV.2.1. Selection of the boundary’s shape

The convexity of the D domain boundary is a necessary condition in order to ensure that all

the solutions of (IV.11) to belong to D. Thus, the problem of overlapping borders can be

easily avoided, without any boundary optimization methods, if a convex shape is retained.

However, the choice of an appropriate convex polygon for the boundary may affect the

quality and usefulness of the results. A polygon with vertices on a unit circle may be a good

boundary shape because all the points will be further away from the middle and vertices may

be spaced easily on this circle at distances proportional to the edge lengths between them.

Various approaches, particularly in the field of texture mapping methods (e.g. [San01],

[Yos04], [Flo02a]) use as a boundary a square or a rectangle due to its similarity with a

bitmap texture.

Whatever the type of the considered parametric domain, the main issue to be solved is to

map the boundary vertices accordingly.

59 MESH PARAMETERIZATION

Floater [Flo97] maps the boundary on the unit square or circle using chord length

parameterization, while Greiner and Hormann [Gre96] determine the plane that optimally fits

all the boundary vertices (in the least square error sense), and then orthogonally project

them onto this plane.

The requirements that the boundary should be fixed on a convex polygon may cause high

distortion near the frontier. To overcome this drawback, various methods have been

developed to allow free boundaries which treat both interior and border vertices in the same

manner, in order to obtain simultaneously the boundary map and the mesh parameterization.

Naturally, a higher similarity between the 2D and 3D boundary will lead to a smaller

parameterization distortion.

Within this framework, one of the first methods proposed is the Lee et. al. approach [Lee02],

which creates a virtual boundary somehow fixed but more “natural”. Afterwards, others

methods have been developed which require fixing only a few vertices in the parametric

domain [Lev02], [Des02], while more recent researches focus on establishing full free

boundaries [Cao10], [Liu08], [Zha05].

In Figure IV.6, several methods with different boundary shapes are presented. Figure IV.6.b

and Figure IV.6.c represent the 2D embedding of the 3D mesh, shown in Figure IV.6.a, in a

parameter domain with a circle (respectively square) like boundary, while Figure IV.6.d

presents the parameterization of the 3D mesh in a free boundary domain.

Figure IV.6. Parameterization with different bounding polygons[Lee02]: (a) 3D original mesh;

(b) circle; (c) square; (d) free boundary.

In general, fixed boundary approaches offer the advantages of simplicity and of low

computational complexity. In contrast, free boundary techniques generally produce

significantly less distortion at the price of a higher computational cost.

Another important issue to be specified concern the definition of appropriate spring weights

(equation IV.2) for guiding the parameterization process.

3D MESH MORPHING 60

IV.2.2. Spring weights specification

In [Tut63], Tutte has chosen simple and uniform weights settings wi,j = 1 if {i, j} is an edge in

the mesh. Tutte’s objective was to compute straight line embeddings of planar graphs, within

a theoretic settting. Later, his technique has been applied to texture mapping applications.

In such case, each point in the parameter domain is forced to be placed at the centroid of its

neighbors. For this reason, the Tutte method has been called barycentric mapping.

In this context, equation (IV.7) can be rewritten as:

 𝜆𝜆𝑖𝑖 ,𝑝𝑝 = 1/deg(𝑖𝑖) (IV.14)

where deg(𝑖𝑖) is the degree or the valence of the vertex pi.

Although the resulting mapping is proved to be bijective, a main drawback of this approach is

that it doesn’t fulfill the minimum requirement that would be expected from any

parameterization method, which relates to the minimization of the geometric distortion

measures. Thus, in practice the Tutte technique usually does not preserve any shape

properties of the mesh because the choice of weights does not take into account any

geometric property of the mesh, but solely its connectivity.

A significant amount of research has been dedicated to the optimization of the 𝜆𝜆𝑖𝑖,𝑝𝑝

coefficients, under the hypotheses of theorem IV.1.

The main objective is to minimize the different distortion components, such as angle

deformation (harmonic/conformal parameterizations), length deformation, or area

deformation (authalic parameterization).

The various approaches proposed are presented in the next section.

IV.2.2.1. Discrete harmonic map (DHP) and Discrete

conformal map (DCP)

One of the first method proposed in this area is the so called discrete harmonic map

introduced by Pinkall and Polthier [Pin93] in the context of differential geometry and adapted

later by Eck et al [Eck95] for planar parameterization purposes. The goal of this approach is

to minimize the Dirichlet energy, defined as:

∫=
M

Dirichlet fgradfE 2||)(||
2
1)(, (IV.15)

61 MESH PARAMETERIZATION

where f is the mapping function. For a piecewise linear parameterization, corresponding to

3D meshes, equation (IV.15) can be reformulated, resulting in the following energy that has

to be minimized:

∑ −=
},{

2
, ||||cot

jiEdgesOriented
jijiDCPE ϕϕα , (IV.16)

with φi, φj - the vertex positions in the 2D parametric domain, and αij - the opposite left angle

in the 3D space of the edge (i, j) (Figure IV.7).

Calculating the partial derivatives of EDCP in respect with u and v - parametric coordinates –

and imposing the necessary optimality conditions yields the following systems of equations:

0))(cot(cot
)(

=−+=
∂

∂ ∑
∈ iNeighborsj

jiijij
i

DCP uu
u

E
βα (IV.17)

0))(cot(cot
)(

=−+=
∂

∂ ∑
∈ iNeighborsj

jiijij
i

DCP vv
v

E
βα . (IV.18)

The following weights are then obtained:

ijijjiw βα cotcot, += (IV.19)

where αij and βij are the opposite angles (in the 3D space) of the two triangles that share the

same edge {i, j} (Figure IV.7).

Figure IV.7. Angles used for weights computation.

As introduced, the discrete harmonic map aims to be an angle preserving technique.

However since the boundary vertices need to be fixed in the parametric domain the resulting

triangles near the frontier would be distorted in both areas and angles.

In order to overcome this limitation, Hormann and Greiner [Hor00] propose a free-boundary

planar parameterization technique which requires that only two vertices to be fixed in the

parametric domain. As in [Eck95], the mapping is determined as an energy minimization

process which aims at maintaining low deformations. The energy to be minimized is defined

as:

)(2
||)cot(||)cot(||)cot()(
222

M
angle FArea

cbaFE ⋅+⋅+⋅
=

γβα
 (IV.20)

3D MESH MORPHING 62

where a, b, c, are the edge length of triangle F that belong to original mesh, and α, β, γ are the

angles in the parameter domain as presented in Figure IV.8.

Figure IV.8. Edge and angle notation used in [Hor00].

The main advantage of this approach is that there is no more need to fix the parameter

values of the boundary points in advance. Instead, the boundary of the parameterization will

develop more naturally in such a way that the deformation energy is minimized.

Desbrun et al. [Des02] start by minimizing the Dirichlet energy obtaining the same weights as

in (IV.19). In contrast with the baseline technique, they compute the boundary position as a

part of the minimization procedure constructing a more natural free edge. Thereby, Desbrun

is able to achieve a significant lower angle distortion, obtaining the so called discrete

conformal mapping.

The harmonic and conformal mapping have the property to preserve the model shape, but

not the area of the original mesh. Furthermore, the main drawback of these

parameterizations is that the weights wi,j given by equation (IV.19) can be negative.

According with the Floater demonstration [Flo97], this result can lead to non-bijective

mapping and thus to triangle overlapping.

If we express equation (IV.19) in the following manner:

ijij

ijij
ijijjiw

βα
βα

βα
sinsin

)sin(
cotcot, ⋅

+
=+= (IV.21)

we can observe that the weights wi,j are positive if αij + βij ≤ π.

In practice, this constraint is rarely satisfied. A solution may consist of inserting additional

vertices/edges in order to bisect the obtuse angles [Des02]. In a general manner, it is

necessary to verify that the mesh topology satisfies the Delaunay triangulation [Del34]

condition, which states that no mesh vertex should lie in the interior of the circumscribed

sphere of any non-adjacent triangle.

Thus, Kharevych et al. [Kha06] demonstrate that if the mesh satisfies the Delaunay criterion,

the parameterization obtained using the cotangent weights will always be bijective. In

contrast with the baseline approach, Kharevych et al. formulate the discrete conformal

63 MESH PARAMETERIZATION

mapping in terms of circles and angles resulting from their intersection. The resulting method

is called circle pattern parameterization.

The algorithm starts by assigning to each edge (ei,j) of the mesh an angular weight θ(ei,j)

which is expressed as:

• the intersection angle of the circumscribing circles of the incident triangles, in the case of

an interior edge,

• the intersection angle of the circumscribing circle of the incident triangle with the

considered edge, in the case of a boundary edge.

This can be summarized as described in the following equation:

−

−−
=

edgesboundary for

edgesinterior for

,

,,

ki

jiji
e γπ

βαπ
θ , (IV.22)

where 𝛼𝛼𝑖𝑖 ,𝑝𝑝 , 𝛽𝛽𝑖𝑖,𝑝𝑝 and 𝛾𝛾𝑖𝑖 ,𝑝𝑝 are edge opposite angles as illustrated in Figure IV.9. The dotted line

represents here a boundary edge.

Figure IV.9. Angles used in the case of the circle patterns method.

These angles serve to incorporate the original geometry into the circle pattern technique.

After the angles are assigned, a circle pattern is defined in the parametric domain, which is

combinatorial equivalent to the initial triangulation constituting a so-called coherent angle

system [Bob04]. A coherent angle system is by definition an assignment of angles for all

triangles in plane which satisfy the following conditions:

 - the angles are all positives;

 - in each triangle the angles sum to π;

 - the angles satisfy the equation (IV.22), written in the parametric domain;

Based on the 𝜃𝜃𝑒𝑒 angles computed on the original model, a coherent angle system in the

parametric domain is established by minimizing the following objective function:

𝐸𝐸 = ��𝜃𝜃𝑒𝑒𝑝𝑝� − 𝜃𝜃𝑒𝑒𝑝𝑝 �
𝑝𝑝

 (IV.23)

3D MESH MORPHING 64

where 𝜃𝜃𝑒𝑒𝑝𝑝� is defined in the same manner as 𝜃𝜃𝑒𝑒𝑝𝑝 but in the parametric domain. This quadratic

minimization problem, with the above presented constraints, is solved using the Mosek

quadratic minimization technique [Mos05]. Based on these angles, the radius of the circles

that define the mesh edges in the parametric domain, as well as the length of each edge is

also determined through an energy minimization process.

Finally, the vertices coordinates u and v into the parameter domain are determined starting

by placing one interior edge and then iteratively adding one edge after another by taking into

account the previously computed angles and edge lengths.

The method offers the advantage of supporting meshes of arbitrary topologies. As a

drawback, let us note that the resulting parameterization can contain overlaps. To overcome

this problem, Kharevych [Kha06] introduced an optimization method based on cone

singularity vertices (i.e., vertices where angles of incident triangles do not sum to 2π)

specified manually as boundary. Obviously, the inconvenient here is the amount of user

interaction required.

A closely related approach is the angle-based flattening (ABF) algorithm of Sheffer and

Sturler [She01]. Authors define free boundary parameterization in terms of angles specifying

a set of constraints to be satisfied. The algorithm minimizes the relative deformation of the

angles in the plane with respect to their corresponding angles in the 3D mesh. The objective

function to be minimized is defined as:

𝐹𝐹(𝛼𝛼) = ��(𝛼𝛼𝑖𝑖
𝑝𝑝 − 𝜙𝜙𝑖𝑖

𝑝𝑝)2𝑤𝑤𝑖𝑖
𝑝𝑝

3

𝑝𝑝=1

𝑁𝑁𝐹𝐹

𝑖𝑖=1

 (IV.24)

where 𝑁𝑁𝐹𝐹 represents the number of mesh triangles, 𝛼𝛼𝑖𝑖
𝑝𝑝 is the 𝑝𝑝 angle (𝑝𝑝 = 1, 2, 3) on the 𝑖𝑖th

face in the 2D domain and 𝜙𝜙𝑖𝑖
𝑝𝑝 is the optimal angle for 𝛼𝛼𝑖𝑖

𝑝𝑝 in the 2D parametric mesh. Here,

𝑤𝑤𝑖𝑖
𝑝𝑝 are positive weights defined as:

𝑤𝑤𝑖𝑖
𝑝𝑝 = (𝜙𝜙𝑖𝑖

𝑝𝑝)−2 (IV.25)

The optimal angles 𝜙𝜙𝑖𝑖
𝑝𝑝are derived from the original mesh angles 𝛽𝛽𝑖𝑖

𝑝𝑝 as follows:

𝜙𝜙𝑖𝑖
𝑝𝑝 (𝑝𝑝) = �

𝛽𝛽𝑖𝑖
𝑝𝑝 (𝑝𝑝) 2𝜋𝜋

∑ 𝛽𝛽𝑖𝑖
𝑝𝑝 (𝑝𝑝)𝑖𝑖

 , 𝑖𝑖𝑓𝑓 𝑝𝑝𝑝𝑝 is an interior node

 𝛽𝛽𝑖𝑖
𝑝𝑝 (𝑝𝑝) , 𝑖𝑖𝑓𝑓 𝑝𝑝𝑝𝑝 is an boundary node

�, (IV.26)

where 𝑝𝑝𝑝𝑝 is the mesh node to which the face 𝑓𝑓𝑖𝑖 is attached to. In order to ensure a valid

parameterization, the following set of constraints is imposed:

 1) all mesh angles should be higher than zero;

 2) the angles inside a triangle should sum to 𝜋𝜋;

 3) the angles around a point should sum to 2𝜋𝜋;

65 MESH PARAMETERIZATION

 4) the following equation is satisfied for all interior mesh nodes:

∏ sin(𝛼𝛼𝑖𝑖
𝑝𝑝 (𝑝𝑝)+1)𝑖𝑖

∏ sin(𝛼𝛼𝑖𝑖
𝑝𝑝 (𝑝𝑝)−1)𝑖𝑖

= 1 (IV.27)

Equation (IV.27) can be intuitively interpreted with the so-called wheel paradigm. If the set of

all adjacent triangles to a vertex is considered as a wheel and all adjacent edges are seen as

spokes, then the constraint (4) guarantees that after fixing the length of one (arbitrary) spoke,

browsing over all spokes in counterclockwise order around the wheel, the length of the last

spoke should be equal to the length of the first spoke. This constraint is illustrated in

Figure IV.10 (where the constraint is violated).

Figure IV.10. Incompatibility of edge length in a wheel paradigm [She01].

The constrained minimization problem is solved by employing a preconditioned iterative

solver as proposed in [Van92].

The resulting map guarantees local bijectivity, but not a global one. It does not prevent the

flat surface from generating self-intersections, in particular at the boundary level. To avoid

this problem, additional constraints must be imposed and the algorithm reiterated.

Unfortunately, in practice, the ABF method proves to be slow (e.g., 158 sec for a model with

1032 triangles). In addition, in the case of meshes with a large number of vertices numerical

stability problems appear. This is due to the iterative mechanism used to place the edges

around a node which leads to error propagation. Each single vertex computation generates a

small numerical error, but the accumulation of such errors for meshes with several thousands

of triangles can be dramatic. Thus, in most of the cases the parameterization breaks out

completely for models with more than 30K triangles.

In order to overcome such limitations, an improved technique, so-called ABF++ is introduced

in [She05]. A new mechanism for computing the 2D angles is here proposed, which is based

on sequential linearly constrained programming. This technique for solving constrained

minimization problems considers the constraints as linear at each iteration. This simplifies

the system at the expense of a slightly increased number of iterations.

3D MESH MORPHING 66

In addition, in contrast to the baseline ABF method, the new technique formulates the

conversion problem as a global linear system and computes all the vertex coordinates

simultaneously. This avoids error accumulation. This minimization problem leads to the

following system of equations that have to be solved in order to obtain the vertex position in

the parametric domain:

 0)(=−+− ikji
f ϕϕϕϕω for Fkjif ∈=∀),,(, (IV.28)

where:

−
⋅=

)(cos)sin(

)(sin)cos(
)sin(
)sin(

11

11

3

2
ff

ff

f

f
f

αα

αα
α
α

ω (IV.29)

Here, 𝛼𝛼1
𝑓𝑓 , 𝛼𝛼2

𝑓𝑓 and 𝛼𝛼3
𝑓𝑓 are the angles of a triangle 𝑓𝑓 specified in counterclockwise order and

𝜑𝜑𝑖𝑖 , 𝜑𝜑𝑝𝑝 and 𝜑𝜑𝑝𝑝 their corresponding nodes in the parametric domain. For each triangle, two

equations need to be written (for each of the u and v coordinates).

In order to eliminate the remaining degrees of freedom for the parameterization, four

constraints are introduced by fixing two vertices that share a common edge. Thereby, a

2(N-2) x 2(N-2) system of equations is created. Let us note that with respect to the initial ABF

method, this leads to a speed-up in computation.

In order to reduce the drawback of the previous methods regarding the flipping triangles

encountered due to the negative weights or the non-convexity of the parametric domain,

Karni et al. [Kar05] propose an interesting method which consists of iteratively relocating the

vertex position. The approach takes as input the results of an arbitrary mapping proposed in

the above-presented methods as an initialization and then attempts to reduce the number of

flipped triangles by reiterating the parameterization process. However, no guarantee of a flip-

free final triangulation is proposed.

A well-known angle-preserving parameterization method is the mean value coordinates

approach proposed by Floater in [Flo03]. Floater derives a generalization of barycentric

coordinates, which allows a vertex in a planar triangulation to be expressed as a convex

combination of its neighboring vertices. The approach is able to determine a new set of

weights (IV.31) which has the property to be all positives keeping in the same time the

simplicity of the Eck [Eck95] or Desbrun [Des02] approaches. The mean-value weights

proposed are defined in the following manner:

||||

)
2

tan()
2

tan(,,

,
ji

jiji

jiw
ϕϕ

δγ

−

+
= (IV.30)

where γi,j and δi,j are the angles in the two triangles shared by the edge {i, j} as illustrated in

Figure IV.7. Based on these weights, similar matrix forms like that from equations (IV.9),

67 MESH PARAMETERIZATION

(IV.10) and (IV.11) can be constructed, with the difference that in this case the weights are

not symmetric (λi,j ≠ λj,i).

Although, the work of Tutte [Tut63] shows that in order to obtain a bijective mapping, the

matrix has to be symmetric; Floater proves that mean-value parameterization is guaranteed

to be bijective. However, in practice, there are some cases when the classical harmonic

mapping preserves better the angles than the mean coordinates value approach.

Let us now analyze the area-preserving parameterization methods proposed.

IV.2.2.2. Discrete authalic map

The objective of discrete authalic maps, also called equiareal mappings, is to provide an

area-preserving parameterization.

In [Flo05], Floater demonstrated that equiareal mappings, unlike the conformal ones, are not

unique. Let us consider the example illustrated in Figure IV.11. Here, we can start from the

left parameterization and construct different other mappings that preserve the areas (but not

the angles). Thus, any attempt to minimize area deformation solely would lead to an ill-posed

problem. For this reason, the majority of approaches combine the angular distortion

minimization techniques with the ones of area-preservation [Pie10], [Dom10], [Des02],

[Deg03], [Yan08].

Figure IV.11. Equiareal mapping [Flo05]: In the three cases, the areas of the

corresponding cells are identical.

Let us first mention the method introduced by Desbrun et al. in [Des02]. Here, authors

introduce a tradeoff between angle and area distortions aiming to optimally (in the sense of

an energy function to be minimized) map the 3D mesh onto the parametric domain. In

addition to the conformal mapping approaches presented earlier, an area distortion metric is

here included. The proposed energy function to be minimized is the Chi energy, defined by

the following equation:

∑
∈

−
−

+
=

)(

2
2

,,)(
||||

)cot(cot
2
1

iNeighborsj
ji

ji

jiji

pp
E ϕϕ

δγ
χ (IV.31)

3D MESH MORPHING 68

where the angles γi,j and δi,j are defined as illustrated in Figure IV.7.

The critical point of the above energy could be determined by considering the set of partial

derivatives, as described by the following relations:

∑
∈

=−
−

+
=

∂

∂

)(
2

,, 0)(
||||

)cot(cot

iNeighborsj
ji

ji

jiji

i

uu
ppu

E δγχ (IV.32)

∑
∈

=−
−

+
=

∂

∂

)(
2

,, 0)(
||||

)cot(cot

iNeighborsj
ji

ji

jiji

i

vv
ppv

E δγχ (IV.33)

A general distortion measure is then constructed as a linear combination of equations (IV.3),

(IV.4) (IV.32), and (IV.33)

χµµ EEEG)1(−+= , (IV.34)

where 𝜇𝜇 is a real parameter taking values in the [0, 1] interval that weights the conformal and

authalic terms in the global energy.

If we take into consideration only the area energy (𝜇𝜇 = 0), we would obtain a full discrete

authalic energy. However, the method measures deformations in the area distribution only

locally within each one-ring of a considered vertex. In this way, the approach can accumulate

a small error with each local deformation, resulting in an unbalanced global area distribution.

The ratio between the initial area in 3D and the area in the parametric domain of a triangle is

similar for adjacent faces, but may differ drastically with the one in other mesh regions.

Furthermore, it is not clear neither which is the optimal value for μ, nor if it depends on the

considered 3D mesh models. Finally, let us point out that the method does not guarantee a

valid planar embedding since the resulting linear systems obtained from (IV.32) and (IV.33)

are not symmetric.

A closely-related formulation is proposed by Degener et al. in [Deg03]. Authors introduce a

new method aiming to simultaneously preserve both angles and areas. The energies to be

minimized, besides being invariant under rotation and translation of the domain, are also

designed to prevent triangle flips and do not require a fixed boundary of the parameter

domain.

The approach is actually an extension of a previous method proposed by Hormann and

Greiner in [Hor00] which attempts to minimize only the angle distortion by optimizing a

nonlinear functional that measures mesh conformability (equation IV.20). In addition,

Degener et al. [Deg03] introduces an extra term that measures the area distortion of each

triangle, defined as:

69 MESH PARAMETERIZATION

𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓) = 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝐷𝐷)
𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝑀𝑀) + 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝑀𝑀)

𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝐷𝐷) , (IV.35)

where 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝(𝑓𝑓𝑀𝑀) represents the 𝑓𝑓𝑀𝑀 triangle area in the original mesh, while 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝(𝑓𝑓𝐷𝐷) is the

area of the same triangle in the parametric domain.

A real parameter θ allows the user to specify the relative importance of angle and area

preservation in order to control the tradeoff between the related deformations; It is introduced

in the following manner:

𝐸𝐸𝐺𝐺(𝑓𝑓) = 𝐸𝐸𝑝𝑝𝑛𝑛𝑒𝑒𝑝𝑝𝑒𝑒 (𝑓𝑓) ∙ (𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓))𝜃𝜃 (IV.36)

The initial (non-optimized) 2D mapping is obtained through a hierarchical approach that

computes progressive mesh sequences of the original mesh. The model is simplified until a

base domain is obtained formed by an unique one triangle. The 2D coordinates of its vertices

are initialized to a congruent triangle in the plane centered in the origin. Through vertex split

operations all the removed vertices are iteratively reinserted into the mesh at the kernel

center defined by its old adjacent nodes.

Based on the isometric distortion defined in equation (IV.37) for each face, an error 𝐸𝐸𝑖𝑖 is

computed for each vertex as the following partial sum:

𝐸𝐸𝑖𝑖 = � 𝐸𝐸𝐺𝐺(𝑓𝑓)
𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒𝑛𝑛𝑝𝑝𝐹𝐹𝑝𝑝𝑐𝑐𝑒𝑒𝑝𝑝 (𝑖𝑖)

 (IV.37)

Then, a non-linear conjugate gradient optimizer [Pre94] is employed to establish the optimal

position for each vertex in the parametric domain such that to minimize the 𝐸𝐸𝑖𝑖 energy. Each

vertex is treated separately while maintaining all other vertices fixed.

In addition to conformal and equiareal mappings, other researches are focused on

preserving the relative distances across the mesh [Lee05], [Gre96], [Flo97]. Such

approaches are presented in the following section.

IV.2.2.3. Distance preserving mapping

The idea of considering spring weights that are proportional to the lengths of the

corresponding edges in the triangle mesh was first used by Greiner and Hormann in [Gre96].

They first orthogonally project the boundary vertices in a plane that best fits all these vertices

in a least square sense. Then, the remaining points are forced to stay in the parameter plane

in such a way that minimizes the following spring energy:
2

},{

0
,,)||(||∑

∈

−−
Edgesji

jijiji Lw ϕϕ (IV.38)

3D MESH MORPHING 70

where wi,j represents the weight for the edge 𝑒𝑒𝑖𝑖𝑝𝑝 that connects the original vertices 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑝𝑝 .

This weight is defined as: 1/�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝 �
𝑝𝑝 for some real positive parameter r. Here, 𝜑𝜑𝑖𝑖 and 𝜑𝜑𝑝𝑝

are the corresponding positions in the 2D parametric domain of the corresponding vertices 𝑝𝑝𝑖𝑖

and 𝑝𝑝𝑝𝑝 , while 𝐿𝐿𝑖𝑖,𝑝𝑝0 , defined as 𝛼𝛼�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝� is the initial length of the edge 𝑒𝑒𝑖𝑖𝑝𝑝 , with α a real-

valued and positive parameter .

In this framework, for α = 0 and different values of parameter r we can encounter some well-

known parameterizations. Thus, for r = 0, we obtain the uniform parameterization proposed

by Tutte [Tut63]. In the case where r = 0,5 the centripetal mapping [Lee89] is achieved.

Finally, for r = 1 we obtain the chord length method presented by Floater in [Flo97].

Let us also note that when parameter α = 0, equation (IV.38) remains quadratic and positive

defined in the unknowns wi,j. Its minimum can be consequently determined by solving a linear

and sparse system of equations.

When parameter α ≠ 0 a better approximation of the model with a real spring system is

achieved. However, the drawback here is that a non-linear optimization problem has to be

solved.

Another approach which constructs the weights of the spring model based on the geodesic

distances between points of the original 3D model is proposed in [Lee05]. Authors start from

the idea proposed by Floater in [Flo97], but avoid computing areas on a complex surface.

Instead, they exploit the barycentric coordinates in a triangle expressed as length ratios:

||/||)1(

||/||)1(

|)||/(|||

'

'

''

lkjkjl

lkjljk

jiijjij

ppppww
ppppww
ppppppw

−=

−=

+=

 (IV.39)

where pi, pj, pk, pl are vertices represented as in Figure IV.12, and p’j is obtained so that the

angles on each side of the line pjp’j are equal. Once the weights are computed two linear

systems of equation, similar to those in equation (IV.11) have to be solved in order to

establish the 2D coordinates.

Figure IV.12. 𝑝𝑝𝑖𝑖 vertex projection into the triangle 𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝

71 MESH PARAMETERIZATION

More recently, in [Sun07] authors attempt to better preserve the shapes in the parametric

domain with the help of straight distances computed with cutting planes. The principle is

illustrated in Figure IV.13, where a base plane B is created locally for each interior vertex.

The normal BNormal of the base plane B is computed by area-weighted averaging of

neighboring face normals of pi as:

∑
∈

=
)(iNeighborsj

jjB NormalwNormal (IV.40)

A cutting plane P passing through pi, pj and perpendicular on plane B is finally determined.

The difference of the approach [Sun07] compared with the previous method [Lee05] consist

in the way that the vertex p’j is computed. Here, the point p’j is obtained as the intersection of

edge { pk , pl } with the cutting plane P.

Figure IV.13. Local straightest path.

Table IV.1 summarizes the various planar parameterization techniques discusses in this

section, with related principle, advantages and limitations.

