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I.  INTRODUCTION 
 
 
 
When investigating nature we can observe that living creatures are able to change their 

shape over time in a smooth and gradual manner. Plants or animals are growing gradually. 

The growth process is a highly complex mechanism that generates internal forces which 

constrain organisms to modify their shape and appearance. Starting from a simple seed, a 

plant can grow in a complete tree, with stem, branches and leaves. Such evolutions and 

changes that occur in the natural world have attracted the attention of a significant number of 

computer science researchers who have tried over time to simulate such phenomena by 

computer, creating different animation techniques for shape transformation of artificial 

objects. Such techniques are called morphing or metamorphosis. The word metamorphosis 

has its origins in the Greek metamorphoum (meta – involving changes and morphoum – 

form), the common meaning of the word being - “a change in form or nature”. 

 
Morphing methods are today extensively used in computer graphics to simulate the 

transformation between two completely different objects or to create new shapes by a 

combination of other existing shapes. It has a variety of applications ranging from special 

effects in film industry and other visual arts to medical imaging and scientific purposes. 

 
The problem of constructing a smooth transition between two objects has been first 

addressed in the 2D case [Sho03], [Rah07]. Image morphing or 2D morphing consists in the 

construction of an image sequence representing the gradual transition between a source and 

a target image. Such techniques can be applied either to whole image or to some specific 

objects corresponding to regions of interest. 

 
As prominent application domains that take advantage of such morphing methods, let us 

mention those related to cinema/television industry and notably the creation of special 

effects. Probably, the most popular example is the well known “Black or White” video clip 

produced by Michal Jackson in the early 1990’s, where such techniques where specifically 

applied on 2D images of human faces. 

 
However, 2D morphing techniques present some limitations. Most often, 2D images/objects 

represent projections of 3D scenes/objects. As a consequence, the intermediate stages of 
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the 2D morphing process may not correspond to the morphing of a real 3D scene, which 

might leads to visually poor results. 

 
Moreover, 3D object representations permit to generate animation sequences which are 

independent of the point of view. The user has in this case the flexibility to control the camera 

position, such that the morphing sequence can be observed from arbitrary points of view. 

 
Elaborating advanced and efficient 3D morphing methods can have a strong economical 

impact on the graphics industry, specifically within the framework of content/special effects 

production. 

 
This thesis specifically deals with the issue of metamorphosis of 3D objects represented as 

3D meshes. The objective is to elaborate a complete 3D mesh morphing methodology able 

to ensure high quality transition sequences, which should be as smooth and gradual as 

possible, consistent with respect to both geometry and topology, and visually pleasant. From 

a methodological point of view, the main difficulty that has to be addressed and solved 

relates to the topological aspects. Thus, existing 2D image morphing methods cannot be 

extended in a straightforward manner to 3D meshes. 2D images are defined on a fixed and 

regular topology, represented as rectangular lattice of pixels. Extending such methods to 3D 

meshes of arbitrary and most often highly irregular connectivity, is still a challenge. 

 
The remainder of this manuscript is organized as follows. Chapter II sets the context for 

morphing animation and recalls some relevant concepts related to 3D virtual environments 

and representations. We introduce here the background definitions and terminologies used in 

computer graphics and related to our work.  

 
Chapter III presents the state-of-the-art in the field of morphing algorithms. We start 

analyzing the techniques proposed in the 2D morphing fields, since in this case methods 

have reached a mature stage and are currently extensively used in commercial applications. 

Next, the most representative and recent methods of 3D morphing are described and 

analyzed in terms of advantages and limitations.  

 
Chapter IV first provides an overview of mesh parameterization techniques. Mesh 

parameterization represents a phase of outmost importance in any 3D mesh morphing 

approach. After reviewing the state of the art, we introduce here two different approaches 

which are able to construct valid parameterizations either for models with a disk topology or 

for closed objects topologically equivalent with a sphere. Our first approach represents an 

enhanced 3D object planar parameterization method introducing a new barycentric mapping 

algorithm based on the length ratio preservation. The second proposed approach represents 
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a spherical parameterization method which exploits the Gaussian curvature associated to the 

mesh vertices. 