Unfortunately, despite numerous existing planar parameterization techniques, as the analysis

of the state of the art shows, only few of them can ensure a valid embedding with low

distortions reported to the original 3D model shape.

In the following section we introduce a novel method of planar parameterization that belongs

to the distance preserving mapping approaches. The proposed technique attempts to jointly

minimize angle and area distortion based on edge length ratios. A major advantage of our

method, concerns the bijectivity property, which holds in all cases, and ensures valid and

shape-preserving embeddings for arbitrary open and triangular 3D meshes, regardless their

complexity.

3D MESH MORPHING 72

Table IV.1. Description of planar parameterization methods

Method
Type of

distortion
minimized

Complexity Computation
al time Comments

[Tut63]
Tutte

None +

(Linear) +

- simple and uniform weights wij = 1
- bijective mapping
- do not preserve the shape of the mesh
- fixed and convex boundary

[Eck95]
Eck Angles +

(Linear) +

- the parameterization may not be always
bijective
- require fixed and convex boundary
- discrete harmonic mapping
- do not preserve the area of the model

[Flo97]
Floater Angles ++

(Liniar) +

- shape preserving mapping
- bijective parameterization
- require a fixed and convex boundary
- high distortion across the border

[Flo03]
Floater Angles +

(Linear) +

- bijective mapping
- require a fixed and convex or star shaped
boundary
- high distortion across the border

[Des02]
Desbrun

Angles and
Areas

++
(Linear) ++

- almost free boundary (require to fix at least two
border vertices)
- the result is sensitive to the choice of the fixed
vertices
- possible triangles over lapping (non-bijective
mapping)
- suffer from high shrinkage

[Hor00]
Hormann Angles +++

(Non Linear) ++++
- free boundary
- bijective mappings
- low distortions

[Deg03]
Degener

Angles and
Areas

+++
(Non Linear) +++++

- the importance between angle and area
preservation can be controlled manually
- free boundary
- use a hierarchical solver to speed up the
nonlinear optimization
- bijective mappings

[San01]
Sander Lengths ++++

(Non Linear) +++++

- free boundary
- create the parameterization using a corse-to-
fine optimization strategy
- partition mesh into charts and map each one
on the plane
- applicable also for closed meshes

[Kha06]
Kharevych Angles +++

(Non Linear) ++++

- free boundaries or user controlled boundary
shape via prescribed curvatures
- map meshes with arbitrary topology to the
plane
-meshes of genus zero can be parameterized
over the sphere
- the parameterization can contain global
overlaps

[She01]
Sheffer Angles ++++

(Non Linear) +++++

- local bijectivity, but not global (self intersection
of the boundary; if this happens a number of
optimization has to be made)
- very slow
- instable for meshes with medium number of
vertices (>10k), and impractical for meshes
with more than 30k vertices

[She05]
Sheffer Angles +++

(Non Linear) +++

- improve the [She01] method introducing a new
numerical solution technique to speed up the
parameterization
- free boundary
- can process models with millions of triangles
relatively fast implementing a coarse to fine
parameterization

[Sun07]
Sungyeol Lengths ++

(Linear) +++

- free boundary
- comparative distortions with the Floater
method [Flo03]
- there is no guaranty for a bijective mapping

73 MESH PARAMETERIZATION

IV.2.3. Edge length ratio preserving (ELRP) planar parameterization

The basic principle of the proposed method consists of defining a new set of weights,

determined based on the local geometry of the original model.

Concerning the boundary specification issue, we have adopted a fixed and unique boundary,

which is the unit circle. Let us note that this choice is without any loss of generality, since the

proposed method can be adapted to any type of boundary (including free boundaries).

We first set an arbitrary border vertex on the unit circle and then place the rest of the vertices

along the boundary domain such that the geodesic distances between them to be

proportional to the original edge lengths. For this purpose, we let 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚 be the ordered

boundary vertices and identify 𝑝𝑝𝑚𝑚+1 = 𝑝𝑝1. The bijectivity of the parameterization is assured if

the corresponding parameter points 𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑚𝑚 of the boundary vertices form a convex

polygon, which can be achieved by placing them on the unit circle. If we write the parameter

points as:

𝜑𝜑𝑖𝑖 = �
𝑐𝑐𝑐𝑐𝑝𝑝𝛼𝛼𝑖𝑖
𝑝𝑝𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖 � , i = 1,…, m+1 (IV.41)

A reasonable measure of the distance between 𝜑𝜑𝑖𝑖 and 𝜑𝜑𝑖𝑖+1is the corresponding arc length

difference 𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖 as the length of the arc between those two points (Figure IV.14). Thus,

the parameterization of the boundary can then be regarded as a univariate mapping problem

with parameter points 𝛼𝛼𝑖𝑖 and fixed endpoints 𝛼𝛼1 = 0 and 𝛼𝛼𝑚𝑚+1 = 2𝜋𝜋. The problem can be

solved by writing:

𝛼𝛼𝑖𝑖+1 = 𝛼𝛼𝑖𝑖 +
2𝜋𝜋

𝑑𝑑𝑖𝑖 ∑ 1/𝑑𝑑𝑝𝑝𝑚𝑚
𝑝𝑝=1

 (IV.42)

where 𝑑𝑑𝑝𝑝 represents the chord length weights defined as:

𝑑𝑑𝑖𝑖 =
1

‖𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖‖
 (IV.43)

Figure IV.14. Parameterizing the boundary over the unit circle.

3D MESH MORPHING 74

Establishing the weights for the spring system described by equation (IV.11) is highly

important and can significantly affect the parameterization quality in terms of angle and area

distortion. Most of the methods presented in the previous section returns less satisfactory

results when considering the area distortion criterion. In order to overcome this drawback, we

propose a new set of weights that minimize the areal deformation while maintaining a low

angle distortion.

Each inner vertex of a mesh can be expressed as a linear combination of its neighbors. A

weight, associated to each edge in the mesh (Figure IV.15), is computed as the ratio of the

distance between the current vertex pi and the adjacent vertex pj normalized to the total sum

of lengths for all edges incident to pi, as described by the following equation:

∑
∈

=

)(iNeighborsj
ij

ij
ij l

l
w (IV.44)

When considering the above-defined weights, equation (IV.9) and (IV.10) can be rewritten in

the following form:

00 =∑
∈

+∑
∈

−⇒=
∑

∈

∑
∈

−
i)Neighbors(j jui,jl

i)Neighbors(j ijliu

i)Neighbors(j ijl
i)Neighbors(j jui,jl

iu (IV.45)

00 =∑
∈

+∑
∈

−⇒=
∑

∈

∑
∈

−
i)Neighbors(j jvi,jl

i)Neighbors(j ijliv

i)Neighbors(j ijl
i)Neighbors(j jvi,jl

iv (IV.46)

Figure IV.15. The one-ring neighbors of vertex pi and the associated lengths.

As it can be observed, in this case the resulting system of equations is symmetric and all the

elements from the matrix A (as defined in equation (IV.11)), excepting the main diagonal are

positive. This property guarantees the bijectivity of our parameterization. Furthermore, the

resulted matrix is sparse since the non-zero elements depend only on the adjacent vertices.

This allows us to compute the spring system solution by using the conjugate gradient method

[Pre02] that iteratively solves the sparse linear system.

75 MESH PARAMETERIZATION

IV.2.4. Objective experimental evaluation of planar mesh
parameterization methods

In order to evaluate and validate the proposed ELRP parameterization method, we retained

for comparison the following three state of the art approaches:

• Uniform parameterization, which corresponds to the baseline planar graph method

proposed by Tutte [Tut63].

• Mean Value Coordinates [Flo03], which aims to preserve the angles of the original

mesh in the parametric domain.

• Harmonic Mapping – conceptually elaborated by Pinkall and Polthier [Pin93] in the

differential geometry context, and integrated by Eck et al. [Eck95] for mesh parameterization

purposes. The harmonic mapping aims to preserve the angles, but the considered weights

not always ensure a valid parameterization.

For each technique, we analyzed the mesh deformation measures in the parametric domain,

in terms of angles, areas and lengths. More precisely, as evaluation metrics we have

considered are the angle, area (surface) and length distortions (respectively denoted by

DA, DS and DL) as introduced in [Lee05] and defined as follows:

∑
⋅

 −
=

T

i iS

iSiM
AD

3 2

α
αα

 (IV.47)

∑
=

−=

T

i ST

Si

MT

Mi
S A

A
A
A

D
1

2

,

,

,

, (IV.48)

∑ ∑ ∑∑= ∈
∈∈

−=
N

i)i(Neighborsj
)i(Neighborsj

S,ij

S,ij

)i(Neighborsj
M,ij

M,ij
L)

l
l

l
l

(D
1

 (IV.49)

where T is the number of triangles, N represent the number of vertices, α denote the mesh

angles and A represents the triangle areas. Indices M and S respectively indicate original and

parameterized models. Ideally, all the three types of distortions should be as close as

possible to zero.

We have considered an object corpus of 10 3D mesh models from the Princeton Shape

Benchmark (http://shape.cs.princeton.edu/benchmark/) and from the MPEG 7 3D model test

set (http://3d.csie.ntu.edu.tw/). The selected objects are open manifold triangular mesh

models characterized by complex geometries and including various types of shapes.

Figure IV.16 and Figure IV.17 presents some visual results obtained after applying all the

considered algorithms on some of our test models. As is can be observed, our method

3D MESH MORPHING 76

always returns valid embedding for any arbitrary open and triangular 3D meshes, regardless

their complexity.

The results synthesized in Table IV.2 present the distortions obtained with our proposed

ELRP method, together with those corresponding to the state of the art. For each model and

for each distortion criterion the best performances are marked in bold.

Table IV.2. Comparative study concerning area, angles and length distortions.

Model No.
vert

Uniform
parameterization

[Tut63]
Mean Value Coordinates

[Flo03]
Harmonic Mapping

[Eck95] ELRP

DS DA DL DS DA DL DS DA DL DS DA DL

Cow 1023 13.169 0.297 14.081 21.612 0.106 16.948 167.85 0.037 40.011 0.079 0.287 1.402
Chess
horse 143 49.724 0.483 67.425 46.319 0.183 45.889 9.229 0.209 15.678 0.801 0.618 7.774

Lion 575 1.945 0.259 9.022 10.758 0.150 18.036 34.501 0.071 29.822 0.066 0.303 1.549

Delphin 355 0.795 0.331 3.755 409.06 7.910 7.885 Overlapping triangles 0.033 0.392 0.787

Cat 352 0.612 0.160 3.994 0.757 0.052 3.992 1.042 0.029 4.807 0.042 0.185 0.879

Hand 300 0.286 0.649 5.936 18579.1 0.587 608.36 Overlapping triangles 0.025 0.773 1.708

Statue 458 0.002 0.370 0.207 0.003 0.221 0.169 0.004 0.246 0.205 0.001 0.294 0.101

Face 1500 0.263 0.233 1.293 0.044 0.030 0.394 0.083 0.025 0.494 0.011 0.171 0.304

Beethoven 1200 0.003 0.283 0.179 0.001 0.083 0.071 0.001 0.072 0.065 0.001 0.219 0.078

Cat Head 135 0.177 0.159 2.251 0.104 0.057 1.352 0.098 0.043 1.311 0.027 0.175 0.567

Concerning the Tutte [Tut63] method, although the resulting mapping is bijective, the

numerical examples show that this technique does not preserve any shape properties of the

mesh. One reason for this bad behavior is that the choice of weights does not take into

account the geometry of the mesh, but solely its connectivity.

The harmonic mapping globally preserves the model shape, but the corresponding areas are

severely distorted. In addition, for some models the associated weights take negative values

which leads to non-bijectivity and thus non-valid parameterizations. In the case of mean

value coordinates even though the resulted matrix looses the symmetric property, the

resulted embedding is valid in all cases. However, the major drawback of this method is

related to the computational complexity because in this situation it is impossible to use the

fast conjugate gradient algorithm to solve the linear systems involved. The analysis of the

results obviously shows that the proposed length ration method outperform the other

approaches in the case of both area (with a mean 78,5 % reduction) and length (with a global

average of 57% reduction) distortions. For the angle distortion, the best performances are

achieved by the harmonic mapping technique. However, the harmonic mapping fails in the

case of some models due to the negative weights in the energy spring system. Thus, the

proposed ELRP method offers the advantage of a larger applicability.

Fi

gu
re

 IV
.1

6.
 C

om
pa

ra
tiv

e
vi

su
al

 e
va

lu
at

io
n

of
 3

D
 m

es
h

pl
an

ar
 p

ar
am

et
er

iz
at

io
n

(1
).

Fi

gu
re

 IV
.1

7.
 C

om
pa

ra
tiv

e
vi

su
al

 e
va

lu
at

io
n

of
 3

D
 m

es
h

pl
an

ar
 p

ar
am

et
er

iz
at

io
n

(2
).

79 MESH PARAMETERIZATION

IV.3. SPHERICAL PARAMETERIZATION OF TRIANGULAR MESHES

If for open, single-connected triangle meshes (i.e. disk topologically equivalent to the unit

disk) the planar prameterization are naturally adapted, in the case of closed 3D meshes

different solutions have to be investigated.

IV.3.1. State of the art on spherical embedding

The most straightforward method to handle closed 3D models is to create an artificial

boundary by determining a closed path along the mesh edges and cut the mesh along the

path. This process will result in two open patches that can be individually parameterized with

respect to the unit disk by applying arbitrary planar parameterization methods. Different

techniques of the literature adopt this paradigm [Pip00], [Sor02], [She02a], [She02b].

The simplest way to obtain the boundary which makes the object to be open is to eliminate

an arbitrary triangle from the mesh [Cla04].

More sophisticated methods attempt to optimize the considered boundaries (Figure IV.18).

However, even so, because of discontinuities introduced by the mesh cuts at the level of the

boundary edges, the resulting distortions can be very high.

Figure IV.18. Planar parameterization of a closed genus-0 3D mesh by cuts [She02].

In order to overcome such a difficulty, a different family of approaches [Wu05], [She03],

[Asi05], [Li07], [Qiu09] consists of directly parameterizing closed genus-0 meshes onto a

spherical domain (i.e., unit sphere), since such objects are topologically equivalent to a

sphere.

Thus, the spherical parameterization problem is considered as an embedding of the model in

the unit sphere. All the mesh vertices will lie on the sphere’s surface and the condition to be

satisfied in order to obtain a valid spherical parameterization is to ensure that the resulting

spherical triangles are non-overlapping.

3D MESH MORPHING 80

In practice, determining valid spherical parameterization proves to be a more challenging

task than the planar case.

Historically, one of the very first spherical parameterization techniques proposed was

introduced in [Ken92]. The method returns a valid embedding only if the original mesh has a

convex shape. A convex model has the property that any two vertices can be connected by a

straight line segment which lies inside the model and does intersect the shape. In this case,

the parameterization becomes quite simple. The model is first translated so that its centroid

coincide with the origin of the given coordinate system and then the vector position of each

vertex is normalized to unity. As a result, all the vertices will lie on the unit sphere surface.

This simple spherical projection can be extended to the class of so-called star-shaped

models. Such objects have the property that there is at least one point in the interior of the

model which can be connected with all the mesh vertices by a straight line without generating

multiple intersections with the mesh surface. The only problem is to determine the interior

points (called also kernel points) which satisfy such properties. In the case of star-shaped

objects, the kernel can be determined as the intersection of all semi-spaces defined by the

set of mesh faces.

Such simple approaches are illustrated in Figure IV 19. For simplicity, we have illustrated

here the 2D case (i.e., closed and planar polygons parameterized onto the unit disk).

Figure IV 19.a presents the case of a convex polygon. The blue point represents the

corresponding gravity center. Figure IV 19.b illustrates the case of a star shape polygon. The

center of the unit disk is here placed in an arbitrary position, which does not correspond to a

kernel point. As a result, the resulting parameterization is not valid (overlapping arcs on the

unit disk represented in red). In contrast, in Figure IV 19.c, for the same star shape polygon,

the center of the unit disk is placed into a kernel point. As a result, the obtained

parameterization is in this case valid.

Figure IV 19. Shape projection on a circle. (a) Kent method applied on a convex shape; (b) Kent

method applied on a non convex shape; (c) kernel approach.

Let us note that such simple approaches do not optimize neither angle nor area distortions,

since no geometric information is taken into account. In addition, they can be useful for

81 MESH PARAMETERIZATION

simple shapes but in the case of real life objects, the assumptions of convexity or star shape

do not hold.

Starting from the Kent et al. [Ken92] approach, Alexa [Ale00] develop a method to project

any kind of 3D genus-0 meshes onto the unit sphere. In order to deal with the triangle

overlapping problem, the author introduces a vertex relaxation process which consists of an

iterative procedure that repeatedly places each vertex at the center of its neighbors. Since

the new vertex position is not on the sphere, a normalization operation is required:

||||
)(

)(1

∑
∑

∈

∈+ =

iNeighborsj

l
j

iNeighborsj

l
j

l
i ϕ

ϕ
ϕ , (IV.50)

where 1+l
iϕ is the position, in the parameter domain, of the vertex l

iϕ after the (l+1) relaxation

iterations. The process continues until the largest displacement of any mesh vertex becomes

smaller than a predefined threshold.

However, the relaxation process can lead to mesh collapses into a single point. In order to

solve this problem, it is necessary to fix several vertices (called anchors) in the parametric

domain. Unfortunately, without a sufficient number of adequately selected anchors the

embedding may also collapse, as illustrated in Figure IV.20.a. Here, 4 anchor points have

been considered.

Figure IV.20. Problems encountered in sphere parameterization: (a) Collapsed mapping;

(b) Overlapped triangles in sphere parameterization [Ale00].

In addition, because the position of the anchors is fixed, this can lead to triangle overlapping

(Figure IV.20.b). In order to solve the problem, a heuristic scheme is developed which

consists of changing the anchor points after a given number of iterations. The relaxation

process is illustrated in Figure IV.21 for a 3D model representing a horse.

Figure IV.21. Spherical parameterization using relaxation approach proposed by Alexa[Ale00].

3D MESH MORPHING 82

The method provides valid parameterization in a majority of cases. However, the relaxation

process is difficult to be controlled and does not guarantee a valid embedding in all cases.

Another interesting method starts by reconsidering the principle of virtually cutting the mesh

through a path in order to obtain an artificial boundary [Hak00] (Figure IV.22). A conformal

planar parameterization is first computed using an arbitrary mesh triangle as a boundary.

Then, a stereographic projection of the resulting planar mapping is performed in order to

obtain the spherical parameterization. The boundary triangle will represent the north pole of

the sphere.

Figure IV.22. Spherical parameterization using the Haker’s approach [Hak00].

The approach offers the advantage of simplicity since authors construct only a sparse, real,

symmetric, linear system of equations.

Despite its simplicity, the conformal surface parameterization proposed by Haker [Hak00],

presents some important drawbacks. First of all, the results are strongly influenced by the

choice of the boundary triangle. In addition, all the vertices of the mesh tend to cluster in the

center of considered triangle leading to a significant area distortion in the parameter domain.

Finally, the inverse stereo projection technique does not preserve the geometric properties of

the planar triangulation so the result will be even more distorted. Finally, and more important,

the method generally suffers from foldovers.

Extending the idea of opening the genus-0 meshes in order to map them with the help of

existing planar parameterization methods, various approaches cut the mesh into two parts,

each topologically equivalent to a disk. The two parts are parameterized each over a planar

disk with a common boundary, and then each disk is mapped onto a hemisphere of the unit

sphere.

One of the first approaches based on this principle is proposed in [Ise01]. A so-called vertex

separator algorithm is here proposed which partitions the mesh into two components with

approximately equivalent numbers of vertices and with and a common boundary. A modified

version of the Tutte parameterization [Tut63] is used for parameterizing each of the two

components. Then the two planar embeddings are mapped onto the sphere using the

stereographic projection. Naturally, the results strongly depend on the considered cut.

83 MESH PARAMETERIZATION

More recently, starting from the same idea, Jianping Hu et al. [Hu08] present a similar

method. The difference here concerns a novel splitting technique which cuts the mesh into

two parts based on the optimum reflective plane approach introduced in [Kaz03]. After the

mesh partition is achieved, an initial planar parameterization as the one proposed by Floater

in [Flo03] is applied for the two mesh pieces. In addition, a spherical stretch optimization is

performed in the parametric domain.

Within the same family of approaches, Zayer [Zay06] propose a method which re-formulates

the problem in a curvilinear coordinates system (i.e. spherical coordinates with radius = 1),

hence reducing it to a 2D problem where the each vertex position is represented by the

azimuth angle (longitude) 𝜃𝜃 ∈ (0, 2𝜋𝜋) and the elevation angle (latitude) 𝜙𝜙 ∈ (0,𝜋𝜋). In order to

eliminate the pole singularity problem, the two poles of the model are determined and

removed.

The shortest path between the two poles, called date line is then determined with the help of

the Dijkstra algorithm [Dij59]. This path is then used for cutting the mesh, which yields an

open mesh. In this manner, an initial harmonic map as proposed in [Eck95] or the mean

coordinates value approach [Flo03] can be next applied to obtain the corresponding planar

parameterization.

In order to reduce the distortions particularly at triangles located near the cut path, an

optimization step is performed based on the tangential Laplacian operator. The various steps

of the methods are illustrated in Figure IV.23.

Figure IV.23. Curvilinear Spherical Parameterization [Zay06]. (a) mesh cut along the date line; (b) the

initial parameterization in curvilinear coordinates (with high distortions); (c) the improved mapping
taking into account spherical distortion; (d) the final spherical parameterization.

Gotsman et al. [Got03] propose an extension of the theory of barycentric coordinates used in

the planar mapping case to the spherical case. However, such an extension requires a

transition from a linear to a non-linear framework. Thus, in order to embed a closed mesh

with n vertices into the unit sphere, a positive weight wij is defined for each edge {i, j}. The

procedure leads to the following set of 4n non-linear equations with 4n unknowns for the

embedding coordinates φi(xi, yi, zi) and auxiliary variables αi:

3D MESH MORPHING 84

=−

=−

=−

=++

∑

∑

∑

∈

∈

∈

)(

)(

)(

222

0

0

0
1

iNeighborsj
jijii

iNeighborsj
jijii

iNeighborsj
jijii

iii

zwz

ywy

xwx
zyx

α

α

α

 (IV.51)

The auxiliary variables αi: are real numbers that are introduced in order to simultaneously

solve the system in its null space.

Similarly to the planar case, the characteristics of the parameterization can be controlled by

the weights wij. Starting from the above system of equations, Gotsman et al. [Got03] obtain

different parameterizations using various weights: the uniform Tutte weights, the cotangential

weights for a conformal angle-preserving mapping proposed by Eck et al. [Eck95] or those

introduced by Desbrun [Des02].

In [Got03] the authors do not provide an efficient way to solve the resulting system (IV.51).

Using generic non-linear solvers can lead to a prohibitive computational cost, which limits the

applicability of the method to meshes described by a high number of faces/vertices.

More recently, Saba et al. [Sab05] have proposed a solution to efficiently solve such a

system. Their approach breaks down the problem into a two-step procedure involving two

systems of equations, one linear and one non-linear. The linear system is solved using a

multiresolution algebraic multigrid approach and its solution is used as an initial guess for

solving the nonlinear system.

In order to generate the initial guess, Saba et al. [Sab05] use a variant of the method

proposed by Isenburg et al. [Ise01]. They first partition the mesh into two balanced sub-

meshes and then embed each sub-mesh in a planar disk using the barycentric method with

weights wij. Next, the two planar parameterizations with the common boundary are mapped

onto the sphere using the inverse stereographic projection. The nonlinear system presented

in equation (IV.51) is finally solved using a variation of the Gauss-Seidel method.

An interesting method which directly parameterizes a closed genus-0 mesh on the unit

sphere is the one proposed by Sheffer et al. in [She03]. They present an algorithm for

spherical embedding that extends the planar mapping approach in [She01]. Authors

formulate the following set of necessary and sufficient conditions for the angles to form a

valid spherical triangulation:

85 MESH PARAMETERIZATION

=−

=−−++

<

>
>

∑∑
j i

j
i

iiii

j
ii

i

j
i

e
e
e

02

0

2

0
0

210

πα

πααα

α

α

v

F

Nk
j

Ni

,...,1
2,1,0

,...,1

=
=
=

 (IV.52)

where: j
iα represent the 𝑝𝑝 spherical angle and ei the spherical excess of the 𝑖𝑖th triangle. 𝑁𝑁𝑣𝑣

and 𝑁𝑁𝐹𝐹 denote the number of mesh vertices and faces respectively. The excess of a triangle

is defined as the area of the region on the sphere determined by that triangle.

This set of equations and conditions can be transformed into a constrained minimization

problem, where the least-squares distance of the solution values (j
iα and ei) from their target

values (j
iβ and '

ie) are minimized:

∑∑∑ −+−=
i

ii
i j

j
i

j
i eeeF 2'2)()(),(βαα (IV.53)

The energy function in equation (IV.53) allows to control the shape of the parameterization

by optimizing spherical angles and/or area values. For example, if a conformal mapping is

required, the target values of angles can be set to be equal to the angles in the initial object

space. On the contrary, if an equiareal mapping is required, then the target values for areas

are set equal to the areas of triangles in the original space.

Once the parametric angles 𝛼𝛼𝑖𝑖

𝑝𝑝 are determined, the spherical triangulation may be generated.

Starting from an arbitrary triangle, a vertex is fixed on the sphere and then according with

formulas from spherical trigonometry the remaining triangle vertices are placed accordingly.

Thus, the lengths of triangle edges (𝑝𝑝, 𝑏𝑏 and 𝑐𝑐) are computed using the cosine rule:

𝑝𝑝 = arccos(
𝑐𝑐𝑐𝑐𝑝𝑝𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝐶𝐶

𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑛𝑛𝐶𝐶
) (IV.54)

where 𝐴𝐴, 𝑐𝑐 and 𝐶𝐶 are angles in the considered triangle opposed to 𝑝𝑝, 𝑏𝑏 and 𝑐𝑐. Lengths 𝑏𝑏 and

𝑐𝑐 are computed similarly with 𝑝𝑝. Based on the first fixed vertex arbitrary position, the previous

computed edge lengths and the triangle angles, the 2D position of the other two vertices is

straightforward. Then the vertex positions for the neighboring triangles of the first chosen

triangles are determined.

Unfortunately, it seems that the spherical formulation is numerically much less stable than its

planar equivalent [She01]. For this reason, it can be applied only for meshes with less than a

few hundreds of vertices.

3D MESH MORPHING 86

A multiresolution technique, inspired from the approaches introduced in [Sha98] and [Hor99],

is proposed in [Pra03].The original mesh is first simplified by applying a sequence of vertex

removal operations, until a tetrahedron is obtained. The tetrahedron is then simply projected

onto the unit sphere. Next, the vertices are inserted into the sphere in a progressive mesh

sequence constructed with the help of a vertex split operation.

Each vertex split specifies a ring of vertices that represents the neighbors of the new vertex

to be inserted. In order to obtain a valid embedding (with no overlapped triangles), the new

vertex will be placed inside of the spherical polygon described by his neighbors. An

optimization procedure is applied in order to minimize the stretch metric of the

parameterization.

A similar approach is proposed in [Bir04], where the mesh is also simplified to a tetrahedron.