 
Chapter V covers the issue of feature alignment between the two models considered in the 

morphing process. The problem is solved in the parametric domain with the help of mesh 

warping techniques. However, not all existing deformation techniques are well suited for our 

purpose. Thus, we propose first an evaluation of the main warping algorithms encountered in 

the literature and we retain the one that meet the constraints related to feature alignment of 

meshes defined in the parametric domain and which lead to a minimum mesh distortion. 

 
In Chapter VI we introduce a new method which build a pseudo metamesh that starts with 

the target mesh structure and is adaptively refined such that to better approximate both 

source and target models. Our approach avoids tracking the edge intersections between the 

mesh mappings of the two models and reduces drastically the number of vertices normally 

needed in a supermesh structure. Finally, the obtained pseudo metamesh is exploited for 

morphing purposes, with the help of a linear interpolation technique. Several examples of 

morphing between 3D objects with different characteristics are provided. Chapter VI provides 

also a representation of the integrated morphing system, that allows the user to control and 

visualize all the stages of the morphing process described in this thesis. 

 
Finally, Chapter VII concludes our work, summarizing the main contributions proposed, and 

opening some perspectives of future work. 
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II.  3D MODEL REPRESENTATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
Summary: This chapter briefly recalls background definitions and terminologies related to 

the 3D virtual environments, together with some popular methods exploited for model 

representation and different file formats used to store such complex data. 
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II.1.  THE 3D VIRTUAL WORLD 
 
A 3D model is the abstract representation of an object, including structures, attributes, 

variation laws and relationships among components. A 3D model represents a 3D object 

using a collection of points in the 3D space, connected by various geometric entities such as 

triangles, lines, curved surfaces...  

 
An example is presented in Figure II.1. Being a collection of data (points and other 

information), 3D models can be created by hand, algorithmically (procedural modeling), or 

scanned. 

 
Figure II.1. 3D Model. 

 
Bringing the objects from the real world into a virtual reality environment has always been an 

interesting task in a wide variety of fields. Nowadays 3D model representations are used for 

specific activities in different areas like: 

 - in the medical industries in order to construct to detailed models of organs; 

 - in the movie industry, where objects are animated in such a manner to simulate the real 

world; 

 - in the video gaming industries, where 3D models are used as assets for computer 

games; 

 - in the scientific sector, for various simulation purposes; 

 - in the architecture industries, where they are needed to illustrate proposed buildings and 

landscapes; 

 - in CAD, in order to constructs new devices, vehicles and structures based on predefined 

models. 

 
Until recent years, the quality of 3D models was limited by the hardware and software 

capabilities. Today, the general public can easily visualize and manipulate complex models. 

Moreover, modern scanning technologies make it possible to generate accurate 3D models 

of real-life objects.  



7  3D MODEL REPRESENTATIONS 

 

The virtual environments enable the user’s interaction with the models. He can rotate, scale, 

deform, edit and observe the models under different lighting conditions, change their 

appearance (color, material, etc.), and observe the interaction with another models in the 

environment. Also, 3D modelers can export their models to files, which can be afterwards 

imported into other applications. 

 
In all cases, a 3D Cartesian coordinate system (Oxyz) is needed in order to specify the 

location of the objects in space (Figure II.2). 

 
Figure II.2. Cartesian coordinate system: (a) with the x-axis pointing toward the viewer, (b) with the z 

axis pointing toward the viewer (used in computer graphics) 
 
It is important to note that the coordinates axes used in computer graphics do form a right 

handed coordinate system. In particular, this means that the right-hand rule applies to cross 

products of vectors in IR3.  

 
In practice, different coordinate systems are used. Most often, the following three common 

coordinate spaces are encountered in the computer graphics field (Figure II.3): 

 
Figure II.3. World space, model space and camera space 

 
- Local space (or model space) – is the coordinate system in which an object is defined 

without regard to its position, size or orientation in relation to other objects in the world. Once 
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the 3D model defined in the local space, it can be inserted in a global scene, by specifying 

the origin and axes of the local space coordinate system relative to the global scene. 

 
- The world coordinate system (or world space) defines the locations of all geometric 

objects as they exist at rendering time, with all applicable transforms acting on them. The 

world coordinate system can be seen as a global reference system for all others coordinate 

systems. 

  
- The camera space is a coordinate system defined relative to a virtual camera or eye 

that is located in world space. 

 
Whatever the considered space, the 3D objects can be represented in various manners. In 

particular, we distinguish the following two main families of modeling approaches: 

- Boundary representations – an object is represented by a set of surfaces (named 

also faces) that separate its interior from the rest of the environment. These faces are 

regions or subsets of closed and orientable surfaces. Each face is bounded by edges and 

each edge is delimited by two vertices. A boundary representation is essentially a local 

representation connecting faces, edges and vertices. 

- Solid representations – This type of representation gives a complete and 

unambiguous definition of an object, describing not only the shape of the boundaries but also 

the object’s interior and exterior regions. 

 
In our work, we have considered solely boundary representations, and notably 3D mesh 

models, which are recalled in the following section.  

 
 

II.2.  3D MESH REPRESENTATIONS 
 
Polygonal 3D meshes have become the most popular object representation technique with a 

long history in computer vision. This increase in popularity is due to several factors including 

advances in computer storage capacity and processing power and the development of dense 

range sensors, which produce rectangular arrays of 3D points that can easily be transformed 

into meshes. Meshes can faithfully approximate complex free-form objects up to any desired 

accuracy, given sufficient space to store the representation. 

 
A polygon mesh is a collection of vertices (points in 3D space), edges and faces that defines 

the shape of a polyhedral object in 3D computer graphics. The faces usually consist of 

triangles, quadrilaterals or other simple convex polygons, because this simplifies the 

rendering process, but may also be composed of more general concave polygons. In this 
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work, we deal only with triangular meshes since this is the most widespread mesh 

representation. An example of a triangular surface model is illustrated in Figure II.4. 

 
A valid mesh structure does not contain any isolated vertices or edges. In other words, all 

vertices and edges are parts of triangles. Let us recall the mesh definition according to 

[Gar99]. A polygonal surface model 𝑀𝑀(𝑉𝑉,𝐸𝐸,𝐹𝐹) is a triplet containing a set of vertices 𝑉𝑉, a set 

of edges 𝐸𝐸 and a set of triangles 𝐹𝐹. The vertex list 𝑉𝑉 = 𝑉𝑉(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁𝑉𝑉 ) includes a number of 

𝑁𝑁𝑉𝑉  elements in the form of a column vector which represent every vertex 𝑝𝑝𝑖𝑖 = [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖]𝑝𝑝. An 

edge 𝑒𝑒𝑝𝑝 = 𝑒𝑒𝑝𝑝(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑝𝑝 ), from the edge list 𝐸𝐸 = 𝐸𝐸(𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑁𝑁𝐸𝐸 ) of 𝑁𝑁𝐸𝐸  elements, is defined by the 

two end points 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑝𝑝 . The face list 𝐹𝐹 = 𝐹𝐹(𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑁𝑁𝐹𝐹 ) contains 𝑁𝑁𝐹𝐹  triangles, each one 

defined as an ordered list of three vertices identifying the corners, 𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑚𝑚 (𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑝𝑝).    

 
Figure II.4. 3D model represented as a triangular mesh.  

 
The above definition of a polygonal model corresponds to a form of simplicial complex. In our 

case, a simplex 𝜎𝜎 is either a vertex (or 0-simplex), a line segment (1-simplex), or a triangle 

(2-simplex). In general, a 𝑝𝑝-simplex 𝜎𝜎𝑝𝑝  is the smallest closed convex set (i.e., the convex 

hull) defined by 𝑝𝑝 + 1 linearly independent points 𝜎𝜎𝑝𝑝 = 𝑝𝑝0𝑝𝑝1 … 𝑝𝑝𝑝𝑝  which are called its vertices. 