The tetrahedron is then mapped onto a spherical surface and afterwards the simplification

process is reversed by iteratively inserting the vertices on the surface of the sphere. The

process optimizes the position of each new inserted vertex until it becomes the barycenter of

its neighbors. This procedure yields an initial parameterization. This initialization is then

optimized in order to preserve as well as possible the angles between the edges and the

ratio of the edge-lengths. This is achieved by minimizing the weighted square sum of angles

to all neighboring vertices:

∑
∈

⋅
)(

,
2)arccos(

iNeighborsj
jiji wϕϕ (IV.55)

where 𝜑𝜑𝑖𝑖 represents the considered vertex position in the parametric domain and 𝜑𝜑𝑝𝑝 belongs

to its adjacent neighbors. The edge weights 𝑤𝑤𝑖𝑖,𝑝𝑝 can be chosen as uniform [Tut63] or as the

mean value coordinates of Floater [Flo03].

Despite the various optimizations involved, the resulting mapping suffers from high

distortions. This limitation is illustrated in Figure IV.24, for two different textured meshes.

Figure IV.24. Two textured meshes after a spherical parameterization with Birkholz approach [Bir04].

87 MESH PARAMETERIZATION

In addition to planar and spherical parameterization methods which are only applicable to

surfaces with disk topology and genus zero meshes respectively; there are also approaches

that treat models with arbitrary genus. Generally, the process of parameterization is done by

first segmenting the mesh into disk-like patches which are then mapped into the planar

domain as illustrated in Figure IV.25. This consists of defining a so-called atlas of

parameterizations.

Within the framework of parameterization methods, the involved segmentation techniques

aim at partitioning the surface into a set of patches such that the parameterization distortions

of each patch are minimized. An additional constraint requires to keep a low number of

patches with associated boundaries as short as possible. Since planar patches are by

definition developable, one possible approach is to segment the surface into nearly planar

patches [San01], [Mai93], [San03].

The main challenge in this case concerns determining mappings that are smooth across the

patch boundaries. The first methods proposed in this area [Pra01], [Gus02], [Flo02b], are

penalized by this problem. However, there are some solutions [Gu03], [Kho03]) which

guarantee a globally smooth parameterization with only a few singularities points.

Figure IV.25. Planar parameterization of meshes with arbitrary genus.

Such a type of parameterization is particularly adapted for various applications, including

texture mapping, compression or remeshing. However, because of the relatively high number

of patches which can be generated and the uncontrolled shape of the boundaries, it is not

suitable for morphing applications, where a correspondence between patches and vertices of

two models needs to be determined.

The various spherical parameterization techniques described in this section, with

corresponding properties are summarized in Table IV.3 and Table IV.4 .

3D MESH MORPHING 88

Table IV.3. Comparison of spherical parameterization methods – Part 1.

Method
Type of

distortion
minimized

Complexity Computational
time Comments

[Ken92]
Kent

None + +

- applicable for genus-0 meshes
- bijective mapping only for convex models
- do not preserve the shape of the mesh
- the parameterization is made directly on the
unit sphere

[Ale00]
Alexa None ++

 +++

- applicable for any genus-0 meshes
- an iterative process is performed to position
each vertex at the center of its neighbors
- require to fix some vertices on the sphere
(which are changed after few relaxation steps)
- the method not guarantees a valid
embedding all the time

[Hak00]
Haker Angles ++

(Linear) +

- applicable for any genus-0 meshes
- eliminate a triangle from the mesh to create a
virtual boundary
- make the parameterization into the plane of
the resulting open mesh and then using stereo
projection technique embed the model on the
sphere
- the stereographic projection technique does
not preserve the shape
-the mapping depends heavily on the
eliminated triangle
- the result is not bijective

[Hu08]
Hu Angles ++

(Linear) +

- split the model into two pieces based on the
optimum reflective plane
- make a planar parameterization based on the
Floater [Flo03] method
- implement an optimization technique for the
vertices along the cut (since here are the
biggest distortions)

[Zay06]
Zayer Angles ++

(Linear) +

- the parameterization is performed on the
curvilinear coordinates
- set two vertices (poles) then cut the model
between this points and open it
- apply a planar parameterization (a
modification of the Floater [Flo03] approach)
- implement an optimization step in the
curvilinear coordinates along the cut

[Got03]
Gotsman

Angles or
Area or

Distances

+++++
(Non Linear) +++++

- extend the barycentric coordinates used in
planar parameterization, but this lead to a non-
linear problem
- can implement different weights depending
on the type of distortions to be minimized
- for meshes with a high number of vertices the
problem remain unsolved

[Sab05]
Saba

Angles or
Area or
Lengths

+++
(Non Linear) ++++

- find a solution for the [Got03] method using a
multigrid computational approach
- for an initial embedding, they partition the
mesh into two pieces and parameterize each
one into the plane, then implement the
stereographic projection
- the parameterization do not guarantee to be
always bijective

[She03]
Sheffer

Angles
and/or
Areas

++++
(Non Linear) +++++

- extend the idea present in [She01] for
spherical case
- the parameterization is made directly on the
unit sphere
- the triangles angles are first determined, then
the vertices are placed on the sphere one by
one
- the method is not stable

89 MESH PARAMETERIZATION

Table IV.4. Comparison of spherical parameterization methods – Part 2.

Method
Type of

distortion
minimized

Complexity Computational
time Comments

[Pra03]
Praun Lengths ++++

(Non Linear) +++++

- the method is based on a multiresolution
technique which reduce the model to a
tetrahedron
- the tetrahedron is then simple map on the
sphere, and then the vertices are reintroduced
in a progressive mesh sequence
- the result is a bijective mappings

[Bir04]
Birkholz

Areas and
Lengths

++++
(Non Linear) +++++

- the method is similar with [Pra03], but
additionally it introduces an algorithm which
tries to preserve the angles and the ratio of
the edge-lengths
- the optimization algorithm proves not to be so
good, resulting a very distorted
parameterization

[Kha06]
Kharevych Angles +++

(Non Linear) ++++

- free boundaries or user controlled boundary
shape via prescribed curvatures
- map meshes with arbitrary topology to the
plane
-meshes of genus zero can be parameterized
over the sphere
- the parameterization can contain global
overlaps

The next section introduces the curvature-driven spherical parameterization method

proposed.

IV.3.2. Curvature-driven spherical parameterization

The proposed spherical parameterization method is dedicated to closed 3D, genus-0, two-

manifold meshes. The main principle consists of exploiting the Gaussian curvature in order to

jointly minimize length, angular and area distortions.

Let us first briefly recall definitions of a 3D surface Gaussian curvature and describe how

such a measure can be computed in the case of 3D meshes.

IV.3.2.1. Theoretical aspects

In the 2D Euclidian space the curvature of a planar curve can be interpreted as a measure of

the local variation to the curve’s tangent in a given point. Such a measure provides the

amount by which the considered curve deviates from a straight line (Figure IV 26.a).

If we consider a planar curve C, at a given point p∈C, the curvature value can be determined

as the inverse radius r of an osculating circle OC. A larger value for the osculation circle

radius implies a smaller magnitude for the curvature. A straight line has zero curvature.

In the case of surface in the ℝ3 space, the notion of curvature becomes more complex. Let

us consider a point 𝑝𝑝 on a continuous and C2 smooth surface S defined in the ℝ3 domain. If

3D MESH MORPHING 90

we take the surface intersection with the family of planes pathing through 𝑝𝑝 and including the

normal vector at point 𝑝𝑝 with the surface S, we obtain a family of 2D curves (Figure IV 26.b).

Figure IV 26. The curvature in a point for a: (a) curve; (b) 3D surface.

For each of them a curvature value can be determined. The minimum and maximum values

are called principal curvatures and are denoted by k1 and k2.

Based on these norms, two types of measures can be computed: Gaussian (K) and mean

(H) curvature, defined by the following equations:

21 kkK ⋅= and
2

21 kkH +
= (IV.56)

Curvature measures are by definition expressed as functions of the second order surface

derivatives. Thus, they are associated with smooth, C2–continuous surfaces. However, 3D

meshes are at most C0–continuous surfaces and do not fulfill the smoothness conditions

required. In this case, it is necessary to perform a piecewise linear approximation in order to

obtain an approximation of the of the curvature values.

In our work, we have adopted the approximation technique introduced in [Zxu09], recalled

here-below.

For a vertex p of a mesh M, let {pi ϵ Neighbors(p)| i=1, 2, ..., l} be the set of the one-ring

neighbor vertices and {(pippi+1)ϵF| i=1, 2, ..., l} the set of adjacent triangles. If we denote by αi

the angle determined by pi, p, and pi+1, then we can compute the angular defect at the point p

as:

∑−=
i

iαπδ 2 (IV.57)

The Gaussian curvature is then defined as described by the following equation:

G
K i

i∑−
=

απ2
 (IV.58)

where G is a geometrical factor directly correlated with the model. We have adopted the

approach proposed in [Zxu09] where G is selected as:

∑=
i

i pAG 3/)(, (IV.59)

91 MESH PARAMETERIZATION

where 𝐴𝐴𝑖𝑖(𝑝𝑝) denotes the areas of triangles adjacent to vertex 𝑝𝑝. We obtain thus, the following

approximation for the Gaussian curvature:

∑
∑−

=

i
i

i
i

pA
K

)(

)2(3 απ
 (IV.60)

The next section describes how this curvature measure is exploited for spherical

parameterization purposes.

IV.3.2.2. Core algorithm

The proposed parameterization algorithm consists of the following three core steps:

• Step1 - Curvature-driven iterative flattening

First, we compute the Gaussian curvature Kp for each vertex p of the mesh. Then, we

determine the vertex pmax with the maximum absolute value of the Gaussian curvature. The

barycenter of its neighboring nodes is computed, as described by the following equation:

)(
'

max

)(
max

max

pval

p
p pNeighp

i
i

∑
∈= , (IV.61)

where Neigh(pmax) denotes the set of vertices adjacent to pmax and val(pmax) represents its

valence.

If the Euclidian distance between new and initial positions ||p’max - pmax|| is superior to a

threshold dist, its position is changed to p’max. Otherwise, the considered vertex is not affected

and the algorithm selects as a candidate the following highest curvature vertex, reiterating

the process.

When modifying the position of a vertex, the various measures (triangle areas and angles)

involved in the computation of the Gaussian curvatures, need to be re-computed. This is

done locally, exclusively for the displaced vertex and for its neighbors, since the other mesh

vertices are not affected.

This process is recursively repeated:

 1. Determine the vertex with maximum Gaussian curvature,

 2. Compute the barycentric coordinates,

 3. Displace the vertex and re-compute Gaussian curvature K only for the affected vertices.

In this manner, salient mesh vertices are firstly detected and processed, leading, after each

iteration, to a locally flattened version of the 3D mesh model. At the end of the process, a

sphere-like surface is obtained. In contrast with [Ben08] that also use the Gaussian curvature

3D MESH MORPHING 92

in parameterization purposes, in order to identify the high-curvature vertices and concentrate

the entire mesh curvature there, our goal is to determine such vertices in order to distribute

the curvature to its neighbors and thus construct models with constant curvature values, like

the unit sphere.

This process is illustrated in Figure IV.27, which presents the evolution of a given 3D mesh

after a certain number of iterations.

Figure IV.27. Iterative curvature-driven flattening.

The Gaussian curvature in equation (V.60) privileges the selection of vertices located in

densely sampled mesh regions, where the triangle areas tend to zero. Unfortunately, this

behavior can penalize our algorithm, which can perform long sequences of iterations inside

such regions.

In order to avoid such a problem, we have considered a modified expression of the Gaussian

curvature, defined as:

∑
∑

+

−
=

i
is

i
i

S pA
K

3/)(

2

χ

απ
 , (IV.62)

where χS denotes the average triangle area, computed over the entire mesh. The correction

factor χS makes it possible to reinforce, in the selection process, the influence of the angular

defect term (2𝜋𝜋 − ∑ 𝛼𝛼𝑖𝑖𝑖𝑖) and thus to avoid long loops in densely sampled regions

characterized by low values of triangle areas.

Step 1 is successively repeated for a number 𝐼𝐼𝑝𝑝 of iterations. In practice, the usual value for

parameter 𝐼𝐼𝑝𝑝 is set to be five times the number of vertices.

At the end of step 1, a size normalization process is applied in order to avoid shrinkage

problems (i.e., the model is centered at the origin and the maximum distance between any

vertex and the origin is used to normalize the vertices positions).

• Step 2 - Visibility check and projection onto the sphere

At this stage, we first check if the mesh obtained at the end of step 1 can be

stereographically projected onto the sphere. This consists in applying for each mesh vertex a

visibility test performed with the help of a ray casting operation. If all mesh vertices are visible

93 MESH PARAMETERIZATION

from the object’s gravity center, the mapping onto the unit sphere is simply obtained by a

vertex projection defined as described by the following equation:

i

i
ii p

p
Vp =∈∀ φ , (IV.63)

where ϕi is the image on the unit surface sphere of the vertex pi. The visibility property

ensures that the obtained parameterization is bijective. If the visibility condition is not

satisfied, then step 1 is re-iterated.

• Step 3 - Vertex split sequence

Here, all the vertices removed in the mesh simplification are iteratively re-inserted on the

sphere by constructing a progressive mesh sequence analogously to the method described

in [Hop93] by Hoppe and Praun. The algorithm exploits the fact that a contraction operation

is invertible. For each edge collapse, a corresponding inverse operator, called vertex split, is

defined (Figure IV.28).

Figure IV.28. Vertex split operation. (a) inner vertex; (b) border vertex.

Thus, starting from a coarser version of a 3D model together with a series of records,

indicating how it was simplified, we can produce a sequence of intermediate models applying

a series of vertex split operations until we reach the original object. Normally, this requires for

each item in the split sequence to encode the vertex being split �̅�𝑝, positions for the two initial

vertices p1, p2 and all the original adjacencies.

In contrast with Hoppe and Praun [Hop93] objectives that try to reconstruct the original shape

of the model from a coarser version of it, we aim to return to the original mesh topology with

its surface directly mapped on the sphere. Thus, in our case, in the mesh simplification

process, we will store only the vertex obtained after each edge collapse operation, the two

original edge endpoints and the corresponding adjacencies. When employ a vertex split

operation, the positions of p1 and p2 must be computed accordingly with the adjacent vertex

coordinates.

Additionally, the objective is to re-insert a removed vertex in the mesh structure without

generating triangle flipping or degenerate faces. This requires a position optimization of the

3D MESH MORPHING 94

vertex to be inserted. In contrast to the approach in [Pra03], which implements also a

parameterization technique based on mesh simplification followed by a vertex split process,

we have adopted a simple, yet efficient optimization procedure, illustrated in Figure IV.29.

The first ring neighborhood from which the considered vertex was removed (Figure IV.29.a)

is first subdivided in order to obtain a set of potential positions (Figure IV.29.b) where the

vertex to be inserted. Each face is split after a 1-to-4 triangles scheme and 3 levels of such

subdivisions are performed.

A sub-set of valid possibilities (i.e., position which do not lead to overlaps or degenerate

triangles) is then determined (Figure IV.29.c). In order to accomplish this task, we establish

for each potential position if the new edges that would form intersect the boundary edges

defined by the first ring neighborhood. If no intersection is produced then the position is

considered valid.

Figure IV.29. Vertex insertion operation: (a) initial configuration; (b) polygon subdivision; (c) set of valid

positions; (d) final retained position and the new configuration.

Among them, the vertex which provides the optimal angular distribution of the corresponding

triangles is determined (Figure IV.29.d). In order to reach this objective, we select the

position which yields the maximal value of the minimal angle of the adjacent triangles.

Let us note that if the mapping is an embedding prior the vertex split operation, then it should

remain also valid after the insertion.

IV.3.3. Experimental evaluation

This section aims to provide several experimental results regarding the performance of our

spherical mesh parameterization algorithm based on surface Gaussian curvature. In order to

validate the proposed algorithm we have considered from the Princeton Shape Benchmark

and MPEG 7 database a set of eight closed, manifold, triangular mesh models characterized

by various types of geometries, complexities and shapes.

We pre-process each 3D model using with the modified version of the QME mesh

simplification technique introduced in [Gar97], in order to reduce the total number of mesh

vertices and thus to considerably decrease the computational complexity.

95 MESH PARAMETERIZATION

Figure IV.30 and Figure IV.31 present some results obtained after applying the proposed

algorithm, with the various intermediate stages involved. In all cases, the obtained spherical

parameterizations yield valid embeddings which preserve well the shape of the test models.

In order to objectively evaluate our approach, we have accomplished a comparative analysis

of our implementation and the ones proposed by Alexa [Ale02] and Praun et al. [Pra03] in

terms of angle (AD) and area (SD) distortions. AD and SD are defined as described by the

following equations [Yos04]:

∑∑
= =

−=
F

i j
ijijF

AD
1

3

1
'

3
1 αα (IV.64)

∑
∑∑=

==

−=
F

i
F

j
j

i
F

j
j

i

TA

TA

TA

TA
SD

1

11
)'(

)'(

)(

)(
 (IV.65)

Ideally, both distortions should be as close as possible to zero, which correspond to the case

when all mesh triangles remain unmodified after the mapping process. The results

synthesized in Table IV.5 show that the proposed method provides superior performances in

terms of both angular and area distortions, with gains of 36,72% and 19,04% respectively

when compared to Alexa’s method and gains of 35,85% for angular distortions and 19,55%

for area distortions compared with Praun’s method.

Table IV.5. Comparative study concerning area and angle distortions.

Name Model No. of
vertices

Proposed
method

Alexa method
[Ale02]

Praun et. al.
method
[Pra03]

AD SD AD SD AD SD

Man

14603 0.454 1.417 0,793 1,431 0,651 1,452

Lyon

956 0.371 1.174 0,512 1,388 0,445 1,413

Hand 25001 0.353 1.126 Overlapping 0,573 1,538

Face

17358 0.347 0.576 0,456 0,933 0,521 0,775

Horse

19851 0.391 1.194 0,803 1,636 0,637 1,726

Rabbit

453 0.311 0.682 0,362 0,891 0,364 0,782

Alien 16266 0.368 1.288 Overlapping 0,872 1,673

Dino

16995 0.384 1.417 0,962 1,552 0,896 1,728

Fi

gu
re

 IV
.3

0.
 V

is
ua

l e
va

lu
at

io
n

of
 o

ur
 3

D
 m

es
h

sp
he

ric
al

 p
ar

am
et

er
iz

at
io

n
(1

).

Fi

gu
re

 IV
.3

1.
 V

is
ua

l e
va

lu
at

io
n

of
 o

ur
 3

D
 m

es
h

sp
he

ric
al

 p
ar

am
et

er
iz

at
io

n
(2

).

3D MESH MORPHING 98

Regarding the processing requirements, the proposed algorithm is slightly slower than the

other two approaches. This is due to the iterative computation of the Gaussian Curvature. In

contrast, the approach proposed by Alexa projects directly the vertices onto the sphere

employing simple vertex normalizations operations and different relaxation processes.

However, Alexa’s technique does not guarantee a valid embedding for all the models.

Concerning the Praun’s method, the mesh simplification process is here performed until a

simple tetrahedron, which can be directly projected onto the unit sphere. Despite the

optimization procedure employed when re-inserting the initial mesh vertices, the resulting

distortions are here more important. This shows the interest of stopping the simplification

process with the help of a geometric distortion criterion. The role of the Gaussian curvature-

driven mesh flattening phase, which makes it possible to directly project the simplified model

onto the unit sphere, is here fundamental.

IV.4. CONCLUSIONS

In this chapter, we first proposed a survey of the most representative 3D mesh

parameterization techniques. The analysis of the state of the art showed that determining a

smooth and valid parameterization for 3D triangular meshes still remains a challenging task,

especially when certain distortion measures (in terms of angles, lengths, areas) need to be

controlled or minimized. Thus, the main challenges of any parameterization concern the

guarantee of no triangle overlappings and of low distortions.

While meshes with disk topology are naturally mapped in a planar domain; closed, manifold,

genus-0 meshes are topologically equivalent to a sphere and hence the most natural

parameter domain for them is the unit sphere. Both types of approaches are presented and

discussed, with principles, advantages and limitations. In addition, some parameterization

techniques dedicated to more complex models of arbitrary genus have also been presented.

Two main contributions have been introduced in this chapter. The first one concerns a planar

parameterization technique, so-called edge length ratio preserving (ELRP) parameterization.

The method involves a barycentric technique based on length ratio preservation. The

experimental results demonstrate the superiority of our method compared with other state of

the art algorithms by providing low distortions rates in terms of area and lengths, especially

for complex objects, with distortion reduction of more than 78,5% and 57% respectively.

The second method concerns a novel spherical parameterization method based on a

Gaussian curvature criterion. The proposed approach makes it possible to detect iteratively

salient mesh vertices and to locally flatten them, until a sphere-like surface is obtained,

99 MESH PARAMETERIZATION

adapted to a direct spherical mapping. The experimental evaluation, carried out on a set of

3D models of various shapes and complexities, shows that the proposed method makes it

possible to reduce both angle and area distortions with more than 35% and 19%

respectively.

Finally, as a key factor of the proposed method, let us mention its complete automatic nature:

our planar and spherical parameterization algorithms do not require any human intervention.

3D MESH MORPHING 100

V. MESH DEFORMATION FOR FEATURE ALIGNMENT

Summary: This chapter tackles the issue of feature alignment between the source and

target models considered in the morphing process. We solve this problem in the parametric

domain with the help of various mesh warping techniques. However, not all existing

deformation techniques are well-suited for our purpose. Thus, in this chapter, we propose an

evaluation of the warping algorithms and we retain the ones that meet the constraints related

to feature alignment of meshes defined in the parametric domain and which lead to a

minimum mesh distortion.

3D MESH MORPHING 102

V.1. INTRODUCTION

After the parameterization of the two source and target models, we can directly overlay the

obtained embeddings, apply an arbitrary interpolation procedure and obtain a morphing

sequence. However, such an approach would fail keeping aligned the relevant

characteristics of the 3D models to be morphed in the intermediate morphing models, and

would suffer from the same limitations as the simple cross-dissolve techniques discussed in

Chapter III.

The characteristics of the 3D models are described by a set of features, specified on both

source and target models and supposed to be available. In a general manner, such features

are defined as sets of points, lines, curves on the corresponding 3D surfaces. Figure V.1

illustrates such a set of features, for a 3D model of a face. Here, the features correspond to

the eyes, mouth, nose, ears, forehead.

Figure V.1. 3D Mesh models and associated feature points.

In our work, we considered uniquely sets of feature points, defined as vertices of the source

and target meshes. Each point on the source model has its correspondent point on the target

object.

Let us note that such features are strongly dependent of each 3D representation. Even if

some automatic feature extraction and matching methods are available in some particular

cases, the general case requires a manual specification.

In order to ensure that the features are preserved during the morphing process, the

corresponding feature points should have the same positions in the parametric domain

(vertex to vertex correspondence). However, this property is not guaranteed by any mesh

103 MESH DEFORMATION FOR FEATURE ALIGNMENT

parameterization method and the feature points can have strongly different positions in the

parametric domain (Figure V.2).

Figure V.2. Illustration of two parameterizations where feature are not aligned: (a), (d) original models;

and (b), (c) their embeddings.

Thus, in a first phase, it is necessary to re-place the corresponding feature points such that

they share the same position in the parameter domain. Such a re-placement requires a

global deformation of the whole parametric domain, such that the corresponding 2D maps

should be smoothly deformed without foldovers. Such a process is referred to as mesh

warping. In order to accomplish this task, it is necessary to consider appropriate mesh

deformation techniques.

Various shape deformation methods have been developed within the context of various

applications (e.g., 3D animation techniques, special effects, viseme synthesis…). Let us

analyze further how the deformation techniques presented in the literature can suit the mesh

warping purposes.

V.2. RELATED WORK

V.2.1. Space deformations

With space deformations, a deformed shape is obtained by repeated transformations of the

space in which the initial shape is embedded. In 3D, a space deformation can be defined by

a global function U:IR3 →IR3, where:

𝑈𝑈(𝑝𝑝) = 𝑈𝑈(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3) = �
𝑈𝑈1(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)
𝑈𝑈2(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)
𝑈𝑈3(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)

� (V.1)

Historically, the first global function used as a modeling tool was introduced by Barr

in [Bar84]. Barr refers to U as a globally specified deformation and proposes several

examples including functions for twisting, bending and tapering. Such deformations are still

used today and are incorporated into various modeling and animation software as so-called

nonlinear deformers [Ali05]. Figure V.3 illustrates some examples of space deformations.

3D MESH MORPHING 104

Figure V.3. Space deformations [Bar84]: (a) rotation in z – twist; (b) scale – taper;

(c) rotation in y – bend.

Barr also defines a locally specified deformation as the 3x3 Jacobian matrix of U:

𝐽𝐽 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑝𝑝

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑈𝑈1

𝜕𝜕𝑝𝑝1

𝜕𝜕𝑈𝑈1

𝜕𝜕𝑝𝑝2

𝜕𝜕𝑈𝑈1

𝜕𝜕𝑝𝑝3
𝜕𝜕𝑈𝑈2

𝜕𝜕𝑝𝑝1

𝜕𝜕𝑈𝑈2

𝜕𝜕𝑝𝑝2

𝜕𝜕𝑈𝑈2

𝜕𝜕𝑝𝑝3
𝜕𝜕𝑈𝑈3

𝜕𝜕𝑝𝑝1

𝜕𝜕𝑈𝑈3

𝜕𝜕𝑝𝑝2

𝜕𝜕𝑈𝑈3

𝜕𝜕𝑝𝑝3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (V.2)

The matrix J indicates how differential vectors are transformed by the function U. In addition,

a method to convert from a locally specified deformation of a primitive back to a global

specification via integration is also proposed. Starting from an arbitrary origin (the constant of

integration), the differential changes are integrated across the primitive to determine the

globally deformed positions.

In his pioneering work, Barr set the premises of the well-known free-form deformations

(FFD), recalled in the next section.

V.2.2. Free-form deformations

Free-form deformations (FFD) represents a space deformation technique originally

formulated by Sederberg and Parry [Sed86] and then extended by MacCracken [Mac96] or,

more recently, by Ju et al. [Ju05].

The FFD principle consists of embedding the 3D model to be deformed into a 3D lattice of

control points. Such a set of control points makes it possible to define a global deformation of

the ℝ3 space, by considering for example B-Spline or NURBS functions.

105 MESH DEFORMATION FOR FEATURE ALIGNMENT

A useful property of free-form deformations is that the generated transformation is

independent of the complexity of the model being deformed. Another advantage comes from

manipulation capabilities of such a deformation: the user can locally and intuitively control the

deformation by modifying the position of the desired control points.

Figure V.4 shows an example of such deformation. The deformation complexity is correlated

with the density of the control lattice. FFDs only need a very coarse regular control lattice to

create coarse-scale deformations of a model. However, for finer-scale deformations, a very

dense control lattice is usually required.

Figure V.4. Free form deformation.

Since the mapping from the lattice to the model is generally defined without considering the

embedded model geometry, FFD may incorrectly influence regions that are spatially close

with respect to a Euclidian distance, but relatively far in what concerns the geodesic

distance. In addition, the lattice-based approaches have a low precision in moving vertices.

FFDs are often used in professional modeling applications (e.g., 3DS Max, Maya), as they

are computationally fast and do not require any constraints regarding the representations of

the models (e.g., irregular meshes, point clouds, parametric surfaces).

Borrowing the principle of defining a deformation with a set of controllers, Singh [Sin98]

proposes to use domain curves, so-called wires, to define the domain of deformation for an

object (Figure V.5). Wires follow the deformable features of an object as such they provide a

coarse geometric representation of the model, together with an intuitive way to deform it.

Figure V.5. Wires: A geometric deformation technique [Sin98].

3D MESH MORPHING 106

Sumner et al. [Sun07] propose to use the so-called deformation graph, which is a more

general deformation domain, for intuitive deformation of a wide range of shape

representations and editing scenarios. Their method supports direct manipulation of a mesh

being deformed and makes the deformation graph transparent to the user.