We can express any point 𝑝𝑝 within this set as a convex combination of the vertices 𝑝𝑝 =

∑ 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖  where ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 and 𝑝𝑝𝑖𝑖 ∈ [0,1]. Any simplex defined by a subset of the points 𝑝𝑝0𝑝𝑝1 …𝑝𝑝𝑝𝑝  

is a subsimplex of the simplex 𝜎𝜎𝑝𝑝 . A 2D simplicial complex 𝐾𝐾 is a collection of vertices, edges 

and triangles satisfying the conditions: 

 - If 𝜎𝜎𝑖𝑖 , 𝜎𝜎𝑝𝑝  ∈ 𝐾𝐾, then they are either disjoint or intersect only at a common subsimplex. 

Specifically, two edges can only intersect at a common vertex and two faces can only 

intersect at a shared edge or vertex. 

 - If 𝜎𝜎𝑖𝑖  ∈ 𝐾𝐾 , then all of its subsimplices are in 𝐾𝐾. For instance, if a triangle 𝑓𝑓 is in 𝐾𝐾, 

then its vertices and edges must also be in 𝐾𝐾.  

 
In practice, a 3D mesh can be completely defined only by the list of vertices and the list of 

triangles. The third set, the list of edges, can be obtained implicitly from the first two sets. 

This method to describe a 3D model is called face-vertex mesh representation. An example 

of a mesh stored in the face-vertex form is presented in Figure II.5. 
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Figure II.5. Face - vertex meshes representation. 

 

II.2.1. Definitions and terminology 
 

In this section we review some of the most commonly terms used and in the 3D morphing 

field. Let us first to mention that in the following chapters only triangular 3D meshes will be 

considered. This is without loss of generality, since any polygonal mesh can be converted 

into a triangular one with the help of a triangulation method ([Bai10], [Sun09], [Nin09]). 

 
II.2.1.1. Geometry and topology 

 

Positions in the Euclidian space of all vertices 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) denote the mesh geometry, and 

the way how such vertices are inter-connected by edges and faces indicate its topology.  

 
Actually, the term topology has two meanings, which can be distinguished by the context in 

which they are used. The first meaning, from traditional mathematics, refers to the local 

neighborhood properties of the surface of an object. This can lead to global topological 

characteristics, such as numbers of holes and connected components. For morphing 

purposes, it is important to divide the considered 3D surfaces into classes of topologically 

equivalent objects since within a given class, two different objects can be homeomorphically 

mapped into each other. (cf. Section II.2.1.2)  

 
The second meaning of the term topology, popular in the computer graphics literature, refers 

to the vertex/edge/face connectivity of an object. Objects that are equivalent in this form of 

topology are identical except for the x-, y-, z-positions of their vertices (i.e., the geometry of 

the object). 

 

II.2.1.2. Homeomorphism 
 

A homeomorphism can be defined as a bijective mapping h: A→B between the surfaces of 

two models A and B that is continuous and with the inverse function also continuous. If such 



11  3D MODEL REPRESENTATIONS 

 

a mapping exists, we say that models A and B are homeomorphic, or topologically 

equivalent. 

 
In Figure II.6 a number of models with various topologies are presented. Only the meshes 

from Figure II.6.a and Figure II.6.e are topologically equivalent. The rest ones are not 

homeomorphic to each other, since a continuous mapping between them cannot be 

determined. We say that model from Figure II.6.e is topologically equivalent to the unit 

sphere.  Also, in Figure II.6.f we have an object topologically equivalent with the unit disk or 

the unit square. 

 
In the rest of this thesis we will operate only with objects homeomorphic to either sphere or 

disk. We denote the surface of the unit sphere by S0 and we define it as: 

𝐻𝐻0 = �𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3|�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1� (II.1) 

Also, we denote the unit disk with D0 and we define it as: 

𝐷𝐷0 = {𝜑𝜑(𝑢𝑢, 𝑣𝑣) ∈ ℝ2|�𝑢𝑢2 + 𝑣𝑣2 = 1 (II.2) 

 
Figure II.6. 3D models with various topologies. 

 

II.2.1.3. Two manifold meshes 
 

In order to introduce the concept of two manifold mesh, we have to define first some other 

terms used in 3D graphics field. We note by deg(pi), the degree or the valence of a vertex, 

which is the number of edges incident to the considered vertex. Next, we can define the star 

of the vertex pi, denoted by star(pi), as the submesh which is composed of all the faces 

containing pi (i.e., the set of all points adjacent to pi). The star is also called the 1-ring of the 

vertex pi. 

 
A triangular model is two manifold if the star of any vertex is homeomorphic to a closed disk 

or a half-disk (at the boundary). This results in three important consequences. First, any 

edge is incident to at most one or two faces. Second, the triangles incident to a vertex form a 

closed or an open fan as illustrated in Figure II.7. 

 
Third, the degree of any interior vertex pi is equal with the number of faces sharing pi. At the 

boundary, deg(pi) is equal with the number of triangles incident to vertex pi plus one. In 

Figure II.8 we present some cases of non-manifold meshes. 
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Figure II.7. Two manifold meshes: (a) closed fan; (b) open fan. 

 

 
Figure II.8. Non manifold meshes.  

 

II.2.1.4. Orientable meshes 
 

The orientation of a face f is established by the sequence of its vertices. Let pi, pj and pk be 

the vertices of a triangle. Although faces f(pi, pj, pk) and f’(pi, pk, pj) coincide in the Euclidian 

space IR3, they have different orientations.  

 
In order to illustrate the concept of orientable meshes, let us consider the example in 

Figure II.9. We can observe that each face can have two orientations depending on the order 

in which the vertices are specified. A clockwise or an anticlockwise order in which the 

vertices are listed defines the directions of the corresponding normal vectors (applying the 

right hand rule). We say that the orientation of two adjacent triangles is compatible, if the two 

vertices of the common edge are specified in opposite order. Then, we can define an 

orientable mesh as a manifold mesh with compatible orientation for any two adjacent faces. 

 
Figure II.9.a illustrates the concept of orientable mesh where the common edge e(pi, pk) is 

traversed in opposite directions in the two neighbor faces, while Figure II.9.b shows a non-

orientable mesh where the common edge e(pi, pk) is traversed in the same sense.  

 

 
Figure II.9. The concept of orientable mesh: (a) orientable mesh; (b) non orientable mesh. 
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If a mesh has at least two triangles with different orientations, the mesh is considered non-

orientable. In our work, we will consider only manifold and orientable meshes. 

 

II.2.1.5. Closed and open meshes 
 

An edge belonging to a single triangle of the mesh is called a border edge. Border faces are 

defined as triangles including at least a single border edge. A non border-edge belongs to 

two different triangles and is called an internal edge. Two faces are said to be e-neighbor 

faces if they share at least a common edge. A sub-set of mesh faces is connected if between 

each two component faces can be found a path of successive e-neighbor faces.  

 
A connected mesh is said to be closed if any component edge share exactly two triangles, 

i.e. it not contains any border edge. The typical example of a closed mesh is a triangle mesh 

that tessellates a sphere (Figure II.6.a). It can be verified if a model is closed or not using the 

Euler formula (cf. Section II.2.1.6). If a mesh is not closed, it is said to be an open mesh 

(Figure II.6.f). For an open model, the set of border edges is referred to as the boundary of 

the mesh. 

 

II.2.1.6. Genus of a surface and Euler formula 
 

The concept of genus is introduced to define the type of topology for a surface. Surfaces of 

the same genus are topologically equivalent (homeomorphic) to each other. Intuitively, the 

genus of a model can be interpreted as the number of holes of the given object. More 

rigorously, the genus of a surface is defined as the largest number of non-intersecting simple 

closed curves that can be drawn on the surface without separating it [Wei10] in multiple 

connected components. The genus of a sphere is zero since no such curves can be drawn 

on its surface without separating it. The genus of a torus is 1 since one, and no more than 

one, such curves can be drawn on its surface without separating it. The models presented in 

Figure II.6.a, b, c and d are of genus 0, 1, 2 and 3 respectively. 