FFD methods are suitable for smooth surfaces, but present several drawbacks when dealing

with objects with a high level of details (such as those acquired from scanning devices).

Since the deformations are globally controlled by the lattice grid, the details of the shape

cannot be preserved in an efficient manner.

V.2.3. Skeletal deformation

Skeletal deformations (Figure V.6) are highly popular in the field of real-time animation of

articulated 3D models. They can also be applied to a wide range of soft objects, for example

to cloth simulation [Cor05].

Figure V.6. Skeleton based deformation [Yan08b].

Such techniques exploit a hierarchical structure of object’s skeleton. The skeleton is

represented as a tree structure whose nodes are identified with the joints (given by their

positions and orientations) and edges with the corresponding bones. A skeleton provides the

domain of deformation for the 3D mesh. For each bone, a region of influence (i.e., set of

vertices) on the 3D mesh is associated to. Thus, when moving the skeleton’s bones, the

associated skin, i.e., the 3D model surface, will be displaced accordingly. A linear weighting

method is applied at the level of joints in order in order to avoid foldovers at the level of

surface points that are influenced by multiple bones. The vertex weights, which denote the

amount of influence of individual bones, must be specified during the so-called skinning

process. The deformation of each vertex is then defined as a weighted blending of the

transformations of its associated bones. Let us note that the quality of the deformation is

strongly influenced by this weighting mechanism.

Automatic skeleton extraction according to the geometric information of a given mesh is in

general very difficult. The topology of the extracted skeleton is often not satisfactory since the

107 MESH DEFORMATION FOR FEATURE ALIGNMENT

extraction process is sensitive to the shape perturbation of the skin surface. Instead, Baran

and Popovic [Bar07] present a method to automatically fit a given template skeleton with the

fixed topology to a mesh.

Skeletal deformation is particularly useful for objectives of virtual character animation, where

the hierarchical skeleton structure fits well the anatomy of the considered characters.

However, in a more general case and notably for mesh warping purposes, defining

appropriate sets of bones/joints is not straightforward.

In this case, more general deformation techniques have to be considered. A first solution is

provided by the so-called multiresolution mesh editing methods, described in the next

section.

V.2.4. Multiresolution mesh editing

One of the very first multiresolution shape editing was introduced [Zor97]. The underlying

principle of multiresolution mesh editing consists of hierarchically decomposing a complex

object into a coarse, base mesh and a set of gradually finer levels of detail. The differences

between each level of detail are stored in the associated representation, for reconstruction

purposes.

Analogously to Fourier analysis, this process can be interpreted as a decomposition of the

3D geometry signal into low and high frequencies. Let us note that a generalization of the

wavelet transform to 3D mesh models can be obtained with the help of such a

representation.

Zorin et al. [Zor97] combine this technique with a free-form deformation in order to achieve a

detail preserving mesh editing tool. The manipulation is done in the classic FFD manner, but

the user is allowed to select a specific level of detail. If only the base mesh is deformed, all

the details, corresponding to the higher frequency components of the mesh are retained. The

advantage, with respect to the classic FFD, is the detail preserving editing that allows the

manipulation of complex shapes with a large number of vertices.

The drawback of the method relates to the disturbing artifacts that might appear at the

borders between patches of the base mesh. Here, different deformations are applied

independently to each patch, which does not guarantee the creation of a globally smooth

deformation field.

A solution to this problem is proposed by the so-called Laplacian mesh editing technique,

described in the following section.

3D MESH MORPHING 108

V.2.5. Laplacian mesh editing

The mesh deformation approaches discussed so far directly apply transformation to a

Cartesian representation of the 3D model’s geometry. Since an important goal to achieve

when considering mesh deformation concerns the detail preservation, it would be more

advantageous to consider an intrinsic, differential mesh representation, where such details

can be identified and preserved.

Differential representations can capture information about the local shape properties of a

mesh, such as curvature, scale or orientation. One of the most popular differential

representation of a 3D geometry concerns the so-called Laplacian coordinates (also known

as differential coordinates or δ-coordinates). Laplacian coordinates have been first used for

3D mesh morphing and deformation purposed in [Ale03].

Let us recall the definition of Laplacian coordinates. Let us consider a mesh 𝑀𝑀(𝑉𝑉,𝐸𝐸,𝐹𝐹) with

𝑉𝑉,𝐸𝐸 and 𝐹𝐹 respectively denoting the sets of vertices, edges and faces (triangles). For each

mesh vertex 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖), the differential (or the 𝛿𝛿-coordinates) are defined as the difference

between the absolute coordinates of 𝑝𝑝𝑖𝑖 and the center of mass of its adjacent vertices:

𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 �𝛿𝛿𝑖𝑖
(𝑥𝑥),𝛿𝛿𝑖𝑖

(𝑦𝑦),𝛿𝛿𝑖𝑖
(𝑧𝑧)� = 𝑝𝑝𝑖𝑖 −

1
𝑑𝑑𝑖𝑖
∑ 𝑝𝑝𝑝𝑝𝑝𝑝∈𝑁𝑁(𝑖𝑖) , (V.3)

where 𝑁𝑁(𝑖𝑖) = {𝑝𝑝|(𝑖𝑖, 𝑝𝑝) ∈ 𝐸𝐸} and 𝑑𝑑𝑖𝑖 = |𝑁𝑁(𝑖𝑖)| is the number of vertices adjacent to 𝑝𝑝𝑖𝑖 (i.e, its

valence). Globalizing this transformation to the whole mesh can be written in matrix form. Let

us consider A the adjacency (connectivity) matrix of the mesh, defined as:

𝐴𝐴𝑖𝑖𝑝𝑝 = �1 , 𝑖𝑖𝑓𝑓 (𝑖𝑖, 𝑝𝑝) ∈ 𝐸𝐸
0 , 𝑐𝑐𝑝𝑝ℎ𝑒𝑒𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑒𝑒

� (V.4)

Let us also denote by 𝐷𝐷 the (𝑉𝑉 × 𝑉𝑉) diagonal matrix such that 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖 . Then, the Laplacian

matrix 𝐿𝐿 is defined as:

𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−1𝐴𝐴 (V.5)
By applying the linear operator associated to the Laplacian matrix 𝐿𝐿 to the geometry signal,

we obtain the following equation, which describes the relation between Cartesian and

Laplacian coordinates:

𝐿𝐿𝐻𝐻𝑿𝑿 = 𝐷𝐷𝛿𝛿(𝑥𝑥), 𝐿𝐿𝐻𝐻𝒀𝒀 = 𝐷𝐷𝛿𝛿(𝑦𝑦), and 𝐿𝐿𝐻𝐻𝒁𝒁 = 𝐷𝐷𝛿𝛿(𝑧𝑧), (V.6)

where 𝑿𝑿 (resp. 𝒀𝒀 and 𝒁𝒁) is an 𝑉𝑉 -dimensional vector containing the 𝑥𝑥 (resp. 𝑦𝑦 and 𝑧𝑧)

Cartesian values of all the mesh vertices, and 𝛿𝛿(𝑥𝑥) , 𝛿𝛿(𝑦𝑦) and 𝛿𝛿(𝑧𝑧) are the corresponding

Laplacian coordinates.

In practice, it is more convenient to consider the symmetric version of the L matrix defined

as:

109 MESH DEFORMATION FOR FEATURE ALIGNMENT

𝐿𝐿𝐻𝐻 = 𝐷𝐷𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴 , (V.7)
where

(𝐿𝐿𝐻𝐻)𝑖𝑖𝑝𝑝 = �
𝑑𝑑𝑖𝑖 𝑖𝑖 = 𝑝𝑝
−1 (𝑖𝑖, 𝑝𝑝) ∈ 𝐸𝐸
 0 𝑐𝑐𝑝𝑝ℎ𝑒𝑒𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑒𝑒

� . (V.8)

Figure V.7 presents an example of a mesh and its associated matrices. The matrix LS (or L)

is called the topological (or graph) Laplacian of the mesh. Graph Laplacians have been

extensively studied in algebra and graph theory [Chu97], primarily because their algebraic

properties related to the combinatorial aspects of the graphs they represent.

Figure V.7. An example of a triangular mesh and its associated symmetric Laplacian matrix.

Let us observe that equation (V.3), expressing the differential coordinates of a vertex 𝑝𝑝𝑖𝑖 , can

be re-written as:

𝛿𝛿𝑖𝑖 =
1
𝑑𝑑𝑖𝑖

� (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝)
𝑝𝑝∈𝑁𝑁(𝑖𝑖)

 (V.9)

If we now assume that the mesh M represents a piecewise-linear approximation of a smooth

surface, then the sum in equation (V.8) can be interpreted as a discretization of the following

curvilinear integral:

1
|𝛾𝛾|

� (𝑝𝑝𝑖𝑖 − 𝑝𝑝)𝑑𝑑𝑝𝑝(𝑝𝑝)
𝑝𝑝∈𝛾𝛾

, (V.10)

where 𝛾𝛾 represent a closed surface curve around vertex 𝑝𝑝𝑖𝑖 and |𝛾𝛾| is the length of 𝛾𝛾.

It is known from differential geometry [Tau95] that:

lim|𝛾𝛾|→0
1

|𝛾𝛾|∫ (𝑝𝑝𝑖𝑖 − 𝑝𝑝)𝑑𝑑𝑝𝑝(𝑝𝑝)𝑝𝑝∈𝛾𝛾 = −𝑝𝑝(𝑝𝑝𝑖𝑖)𝑛𝑛𝑖𝑖 , (V.11)

where 𝑝𝑝(𝑝𝑝𝑖𝑖) and 𝑛𝑛𝑖𝑖 respectively denote the mean curvature and the normal vector at

point 𝑝𝑝𝑖𝑖 .

The orientation of the differential coordinate vector 𝛿𝛿𝑖𝑖 approximates the local normal direction

and its magnitude is proportional to the local mean curvature. Thus, 𝛿𝛿𝑖𝑖 encapsulates the local

shape information of the considered surface.

3D MESH MORPHING 110

However, the above-described discrete approximation does not hold in the case of a non-

uniform, irregular mesh sampling. In order to overcome such a drawback, equation (V.9) can

be extended by considering a weighting scheme as described in the following equation:

𝛿𝛿𝑖𝑖 =
1

∑𝑤𝑤𝑖𝑖𝑝𝑝
� 𝑤𝑤𝑖𝑖𝑝𝑝 (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝)

𝑝𝑝∈𝑁𝑁(𝑖𝑖)

 (V.12)

where 𝑤𝑤𝑖𝑖𝑝𝑝 is the weight associated to the edge (𝑖𝑖, 𝑝𝑝).

There are several alternatives to define the weights 𝑤𝑤𝑖𝑖𝑝𝑝 . When 𝑤𝑤𝑖𝑖𝑝𝑝 = 1 ∀𝑖𝑖, 𝑝𝑝, then equations

(V.9) and (V.12) become identical. This scheme is called uniform weighting. It only describes

the topological properties of the mesh, but not the geometrical ones, since the coordinates 𝛿𝛿

are defined by the mean of the surrounding vertices without considering their geometry.

Two other different weighting schemes are proposed in the literature, so-called the cotangent

weighting and tangent weighting. They are inspired from the [Eck95] and [Flo03]

parameterization methods presented in Chapter IV.

Thus, Meyer et al. [Mey03] propose to use the so called cotangent weights, defined as:

𝛿𝛿𝑖𝑖𝑐𝑐 =
1

|Ω𝑖𝑖 |
�

1
2

(𝑐𝑐𝑐𝑐𝑝𝑝𝛼𝛼𝑖𝑖𝑝𝑝 + 𝑐𝑐𝑐𝑐𝑝𝑝𝛽𝛽𝑖𝑖𝑝𝑝) (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝)
𝑝𝑝 ∈𝑁𝑁(𝑖𝑖)

 (V.13)

where |Ω𝑖𝑖 | is the size of the Voronoi cell of i and 𝛼𝛼𝑖𝑖𝑝𝑝 , 𝛽𝛽𝑖𝑖𝑝𝑝 represent the two opposite angles of

edge (i,j).

However, since the cotangent weights can be negative due to large angles in the mesh

structure, usually it is more convenient to use the mean value coordinates, also called

tangent weights, defined as described in Section IV.2.2.1.

The reconstruction of the mesh surface (i.e., recovery of the initial geometry in Cartesian

coordinates from differential coordinates) can be obtained by solving the following linear

system of equations:

𝐿𝐿𝑷𝑷 = 𝛿𝛿 (V.14)

for each dimension 𝑿𝑿,𝒀𝒀 and 𝒁𝒁.

Let us observe that the matrix 𝐿𝐿 is singular, since its rows sum up to zero. More precisely, it

can be shown that matrix 𝐿𝐿 has the rank 𝑉𝑉 − 1 if the mesh is connected [Sor06]. This

property is related to the translational invariance property of the differential coordinates. As a

consequence, matrix 𝐿𝐿 is not invertible and therefore, the system of equations (V.14) is not

analytically solvable. Instead, it should be solved in the mean square error sense, for

example with the help of a pseudo-inverse method [Pen55].

111 MESH DEFORMATION FOR FEATURE ALIGNMENT

In order to obtain a unique solution is necessary to specify the Cartesian coordinates for at

least one mesh vertex. In practice, such coordinates are specified more generally for a set of

vertices whose spatial location is known. Such points are called constraint (or anchor) points.

The system (V.14) becomes in this case:

� 𝐿𝐿
𝜔𝜔𝐼𝐼𝑚𝑚×𝑚𝑚 | 0

�𝑷𝑷 = � 𝛿𝛿𝑷𝑷
𝜔𝜔𝑐𝑐1:𝑚𝑚

� , (V.15)

where 𝑐𝑐 denotes a constraint on spatial location and 𝜔𝜔 represent a weight that can be used

to influence the importance of the positional constraints.

Let us observe that solving equation (V.15) in the mean square error sense is equivalent to

minimizing the following energy functional:

𝑥𝑥� = 𝑝𝑝𝑝𝑝𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛(�𝐿𝐿𝑥𝑥 − 𝛿𝛿(𝑥𝑥)�
2

+ �𝜔𝜔2�𝑥𝑥𝑝𝑝 − 𝑐𝑐𝑝𝑝 �
2

𝑝𝑝∈𝑐𝑐

) (V.16)

The system in equation (V.15) is a sparse linear system that can be efficiently solved with

dedicated representations. Thus, a general storage scheme is the so-called compressed

column storage format [Pre02]. Here, only three vectors are used to store all the Laplacian

matrix values:

• a first one for the nonzero values as they are traversed column by column,

• a second vector for the corresponding row indices of each value, and

• a third vector to store the locations in the other two arrays that start a column.

Sparse matrices provide the possibility to significantly accelerate the classic matrix

algorithms. A well known efficient algorithm consist in the Cholesky decomposition. The

solution of the linear system is precomputed with a Cholesky factorization that splits the

matrix in an upper and a lower triangular matrix. This decomposition is done once, while the

new coordinates are computed very fast by a simple forward and back substitution for each

dimension.

The classical Laplacian coordinates method as presented above solves equation (V.15) in

the sense of least squares minimization. This leads to low displacement accuracy (i.e., the

anchor vertices will not reach the exact final position established). Thus, we propose to

modify the system by replacing the normal equations corresponding to control vertices with

constraint equations that impose those vertices to reach their correct final position.

In the case of unitary weights, we will call this technique the Uniform Fix Laplacian

coordinate deformation method (UFLC). For mean value coordinates weights, we will call it

the Tangential Laplacian coordinate deformation method (TLC).

3D MESH MORPHING 112

Another high popular approach for 3D mesh deformation is based on the so-called radial

basis functions.

V.2.6. Radial basis functions

The radial basis function (RBF) approach represents an important tool in approximation

theory due to spectral accuracy, flexibility with respect to geometry, dimensional

independence and ease of implementation especially when interpolating scattered data in

multidimensional spaces.

In the case of mesh deformation, the RBF approach makes it possible to interpolate the

displacement of the whole set of mesh vertices based only on the known displacement of

some control points. The method offers the advantage that no grid connectivity information is

required and only a small system of equation needs to be solved depending on the number

of constrained vertices. The displacement of the mesh vertices are characterized by an

interpolation function 𝑝𝑝, which is defined as the sum of a set of radial basis functions, as

described in the following equation:

∀ 𝑝𝑝 = 1, … ,𝑉𝑉, 𝑝𝑝�𝑝𝑝𝑝𝑝 � = �𝛼𝛼𝑖𝑖𝜙𝜙��𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑐𝑐𝑖𝑖�� + 𝑃𝑃(𝑝𝑝𝑝𝑝)
𝑛𝑛𝑐𝑐

𝑖𝑖=1

 , (V.17)

where 𝑉𝑉 is the total number of mesh vertices, 𝑛𝑛𝑐𝑐 the number of control points, 𝑝𝑝𝑐𝑐𝑖𝑖 = 𝑝𝑝𝑐𝑐𝑖𝑖(𝑥𝑥𝑐𝑐𝑖𝑖 ,

𝑦𝑦𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑐𝑐𝑖𝑖) their spatial positions, P a given polynomial function of degree | P |, and ϕ is the

given radial basis function defined with respect to the Euclidian distance (||.||).

The coefficients of the polynomial P and the coefficients 𝛼𝛼𝑖𝑖 = [𝛼𝛼𝑖𝑖𝑥𝑥 ,𝛼𝛼𝑖𝑖𝑦𝑦 ,𝛼𝛼𝑖𝑖𝑧𝑧] in equation (V.17)

can be determined from the interpolation conditions ((V.18) and (V.19)):

∀ 𝑝𝑝 = 1, … , 𝑛𝑛𝑐𝑐 , 𝑝𝑝�𝑝𝑝𝑐𝑐𝑖𝑖� = 𝑑𝑑𝑐𝑐𝑖𝑖 (V.18)

where 𝑑𝑑𝑐𝑐𝑖𝑖 is a vector specifying the displacement of the control vertex 𝑝𝑝𝑐𝑐𝑖𝑖 .

When the polynomial term 𝑃𝑃 is included, the system is completed with the additional

conditions:

�𝛼𝛼𝑖𝑖𝑞𝑞(𝑥𝑥𝑐𝑐𝑖𝑖) = 0
𝑛𝑛𝑐𝑐

𝑖𝑖=1

 (V.19)

for all polynomials q with a degree equal to or less than | P |.

According to Boer et al. [Boe07], the minimal degree of P depends on the choice of the basis

function ϕ. More precisely, an unique interpolant is needed if the basis functions are

positively defined. If the basis functions meet this requirement and they are of order less than

or equal to 2, then a linear polynomial can be used. Since linear polynomials have the

113 MESH DEFORMATION FOR FEATURE ALIGNMENT

property to recover exactly a model after a rigid transformation, we only further consider

solely basis functions that satisfy this criterion.

The values for αj and the polynomial P are determined by rewriting equation (V.17) as

follows:

�𝑑𝑑𝑐𝑐0 � = �
𝑀𝑀𝑐𝑐 ,𝑐𝑐 𝑅𝑅𝑐𝑐
𝑅𝑅𝑐𝑐𝑝𝑝 0 � �

𝛼𝛼
𝛽𝛽� (V.20)

with α containing the coefficients αi, β the coefficients of the linear polynomial P, Rc an nc x 4

matrix where each row i is given by [1 𝑥𝑥𝑐𝑐𝑖𝑖 𝑦𝑦𝑐𝑐𝑖𝑖 𝑧𝑧𝑐𝑐𝑖𝑖] and Mc,c an nc x nc matrix containing the

basis function:

𝑀𝑀𝑐𝑐 ,𝑐𝑐 = �
𝜙𝜙𝑝𝑝1𝑝𝑝1 𝜙𝜙𝑝𝑝1𝑝𝑝2 ⋯ 𝜙𝜙𝑝𝑝1𝑝𝑝𝑛𝑛𝑐𝑐
 ⋮ ⋮ ⋮

𝜙𝜙𝑝𝑝𝑛𝑛𝑐𝑐 𝑝𝑝1 𝜙𝜙𝑝𝑝𝑛𝑛𝑐𝑐 𝑝𝑝2 ⋯ 𝜙𝜙𝑝𝑝𝑛𝑛𝑐𝑐 𝑝𝑝𝑛𝑛𝑐𝑐
� (V.21)

with 𝜙𝜙𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝 = 𝜙𝜙(�𝑝𝑝𝑐𝑐𝑖𝑖 − 𝑝𝑝𝑐𝑐𝑝𝑝 �).

Once the coefficients 𝛼𝛼 and 𝛽𝛽 have been determined, the interpolation function in equation

(V.17) can be used to compute, point by point, the displacement of all non-constraint vertices

of the mesh.

Let us note that the determined displacement is interpolated separately for each spatial

direction. Also, the size of the system that has to be solved in (V.20) is equal to (nc + 4) x

(nc + 4), which is relatively small, depending on the number of specified control vertices.

In order to avoid numerical stability issues the linear system of equations (V.20) is solved

with the help of singular value decomposition (SVD)-based pseudo-inverse method [Pre02],

ensuring a least square solution.

Let us note that in this case, only an approximate solution can be obtained, i.e., the actual

deformations 𝑝𝑝�𝑝𝑝𝑐𝑐𝑖𝑖� obtained for the control points will approximate, in the means square

error sense the specified displacements 𝑑𝑑𝑐𝑐𝑖𝑖 .

There are various radial basis functions available in the literature, which can be divided in

two groups: functions with compact support and functions with global support. Functions with

compact support can be defined as:

 𝜙𝜙(𝑥𝑥) = � 𝑓𝑓(𝑥𝑥) 0 ≤ 𝑥𝑥 ≤ 1
 0 𝑥𝑥 > 1

� (V.22)

where f(x) ≥ 0. The function is generally scaled with a support radius r to control the compact

support. The following composite function is then obtained:

ϕr = ϕ(x/r) = ϕ(h) (V.23)

3D MESH MORPHING 114

In this manner, solely the mesh vertices lying inside a sphere of radius r around the control

point pi are influenced by the movement of this point.

Thus, higher values for r lead to more global deformations solutions, but with the cost of

dense matrix systems that might augment the computational time needed to solve

equation (V.21).

On the contrary, lower values of r result in more local deformation fields, concentrated

around the considered control point. In addition, this will yield a sparse matrix in equation

(V.21) which can be solved more efficiently.

Table V.1 summarizes various radial basis functions reported in the literature, with either

compact or global support.
Table V.1. Radial basis functions.

No. Name Type Radial basis function
1. CP C0 CS (1 − ℎ)2
2. CP C2 CS (1 − ℎ)4(4ℎ + 1)

3. CP C4 CS (1 − ℎ)6(
35ℎ2

3
+ 6ℎ + 1)

4. CP C6 CS (1 − ℎ)8(32ℎ3 + 25ℎ2 + 8ℎ + 1)
5. CTPS C0 CS (1 − ℎ)5

6. CTPS C1 CS 1 + 80ℎ2

3
− 40ℎ3 + 15ℎ4 − 8ℎ5

3
+ 20ℎ2log(ℎ)

7. CTPS C2
a CS 1 − 30ℎ2 − 10ℎ3 + 45ℎ4 − 6ℎ5 − 60ℎ3log(ℎ)

8. CTPS C2
b CS 1 − 20ℎ2 + 80ℎ3 − 45ℎ4 − 16ℎ5 + 60ℎ4log(ℎ)

9. Thin plate spline (TPS) GS 𝑥𝑥2log(𝑥𝑥)

10. Multiquadric biharmonics
(MQB) GS √𝑝𝑝2 + 𝑥𝑥2

11. Inverse multiquadric
biharmonics (IMQB) GS � 1

𝑝𝑝2+𝑥𝑥2

12. Quadric biharmonics GS 1 + 𝑥𝑥2

13. Inverse quadric
biharmonics GS 1

1+𝑥𝑥2

14. Gaussian GS 𝑒𝑒−𝑥𝑥2
CS – Compact support GS – Global support

The compact support property of the RBFs in rows 1 to 8 in Table V.1 is ensured by

truncating the function to the [0, 1] interval. Let us note that this is always possible, the

resulting functions remaining continuous since they take the value 0 in the set {0, 1}.

The functions CP C0, CP C2, CP C4 and CP C6 are based on polynomials chosen to have the

lowest degree of all polynomials that create a Cn continuous basis function with n ϵ {0, 2, 4,

6}. The next four are a series of functions based on the thin plate spline interpolation which

creates Cn continuous basis functions with n ϵ {0, 1, 2}.

115 MESH DEFORMATION FOR FEATURE ALIGNMENT

The MQB and IMQB techniques use the a parameter in order to control the shape of the

basis functions. A large value of a return flat functions, while small values of a gives narrow,

localized functions.

In order to establish an objective comparison between various deformation methods, it is

necessary to first specify a set of mesh quality metrics. The adopted solutions are described

in the following section.

V.3. MESH QUALITY METRICS

The considered mesh quality metric is based on the approach proposed by Knupp [Knu03]

which uses a set of Jacobian matrices defined for each mesh triangle. The method is

dedicated to 2D meshes, such as those obtained after a parameterization process.

Considering a mesh triangle, with the coordinates of the vertices defined by (𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝) ,

𝑝𝑝 = 1,2,3 where 𝑝𝑝 denotes the vertices of the triangle, we can construct three Jacobian

matrices 𝐴𝐴𝑝𝑝 , one around each node 𝑝𝑝 as:

∀ 𝑝𝑝 ∈ �1, 2, 3�, 𝐴𝐴𝑝𝑝 = �
𝑥𝑥𝑝𝑝+1 − 𝑥𝑥𝑝𝑝 𝑥𝑥𝑝𝑝+2 − 𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝+1 − 𝑦𝑦𝑝𝑝 𝑦𝑦𝑝𝑝+2 − 𝑦𝑦𝑝𝑝� (V.24)

Since the determinant 𝛼𝛼𝑝𝑝 of each Jacobian matrix in equation (V.24) represents twice the

area of the considered triangle and it is independent of the node on which it is computed, the

subscript 𝑝𝑝 can be skipped.

Additionally, a metric tensor 𝜆𝜆 can be computed as:

 𝜆𝜆 = 𝐴𝐴𝑝𝑝𝐴𝐴 (V.25)

Matrix 𝜆𝜆 is a 2x2 symmetric matrix with components 𝜆𝜆𝑖𝑖𝑝𝑝 , 𝑖𝑖, 𝑝𝑝 = 1,2. Intuitively, 𝜆𝜆11 and 𝜆𝜆22 are

measures of the squared lengths of two triangles edges and 𝜆𝜆12 is a measure of the angle

between them. Thus, let us also note that the dot product between the two edges is given by:

𝜆𝜆12 = �𝜆𝜆11𝜆𝜆22𝑐𝑐𝑐𝑐𝑝𝑝𝜃𝜃 (V.26)

where 𝜃𝜃 is the angle between the two sides joined at the considered node.

It can be shown that the triangle area a can be expressed as:

 𝛼𝛼2 = 𝜆𝜆11 𝜆𝜆22 − λ12
2 = 𝜆𝜆11 𝜆𝜆22𝑝𝑝𝑖𝑖𝑛𝑛2𝜃𝜃 (V.27)

The size metric 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒 is defined as:

 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒 = min(𝜏𝜏, 1/𝜏𝜏) (V.28)

where 𝜏𝜏 = 𝛼𝛼/𝑤𝑤 is the ratio between the area of a triangle in the deformed mesh and the area

of the reference (initial) triangle.

3D MESH MORPHING 116

The measure 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒 reaches its maximum value, equal to 1, if and only if the final mesh

triangle has the same area as the reference triangle. On the contrary, when 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒 is equal to

zero, the deformed triangle is degenerated (i.e., zero area).