 
In the middle of the 18th century, Euler discovered a mathematical relation between faces, 

edges and vertices of a simple polyhedron. The Euler’s formula can be expressed as: 

𝑉𝑉 − 𝐸𝐸 + 𝐹𝐹 = 2 (II.3) 

where V denotes the number of vertices, E the number of edges and F the number of faces 

of a closed polyhedron.  

 
Considering a triangular mesh with V vertices, E edges and F faces, we observe that every 

face has 3 edges and every edge is shared by two faces thus it follows that: 
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𝐸𝐸 =
3
2
𝐹𝐹 (II.4) 

Combining the Euler formula (II.3) with equation (II.4) and knowing the number of vertices, 

we may determine the number of faces and edges in a mesh: 

𝐹𝐹 = 2(𝑉𝑉 − 2), (II.5) 

𝐸𝐸 = 3(𝑉𝑉 − 2) (II.6) 

Relation (II.3) is only valid for closed, manifold, genus 0 meshes, but can be generalized also 

for meshes with a boundary: 

𝑉𝑉 − 𝐸𝐸 + (𝐹𝐹 + 1) = 2, (II.7) 

or for meshes with an arbitrary genus: 

𝑉𝑉 − 𝐸𝐸 + 𝐹𝐹 = 2(1 − 𝐺𝐺), (II.8) 

where G is the genus of the mesh. 
 

II.2.2. File formats for mesh storage 
 

A big amount of specification file formats have been provided in order to store and exchange 

3D meshes. Let us recall some popular examples of such 3D storage formats:   

• The 3D Object File Format (OFF - developed in 1986 at Digital Equipment Corporation's 

Workstation Systems Engineering) for the interchange and archiving of 3D objects. OFF is 

an ASCII-based format and is independent of languages, devices, and operating systems.   

• The Wavefront Object Format (OBJ - a geometry definition file format first developed by 

Wavefront Technologies for its Advanced Visualizer animation package),  

• The Stanford University’s PoLYgon format (PLY),  

• The 3D Studio Max format (3DS - Used by the AutoDesk 3D-Studio and 3D-Studio MAX 

commercial modeling, rendering and animation package on the PC),  

• The SMF(Simple Model Format - which is a subset of the Wavefront OBJ file format)  

• The Virtual Reality Modeling Language (VRML), which became an ISO international 

standard. 

 
Their storage strategies are very similar, based on the face–vertex mesh representation 

method. First, the vertices positions in the 3D space (sample points with (x, y, z) coordinates) 

are presented in an unorganized way consisting on the vertex list. Then, the polygon 

primitives (in the most cases - triangles) are also defined by an unorganized face list.  

 
Each entry of the faces list defines a triangle by the indices of its vertices (indexed by their 

order of appearance in the vertex list). In other words, any mesh file format will store mainly 

the geometry and the connectivity of the model. However, additional information can be 

included, such as color, normal vertices, transparency or texture data. 
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Due to its early international standardization, the Virtual Reality Modeling Language (WRL 

file extensions) succeeds to become highly popular in the computer graphics field. VRML has 

been originally specified based on the Open Inventor API paradigm developed by Silicon 

Graphics Inc. and has been first proposed to the International Organization for 

Standardization (ISO) in 1994 by the Web3D Consortium in order to provide a standard 

technique for modeling 3D interactive experiences over the Web. Its successor (X3D, based 

on XML) has been approved for standardization in 2005, but has still less success than the 

second version of VRML (proposed in 1997).  

 
VRML's technology has very broad applicability, including web-based entertainment, 

distributed visualization, 3D user interfaces to remote web resources, 3D collaborative 

environments, interactive simulations for education, virtual museums, virtual retail spaces, 

and more.  

 
In the VRML format, 3D objects are specified in a dedicated node, so-called “Shape”. This 

node type has several attributes, including its material appearance (for lighting modeling) and 

its geometry. The “geometry” attributes can be valued with pre-defined shape primitive nodes 

or with an “IndexedFaceSet” node. This latter node has two main attributes which are the 

coordinates of the sample points (“coord” field, valued with a “Coordinate” node) and the face 

specification (“coordIndex” valued with an array of vertex integer indices) [Sch98]. 

Consequently, the VRML format could cover the most basic mesh needs: 

 - a list of vertices; 

 - a list of faces; 

 - a list of materials (texture and color); 

 - a list of texture coordinates; 

 - a list of lights (material, description and position). 

 
A standard layout for surface mesh storage of a simple object (i.e., a cube) with VRML v2.0 

can be written in the following way: 

 
 #VRML V2.0 utf8 

DirectionalLight { 
 ambientIntensity  1 
 color             1 1 1 
 direction         0 0 -1 
 intensity         0 
 on                TRUE 
} 
DEF MATERIAL Material { 
  diffuseColor 1 1 1 
}  

 Shape { 
  geometry IndexedFaceSet { 
   coord Coordinate { 
    point [ 
    # sample point coordinate (x, y, z) list 
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    0 0 0 
    1 0 0 
    ... 
           ] 
        } 
   texCoord TextureCoordinate { 
    point [ 
    0.1291 0.3485 
    0.1706 0.3248 
    ... 
    ] 
   } 
        coordIndex [ 
   # face list: vertex indices (face separator: “-1”) 
   0 1 2 -1 
   0 1 5 -1 
   ... 
   ] 
     } 
   } 
 
 

II.3.  CONCLUSIONS 
 
We have presented in this chapter the theoretical background related to 3D mesh 

representations. We defined the terms of triangular polygonal mesh, which will be considered 

all over our work. Several requirements, in terms of topological and geometric properties 

have been identified. In particular, a closed mesh M has to meet the following conditions: 

 - M is homeomorphic (topologically equivalent) to the sphere; 

 - M is two manifold; 

 - M has no border edges or faces; 

 - M is an orientable mesh; 

 - the number of vertices, faces and edges of M has to satisfy the Euler formula (II.3) and 

equations (II.4), (II.5), (II.6).  

 
Finally, we have also presented some features of the Virtual Reality Modeling Language 

(VRML) standard that we have adopted for 3D mesh representation. 

 



 

 

III.  AN OVERVIEW OF 3D MESH MORPHING 
TECHNIQUES 

 
 
 
 
 
 
 
 
 
 
 
 
Summary: This chapter first states the problem of object metamorphosis, enouncing the 

main principles and necessary steps involved in a morphing method. After a brief synthesis 

of the 2D image morphing techniques, we provide an overview of the main 3D mesh 

morphing approaches proposed in the state of the art. The study reveals the necessity of 

designing morphing techniques able to gradually transform two 3D objects while maintaining 

aligned the corresponding features of interest. Finally, the morphing framework adopted in 

our work is here presented. 
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III.1.  MORPHING IN GENERAL 
 
The word morphing is derived from the word “metamorphosis”, which according with the 

Oxford Dictionary [All91] has the following meaning: 

 
“A change of the form or nature of a thing or person into a completely different one” 

 
Thereby, in the case of 3D meshes, the term morph can be interpreted as the change of 

appearance of a graphical object. The morphing process is then defined as the construction 

of an animated sequence corresponding to the gradual transition between two different 

objects, so-called source (initial) and target (final) models. The objective of a morphing 

method is to compute a transformation ensuring a visually pleasant transition between the 

two, source and target shapes.  

 
Existing professional animation environments, such as 3DS Max or Lightwave, propose 

some basic morphing techniques. However, such methods cover only partially the aspects 

that need to be taken into account. In particular, they are able to morph solely meshes with 

the same topology and number of vertices and thus severely restrict the field of possible 

applications. Thus, one important objective is to make possible to morph 3D models 

described by different topologies, numbers of vertices and connectivities. 

 
The concept of morphing is illustrated in Figure III.1 where the leftmost object is morphed 

into the rightmost. The upper and lower sequences show the metamorphosis in two possible 

manners. Obviously, there is no unique solution for the morphing process and a set of criteria 

and evaluation measures/protocols has to be defined in order to validate the various 

solutions. One important (and ultimate) criterion is the visual quality, in terms of smoothness 

and fluidity of the obtained transitions. 