The shape quality metric 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 aims at measuring distortions in the shape of triangle,

independently of its size, and is defined relatively to an equilateral triangle as described by

the following equation:

 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 = √3𝛼𝛼
𝜆𝜆11 +𝜆𝜆22−𝜆𝜆12

 (V.29)

Using equation (V.27) and the low of cosines, equation (V.29), can be rewritten in a form

which shows the relationship of the shape quality metric and the angle at the considered

point:

 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 = √3𝑝𝑝 𝑝𝑝𝑖𝑖𝑛𝑛𝜃𝜃
1−𝑝𝑝 𝑐𝑐𝑐𝑐𝑝𝑝𝜃𝜃+𝑝𝑝2 (V.30)

where 𝑝𝑝 = �𝜆𝜆22/𝜆𝜆11.

The shape quality metric 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 is equal to 1 if the final mesh triangle is equilateral, and it is

zero if the triangle is degenerate.

Finally, for each triangle of the mesh, the quality metric is a scalar quantity defined by the

product:

 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒 ⋅ 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 . (V.31)

The triangle with 𝑓𝑓𝑝𝑝𝑝𝑝 = 1 refers to the ideal triangle (i.e., the equilateral triangle with the area

equal to the area of a pre-established triangle considered as the reference/initial element).

The extension of the 𝑓𝑓𝑝𝑝𝑝𝑝 quality metric for the 3D case is straightforward, taking into account

that the 𝑝𝑝 parameter in equation (V.30) is actually the ratio of two consecutive edge lengths,

and 𝜃𝜃 represents the angle between them.

Beside the two metrics presented above, we also seek to evaluate the displacement

accuracy of each deformation technique, i.e., the average error between the actual

displacement and the specified positions of the control points. Mathematically, we can define

a new metric as:

 𝐷𝐷𝑖𝑖𝑝𝑝 = 1
𝑛𝑛𝑐𝑐

 ∑
�𝑝𝑝𝑐𝑐𝑖𝑖−𝑝𝑝𝑐𝑐𝑖𝑖

𝑑𝑑𝑖𝑖𝑝𝑝 �

�𝑝𝑝𝑐𝑐𝑖𝑖−𝑝𝑝𝑐𝑐𝑖𝑖
𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝 �

∗ 100 𝑛𝑛𝑐𝑐
𝑖𝑖=0 (V.32)

where 𝑛𝑛𝑐𝑐 denotes the total number of control vertices, 𝑝𝑝𝑐𝑐𝑖𝑖
𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝 and 𝑝𝑝𝑐𝑐𝑖𝑖 represent the initial

position and the final place the point 𝑖𝑖 should reach, while 𝑝𝑝𝑐𝑐𝑖𝑖
𝑑𝑑𝑖𝑖𝑝𝑝 is the actual position where

point 𝑖𝑖 is placed after the movement. Ideally the value of 𝐷𝐷𝑖𝑖𝑝𝑝 should be zero.

117 MESH DEFORMATION FOR FEATURE ALIGNMENT

V.4. EXPERIMENTAL EVALUATION

In order to establish the most suitable method that could successfully meet the constraints

related to feature alignment of meshes defined in the parametric domain, we have

considered the following set of requirements:

• Topology consistency – the mesh warping technique should ensure that the mesh

connectivity remains unchanged during the movement.

• No foldovers - the deformation method should not flip the mesh triangles.

• Smoothness – the movement process should be continuous, with no discontinuities.

• Large displacements – the mesh deformation technique should allow relatively large

displacements of vertices.

• Accurate displacement – the source mesh feature vertices should reach as close as

possible the position of their target counterparts.

• Low distortions – the variation in terms of shape and size of the mesh triangles

should be minimized.

• Spatial domain conservation – since we aim to deform meshes in the parametric

domains, it is desirable that all mesh vertices remain in the considered domain (i.e., planar or

spherical domain).

After analyzing the properties the methods presented in Section V.2. we can conclude that

only the Laplacian coordinates and the Radial basis functions techniques seem convenient

for mesh warping purposes.

For space, free-form, skeletal or multiresolution based deformation techniques would be too

complicated to perform fine locally movements of vertices in the parameterization domain

and they would require the user intervention for an accurate displacement.

In order to demonstrate the use of RBF and Laplacian coordinates as mesh deformation

strategies we have considered several test cases, including rotation, translation and

deformation of a rectangular block specified on a 2D, uniform mesh grid (Figure V.8.a).

In [Boe07], several different radial basis functions were compared for a variety of test cases.

The results obtained showed that the CP C2 function offers the best trade-off between

computational efficiency and deformed mesh quality. In our work, we aim at comparing

different RBFs and different Laplacian coordinates variants in terms of quality deformation,

computational efficiency and moreover, displacement accuracy. Further we establish the

most suitable method to warp a parameterized mesh and better maintain model vertices in

the parametric domain, without introducing triangle overlapping. We considered three basis

functions, namely the CTPS C2
a, CP C2, and Gaussian.

3D MESH MORPHING 118

Concerning the methods based on Laplacian coordinates, we aim to analyze the Classical

Laplacian coordinates technique that obey to equation (V.15) and solve it in the sense of

least squares minimization, as well as the two modified versions described in

Section V.2.5. Uniform Fix Laplacian coordinate deformation method (UFLC) and Tangential

Laplacian coordinate deformation method (TLC).

V.4.1. Deformation in 2D test cases

The first test scenarios consist of a unit square domain. An inner rectangle is included in this

domain and undergoes different translations, rotations and scaling in the 2D space. The unit

square domain is sampled uniformly in each direction into 35 points and then triangulated.

The resulting mesh is illustrated in Figure V.8.a. The test mesh has a total of 1225 grid

vertices of which 136 are boundary nodes that are constrained to remain fixed during the

deformation process.

A set of control points, corresponding to a rectangle with initial size of (3 × 6) intervals of the

sampling grid is then defined (Figure V.8.a). Various motions are associated with the test

rectangle. More precisely, we have considered the following three different cases:

• the first one concerns a simple translation of the rectangle in the plane, with 6

sampling intervals over both x and y directions (Figure V.8.b),

• the second case involves a translation combined with both a rotation of 45° and with

a scaling (with a factor √2) (Figure V.8.c),

• the third test considers a high amplitude deformation corresponding to a combined

rotation (with 90°), translation (12 intervals along the x direction and 4 interval along the y

axis) and scaling (with a factor 2) (Figure V.8.d).

Figure V.8. Test mesh and the control rectangle with the (a) initial position and ((b), (c), (d)) final

positions of rectangle corresponding to the three test cases considered.

When using the RBF deformation method, we have retained for evaluation the CTPS C2

a and

CP C2 compact basis functions, which were proved to provide the best performances in

[Boe07]. The associated support radius (parameter 𝑝𝑝) has been varied in a range from 2 to

10. In addition, we perform the mesh deformation in a variable number of steps that

119 MESH DEFORMATION FOR FEATURE ALIGNMENT

iteratively displace the control vertices from their initial position to the final location. The

number of intermediary steps ranges from 1 to 50 steps.

In the case of Laplacian techniques, it does not make sense to apply a deformation in steps

because for these methods the Laplacian matrix L and the free term δ of the system of

equations, are constructed based on the initial shape of the input mesh. If we consider a

deformation in steps an intermediary phase n will try to approximate the model obtained at a

previous step n-1 (and not the original), which translates into an error accumulation that

decreases significantly the performance of the algorithm.

Figures V.9 to Figure V.20 present the results obtained for both CTPS C2

a and CP C2 RBFs

in terms of minimum and average 𝑓𝑓𝑝𝑝𝑝𝑝 quality metric (respectively denoted by 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and,

𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝)), over the whole set of the mesh grid triangles, as function of the number of

intermediate steps used to achieve the deformation (from 1 to 50). We also report the values

of the displacement accuracy (𝑑𝑑𝑖𝑖𝑝𝑝), as well as the computational time for all three proposed

scenarios.

Figure V.9. Quality of the worst triangle of the mesh for (a) CTPS C2

a and (b) CP C2 (Case 1).

Figure V.10. The mean quality of all triangles in the mesh for (a) CTPS C2

a and (b) CP C2 (Case 1)

Figure V.11. Accuracy displacement of the control points for (a) CTPS C2

a and (b) CP C2 (Case 1).

3D MESH MORPHING 120

Figure V.12. CPU computational time for (a) CTPS C2

a and (b) CP C2 (Case 1).

Figure V.13. Quality of the worst triangle of the mesh for (a) CTPS C2

a and (b) CP C2 (Case 2).

Figure V.14. The mean quality of all triangles in the mesh for (a) CTPS C2

a and (b) CP C2 (Case 2).

Figure V.15. Accuracy displacement of the control points for (a) CTPS C2

a and (b) CP C2 (Case 2).

Figure V.16. CPU computational time for (a) CTPS C2

a and (b) CP C2 (Case 2).

121 MESH DEFORMATION FOR FEATURE ALIGNMENT

Figure V.17. Quality of the worst triangle of the mesh for (a) CTPS C2

a and (b) CP C2 (Case 3).

Figure V.18. The mean quality of all triangles in the mesh for (a) CTPS C2

a and (b) CP C2 (Case 3).

Figure V.19. Accuracy displacement of the control points for (a) CTPS C2

a and (b) CP C2 (Case 3).

Figure V.20. CPU computational time for (a) CTPS C2

a and (b) CP C2 (Case 3).

The analysis of the experimental results presented in Figure V.9 to Figure V.20 leads to the

following conclusions:

1. For all scenarios and for both RBFs (CTPS C2

a and CP C2), the parameter 𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝)

reaches its maximum value when the support radius 𝑝𝑝 is increased starting from values of

𝑝𝑝 = 8). However, excessively increasing the support radius 𝑝𝑝 (up to 10) also leads to a

greater error in terms of approximation precision (parameter 𝑑𝑑𝑖𝑖𝑝𝑝). In the context of mesh

warping, such a behavior would translate into an imprecise feature vertex alignment. Thus, a

3D MESH MORPHING 122

trade-off between mesh quality and displacement accuracy has to be determined. In our

examples, values of 𝑝𝑝 inferior to 5 seem to provide a fair compromise.

2. When more intermediary steps are used to deform the mesh, we notice that for both RBFs

the minimum value of 𝑓𝑓𝑝𝑝𝑝𝑝 is increasing. This shows the interest of considering a step-by-step

approach. However, when analyzing the average values of 𝑓𝑓𝑝𝑝𝑝𝑝 , we can observe that the

mean quality of the mesh is reducing when increasing number of steps. This can be

explained by the fact that when the rectangle is moved directly (a single step), a large part of

the original mesh remains cuasi-constant, and only a small part of triangles is distorted. On

the contrary, when the rectangle is displaced through more steps a greater area of the

original mesh is smoothly deformed since, at each step, more triangles are captured within

the radius of influence of the considered RBF. This phenomenon is illustrated in Figure V.21.

However, a larger number of steps is preferable since when performing single step

deformations the affected triangles are highly distorted (cf. values of parameter 𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝)).

Figure V.21. The influence of the number of steps on the deformed mesh.

3. In the case of a strong deformation such as the one considered in case 3, the impact of

the intermediary number of steps used for warping it is even more important because when

this parameter has a low value (one or two steps) the mesh triangles overlap.

4. If we highly increase the number of intermediate steps, we will not obtain any considerable

improvements on the overall quality. Thus, starting from a number of 10-15 steps, the results

are quite equivalent.

5. The CPU computational time is, without surprise and in all cases, linearly affected by the

number of deformation steps. Concerning the support radius 𝑝𝑝, it has a negligeable impact

on the computation times. The computation times reported here have been obtained on an

Intel Core2Duo machine at 2,13GHz and with 3GB Ram under a Windows XP SP2 platform.

Based on these considerations, we have selected for further evaluations, a value of 4 for the

support radius 𝑝𝑝. The chosen value establishes a trade-off between the mesh deformation

quality expressed through the metric 𝑓𝑓𝑝𝑝𝑝𝑝 and the accuracy displacement given by the 𝑑𝑑𝑖𝑖𝑝𝑝

parameter. Concerning the number of intermediate steps, it was set to 15. Figure V.22

123 MESH DEFORMATION FOR FEATURE ALIGNMENT

presents an example of the deformation evolution when applying the CTPS C2
a function with

the support radius 𝑝𝑝 set to 4 and the number of intermediary steps equal to 15.

Let us now compare both RBF and Laplacian deformation methods. Table V.2 summarizes

the 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) quality metric, 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝), displacement accuracy (𝑑𝑑𝑖𝑖𝑝𝑝), and computational time

for the considered warping methods in all three scenarios presented earlier. Some visual

results are presented in Figure V.23.

Figure V.22. RBF mesh deformation on steps.

After evaluating the experimental results, a first conclusion can be derived: when using the

UFLC and TLC techniques in the planar domain a mesh overlapping is produced. This is

caused by the strict conditions imposed on the control points (i.e. they should reach exactly

the final destination). The classical Laplacian method leads to a valid deformed mesh, but

with relatively high distortions (50% greater than the RBF-related distortions) and also large

values of the accuracy parameter 𝑑𝑑𝑖𝑖𝑝𝑝.

Fi

gu
re

 V
.2

3.
 V

is
ua

l a
na

ly
si

s
of

 m
es

h
de

fo
rm

at
io

n
in

 2
D

 s
pa

ce
.

125 MESH DEFORMATION FOR FEATURE ALIGNMENT

Table V.2. Mesh deformation quality analysis for 2D test cases.

Method 𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒅𝒅𝒎𝒎𝒔𝒔 Inverted
triangles

CPU
Time
(sec)

Test case 1
RBF - CTPS C2

a 0.148 0.271 6.51*10-5 0 18.9
RBF – CP C2 0.152 0.270 0.230 0 21.6
RBF – Gaussian 0.103 0.258 0.013 0 20.7
Classical Laplacian 0.091 0.366 6.030 0 0.9
UFLC 0 0.379 9.53*10-9 21 1
TLC 0 0.381 1.41*10-9 15 1.3
Test case 2
RBF - CTPS C2

a 0.091 0.271 1.13*10-5 0 19.1
RBF – CP C2 0.089 0.271 0.456 0 17.8
RBF - Gaussian 0.051 0.304 0.031 0 20.8
Classical Laplacian 0.106 0.373 14.276 0 0.9
UFLC 0 0.386 1.01*10-8 23 1
TLC 0 0.388 1.56*10-9 17 1.9
Test case 3
RBF - CTPS C2

a 0.021 0.247 8.34*10-6 0 21.1
RBF – CP C2 0.017 0.232 0.334 0 18.6
RBF - Gaussian 0 0.198 0.043 22 21.3
Classical Laplacian 0.001 0.331 20.501 0 0.8
UFLC 0 0.354 6.26*10-9 60 0.9
TLC 0 0.355 1.03*10-9 51 1.5

Concerning the radial basis functions, CTPS C2a and CP C2 return comparable results in

terms of 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝), but a higher accuracy is obtained for CTPS C2a. In this

case, the final position of the control points is reached with an error inferior to 10-4. When

warping the mesh using the RBF Gaussian function the experimental results show the

lowest values for the 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) compared to any other analysed RBF function. The results

are even more disturbing in the third scenario (high amplitude deformation) when the

method is not able to conduct to a valid deformation (triangles fold-over).

When comparing the computational times, it can be observed that the Laplacian functions

have the lowest processing requirements and in most of the cases the final result is obtained

in less than a second. This observation can be motivated by the total number of intermediary

steps involved in the deformation: for the Laplacian algorithm the displacement is made

directly while for the RBF functions we used 15 steps in order to achieve a high quality for

the deformation. As it can be noticed from Table V.2, all RBF functions are computed in

almost the same CPU time (about 20 seconds)

V.4.2. Deformation in 3D test cases

The second set of test scenarios consist of a square domain with an inner rectangle,

characterized by the same parameters as presented in Section V.4.1. that undergoes

different geometric transforms, this time in the 3D space, out of the plane where the mesh

grid is defined. Here again, we consider the following three different cases:

3D MESH MORPHING 126

• a translation in space (along the 𝑧𝑧 axis): The control rectangle is translated in the 𝑥𝑥

and 𝑦𝑦 directions by 6 units each and in the 𝑧𝑧 direction by 10 units (a unit corresponds to a

sampling interval of the considered mesh grid);

• a translation combined with a moderate rotation and scaling: here, the control

rectangle is translated in the 𝑥𝑥 direction by 7 units, 2 units in the 𝑦𝑦 direction and 10 units in

the 𝑧𝑧 direction. Furthermore, a rotation of 450 clockwise and a scaling by a factor √2 are

applied;

• a high amplitude rotation, translation and scaling: in this case, the control rectangle is

translated in the 𝑥𝑥 direction by 12 units, 4 units in the 𝑦𝑦 direction and 10 units in the

𝑧𝑧 direction. Furthermore, a rotation of 900 clockwise and a scaling of a factor 2 are applied.

We started our experiments by visually analyzing the impact of the support radius 𝑝𝑝 and the

number of intermediary steps over the mesh deformation. Figure V.24 presents some results

obtained for the CTPS C2
a function for the third test scenario. We can observe that smoother

deformation fields are obtained when increasing both the support radius and the number of

intermediate steps. In the same time, the spatial extent of the deformation field is also

increased in such cases.

Figure V.25, Figure V.26 and Table V.3 present the comparative evaluation for the

considered methods, in all scenarios proposed for the 3D space.

In terms of 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝) quality metrics the best results are obtained by the

classical Laplacian method. For example, in the first scenario, the classical Laplacian returns

a value for 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) of 0.29, which is with 13% higher than the best result acquired by a RBF

function (CP C2). Concerning the 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝) parameter, the Laplacian improves the results

with more than 10% compared with the Gaussian function which returns now the best

performances from all RBF techniques. However, as in the 2D case, the displacement

accuracy of this method is poor (with a parameter 𝑑𝑑𝑖𝑖𝑝𝑝 of one order of magnitude greater than

in the case of RBFs).

If in the 2D case, the mesh deformation techniques based on UFLC and TLC led to triangle

overlapping, in the 3D case this problem is avoided since the warping is performed in space.

In terms of (𝑓𝑓𝑝𝑝𝑝𝑝) , these methods return comparable results as the ones obtained by the

classical Laplacian, but with a 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) inferior with more than 68%.

These results can be explained by the fact that the overall structure of the mesh remains

almost unmodified, only the regions near the displaced rectangle are significantly altered. As

127 MESH DEFORMATION FOR FEATURE ALIGNMENT

it can be noticed UFLC and TLC methods have the benefit of the most accurate mesh

displacement (i.e., the rectangle is displaced exactly into the desired position).

Table V.3. Mesh deformation quality analysis for 3D test cases.

Method 𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒅𝒅𝒎𝒎𝒔𝒔 CPU Time
(sec)

Test case 1
RBF – CTPS C2

a 0.232 0.598 0.001 19.8
RBF – CP C2 0.251 0.597 0.249 19.3
RBF – Gaussian 0.135 0.605 0.010 23.1
Classical Laplacian 0.291 0.672 6.031 0.21
UFLC 0.075 0.676 5.50*10-9 0.19
TLC 0.091 0.672 1.01*10-9 0.49
Test case 2
RBF – CTPS C2

a 0.228 0.583 5.64*10-6 21.2
RBF – CP C2 0.227 0.577 0.331 18.4
RBF – Gaussian 0.127 0.544 0.020 21.1
Classical Laplacian 0.301 0.675 9.488 0.22
UFLC 0.081 0.683 5.58*10-9 0.21
TLC 0.092 0.679 1.03*10-9 0.73
Test case 3
RBF – CTPS C2

a 0.118 0.465 3.36*10-6 19.7
RBF – CP C2 0.104 0.438 0.168 19.1
RBF – Gaussian 0.064 0.426 0.012 23.8
Classical Laplacian 0.228 0.613 14.751 1.12
UFLC 0.047 0.623 4.53*10-9 0.31
TLC 0.045 0.618 8.82*10-10 0.89

If we analyze only the radial basis functions we observe that the best results, in terms of

𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝), are obtained for the CTPS C2
a function which offers also the best

displacement accuracy.

The experimental results show that RBF method (and, in particular the CTPS C2

a function)

offer a good compromise between displacement accuracy and mesh quality. We have thus

retained this method for performing warping of the parametric domain meshes.

Fi

gu
re

 V
.2

4.
 T

he
 im

pa
ct

 o
f t

he
 s

up
po

rt
ra

di
us

 r
an

d
th

e
nu

m
be

r o
f i

nt
er

m
ed

ia
te

 s
te

ps
 o

ve
r t

he
 m

es
h

de
fo

rm
at

io
n

fo
r C

TP
S

C
2 a f

un
ct

io
n

(T
es

t c
as

e
3)

.

Fi

gu
re

 V
.2

5.
 V

is
ua

l a
na

ly
si

s
of

 m
es

h
de

fo
rm

at
io

n
in

 3
D

 c
as

e
fo

r t
he

 R
BF

 fu
nc

tio
ns

: C
TP

S
C

2 a,
C

P
C

2 a
nd

 G
au

ss
ia

n.

Fi

gu
re

 V
.2

6.
 V

is
ua

l a
na

ly
si

s
of

 m
es

h
de

fo
rm

at
io

n
in

 3
D

 c
as

e
fo

r C
la

ss
ic

al
 L

ap
la

ci
an

 c
oo

rd
in

at
es

, U
FL

C
 a

nd
 T

LC
 m

et
ho

ds
.

131 MESH DEFORMATION FOR FEATURE ALIGNMENT

V.5. FEATURE ALIGNMENT BASED ON MESH WARPING

We have chosen to apply CTPS C2

a function in steps because a direct RBF implementation

would lead to a deformed mesh with the feature vertices placed at the right location, but with

the mesh surface not on the unit sphere.

The algorithm splits the distance between any feature-pair (𝑝𝑝𝑖𝑖𝐻𝐻′ ,𝑝𝑝𝑖𝑖𝑝𝑝′) proportionally with the

maximum geodesic distance between any pair and apply for each interval the RBF algorithm

that deform the meshes accordingly. Due to the movement, not all vertices may be on the

sphere anymore. We guarantee that the final embedding remains valid we propose

projecting the mesh back on the unit sphere after each intermediary step.

Additionally, in order to further reduce the distortion rate we constrain that both source and

target feature vertices to move in their middle position (𝑝𝑝𝑖𝑖𝐻𝐻′ + 𝑝𝑝𝑖𝑖𝑝𝑝′)/2.

Figure V.27 and Figure V.28 present two examples of spherical warping. Each example

contains two 3D closed models with feature vertices already specified by user, their initial

spherical mappings and their final embeddings (where pair vertices are put in

correspondence on the parametric domain).

Figure V.27. Feature vertices correspondence through spherical embeddings warping

(Hipo-Cow case).

3D MESH MORPHING 132

Figure V.28. Feature vertices correspondence through spherical embeddings

warping (Igea-ManHead case).

V.6. CONCLUSIONS

In this chapter, we have first provided an overview of the various methods of mesh

deformation. After the basic concepts were outlined we have selected for a more detailed

evaluation the radial basis function method and the Laplacian coordinates technique, which

are the most well-suited for mesh warping purposes.

In order to evaluate the capacity of RBF and Laplacian coordinates as mesh movement

strategies we employed several test cases in both 2D and 3D space and we have analyzed

the algorithms behavior in terms of deformation quality and displacement accuracy.

Regarding the radial basis functions we have demonstrated that a deformation through steps

returns better results than a direct one. The higher the number of intermediary steps the

higher quality is obtained, but with the cost of more computational resources. However, after

a number of 10 to 15 steps, the overall quality will not increase considerably.

From the six methods considered for evaluation, the Uniform Fix Laplacian coordinate

(UFLC) and Tangential Laplacian coordinate (TLC) deformation methods offers the highest

values for the 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑑𝑑𝑖𝑖𝑝𝑝 metrics when warping in the 3D space. However, the

distortions near the control points are unacceptable compared with other methods and,

moreover, in the 2D deformation scenarios, such techniques lead to fold-overs.

As a consequence, we have retained for mesh warping purposes, the CTPS C2

a RBF

method, which offers a good compromise between displacement accuracy and overall quality

of the deformed mesh.

VI. SUPERMESH CONSTRUCTION AND
INTERPOLATION

Summary: This chapter first provides an overview of the algorithms used in the state of the

art for the creation of the so-called supermesh structure. We introduce a novel method that

avoids the classical edge-to-edge intersection procedure. The supermesh is constructed with

the help of progressive subdivisions, accordingly to the topology of both source and target

input models. A short overview of the mesh interpolation techniques is also supplied. Finally,

we present our graphical user interface elaborated for mesh morphing purposes in this

thesis.

3D MESH MORPHING 134

VI.1. INTRODUCTION

Once the two input models are parameterized onto a common domain and the main features

of the objects are properly aligned, the next step required in a morphing framework is to

establish a one-to-one correspondence between the shapes to be morphed. In order to

accomplish this task, the two embeddings need to be overlapped. In addition, a new mesh

structure that can represent the connectivities of both models need to be constructed. The

resulting mesh is called supermesh or metamesh (𝐻𝐻𝑀𝑀). The main principle behind the

supermesh construction is to merge the two topologies into a single one by inserting edges

of the target model into the source structure.

The main advantage of the metamesh consists of its property of sharing both the source and

target topologies. Thus, the two model shapes can be accurately approximated by the new

mesh structure. The metamesh will represent in a morphing sequence the source model at

the first frame and the target model at the last frame. Thus, for each vertex 𝑝𝑝𝑖𝑖 of the

supermesh we must determine two positions: a first one relative to the source shape (𝑝𝑝𝑖𝑖0) and

a second one corresponding to the target shape (𝑝𝑝𝑖𝑖1). For intermediary frames, the vertices

positions of each supermesh vertex are interpolated between the initial and final states.

However, determining appropriate trajectories for connecting the initial position 𝑝𝑝𝑖𝑖0 to the final

position 𝑝𝑝𝑖𝑖1 still remains a challenging issue. The process of transforming the shape of the

source mesh into the shape of the target mesh (and vice versa), based on the established

vertex trajectories, is called mesh interpolation.

The following sections describe the various approaches of supermesh construction proposed

in the literature as well as the different mesh interpolation methods proposed.

VI.2. TOPOLOGY MERGING FOR MESH MORPHING

The concept of topology merging for mesh morphing was first introduced in [Ken92]. Let us

already note that the source and target connectivities cannot be directly merged in the

original space, since the edges are in the general case nonparallel and nonintersecting.

Instead, the process can be performed within the parametric domain, where the edges lie on

a planar or spherical surface. Therefore, the metamesh construction can be achieved by: (1)

overlapping the parameterizations; (2) performing exhaustively the edge intersection of the

two meshes. The last phase requires a local triangulation that allows obtaining the shared

triangular topology, as illustrated in Figure VI.1 for the planar parameterization case.

135 SUPERMESH CONSTRUCTION AND INTERPOLATION

Figure VI.1. Constructing the supermesh: (a) embedding of the two connectivities in the common

parametric domain; (b) Edge to edge intersection; (c) Triangulation.

The merging algorithm proposed by Kent et al. [Ken92] is based on the assumption that,

after the overlapping the parameterizations, no parametric vertices of the two models are

coincident, and no parametric vertex of one model lies on an edge on the other model. In

order to illustrate the proposed procedure, let us consider the example presented in

Figure VI.2. Here, the blue color represents source elements while the red color the target

ones.

Figure VI.2. Edge intersection algorithm of [Ken92].

Starting with an arbitrary edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝 from the target mapping (𝑝𝑝𝑝𝑝), with the endpoints 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝 and

𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝 , the triangle of the source parameterization (𝑝𝑝𝐻𝐻) in which the vertex 𝑝𝑝𝑚𝑚

𝑝𝑝𝑝𝑝 lies is first

determined, with the help of a point in triangle test. In our example, the face 𝑓𝑓1
𝑝𝑝𝐻𝐻 is thus

determined. The incident target edges to 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝 are then added to a list of edges to be

processed, called the work list. The edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 is the first one in this list. Since it is known

that 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝 lies inside the triangle 𝑓𝑓1

𝑝𝑝𝐻𝐻 , the first intersection of the edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 should be with an

edge of this face. Thus, 𝑒𝑒𝑝𝑝 ,𝑏𝑏
𝑝𝑝𝐻𝐻 , 𝑒𝑒𝑏𝑏 ,𝑐𝑐

𝑝𝑝𝐻𝐻 and 𝑒𝑒𝑐𝑐 ,𝑝𝑝
𝑝𝑝𝐻𝐻 are added to a list of candidate edges that 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝

might intersect. In the case presented in Figure VI.2, 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 intersects 𝑒𝑒𝑏𝑏 ,𝑐𝑐

𝑝𝑝𝐻𝐻 . Using the topology

of 𝑝𝑝𝐻𝐻 it can be determined that 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 crosses the triangle 𝑓𝑓2

𝑝𝑝𝐻𝐻 . Thus, 𝑒𝑒𝑏𝑏 ,𝑑𝑑
𝑝𝑝𝐻𝐻 and 𝑒𝑒𝑐𝑐 ,𝑑𝑑

𝑝𝑝𝐻𝐻 are

considered potential edges that 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 might intersect. Similarly, at the intersection of 𝑒𝑒𝑐𝑐 ,𝑑𝑑

𝑝𝑝𝐻𝐻 with

𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 , edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝 crosses the triangle 𝑓𝑓3
𝑝𝑝𝐻𝐻 and edges 𝑒𝑒𝑑𝑑 ,𝑒𝑒

𝑝𝑝𝐻𝐻 and 𝑒𝑒𝑐𝑐 ,𝑒𝑒
𝑝𝑝𝐻𝐻 are added to the candidate

list. At the intersection of 𝑒𝑒𝑑𝑑 ,𝑒𝑒
𝑝𝑝𝐻𝐻 and 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝 , edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 crosses the face 𝑓𝑓4

𝑝𝑝𝐻𝐻 . Since 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 does not

intersect either 𝑒𝑒𝑑𝑑 ,𝑓𝑓
𝑝𝑝𝐻𝐻 or 𝑒𝑒𝑒𝑒 ,𝑓𝑓

𝑝𝑝𝐻𝐻 , vertex 𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝 must lie on face 𝑓𝑓4

𝑝𝑝𝐻𝐻 . This fact is recorded and the

untreated target edges incident to 𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝 are added to the work list. The above technique is

repeated for each edge in the work list until it remains empty. At the end of the process, a

new mesh structure is obtained. However, the resulting structure will contain faces with more

3D MESH MORPHING 136

than three edges. In order to obtain a valid mesh structure, a heuristic mesh triangulation

procedure is finally applied.

Next, the algorithm establishes, using the point-in-triangle test, which triangles of 𝑝𝑝𝑝𝑝 contain

each vertex of 𝑝𝑝𝐻𝐻 . These information together with those that indicates which face of 𝑝𝑝𝐻𝐻

contains each vertex of 𝑝𝑝𝑝𝑝 are used to determine where the vertices of one model map onto

the surface of the other. This task is accomplished using the barycentric coordinates. If we

consider for example the vertex 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝 as presented in Figure VI.2, once the barycentric

coordinates 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are computed relatively to face 𝑓𝑓1
𝑝𝑝𝐻𝐻 , we can establish the position of

𝑝𝑝𝑚𝑚𝐻𝐻 on the original source model shape (𝑀𝑀𝐻𝐻) as:

𝑝𝑝𝑚𝑚𝐻𝐻 = 𝛼𝛼𝑝𝑝𝑝𝑝𝐻𝐻 + 𝛽𝛽𝑝𝑝𝑏𝑏𝐻𝐻 + 𝛾𝛾𝑝𝑝𝑐𝑐𝐻𝐻 (VI.1)
where 𝑝𝑝𝑝𝑝𝐻𝐻, 𝑝𝑝𝑏𝑏𝐻𝐻 and 𝑝𝑝𝑐𝑐𝐻𝐻 are the vertex positions on the original source surface.

The drawback of the proposed method is related to the underlying non-coincidence

hypothesis of source and target mesh vertices, which limits its applicability in practice.

In order to overcome such a limitation, Kanai et al. [Kan98] propose a slightly different

method which is able to take into account coincident vertices/edges. In order to avoid

numerical errors, the coincident vertices are first determined. The source and target

parameterizations HS and HT are then re-calculated by maintaining these vertices fixed to an

average position. The operation is iterated until no coincident vertices are generated. The

case of a vertex of one embedding lying on an edge of the other embedding is treated in a

similar manner.

After this pre-processing step, the supermesh construction is performed in a similar manner

with the one proposed in [Ken92]. In addition, in order to speed up the searching of a face

including a vertex, the authors use a spatial partitioning procedure based on a quad-tree data

structure [Fol90].

The mesh retriangulation is realized as follows: The adjacent edges to a vertex are sorted in

a counterclockwise order. If two consecutive edges 𝑒𝑒𝑖𝑖 ,𝑝𝑝 and 𝑒𝑒𝑝𝑝 ,𝑝𝑝 are not already connected by

another edge 𝑒𝑒𝑖𝑖.𝑝𝑝 , then the edge 𝑒𝑒𝑖𝑖.𝑝𝑝 is created as well as a new face 𝑓𝑓(𝑖𝑖, 𝑝𝑝,𝑝𝑝). This operation

is performed until all edges have a triangular face on both sides.

In order to solve the coincidence problem, Alexa [Ale00] proposes to use a symbolic

perturbation scheme as the one described in [Her90] which makes it possible to avoid the

cases when a vertex of one embedding lies on a vertex/edge on the other graph.

Since the method proposed by Alexa[Ale00] parameterizes the models onto the unit sphere,

the problem of edge-to-edge intersection transforms into an arc-to-arc intersection. Here, the

137 SUPERMESH CONSTRUCTION AND INTERPOLATION

edge between two points 𝑝𝑝1
𝑝𝑝 and 𝑝𝑝2

𝑝𝑝 on the sphere should be seen as the shorter arc of the

circle with radius 1 and the same center as the sphere, passing through the points. The

intersection point 𝑝𝑝𝐼𝐼𝑝𝑝 between two edges 𝑒𝑒(𝑝𝑝1
𝑝𝑝 ,𝑝𝑝2

𝑝𝑝) and 𝑒𝑒(𝑝𝑝3
𝑝𝑝 ,𝑝𝑝4

𝑝𝑝) is established using the

following equation:

𝑝𝑝𝐼𝐼𝑝𝑝 = ±(𝑝𝑝1
𝑝𝑝 × 𝑝𝑝2

𝑝𝑝) × (𝑝𝑝3
𝑝𝑝 × 𝑝𝑝4

𝑝𝑝) (VI.2)

Actually, 𝑝𝑝𝐼𝐼𝑝𝑝 specifies the two positions where the great circles defined by the two considered

edges intersect. The following system of equation has to be solved in order to determine

whether the intersections lie on both arcs:

𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝 = 𝑝𝑝1
𝑝𝑝 + 𝑝𝑝𝑝𝑝�𝑝𝑝2

𝑝𝑝 − 𝑝𝑝1
𝑝𝑝�

𝑝𝑝𝑏𝑏𝑝𝑝𝐼𝐼𝑝𝑝 = 𝑝𝑝3
𝑝𝑝 + 𝑝𝑝𝑏𝑏�𝑝𝑝4

𝑝𝑝 − 𝑝𝑝3
𝑝𝑝�

(VI.3)

where ta, tb and sa, sb are unknowns that specify if the intersection is a common point of the

two arcs. If sa, sb ϵ(0,1) and ta, tb > 0, then the two arcs intersects in 𝑝𝑝𝐼𝐼𝑝𝑝.

The rest of the supermesh construction process remains similar with the previous

approaches, only with the difference that Alexa uses a more sophisticated data structure to

represent the models, which consists of a double connected edge list.

In [Urt04], authors re-visit the reference concept of metamesh construction introduced by

Kent et al. [Ken92], and propose to improve it by taking into consideration the known vertex

positions of the 3D shapes. If the metamesh construction process starts with the source

topology, the target vertices are added progressively into the structure as well as the new

points resulted after the edge intersection. When the supermesh takes the shape of the

source model, these vertices are placed on the source faces forcing them to be flat, while

their real position should be at some distance above or below the considered face.

If we consider for example the vertex 𝑝𝑝𝑚𝑚

𝑝𝑝𝑝𝑝 as presented in Figure VI.2, once the barycentric

coordinates 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are computed relatively to face 𝑓𝑓1
𝑝𝑝𝐻𝐻 , in contrast with equation (VI.1),

the 3D coordinates of 𝑝𝑝𝑚𝑚 relatively to the original source mesh shape are computed as:

𝑝𝑝𝑚𝑚𝐻𝐻 = 𝛼𝛼(𝑝𝑝𝑝𝑝𝐻𝐻 + 𝑛𝑛𝜌𝜌1) + 𝛽𝛽(𝑝𝑝𝑏𝑏𝐻𝐻 + 𝑛𝑛𝜌𝜌2) + 𝛾𝛾(𝑝𝑝𝑐𝑐𝐻𝐻 + 𝑛𝑛𝜌𝜌3) (VI.4)
where the vertex 𝑝𝑝𝑚𝑚 lies on the source surface on the face 𝑓𝑓1

𝐻𝐻(𝑝𝑝𝑝𝑝
𝐻𝐻,𝑝𝑝𝑏𝑏𝐻𝐻 ,𝑝𝑝𝑐𝑐𝐻𝐻), 𝑛𝑛 is the vertex

normal of 𝑝𝑝𝑚𝑚 and 𝜌𝜌𝑖𝑖 (𝑖𝑖 = 1, 2, 3) is given by:

𝜌𝜌𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑝𝑝𝜑𝜑𝑖𝑖 + 𝑑𝑑𝑖𝑖�
(1 − 𝑐𝑐𝑐𝑐𝑝𝑝2𝜑𝜑𝑖𝑖)(1 − 𝑐𝑐𝑐𝑐𝑝𝑝𝜙𝜙𝑖𝑖)

1 + 𝑐𝑐𝑐𝑐𝑝𝑝𝜙𝜙𝑖𝑖
 (VI.5)

𝑐𝑐𝑐𝑐𝑝𝑝𝜙𝜙𝑖𝑖 ≅ 𝑛𝑛 ∙ 𝑛𝑛𝑖𝑖 ; 𝑐𝑐𝑐𝑐𝑝𝑝𝜑𝜑𝑖𝑖 ≅
𝑛𝑛∙𝑑𝑑𝑖𝑖
||𝑑𝑑𝑖𝑖||

 (VI.6)

where ni is the vertex normal of 𝑝𝑝𝑖𝑖𝐻𝐻 (𝑖𝑖 corresponding here to indices 𝑝𝑝, 𝑏𝑏 or 𝑐𝑐), while di is the

vector between one vertex of 𝑓𝑓1
𝐻𝐻(𝑝𝑝𝑝𝑝

𝐻𝐻 ,𝑝𝑝𝑏𝑏𝐻𝐻 ,𝑝𝑝𝑐𝑐𝐻𝐻) and the projection of the new vertex on the face.

3D MESH MORPHING 138

In [Lee03], authors introduce a new approach called SMCC (Structures of Minimal Contour

Coverage) that handles all coincident, degenerate cases with the help of a simple data

structure. The merging algorithm overlays each target edge on the source topology.

Depending on the place where the edge endpoints and the new vertices lie on the metamesh

triangles different cases of intersection are distinguished. When an edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) is

overlaid on 𝑝𝑝𝐻𝐻, this edge can be split into several line segments by the triangles 𝑓𝑓𝑝𝑝𝐻𝐻 .

This principle is illustrated in Figure VI.3, where the green dots represent vertices obtained

after the intersection. The following three cases can be encountered for the point 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 : (1)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies inside a triangle 𝑓𝑓𝑝𝑝𝐻𝐻 , (2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 coincides with another vertex 𝑝𝑝𝑝𝑝𝐻𝐻 , and (3) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

lies on an edge 𝑒𝑒𝑝𝑝𝐻𝐻 . If 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑
𝑝𝑝𝑝𝑝 is not in the same triangle as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 , then the edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝)

is split and the new intersection point becomes a new 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 . This process is repeated until

𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑
𝑝𝑝𝑝𝑝 will find on the same triangle as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 (on a vertex, on an edge or inside the same

triangle).

Figure VI.3. Edge intersection scheme labeled according to the SMCC algorithm [Lee03].

Based on this principle, 18 different cases of intersections can be identified. They are

illustrated in Figure VI.4:

 - Case 1: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and at least one

intersection point 𝑝𝑝𝐼𝐼 is obtained.

 - Case 2: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to another edge of 𝑓𝑓𝑝𝑝𝐻𝐻 and no

additional intersection points exist.

 - Case 3: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is inside of 𝑓𝑓𝑝𝑝𝐻𝐻 and no additional

intersection points exist.

 - Case 4: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and the inserted edge

𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) lies on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated.

 - Case 5: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices,

and the inserted edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) lies on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated.

 - Case 6: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices,

but the inserted edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) does not lie on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated.

139 SUPERMESH CONSTRUCTION AND INTERPOLATION

 - Case 7: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 lies on the same edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 .

 - Case 8: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and at least one

intersection point 𝑝𝑝𝐼𝐼 is obtained.

 - Case 9: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 opposite

edge and no additional intersection points exist.

 - Case 10: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is inside of 𝑓𝑓𝑝𝑝𝐻𝐻and no additional

intersection points exist.

 - Case 11: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and the

inserted edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) lies on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated.

 - Case 12: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with another

𝑓𝑓𝑝𝑝𝐻𝐻vertex.

 - Case 13: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to an adjacent

edge of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 .

 - Case 14: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and at least one intersection

point 𝑝𝑝𝐼𝐼 is obtained.

 - Case 15: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to an edge of 𝑓𝑓𝑝𝑝𝐻𝐻 and no additional

intersection points exist.

 - Case 16: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 are inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 and no additional intersection points

exist.

 - Case 17: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and the inserted edge

𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) crosses through a vertex of triangle𝑓𝑓𝑝𝑝𝐻𝐻 .

 - Case 18: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices and no

additional intersection points exist.

In the example from Figure VI.3, for each line segment of 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑
𝑝𝑝𝑝𝑝) an appropriate case

is assigned to.

Based on the three possibilities in which the starting point of an edge can be found (inside

triangle, on an edge or coincident with another vertex), three kinds of SMCC (Structures of

Minimal Contour Coverage) are defined as illustrated in Figure VI.5:

1. if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 falls on a vertex 𝑝𝑝𝑝𝑝𝐻𝐻 , its SMCC is 𝑝𝑝𝑝𝑝𝐻𝐻 ’s first ring structure on 𝑝𝑝𝐻𝐻.

2. if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 falls on an edge 𝑒𝑒𝑝𝑝𝐻𝐻 , its SMCC is a 4-sided polygon containing 𝑒𝑒𝑝𝑝𝐻𝐻 .

3. if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 falls on an triangle 𝑓𝑓𝑝𝑝𝐻𝐻 , its SMCC is the triangle 𝑓𝑓𝑝𝑝𝐻𝐻 .

3D MESH MORPHING 140

Figure VI.4. Different cases of intersection.

Figure VI.5 shows that each 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 is enclosed by its SMCC. In order to compute the

intersections, the following two parameters are determined for each edge of the SMCC:

𝑀𝑀 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝��������������������⃗ � ⋅ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻������������������⃗)

𝑁𝑁 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝��������������������⃗ � ⋅ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑖𝑖+1

𝑝𝑝𝐻𝐻�������������������⃗)
(VI.7)

where 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 and 𝑝𝑝𝑖𝑖+1

𝑝𝑝𝐻𝐻 are two adjacent vertices of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ’s SMCC.

141 SUPERMESH CONSTRUCTION AND INTERPOLATION

Figure VI.5. The three kinds of SMCC for 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 on 𝑝𝑝𝐻𝐻: (a) first ring; (b) 4-sided
polygon; (c) a triangle.

The intersection computation can be evaluated as follows:

 - If 𝑀𝑀 < 0 and 𝑁𝑁 > 0 then edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) intersects 𝑒𝑒(𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ,𝑝𝑝𝑖𝑖+1

𝑝𝑝𝐻𝐻);

 - If 𝑀𝑀 = 0 then edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) cross through vertex 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ;

 - If 𝑁𝑁 = 0 then edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝) cross through vertex 𝑝𝑝𝑖𝑖+1
𝑝𝑝𝐻𝐻 ;

 - Else another edge of the SMCC is analyzed.

Once the merging is completed, a non-triangulated planar graph is obtained. In order to

retriangulate it and obtain the final metamesh, additional edges must be inserted. This

process can be described as follows. For each vertex 𝑝𝑝𝑚𝑚 of the metamesh, the algorithm

connects the neighboring points by finding the 1-ring cycles, using the smallest interior

angles. For example, in Figure VI.6 vertex 𝑝𝑝1will be connected with 𝑝𝑝6 through a new edge

and not with 𝑝𝑝5 (or other vertices) since the angle ∠(𝑝𝑝1𝑝𝑝𝑚𝑚𝑝𝑝6) is smaller than ∠(𝑝𝑝1𝑝𝑝𝑚𝑚𝑝𝑝5).

Figure VI.6. First ring neighbors retriangulation.

A different approach that avoids to construct the supermesh using a combination of

operations between the topologies of the two models is proposed by Michikawa et al.

[Mic01]. In this case, the resulted structure that can interpolate between various object

shapes is called MIMesh (Multiresolution Interpolation Mesh). The multiresolution

interpolation mesh has a semi-regular mesh structure defined by regularly subdividing faces

from a base mesh (named base interpolation mesh). A 4-to-1 triangle split scheme is used to

subdivide a face into sub-faces. MIMesh triangles are saved in a quad-tree data structure, as

illustrated in Figure VI.7. In this structure, the base interpolation mesh triangles are stored in

the root node. Each node has links to four child nodes, and each child node stores one of

3D MESH MORPHING 142

four sub-faces. The interpolation mesh at an arbitrary subdivision level can be obtained by

traversing such a quad tree structure.

Figure VI.7. Quad-tree structure of MIMesh [Mic01].

In order to better approximate the local geometry of the models without increasing

dramatically the number of triangles, the algorithm allows to adaptively modify the number of

refinement steps through a local subdivision fitting scheme. An approximation error is defined

for each triangle by taking into account the Euclidian distance between its vertices and the

original mesh. If the approximation error exceeds a pre-established threshold, the face is split

into 4 triangles. However, such a process leads to the apparition of so-called T-vertices, at

the level of adjacent triangles with different subdivision levels (Figure VI.8). If a given triangle

includes a unique T-vertex, a re-triangulation as the one illustrated in red in Figure VI.8 is

applied. If the number of T-vertices is two, the triangulation illustrated in green is applied,

followed by a red triangulation to its neighboring triangle.

Figure VI.8. Adaptive subdivision scheme to resolve the T-vertices [Mic01].

However, since the vertices and edges of the two input models are not directly used, it is

difficult to accurately approximate both the source and target shapes with a fixed vertex set

and connectivity. Thus, in such a re-meshing based approach, a large number of subdivision

levels is required, which results in a highly complex MIMesh.

A different concept is introduced by Ahn et al [Ahn04], which creates in-between meshes

based on topology transformation. Given the two input models, their connectivities 𝑀𝑀𝐻𝐻 and

143 SUPERMESH CONSTRUCTION AND INTERPOLATION

𝑀𝑀𝑝𝑝 are first converted into some refined meshes, denoted by 𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝 , which are

described by an identical number of vertices.

The converted version (𝑀𝑀′𝐻𝐻) of the source mesh topology 𝑀𝑀𝐻𝐻 is constructed in the following

way. After the two spherical embeddings of the models 𝑝𝑝𝐻𝐻 and 𝑝𝑝𝑝𝑝 are overlaid, for each

parametric vertex 𝑝𝑝𝑝𝑝𝑝𝑝 of the target a position into a parametric face 𝑓𝑓𝑝𝑝𝐻𝐻 can be found by

projection. Then, a vertex 𝑝𝑝𝑝𝑝𝐻𝐻 is created at the mapped position and connected to the three

vertices of 𝑓𝑓𝑝𝑝𝐻𝐻 . This process is performed for all target vertices. Thus a new mesh structure

𝑀𝑀′′𝐻𝐻 which contains all the source and target vertices is obtained. Let us note that 𝑀𝑀′′𝐻𝐻 has a

different connectivity than 𝑀𝑀𝐻𝐻 or 𝑀𝑀𝑝𝑝 (Figure VI.9.b), but can adapt to the 𝑀𝑀𝐻𝐻 ’s shape.

Figure VI.9. Vertices embedding: (a) original configuration of target vertices mapped onto a source

triangle; (b) result of simple embedding; (c) enhanced result after edge swaps [Ahn04]

The edges of 𝑀𝑀′′𝐻𝐻 connecting the target vertices may differ considerably from the edges in

𝑀𝑀𝑝𝑝. In order to reduce the differences, a sequence of edge swap operations is applied to

𝑀𝑀′′𝐻𝐻. An edge 𝑒𝑒′′𝐻𝐻 of 𝑀𝑀′′𝐻𝐻 is swapped only if its endpoints are vertices belonging to the target

and the operation reduces the number of intersections between 𝑀𝑀′′𝐻𝐻 and 𝑀𝑀𝑝𝑝 on the common

embedding. After these operations, the desired converted mesh 𝑀𝑀′𝐻𝐻 is obtained. 𝑀𝑀𝑝𝑝can be

converted to 𝑀𝑀′𝑝𝑝 in the same way. Thus, 𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝 contain an identical number of vertices

equal to 𝑁𝑁𝐻𝐻 + 𝑁𝑁𝑝𝑝 − 𝑁𝑁𝐶𝐶 , where 𝑁𝑁𝐻𝐻 and 𝑁𝑁𝑝𝑝 are the number of vertices in source and target

models, while 𝑁𝑁𝐶𝐶 is the number of coincident vertices obtained after the mappings are

overlaid. 𝑀𝑀′𝐻𝐻 (resp. 𝑀𝑀′𝑝𝑝) can take the exact shape of the source (resp. target) model.

Next the idea is to construct a minimum edge swap sequence that can transform the

connectivity from 𝑀𝑀′𝐻𝐻 to 𝑀𝑀′𝑝𝑝. This task is accomplished by defining an error metric for each

edge swap operation as the shortest distance in 3D between an edge and its swapped

version. The edges with the minimum error are treated first. However, an edge 𝑒𝑒 of 𝑀𝑀′𝐻𝐻 is

swapped only if the number of intersections of 𝑒𝑒 with 𝑀𝑀′𝑝𝑝 structure decreases.

The drawback of the method comes from the fact that, during the morphing process, the

geometric transformation may not be well correlated with the topology. As a consequence,

unpleasant visual artifacts may appear. Thus, when an edge swap operation is performed, a

pop-up effect may occur if the 3D positions of the initial endpoints of the edge are very

dissimilar with the new endpoints. Figure VI.10 illustrates such a pop-up effect.

3D MESH MORPHING 144

Figure VI.10. Pop-up effect due to edge swap: (a) original mesh; (b) swapped edge

The analysis of the state of the art shows that existing approaches [Ken92], [Kan98],

[Ale00], [Urt04], [Lee03] are dealing with the supermesh construction problem by overlapping

the two maps of the models, followed by an iterative operation of edge insertion. The

metamesh obtained when merging the source and target edges includes all the source and

target vertices as well as the new additional intersection points of the edges. However, such

an approach proves to highly increase the number of mesh triangles and is very challenging

due to numerical instabilities that arise when computing intersections between source and

target edges. Thus, a method to create a supermesh characterized by a relatively small

number of vertices represents a promising direction of research that we have considered in

our work.

In the following section we introduce the proposed method that allows us to obtain a one-to-

one correspondence between the shapes of both source and target models, with the help of

an adaptive pseudo-mesh construction method.

VI.3. ADAPTIVE PSEUDO-METAMESH CONSTRUCTION

The proposed technique is able to create a so-called pseudo supermesh that avoids

performing and tracking edge intersections. In addition, our method reduces drastically the

number of vertices normally needed in a supermesh structure. We call our structure pseudo-

metamesh since it is not created in the classical manner based on edge intersection, and

also it only approximates the two source and target shapes.

We initialize first the supermesh structure with the one of the target parameterization. Then,

for each source parametric vertices we establish the supermesh triangle in which it can be

projected. In the 2D case (i.e., planar parameterization), this process can be described as

follows: Considering the source mapping overlaid on the supermesh structure initialized with

the target parameterization, we aim to establish for each source vertex, the target face in

which it lies. Considering 𝑓𝑓𝑝𝑝𝑀𝑀 a face of the metamesh in the parametric domain 𝑝𝑝𝑀𝑀

described by three vertices (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀) and 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 a parametric vertex of the source mesh,

145 SUPERMESH CONSTRUCTION AND INTERPOLATION

we can determine if 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 lies on 𝑓𝑓𝑝𝑝𝑀𝑀 by computing the areas of triangles formed by any two

vertices of 𝑓𝑓𝑝𝑝𝑀𝑀 and 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 .

The area of a triangle f(pA, pB, pC) in plane is given by the following relation:

𝐴𝐴𝑓𝑓 =
1
2

(𝑥𝑥𝐴𝐴(𝑦𝑦𝑐𝑐 − 𝑦𝑦𝐶𝐶) + 𝑥𝑥𝑐𝑐(𝑦𝑦𝐶𝐶 − 𝑦𝑦𝐴𝐴) + 𝑥𝑥𝐶𝐶(𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑐𝑐)) (VI.8)

which can be further written as:

𝐴𝐴𝑓𝑓 =
1
2 �
𝑥𝑥𝐴𝐴 𝑦𝑦𝐴𝐴 1
𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 1
𝑥𝑥𝐶𝐶 𝑦𝑦𝐶𝐶 1

� (VI.9)

Let us note that if the triangle points are specified in counter-clockwise order then the

resulting area is positive, whereas the area is negative if the points are specified in clockwise

order. This observation makes it possible to decide if a point is situated inside or outside a

triangle. Thus, considering the scenario illustrated in Figure VI.11, where the vertex 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 is

inside the triangle 𝑓𝑓𝑝𝑝𝑀𝑀 , we have the following conditions:

 - if the area of triangle (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻) is positive, then 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 must be to the left of the

edge (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀).

 - if the area of triangle (𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻) is positive, then 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 must be to the left of the

edge (𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀).

 - if the area of triangle (𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻) is positive, then 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 must be to the left of the

edge (𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀).

Figure VI.11. Point inside triangle test.

If all the above areas are positives, then the point is inside the considered triangle.

Furthermore, if one area is zero, and the other areas are positives, then 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 is on an edge,

and if two areas are zero and the other positive, then the vertex is situated on another vertex.

Otherwise, 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 is outside the considered triangle.

In the case of spherical parameterization, the problem of determining the metamesh triangle

to which a source vertex belongs becomes more complicated. Here, we employ the following

ray triangle intersection test in order to establish the location of the source vertices on the

3D MESH MORPHING 146

metamesh. We consider the starting point of the ray, the origin of the spherical domain OS,

and its direction specified by a unit vector u defined as 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻– OS. For a given triangle, et n be

the associated normal vector, and d a scalar value such that the triangle’s plane consists of

points x satisfying the following equation:

𝑛𝑛 ∙ 𝑥𝑥 = 𝑑𝑑 (VI.10)
If the triangle’s vertices are provided in a counterclockwise order, then the vector n is

considered to point in an upward direction. Values for n and d can be computed using the

following equations:

𝑛𝑛 = �𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀� × (𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀) (VI.11)

𝑑𝑑 = 𝑛𝑛 ∙ 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 (VI.12)

Let us denote by 𝑞𝑞 the point that intersects the plane defined by the triangle 𝑓𝑓𝑝𝑝𝑀𝑀 . With the

ray 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻– OS. We first test if point 𝑞𝑞 lies on the triangle plane:

𝑑𝑑 = 𝑞𝑞 ∙ 𝑛𝑛 = 𝑂𝑂𝐻𝐻 ∙ 𝑛𝑛 + 𝑝𝑝𝑢𝑢 ∙ 𝑛𝑛 (VI.13)

Solving equation (VI.13) for parameter r yields:

𝑝𝑝 =
𝑑𝑑 − 𝑂𝑂𝐻𝐻 ∙ 𝑛𝑛
𝑢𝑢 ∙ 𝑛𝑛

 (VI.14)

If this test finds that r < 0, then there is no intersection. By further analysing the sign of either

𝑢𝑢 ∙ 𝑛𝑛 or 𝑑𝑑 − 𝑂𝑂𝐻𝐻 ∙ 𝑛𝑛, we can establish whether the point 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 lies above or below the surface. In

order to determine further if the point 𝑞𝑞 is inside or outside 𝑓𝑓𝑝𝑝𝑀𝑀 we compute the barycentric

coordinates of 𝑞𝑞 with respect to the considered triangle. Thus, the position of the point 𝑞𝑞 is

expressed as a convex combination of the vertices 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 :

 𝑞𝑞 = 𝛼𝛼 ∙ 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 + 𝛽𝛽 ∙ 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 + 𝛾𝛾 ∙ 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 (VI.15)

where the weights of the convex combination α, β, γ are the barycentric coordinates. Note

that α + β + γ = 1, and α, β, γ are all non-negatives. One way to express the barycentric

coordinates is in terms of areas of the triangles formed by vertices 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 and 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 :

𝛼𝛼 =
|𝐴𝐴�∆𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 �|
|𝐴𝐴�∆𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀�|
 ; 𝛽𝛽 =

|𝐴𝐴�∆𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 ,𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 �|

|𝐴𝐴�∆𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀�|

 ; 𝛾𝛾 =
|𝐴𝐴�∆𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 �|
|𝐴𝐴�∆𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀�|
 (VI.16)

If all the barycentric coordinates α, β, γ belong to (0, 1) interval, then we can affirm that point q

lies inside triangle 𝑓𝑓𝑝𝑝𝑀𝑀 (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 ,𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 ,𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀) and in the same time the point 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 lies on the

spherical triangle 𝑓𝑓𝑝𝑝𝑀𝑀 . If the point 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 lies on some of vertices 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 ,𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 ,𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 , then one

barycentric coordinates is equal to one and the remaining to zero, whereas if only one

barycentric coordinate is null, then the vertex 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 is located on an edge.

147 SUPERMESH CONSTRUCTION AND INTERPOLATION

Once we determine the face in which a source vertex lies, we split the triangle after a 1-to-4

scheme as illustrated in Figure VI.12. The process is applied for all the source vertices until

each triangle in the target mesh includes uniquely a single source vertex.

Figure VI.12. 1-to-4 subdivision scheme.

Obviously, the obtained pseudo-metamesh does not have anymore a triangular structure

since, after a triangle subdivision the adjacent faces are not triangles anymore. Thus, a mesh

retriangulation is required. This task is performed only after all source vertices are used to

split the metamesh triangles.

The retriangulation process can be easily accomplished if we store the elements of the

metamesh structure in appropriate lists which are updated accordingly after each triangle

split. We consider 𝑉𝑉{𝑝𝑝1, … ,𝑝𝑝𝑁𝑁𝑉𝑉 } and 𝐹𝐹{𝑓𝑓1, … ,𝑓𝑓𝑁𝑁𝐹𝐹 } the metamesh list of vertices and faces

respectively, where 𝑁𝑁𝑉𝑉 and 𝑁𝑁𝐹𝐹 denote the initial numbers of vertices and faces, after the

initialization of the metamesh with the target model. For each vertex 𝑝𝑝𝑖𝑖 , the list of adjacent

faces 𝐹𝐹𝑖𝑖/𝑝𝑝𝑑𝑑𝑝𝑝 is known.

In order to illustrate the retriangulation process, let us consider the example in Figure VI.13.

The triangle 𝑓𝑓𝑝𝑝 defined by vertices 𝑝𝑝𝐴𝐴 ,𝑝𝑝𝑐𝑐 ,𝑝𝑝𝐶𝐶 (Figure VI.13.a) is split after 1-to-4 subdivision

scheme resulting three new faces 𝑓𝑓𝑁𝑁𝐹𝐹+1,𝑓𝑓𝑁𝑁𝐹𝐹+2,𝑓𝑓𝑁𝑁𝐹𝐹+3, which are added in the 𝐹𝐹 list. The most

inner triangle obtained after the subdivision process will take the place of the initial triangle in

the 𝐹𝐹 list. Also three new vertices, 𝑝𝑝𝑁𝑁𝑉𝑉+1,𝑝𝑝𝑁𝑁𝑉𝑉+2,𝑝𝑝𝑁𝑁𝑉𝑉+3, are added in the 𝑉𝑉 list.

The lists of the adjacent faces are updated as follows:

 - 𝑝𝑝𝐴𝐴 replace the adjacent face 𝑓𝑓𝑝𝑝 with 𝑓𝑓𝑁𝑁𝐹𝐹+1;

 - 𝑝𝑝𝑐𝑐 replace the adjacent face 𝑓𝑓𝑝𝑝 with 𝑓𝑓𝑁𝑁𝐹𝐹+2;

 - 𝑝𝑝𝐶𝐶 replace the adjacent face 𝑓𝑓𝑝𝑝 with 𝑓𝑓𝑁𝑁𝐹𝐹+3;

 - the new vertex 𝑝𝑝𝑁𝑁𝑉𝑉+1 add in the 𝐹𝐹𝑁𝑁𝑉𝑉+1/𝑝𝑝𝑑𝑑𝑝𝑝 list the following triangles: 𝑓𝑓𝑁𝑁𝐹𝐹+2, 𝑓𝑓𝑝𝑝 , 𝑓𝑓𝑁𝑁𝐹𝐹+3;

 - the new vertex 𝑝𝑝𝑁𝑁𝑉𝑉+2 add in the 𝐹𝐹𝑁𝑁𝑉𝑉+2/𝑝𝑝𝑑𝑑𝑝𝑝 list the following triangles: 𝑓𝑓𝑁𝑁𝐹𝐹+3, 𝑓𝑓𝑝𝑝 , 𝑓𝑓𝑁𝑁𝐹𝐹+1;

 - the new vertex 𝑝𝑝𝑁𝑁𝑉𝑉+3 add in the 𝐹𝐹𝑁𝑁𝑉𝑉+3/𝑝𝑝𝑑𝑑𝑝𝑝 list the following triangles: 𝑓𝑓𝑁𝑁𝐹𝐹+1, 𝑓𝑓𝑝𝑝 , 𝑓𝑓𝑁𝑁𝐹𝐹+2;

Note that the triangles 𝑓𝑓𝐴𝐴 ,𝑓𝑓𝑐𝑐 ,𝑓𝑓𝐶𝐶 are not added in the lists of adjacent faces of the new

vertices.

3D MESH MORPHING 148

The list of faces is traversed and the “triangles” with more than 3 vertices are detected. In

Figure VI.13, we establish, for example, that face 𝑓𝑓𝐶𝐶 is not well defined and the vertex 𝑝𝑝𝑁𝑁𝑉𝑉+3

split the edge 𝑒𝑒(𝑝𝑝𝐴𝐴 , 𝑝𝑝𝑐𝑐) in two halves. This is simple established by analyzing the lists of

faces adjacent to vertex 𝑝𝑝𝑁𝑁𝑉𝑉+3. If two vertices of a triangle have only one common adjacent

face then that face must be retriangulated. In our example, 𝑝𝑝𝐴𝐴 and 𝑝𝑝𝑐𝑐 have only the face 𝑓𝑓𝐶𝐶

adjacent. Thus, 𝑓𝑓𝐶𝐶 will be split into two triangles and the metamesh lists updated accordingly.

The two new faces are verified if should be further split.

Figure VI.13. Mesh retriangulation: (a) the pseudo-metamesh before the subdivision; (b) the pseudo-

metamesh obtained after the 1-to-4 subdivision scheme; (c) retriangulated pseudo-metamesh.

In this manner, the final retriangulated pseudo-metamesh contains only the target vertices

and the new vertices obtained by triangle split operations.

The next step aims to establish the 3D positions of these vertices relatively to both source

and target shapes. The 3D position of the new vertices relatively to the target shape can be

easily established since we know that after each split operation, the new vertices are inserted

at the middle of an existing edge. For example, in Figure VI.13, the 3D position of 𝑝𝑝𝑁𝑁𝑉𝑉+3

relatively to the target model can be computed as:

𝑝𝑝𝑁𝑁𝑉𝑉+3
𝑝𝑝 = (𝑝𝑝𝐴𝐴𝑝𝑝 + 𝑝𝑝𝑐𝑐𝑝𝑝)/2 (VI.17)

The 3D positions of all pseudo metamesh vertices relatively to the source shape can be

computed employing a point-in-triangle test as we have presented earlier in this section.

Figure VI.14 illustrates two examples of pseudo-metameshes obtained with the proposed

approach. We can observe that the mesh structure remains simple and in the proximity of

existing features the supermesh is adaptively remeshed in order to better approximate both

original models.

Table VI.1 presents the characteristics of some pseudo-metameshes in terms of number of

vertices and triangles compared with the original models. Let us note that in most of the

cases the pseudo metamesh number of vertices does not exceed the sum of the source and

target vertices, which is quite a remarkable result.

The final step required for obtaining the morphing sequence concerns the interpolation of the

geometric positions of the source and target vertices of the pseudo metamesh involved.

149 SUPERMESH CONSTRUCTION AND INTERPOLATION

Figure VI.14. Pseudo metameshes: (a) original models; (b) spherical parameterization;

(c) overlaid maps; (d) final pseudo metamesh.

Table VI.1. Pseudo metamesh characteristics.

 Model No. of
vertices

No. of
triangles No. of

vertices
No. of

triangles

Source Man 14603 29202 Pseudo
metamesh 34796 69588

Target Alien 16267 32530

Source Head1 17358 34712 Pseudo
metamesh 22467 44930

Target Head2 7896 15788

Source Dino 16996 33988 Pseudo
metamesh 31082 62080

Target Horse 19851 39698

Source Cow 11610 23216 Pseudo
metamesh 13386 26768

Target TRex 2832 5660

Source Igea 15002 30000 Pseudo
metamesh 24789 49574

Target Head1 17358 34712

3D MESH MORPHING 150

VI.4. MESH INTERPOLATION

The objective of the mesh interpolation step is to determine appropriate trajectories for each

vertex connecting the initial position 𝑝𝑝𝑖𝑖𝐻𝐻 to the final position 𝑝𝑝𝑖𝑖𝑝𝑝 in the metamesh.

Used in the majority of morphing applications [Ken92], [Kan00], [Ale00], [Ahn04], [Ath12], the

simplest way to interpolate between the initial and the final positions of a vertex is the linear

interpolation:

𝑝𝑝𝑖𝑖𝑝𝑝 = 𝑝𝑝𝑖𝑖𝐻𝐻 + 𝑝𝑝(𝑝𝑝𝑖𝑖𝑝𝑝 − 𝑝𝑝𝑖𝑖𝐻𝐻) (VI.18)

where 𝑝𝑝𝑖𝑖𝑝𝑝 is the position of the ith vertex of the metamesh at the moment of time t . 𝑝𝑝𝑖𝑖𝐻𝐻 and 𝑝𝑝𝑖𝑖𝑝𝑝

are the extreme vertex positions at the moment t = 0, and t = 1 respectively.

Due to its simplicity, we have adopted the linear interpolation approach in our work.

Figure VI.15 to Figure VI.20 illustrates some examples of metamorphosis between different

3D models obtained using our algorithm. The considered subset of objects consists of 3D

closed genus-0 manifold models with various complexities and shapes. All the models are

freely available over the Internet and are part of the Princeton and MPEG-7 databases.

Figure VI.15. Morphing between Igea and Head1 models.

Figure VI.16. Morphing between Cow and TRex models.

Figure VI.17. Morphing between Horse and Lion models.

151 SUPERMESH CONSTRUCTION AND INTERPOLATION

Figure VI.18. Morphing between Dino and Horse models.

Figure VI.19. Morphing between Armadillo and Man models.

Figure VI.20. Morphing between DinoSkeleton and Dino models.

We can observe that in the majority of cases the resulting morphing sequences ensure a

gradual and visually pleasant transition between source and target models. In addition, the

pseudo metamesh proposed is able to adapt to both source and target shapes.

However, it can be observed that are some cases when the linear interpolation leads to

some minor self-intersections in the model during the morphing sequence. This is visible

especially in Figure VI.19 where the hands of the Armadillo model are placed in an entirely

different position in space than those of the Man model.

A solution to this problem can be achieved by considering more advanced interpolation

methods. Thus, as demonstrated by Alexa in [Ale02], the linear interpolation works well for

morphing between 3D models that are similar and oriented in the same direction. For objects

with strongly different shapes the linear vertex interpolation may introduce self intersections

or some sort of collapsing, which may create disturbing visual effects.

More advanced interpolation techniques are also available, which provide smoother vertex

trajectories, but with the cost of higher computational complexity. Usually, they require some

additional information, as control vertices for the case of a Bezier interpolation or some

tangents information for a Hermite interpolation [Mic01].

3D MESH MORPHING 152

A different idea was proposed by Gregory et al. in [Gre99] where the user can specify

tangent vectors for the vertex path. The modified trajectory is then spread with some falloff to

the neighboring vertices. Defining suitable tangent vectors some cases of self-intersection

can be avoided.

Besides the methods which interpolate between corresponding vertices, there are the so

called intrinsic interpolation methods which take into account intrinsic shape parameters.

Intrinsic parameters are, e.g., edge lengths or angles between adjacent edges or faces, face

areas, etc. By interpolation of such parameters it is possible to force the angles or edges to

change monotonically without creating degenerate triangles or generate self intersections.

An example of such an intrinsic representation is the edge-angle representation proposed in

[Sun97] or the strain field interpolation proposed in [Yan07].

Finally, let us mention the prototype morphing application that allows the user to interactively

operate with 3D models and control each step of the morphing process. The intuitive

interface permits user to select the correspondent vertices in the two models or to save the

processed meshes at any time.

Figure VI.21 shows different views of the user interface layout. The left window display the

source model, while the right one displays the target object. The user has the possibility to

specify a set of corresponding feature points on both source and target models. Once the

computation of the supermesh is completed, this one is displayed on the left part.

Figure VI.21. Graphical user interface: (a) view with the input models; (b) view during mesh
simplification; (c) view during parameterization; (d) view with the final spherical embeddings.

153 SUPERMESH CONSTRUCTION AND INTERPOLATION

VI.5. CONCLUSIONS

In this chapter we have first presented the state of the art algorithms employed for the

construction of a supermesh model. Generally, the supermesh is necessary to interpolate

between the source and target shapes and is obtained in the parametric domain by

overlapping the mappings of the input models. Most of the approaches proposed in the

literature employ an edge intersection scheme between the topology of the two models.

Unfortunately, such techniques suffer from numerical instabilities especially when edge

intersections are performed in dense regions of vertices. Additionally, the number of vertices

increase drastically compared with the input models.

To overcome such limitations, we have introduced in this chapter a new method which build

a pseudo metamesh that starts with the target mesh structure and is adaptively refined such

that to better approximate both source and target model. Thus, our approach avoids the

edge-to-edge intersection process and returns mesh structures with a reduced number of

vertices, which is generally inferior the sum of source and target vertices.

The proposed pseudo metamesh has been exploited for morphing purposes, with the help of

a linear interpolation technique.

Perspectives of future work mainly concern the issue of smooth interpolation between source

and target metamesh vertex positions. More advanced techniques are here required in order

to avoid self intersection in the case of meshes with strongly different geometries.

3D MESH MORPHING 154

VII. CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed a novel framework for 3D mesh morphing capable to

interpolate between arbitrary genus-0 objects. The technique can be used as an animation

method for creation of some special effects or in the design area where two existing shapes

are combined in order to obtain new shapes.

Our method is dependent on the objects representation, but it can be easily adapted for

various types of descriptions. Based on the analysis provided in Chapter II we have decided

to focus, in this thesis, on the mesh boundary representation, since it is very widespread in

professional animation tools, easy to store, render and edit.

Chapter III presents the state of the art in both 2D and 3D morphing, highlighting the main

principles, advantages and limitations of each family of methods. The morphing framework

proposed and considered in our work is also presented here.

In Chapter IV, two different approaches are proposed in order to construct valid

parameterizations for both open 3D objects topologically equivalent to a disc and for closed

3D models with sphere-like topology.

Our first approach is a planar parameterization method, which introduces a new barycentric

mapping algorithm based on the preservation of the mesh length ratios. The experimental

results have proved the superiority of our algorithm compared with state of the art methods

by providing low distortions rates in terms of area and lengths especially for complex models.

Another major advantage of our method, concerns the bijectivity property, which holds in all

cases and ensures valid embeddings for arbitrary open and triangular 3D meshes.

A second contribution concerns a spherical parameterization method, suitable for 3D closed

two manifold models. The key point of our method concerns the Gaussian curvature criterion,

which makes it possible to iteratively detect salient mesh vertices and to locally flatten them,

until a sphere-like surface, adapted to a direct spherical parameterization is obtained. A

notable advantage concerns the bijectivity properties that guarantee for any closed 3D mesh,

a valid embedding regardless their complexity. The experimental evaluation, carried out on a

set of 3D models of various shapes and complexities, has demonstrated a significant

improvement in terms of both angle and area distortions.

155 SUPERMESH CONSTRUCTION AND INTERPOLATION

Another distinctive factor is the complete automatic nature of our planar and spherical

parameterization techniques which do not require any human intervention.

Based on the detailed analysis and evaluation of the most important mesh deformation

techniques made in Chapter V we have established that the CTPS C2
a radial basis function

represents the most suitable method for mesh warping purposes. However, we have adjust

this warping technique such that to meet the constraints related to feature alignment of

meshes defined in the parametric domain and to produce minimum mesh distortions. Our

approach allows to deform the two mesh embeddings until the feature vertices of the two

input models are put in correspondence in the parametric domain maintaining a valid

spherical mapping through the entire iterative deformation process.

Based on the previous established feature correspondence, in Chapter VI we introduced a

novel algorithm for construction of a pseudo-metamesh that avoids the complex process of

edge intersections encountered in the state-of-the-art. Additionally, the obtained mesh

structure is characterized by a small number of vertices (i.e., inferior to the sum of source

and target vertices) and is able to approximate both the source and target shapes. Finally,

the proposed pseudo metamesh has been exploited for morphing purposes, with the help of

a linear interpolation technique, which leads to the desired transformation sequence between

3D character models while preserving the necessary features.

The entire mesh morphing algorithm was integrated in an interactive application that allows

the user to control and visualize all the stages of the morphing process.

Our perspectives of future research concern different axes:

• Morphing objects with different genus is still an issue that has to be resolved. Extension to

this problem could require the modification of the entire framework;

• Interpolation of surface attributes as normals, colors, textures;

• Advanced interpolation schemes for obtaining more visually pleasing results, while

avoiding the self intersection problem during the morphing especially when the source and

target models present strongly different geometric and topological characteristics;

• Specify a fully automatic morphing method or at least minimize the required user

interaction.

3D MESH MORPHING 156

157 SUPERMESH CONSTRUCTION AND INTERPOLATION

List of publications

[1]. B. Mocanu, T. Zaharia, “A Complete Framework for 3D Mesh Morphing”, 11th ACM

SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in

Industry (VRCAI 2012) – Accepted for publication.

[2]. B. Mocanu, T. Zaharia, “A Pseudo Metamesh Approach for 3D Mesh Morphing”, IEEE

International Conference on Consumer Electronics (ICCE), Las Vegas, Nevada –

Accepted for publication.

[3]. B. Mocanu, T. Zaharia, “Direct spherical parameterization of 3D triangular meshes

using local flattening operations”, 7th International Symposium on Visual Computing,

ISVC-2011, Part I, LNCS 6938, pp. 611–622, Las Vegas, Nevada, USA, 2011 (BDI).

[4]. B. Mocanu and T. Zaharia, “Length ratio preserving parameterization of triangular 3d

meshes”, 3rd International Conference on Future Computer and Communication – ICFCC

2011, ISBN: 978-0-7918-5971-1, pp. 77-82, Iasi, Romania, 3-5 June 2011(ISI).

[5]. B. Mocanu, T. Zaharia, “Direct spherical parameterization based on surface curvature”,

Workshop on Digital Media and Digital Content Management 2011, ISBN: 978-0-7695-

4413-7, pp. 266-269, Hangzhou, Zhejiang China, May 15-16, 2011(IEEE).

3D MESH MORPHING 158

REFERENCES

[Ahn02] M. Ahn and S. Lee, "Mesh metamorphosis with topology transformations", 10th

Pacific Conference on Computer Graphics and Applications, pp. 481- 482, 2002

[Ahn04] M. Ahn, S. Lee and H. Seidel, “Connectivity transformation for mesh
metamorphosis”. In SGP ’04: Proceedings of the Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pp. 75–82, New York, USA, 2004.

[Ale00] M. Alexa, "Merging polyhedral shapes with scattered features", The Visual
Computer, vol. 16, pp. 26-37, 2000.

[Ale01] M. Alexa, “Local control for mesh morphing”, Proceedings of Shape Modeling
International, pp. 209-215, 2001.

[Ale02] M. Alexa, “Recent advances in mesh morphing”, In Computer Graphics Forum, vol.
21, no. 2, pp. 173-196, 2002.

[Ale03] M. Alexa, “Differential coordinates for local mesh morphing and deformation”, The
Visual Computer, vol. 19, no. 3, pp. 105-114, 2003.

[Ali05] Alias, “Maya 7 Documentation”. http://www.alias.com/, 2005.

[All91] R. E. Allen, "The concise Oxford dictionary of current english", Oxford, Clarendon,
1991.

[All05] P. Alliez, C. Gotsman, “Recent advances in compression of 3D meshes”, Advances
in Multiresolution for Geometric Modelling, pp. 3 -26, 2005.

[Ara95] N. Arad and D. Reisfeld, “Image Warping Using few Anchor Points and Radial
Basis Functions”. Computer Graphics Forum, vol.14, no.1, pp.23-29, 1995.

[Asi05] A. Asirvatham, E. Praun, and H. Hoppe, “Consistent spherical parameterization,”
Proceedings International Conference on Computational Science, pp.265–272,
2005.

[Ath10] T. Athanasiadis, I. Fudos, C. Nikou and V. Stamati, "Feature-based 3D morphing
based on geometrically constrained sphere mapping optimization", 25th ACM
Symposium on Applied Computing (SAC’10), Sierre, Switzerland, pp.1258-1265,
22-26 March 2010.

[Ath12] T. Athanasiadis, I. Fudos, C. Nikou, and V. Stamati, “Feature-based 3D morphing
based on geometrically constrained spherical parameterization”. Computer Aided
Geometry Description, vol. 29, pp. 2-17, January 2012.

[Bai10] Y. Bai, B. Chen, T. Feng, "Improved algorithm for constrainted delaunay
triangulation mesh generation", 2nd International Conference on Computer
Engineering and Technology (ICCET), vol.5, Chengdu, China, pp.156-160, 16-18
April 2010.

3D MESH MORPHING 160

[Bar84] A. BARR, “Global and local deformations of solid primitives”. In Computer Graphics
(Proceedings of SIGGRAPH 84), vol. 18, pp. 21-30, 1984.

[Bar07] I. Baran and J. Popovic, “Automatic rigging and animation of 3D characters”, ACM
Transaction on Graphics, vol. 26, no. 3, pp. 1-8, 2007.

[Bei92] T. Beier and S. Neely, “Feature-based image metamorphosis”, SIGGRAPH’92,
Comuter Graphics, pp. 35-42, 1992.

[Ben08] M. Ben-Chen, C. Gotsman, G. Bunin, “Conformal flattening by curvature
prescription and metric scaling”, Computer Graphics Forum, vol. 27, no. 2, pp. 449-
458, 2008.

[Bie02] H. Biermann, I. Martin, F. Bernardini, and D. Zorin, “Cut-and-paste editing of
multiresolution subdivision surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 312-
321, 2002.

[Bir04] H. Birkholz, "Shape preserving parametrization of genus 0 surfaces", In
Proceedings of the 12th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision WSCG 2004, pp. 57-64, 2004.

[Bob04] A. I. Bobenko and B. A. Springborn, "Variational principles for circle patterns and
Koebe’s theorem", Trans. Amer. Math. Soc, pp. 659–689, 2004.

[Boe07] A. Boer, M.S. Schoot and H. Bijl, “Mesh deformation based on radial basis function
interpolation”, Computers & Structures, vol. 85, pp. 784-795, 2007.

[Cao10] J. J. Cao, Z. X. Su, X. P. Liu and H. C. Bi, "Measured boundary parameterization
based on Poisson's equation", Journal of Zhejiang University Science, vol.11(3),
pp. 187-198, 2010.

[Che95] M. Chen, M. W. Jones and P. Townsend, "Methods for Volume Metamorphosis”, In
Image Processing for Broadcast and Video Production, Springer-Verlag, London,
1995.

[Che99] M. Chen, M. W. Jones and P. Townsend, "Volume distortion and morphing using
disk fields". Computers and Graphics, vol. 20(4), pp. 567-575, 1999.

[Chu97] F. R. K. Chung, “Spectral Graph Theory”, American Mathematical Society, 1997.

[Cla04] U. Clarenz, N. Litke and M. Rumpf, "Axioms and variational problems in surface
parameterization", Computer Aided Geometric Design, vol.21, pp. 727-749, 2004.

[Cor05] F. Cordier and N. Magnenat-Thalmann, “A data-driven approach for real-time
clothes simulation,” Computer Graphics Forum, pp. 173–183, 2005.

[Deg03] P. Degener, J. Meseth and R. Klein, “An Adaptable Surface Parameterization
Method”, Proceedings 12th International Meshing Roundtable IMR ’03, pp. 201-
213, 2003.

[Del34] B. Delaunay, "Sur la sphère vide", Bulletin of the Academy of Sciences of the
U.S.S.R., Classe des Sciences Mathématiques et Naturelle vol. 7, no.6, pp. 793-
800, 1934.

[Des02] M. Desbrun, M. Meyer, P. Alliez, "Intrinsic Parameterizations of Surface Meshes".
Computer Graphics Forum, vol. 21, pp. 210-218, 2002.

[Dew04] G. Dewaele, F. Devernay and R. Horaud, “Hand motion from 3d point trajectories

161 REFERENCES

and a smooth surface model”. In European Conference on Computer Vision 2004.

[Dij59] E. W. Dijkstra, "A note on two problems in connexion with graphs". Numerische
Mathematik vol. 1, pp. 269–271, 1959.

[Dom10] A. Dominitz and A. Tannenbaum, "Texture Mapping via Optimal Mass Transport",
IEEE Transactions on Visualization and Computer Graphics, vol.16(3), pp. 419-33,
May 2010.

[Dyn89] N. Dyn, “Interpolation and approximation by radial and related function”, In C.K.
Chui, L.L. Schumaker and J. D. Ward editors, Approximation Theory VI, vol. 1, pp.
211-234, Academic Press, 1989.

[Eck95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle,
"Multiresolution analysis of arbitrary meshes", Proceedings of SIGGRAPH, pp.
173–182, 1995.

[Edg03] J. Edge and S. Maddock, “Image-based talking heads using radial basis functions”,
Theory and Practice of Computer Graphics, University of Birmingham, UK, pp. 74-
79, 2003.

[Efr11] A. Efros, “Image Warping and Morphing”, CMU, Fall 2011 presentation;
http://graphics.cs.cmu.edu/courses/15-463/2011_fall/Lectures/morphing.pdf, 2011.

[Flo97] M. S. Floater, “Parametrization and smooth approximation of surface
triangulations”, Computer Aided Geometric Design, vol. 14(3), pp. 231-250, 1997.

[Flo02a] M. S. Floater and K. Hormann, "Parameterization of triangulations and unorganized
points", In A. Iske, E. Quak, M. S. Floater (Eds.), Tutorials on Multiresolution in
Geometric Modelling, Mathematics and Visualization, Springer, pp. 287–316, 2002.

[Flo02b] M. S. Floater, K. Hormann and M. Reimers, "Parameterization of manifold
triangulations", Approximation Theory X: Abstract and Classical Analysis, pp. 197-
209, 2002.

[Flo03] M. Floater, "Mean value coordinates", In Computer Aided Geometric Design,
vol.20(1), pp. 19-27, 2003.

[Flo05] M. S. Floater, K. Hormann, "Surface parameterization: a tutorial and survey", In
Advances in Multiresolution for Geometric Modelling, Springer Verlag, pp. 157–
186, 2005.

[Fol90] J. D. Foley, A van Dam, S. K. Feiner and J. F. Hughes, "Computer Graphics,
Principles and Practice", Addison-Wesley Reading, MA, ISBN: 0-201-12110-7,
1990.

[Fri05] I. Friedel, P. Schröder, M. Desbrun, “Unconstrained Spherical Parameterization”.
ACM SIGGRAPH Technical Sketches, ACM, New York, USA, 2005.

[Fuj98] K. Fujimura and M. Makarov, “Foldover-free image warping”. Graphical models and
image processing: GMIP, vol. 60(2), pp.100-111, March 1998.

[Gar97] M. Garland and P. S. Heckbert, "Surface Simplification Using Quadric Error
Metrics", In 24th Annual Conference on Computer Graphics and Interactive, pg.
209-216, 1997.

[Gar99] M. Garland, “Multiresolution Modeling: Survey & Future Opportunities”.
Eurographics '99, State of the Art Report. 1999.

3D MESH MORPHING 162

[Gil09] J. Gilbert, "Real Time Morphing Of Polyhedra", Technical report COM3010,
December 2009

[Gom99] J. Gomes, L. Darsa, B. Costa, and L. Velho, "Morphing and Warping of Graphical
Objects", Morgan Kaufmann Publichers Inc, 1999.

[Got03] C. Gotsman, X. Gu and A. Sheffer, "Fundamentals of spherical parameterization
for 3d meshes", ACM Transactions on Graphics vol. 22(3) pp. 358–363, July 2003.

[Gre96] G. Greiner and K. Hormann, “Interpolating and Approximating Scattered 3D Data
with Hierarchical Tensor Product Splines”. In: A. Le Mehaute, C. Rabut and L. L.
Schumaker, Surface Fitting and Multiresolution Methods, pp. 163–172, 1996.

[Gre98] A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston, "Feature-based
surface decomposition for correspondence and morphing between polyhedra", In
Proc. Computer Animation ’98, Philadelphia, IEEE CS Press, pp. 64–71, 1998.

[Gre99] A. Gregory, S. Andrei, C. Ming, M. Dinesh and A. Mark, “Interactive surface
decomposition for polyhedral morphing”, The Visual Computer Journal, vol. 15, pp.
453-470, 1999.

[Gu03] X. Gu , S. T. Yau, "Global conformal surface parameterization", Proceedings of the
2003 Eurographics ACM SIGGRAPH symposium on geometry processing,
Aachen, Germany, 23-25 June 2003.

[Gus00] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder, “Normal meshes”. In
Computer Graphics (Proc. SIGGRAPH2000), pp. 95–102. ACM Press, New York,
2000.

[Gus02] I. Guskov, A. Khodakovsky, P. Schröder and W. Sweldens, "Hybrid meshes:
multiresolution using regular and irregular refinement". In Proceedings Symposium
on Computational geometry, pp. 264–272, 2002.

[Hak00] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro and M. Halle,
"Conformal Surface Parameterization for Texture Mapping", IEEE Transactions on
Visualization and Computer Graphics, vol. 6, no. 2, pp. 181-189, April 2000.

[He94] T. He, S. Wang and A. Kaufman, "Wavelet-based volume morphing", In
Proceedings of IEEE Visualization’ 94, Washington, D.C., pp. 85-92, 1994.

[Her90] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms”. ACM Trans. on Graphics, vol. 9,
pp. 66-104, 1990.

[Hop93] H. Hoppe, “Mesh Optimization”, In Proceedings of ACM SIGGRAPH, pg. 19-26,
1993.

[Hor99] K. Hormann, G. Greiner and S. Campagna, "Hierarchical parametrization of
triangulated surfaces", Vision, Modeling, and Visualization, pp. 219-226, 1999.

[Hor00] K. Hormann and G. Greiner, “MIPS: An Efficient Global Parametrization Method”,
Curve and Surface Design, pp. 153-162, 2000.

[Hu08] J. Hu, X. Liu, Z. Su, X. Shi and F. Liu, "An Efficient Low Stretch Spherical
Parameterization", International Conference on Computer Science and Software
Engineering, CSSE 2008, Wuhan, China, vol. 2 Software Engineering, 12 - 14
December 2008.

163 REFERENCES

[Hug92] J. F. Hughes, "Scheduled Fourier Volume Morphing", Proc. SIGGRAPH' 92, In
Computer. Graphics, pp. 43-46, 1992.

[Ise01] M. Isenburg, S. Gumhold and C. Gotsman, "Connectivity Shapes". In Proceedings
of IEEE Visualization, San Diego, pp. 135−142, 2001.

[Jol02] I. T. Jolliffe, “Principal component analysis”, 2nd edition, Springer, New York, 2002.

[Ju05] T. Ju, S. Schaefer and J. Warren, “Mean value coordinates for closed triangular
meshes,” ACM Trans. Graph., vol. 24, no. 3, pp. 561–566, 2005.

[Kan97] Y. B. Kang, Y. J. Yu and H. G. Cho, "A New Image Warping Technique using Mesh
Patterned Textile", Proceedings of WSCG '97, Plzen, Czech, pp. 202-211, 1997.

[Kan98] T. Kanai, H. Suzuki, and F. Kimura. "Three-dimensional geometric metamorphosis
based on harmonic maps", The Visual Computer, vol. 14(4), pp. 166–176, 1998.

[Kan00] T. Kanai, H. Suzuki and F. Kimura, “Metamorphosis of Arbitrary Triangular
Meshes”, IEEE Computer Graphics and Applications, pp. 62-75, 2000

[Kan06] K. Kaneko, Y. Okada and K. Niijima, "3D Model Generation by Morphing", In
Proceedings of the international Conference on Computer Graphics, Imaging and
Visualisation, pp. 341-346, July 2006.

[Kar05] Z. Karni, C. Gotsman and S.J. Gortler, “Free-Boundary Linear Parameterization of
3D Meshes in the Presence of Constraints”, Proc. IEEE International Conference
Shape Modeling and Applications, pp. 268-277, 2005.

[Kaz03] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser and S. Rusinkiewicz, "A
Reflective Symmetry Descriptor for 3D Models", Algorithmica, vol. 38, no. 1, pp.
201-225, October 2003.

[Ken92] J. R. Kent, W. E. Carlson and R. E. Parent, "Shape transformation for polyhedral
objects", Computer Graphics, SIGGRAPH Proceedings 26, vol.2, pp. 47-54, 1992.

[Kha06] L. Kharevych, B. Springborn and P. Schröder, "Discrete conformal mappings via
circle patterns", ACM Transactions on Graphics vol. 25(2), pp. 412-438, 2006.

[Kho03] A. Khodakovsky, N. Litke and P. Schroder, "Globally smooth parameterizations
with low distortion". In SIGGRAPH 2003, pp. 350-357, 2003.

[Kon89] T. Y. Kong and A. Rosenfeld, “Digital topology: Introduction and survey”, In
Computer Vision, Graphics, and Image Processing, vol. 48, pp. 357–393, 1989.

[Knu03] P. M. Knupp, “Algebraic Mesh Quality Metrics for Unstructured Initial Meshes”,
Finite Elements in Analysis and Design, vol.39, pp. 217-241, 2003.

[Kre59] E. Kreyszig, "Differential Geometry", University of Toronto Press, Toronto, 1959.

[Lee89] E. T. Y. Lee, "Choosing nodes in parametric curve interpolation", Computer Aided
Design, vol. 6, pp. 363–370, 1989.

[Lee95] S. Lee, K. Y. Chwa, S. Y. Shin and G. Wolberg, "Image Metamorphosis Using
Snakes and Free-Form Deformations", Computer Graphics, Proc. SIGGRAPH '95,
pp. 439-448, 1995.

[Lee96] S. Y. Lee, K. Y. Chwa, J. Hahn and S. Y. Shin, "Image Morphing Using
Deformation Techniques", The Journal of Visualization and Computer Animation,
vol. 7, nr. 1, pp. 3-23, 1995.

3D MESH MORPHING 164

[Lee98] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar and D. Dobkin, "MAPS:
Multiresolution Adaptive Parameterization of Surfaces", Computer Graphics,
SIGGRAPH ’98 Proceedings, pg. 95–104, 1998.

[Lee99] A. Lee, D. Dobkin, W. Sweldens and P. Schröder, "Multiresolution Mesh
Morphing", Proceedings of SIGGRAPH 99, pp. 343-350, August 1999.

[Lee02] Y. Lee, H. Kim and S. Lee,“Mesh parameterization with a virtual boundary”, In
Computers and Graphics, pp. 677–686, 2002.

[Lee03] T.-Y. Lee and P. H. Huang, “Fast and intuitive metamorphosis of 3d polyhedral
models using SMCC mesh merging scheme”, IEEE Trans. Visualizaton Computer
Graphics, vol. 9(1), pp. 85–98, 2003.

[Lee05] H. Lee, Y. Tong and M. Desbrun, "Geodesics-Based One-to-One Parameterization
of 3D Triangle Meshes", IEEE Multimedia, vol. 12, no.1 January 2005.

[Ler95] A. Lerios, C. Garfinkle and M. Levoy, "Feature-Based Volume Metamorphosis", In
Computer Graphics Proceedings, Annual Conference Series ACM SIGGRAPH,
Los Angeles, CA, pp. 449-456, 6-11 August 1995.

[Lev02] B. Levy and N. Petitjean, “Least squares conformal maps for automatic texture
atlas generation”. In: Proceedings of SIGGRAPH, pp. 362–371, 2002.

[Li07] H. Li and R. Hartley, "Conformal spherical representation of 3D genus-zero
meshes", Pattern Recognition, vol.40, no.10, pp. 2742-2753, October 2007.

[Lie04] A. Lieutier, "Any open bounded subset of Rn has the same homotopy type than its
medial axis", Computer-Aided Design, vol. 36(11), pp. 1029–1046, 2004.

[Lin05a] C. H. Lin and T. Lee, "Metamorphosis of 3D polyhedral models using progressive
connectivity transformations", IEEE Transaction on visualization and computer
graphics, vol. 11(1), pp. 2-12, 2005

[Lin05b] C. H. Lin, T. Y. Lee, H. K. Chu, and C. Y. Yao, “Progressive mesh metamorphosis,”
Journal of Computer Animation and Virtual Worlds, vol. 16, pp. 487-498, 2005.

[Liu08] L. Liu, L. Zhang, Y. Xu, C. Gotsman and S. J. Gortler, "A Local/Global Approach to
Mesh Parameterization", Proceedings of Eurographics Symposium on Geometry
Processing, Computer Graphics Forum, Copenhagen, vol. 27(5), pp. 1495-1504,
2-4 July 2008.

[Mac96] R. MacCracken and K. I. Joy, “Free-form deformations with lattices of arbitrary
topology,” in Proceedings of ACM SIGGRAPH 96, pp. 181–188, 1996.

[Mai93] J. Maillot, H. Yahia, A. Verroust, "Interactive texture mapping", Proceedings of the
20th annual conference on Computer graphics and interactive techniques, pp. 27-
34, September 1993.

[Man99] A. P. Mangan, R. T. Whitaker, "Partitioning 3D Surface Meshes Using Watershed
Segmentation", IEEE Transactions on Visualization and Computer Graphics, vol. 5,
no. 4, pp. 308-321, 1999.

[Mey03] M. Meyer, M. Desbrun, P. Schroder, A. H. Barr, “Discrete differential-geometry
operators for triangulated 2-manifolds”. In Visualization and Mathematics III, Hege,
H.-C., Polthier, (Eds.). Springer-Verlag, Heidelberg, pp. 35–57, 2003.

[Mic01] T. Michikawa, T. Kanai, M. Fujita and H. Chiyokura, “Multiresolution interpolation

165 REFERENCES

meshes”. In 9th Pacific Conference on Computer Graphics and Applications, IEEE.
pp. 60–69. October 2001.

[Mos05] Mosek software - Constrained quadratic minimization software. Version 3.1r42.
http://www.mosek.com/.

[Nin09] S. Ningping, S. Tanaka and S. Wenling, "An Alternative Algorithm of Triangulation
of Polygons with Holes", Fifth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, pp. 202-205, 12-14 Septembre 2009.

[Nis93] T. Nishita, K.Fujii and E.Nakamae, “Metamorphosis using Bezier clipping.”, In
Proceedings of the First Pacific Conference on Computer Graphics and
Applications, pp. 162-173, Seoul, Korea, 1993.

[Pay92] B. A. Payne and A. W. Toga, "Distance Field Manipulation of Surface Models",
IEEE Computer Graphics and Applications, vol. 12(1), pp. 65-71, 1992.

[Pen55] R. Penrose, "A Generalized Inverse for Matrices". Proc. Cambridge Phil. Soc. 51,
pp. 406-413, 1955.

[Pie01] L. A. Piegl and W. Tiller, “Parametrization for surface fitting in reverse engineering”,
Computer-Aided Design, vol. 33, Issue 8, pg. 593-603, July 2001.

[Pie10] N. Pietroni, M. Tarini and P. Cignoni, "Almost isometric mesh parameterization
through abstract domains", IEEE Transactions on Visualization and Computer
Graphics, vol. 16(4), pp. 621–635, July 2010.

[Pin93] U. Pinkall and K. Polthier, "Computing discrete minimal surfaces and their
conjugates", Experiment. Mathematics, vol.2, pp. 15-36, 1993.

[Pip00] D. Piponi and G. Borshukov, “Seamless texture mapping of subdivision surfaces by
model pelting and texture blending”, In ACM SIGGRAPH 2000, pp. 471–478, 2000.

[Pra01] E. Praun, W. Sweldens and P. Schröder, "Consistent mesh parameterizations",
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pp. 179-184, August 2001.

[Pra03] E. Praun, H. Hoppe, "Spherical parametrization and remeshing", ACM
Transactions on Graphics, vol. 22, no. 3, July 2003.

[Pre94] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, “Numerical recipes in C:
the art of scientific computing”. 2nd edition, Cambridge University Press, 1994.

[Pre02] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, “Numerical Recipes in C++:
The Art of Scientific Computing”, 2nd Edition. Cambridge University Press,
Cambridge, UK, 1002pp, 2002.

[Qiu09] Y. Qiu, Y. Wang, X. Liu, and W. Mio, "Spherical representations of shape using
parametrizations with minimal distortion", Proceedings of the Sixth IEEE
international conference on symposium on biomedical imaging: from Nano to
Macro, Boston, Massachusetts, USA , pp. 674-677, June 2009.

[Rah07] M. T. Rahman, M. A. Al-Amin, J. B. Bakkre, A. R. Chowdhury, M. A. Bhuiyan, "A
novel approach of image morphing based on pixel transformation", Computer and
information technology, pp.1-5, 2007.

[Ros94] J. Rossignac and A. Kaul, "AGRELs and BIPs: Metamorphosis as A Bézier Curve
in the Space of Polyhedra", Computer Graphics Forum Eurographics, Oslo,

3D MESH MORPHING 166

Blackwell, vol. 13(3), pp. 179-184, 1994.

[Rup94a] D. Ruprecht and H. Müller, "Deformed Cross-Dissolves for Image Interpolation in
Scientific Visualization", The Journal of Visualization and Computer Animation, vol.
5, pp.167-181, 1994.

[Rup94b] D. Ruprecht, R. Nagel and H. Müller, "Spatial free form deformation with scattered
data interpolation methods”. Research Report: 539, Department of Computer
Science, University of Dortmund, Germany, 1994

[Sab05] S. Saba, I. Yavneh, C. Gotsman and A. Sheffer, "Practical spherical embedding of
manifold triangle meshes", Proceedings of the International Conference on Shape
Modeling and Applications, pp. 258-267, 13-17 June 2005.

[Sah96] P. K. Saha, B. B. Chaudhuri, "3D Digital Topology under Binary Transformation
with Applications", Computer Vision and Image Understanding, vol. 63(3), pp. 418–
429, 1996.

[San01] P.V. Sander, J. Snyder, S.J. Gortler and H. Hoppe, “Texture mapping progressive
meshes”, In Siggraph. ACM Press, pp. 409–416, 2001.

[San03] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder and H. Hoppe, "Multi-chart
geometry images", Proceedings of the 2003 Eurographics ACM SIGGRAPH
symposium on geometry processing, Aachen, Germany, 23-25 June 2003.

[Sch98] D. K. Schneider and S. Martin-Michiellot, "VRML Primer and Tutorial", TECFA,
University of Geneva, March 1998.

[Sed86] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric
models”. In Computer Graphics (Proceedings of ACM SIGGRAPH 86), vol. 20,
pp.151-160, 1986.

[Sei96] S. M. Seitz and C. R. Dyer, “View morphing”, In Proc. SIGGRAPH 96, pp. 21–30,
1996.

[Sha98] A. Shapiro and A. Tal, "Polygon realization for shape transformation", The Visual
Computer vol. 14, pp. 429-444, 1998.

[She01] A. Sheffer and E. Sturler, "Parameterization of faceted surfaces for meshing using
angle-based flattening", Engineering with Computers, vol. 17(3), pp. 326–337,
2001.

[She02a] A. Sheffer, “Spanning tree seams for reducing parameterization distortion of
triangulated surfaces,” in Shape Modelling International, pp. 61–66, 2002.

[She02b] A. Sheffer and J. Hart, “Seamster: Inconspicuous low-distortion texture seam
layout”, in IEEE Visualization, pp. 291–298, 2002.

[She03] A. Sheffer, C. Gotsman and N. Dyn, "Robust Spherical Parameterization of
Triangular Meshes", In Proceedings of 4th Israel-Korea Binational Workshop on
Computer Graphics and Geometric Modeling, Tel Aviv, pp 94-99, 2003.

[She04] A. Sheffer and V. Kraevoy, “Pyramid Coordinates for Morphing and Deformation”,
Proc. 3D Data Processing, Visualization and Transmission Conference (3DPVT),
pp. 68-75, 2004.

[She05] A. Sheffer, B. Lévy, M. Mogilnitsky and A. Bogomyakov, "ABF++: fast and robust
angle based flattening", ACM Transactions on Graphics vol.24(2), pp. 311–330,

167 REFERENCES

2005.

[Sho85] K. Shoemake, “Animating rotation with quaternion curves”. In SIGGRAPH 85
proceedings, pp. 245–254, 1985.

[Sho03] S. M. Shontz and S. A. Vavasis, "A mesh warping algorithm based on weighted
Laplacian smoothing", Proceedings of the Tenth International Meshing Roundtable,
Sandia National Laboratories, Santa Fe, pp. 147–158, 2003.

[Sin98] K. Singh and E. Fiume, “Wires: a geometric deformation technique,” in SIGGRAPH
’98: Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, pp. 405–414, 1998.

[Smi06] C. Smith, "On Vertex-Vertex Systems and Their Use in Geometric and Biological
Modelling", Ph.D. dissertation, University of Calgary, January 2006.

[Sor02] O. Sorkine, D. Cohen-Or, R. Goldenthal and D. Lischinski, “Bounded distortion
piecewise mesh parametrization”, in IEEE Visualization, pp. 355–362, 2002.

[Sor06] O. Sorkine, State-of-The-Art Report: “Laplacian Mesh Processing”, Eurographics
appeared in Computer Graphics Forum, vol. 25(4), under the title "Differential
Representations for Mesh Processing", 2006.

[Sta07] V. Stamati and I. Fudos, “A Feature-Based Approach to Re-engineering Objects of
Freeform Design by Exploiting Point Cloud Morphology”, in Proceedings of SPM
2007: ACM Symposium on Solid and Physical Modeling, Beijing China, pp. 347-
353, June 2007.

[Sun97] Y. M. Sun, W. Wang, F. Y. L. Chin, “Interpolation polyhedral models using intrinsic
shape parameters”, Journal of Visualization and Computer Animation, vol. 8, pp.
81-96, 1997.

[Sun07] L. Sungyeol, L. Haeyoung, "Parameterization of 3D Surface Patches by Straightest
Distances", International Conference on Computational Science, vol. 2, pp. 73-80,
2007.

[Sun09] H. Sun, L. Ma, "A New Triangulation Algorithm Based on the Determination of the
Polygon's Diagonals", CiSE International Conference on Computational
Intelligence and Software Engineering, pp. 1-3, 11-13 Decembre 2009.

[Tau95] G. Taubin, “A signal processing approach to fair surface design”. In Proceedings of
ACM SIGGRAPH 1995, ACM Press, pp. 351–358, 1995.

[Tur92] G. Turk, “Re-tiling polygonal surfaces”, In Edwin E. Catmull, editor, ACM Computer
Graphics (SIGGRAPH ’92 Proceedings), vol. 26, pg. 55–64, July 1992.

[Tut63] W. T. Tutte, "How to draw a graph", Proceedings on the London Mathematical
Society, vol. 3(13), pp. 743-768, 1963.

[Urt04] R. Urtasun, M. Salzmann and P. Fua, "3D Morphing without user interaction",
EPFL Technical report 2004.

[Van92] H. A. Van der Vorst, “BI-CGSTAB: A fast and smoothly converging variant of BI-CG
for the solution of nonsymmetric linear systems”. SIAM J Scientific and Statistical
Computing, vol. 13, pp. 631–644, 1992.

[Wac06] A. Wachter and L. T. Biegler, “On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming”, Mathematical

3D MESH MORPHING 168

Programming vol.106, pp. 25–57, 2006.

[Wei10] E. W. Weisstein, "Genus", From MathWorld - A Wolfram Web Resource retrieved
august 2010 from http://mathworld.wolfram.com/Genus.html

[Wol90] G. Wolberg, “Digital image warping”. IEEE Computer Society Press, Los Alamitos,
California, ISBN 0-8186-8944-7, 1990.

[Wol98] G. Wolberg, "Image Morphing: A Survey", Visual Computer, vol. 14, pp. 360-372,
1998.

[Wu05] Y. Wu, Y. He and H. Tian, "Relaxation of spherical parameterization meshes", The
Visual Computer vol.21(11), pp. 897-904, 2005.

[Wu07] H.Y. Wu, C. Pan, Q. Yang, and S. Ma, “Consistent correspondence between
arbitrary manifold surfaces”. In ICCV, pp. 1–8, 2007.

[Yan07] H. Yan, S. Hu and R. R. Martin, "3D morphing using strain field interpolation",
presented at J. Computer Science Technology, pp.147-155, 2007.

[Yan08] Y. L. Yang, J. Kim, F. Luo, S. M. Hu and X. Gu, “Optimal surface parameterization
using inverse curvature map”, IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 5, pp. 1054–1066, 2008.

[Yan08b] H. B. Yan, S. Hu, R. R. Martin, Y. L. Yang, "Shape Deformation Using a Skeleton
to Drive Simplex Transformations", IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 3, pp. 693-706, May-June 2008.

[Yos04] S.Yoshizawa, A. G. Belyaev and H.P. Seidel, “A fast and simple stretch minimizing
mesh parameterization”, International Conference on Shape Modeling and
Applications, Genova, Italy, pp. 200–208, June 2004.

[Yu03] J. B. Yu, J. H. Chuang, "Consistent mesh parameterizations and its application in
mesh morphing", Proc. Computer Graphics Workshop, Hualian, 2003.

[Zay06] R. Zayer, C. Rössl and H. P. Seidel, "Curvilinear Spherical Parameterization,"
Proceedings International Conference Shape Modeling and Applications SMI '06,
pp. 57-64, 2006.

[Zel02] S. Zelinka and M. Garland, “Permission grids: practical, error bounded
simplification”, ACM Transactions on Graphics, vol.21(2), pg. 1–25, April 2002.

[Zha05] E. Zhang, K. Mischaikow and G. Turk, “Feature-based surface parameterization
and texture mapping”, In ACM Transactions on Graphics, vol. 24(1), pp. 1–27,
2005.

[Zhu09] Z. J. Zhu and M. Y. Pang, “Morphing 3D Mesh Models Based on Spherical
Parameterization”, International Conference on Multimedia Information Networking
and Security, pp. 309–313, 2009.

[Zor97] D. Zorin, P. Schroder and W. Sweldens, “Interactive multiresolution mesh editing”.
In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pp. 259–268, New York, USA, 1997.

[Zxu09] Z. Xu and G. Xu, “Discrete schemes for Gaussian curvature and their
convergence”. Computers & Mathematics with Applications, vol. 57, pp. 1187-
1195, April 2009.

 Abstract

Morphing methods are today extensively used in computer graphics to simulate the

transformation between two completely different objects or to create new shapes by a

combination of other existing shapes. It has a variety of applications ranging from special

effects in film industry and other visual arts to medical imaging and scientific purposes.

This Ph.D. thesis specifically deals with the issue of metamorphosis of 3D objects

represented as 3D triangular meshes. The objective is to elaborate a complete 3D mesh

morphing methodology which can ensure high quality transition sequences, smooth and

gradual, consistent with respect to both geometry and topology, and visually pleasant. The

various steps involved in the transformation process are developed within this thesis.

Our first contributions concern the two different approaches of parameterization: (1) a new

barycentric mapping algorithm based on the preservation of the mesh length ratios, and (2)

a spherical parameterization technique, exploiting a Gaussian curvature criterion. The

experimental evaluation, carried out on 3D models of various shapes, demonstrated a

considerably improvement in terms of mesh distortion for both methods.

In order to align the features of the two input models, we have considered a warping

technique based on the CTPS C2
a radial basis function suitable to deform the models

embeddings in the parametric domain maintaining a valid mapping through the entire

movement process. We show how this technique has to be adapted in order to warp

meshes specified in the parametric domains.

A final contribution consists of a novel algorithm for constructing a pseudo-metamesh that

avoids the complex process of edge intersections encountered in the state-of-the-art. The

obtained mesh structure is characterized by a small number of vertices and it is able to

approximate both the source and target shapes.

The entire mesh morphing framework has been integrated in an interactive application that

allows the user to control and visualize all the stages of the morphing process.