 
Figure III.1. Two morphing sequences between a fish and a duck model [Ath10]. 

 
The next section introduces some useful criteria that have been established to evaluate a 

valid morphing. 
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III.2.  VISUALLY PLAUSIBLE MORPHING 
 
In order to obtain a “good” morph, the geometric and topological properties of the two, source 

and target objects during the transformation should be preserved as much as possible. This 

implies the set-up of a highly smooth transformation process. 

  
From a more rigorous point of view, the main principles that have to be considered for 

ensuring a visually pleasant shape transformation relate to topology preservation, feature 

preservation, rigidity preservation, smoothness and monotonicity, as introduced by 

Gomes et al. in [Gom99]. Let us briefly recall them here below:  

 
• Topology preservation: Various definitions of topology preserving transformations 

have been proposed [Kon89], [Lie04], [Sah96]. Two objects have the same topology if they 

have the same number of connected components and genus. Intuitively, in the case of a 

morphing process, preserving the topology of both source and target objects requires to 

ensure that no holes or other artifacts appear during the transformation. Let us note that 

most of the time, the source and target objects are required to have the same global 

topological properties in order to enable the morphing process. 

 
• Feature preservation: means that the shapes of important features which are present 

both in the original object and in the target object are preserved during the morphing 

transition. In particular, this requires a good correspondence between them. For example, in 

Figure III.1, the first row represents a morphing transition from a fish to a duck, realized with 

no feature preserving. Here, the different features are completely unaligned, which leads to 

an unnatural transition sequence. The second row presents a morphing sequence where the 

mouth of the fish corresponds to the one of the duck and both remain aligned during the 

transition. Establishing in an automatic manner, pertinent correspondences between features 

of interest is however a highly challenging task. Some automatic solutions are proposed in 

[Urt04], [Ath10], [Gil09]. Such techniques are useful in the case of source and target objects 

with a sufficient number of similar features that can be put effectively into correspondence. 

However, in a more general framework the human interaction is mandatory. For this reason, 

the user should be allowed to specify and control the feature correspondences in an 

interactive manner. Some examples of works that require user interaction are presented in 

[Ros94], [Ler95], [Zhu09], [Kan98], [Gre98]. The control should be neither time-consuming 

nor labor-intensive and adapted to user's knowledge and skills. Providing such a control is 

also a nontrivial task and requires the elaboration and development of appropriate, 

ergonomic user interfaces with all the necessary interactivity features.  
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• Rigidity preservation: this principle refers to the facts that in certain cases, some 

metrics should be preserved during the transformation. Typical examples considered in the 

literature include angles between edges/faces, lengths or convexity measures. 

 
• Smoothness: the shape transformation should be fluent, avoiding discontinuities and 

artifacts. If we view the transformation as a function f that maps vertices from the source 

mesh onto the target mesh, we have to impose for the f function to have continuous 

derivatives up to some desired order over the deformation domain. The number of 

continuous derivatives, will influence the smoothness of the transition function and thus, of 

the morphing process. 

 
• Monotonicity: this principle states that the volumes, areas, or parts of the source 

shape should change monotonically during the interpolation process. In other words, it is not 

allowed that parts of the model to decrease (/increase) so that later to increase (/decrease) 

back. The monotonicity principle makes it possible to avoid local self-interactions of the 

intermediates meshes obtained. 

 
Jointly satisfying the set of all these constraint is a difficult problem and the existing methods 

are privileging some of the above-mentioned aspects, depending of the application 

considered and of the specific morphing effects that are targeted.  

 
Historically, the first morphing techniques of visual entities appeared in the case of static 2D 

images. Such approaches set the general principles and methodologies useful for morphing 

of any graphical entities. So, before considering the case of 3D mesh morphing, let us first 

analyze the traditional techniques proposed in the field of 2D image morphing, which are 

today mature and extensively used in commercial applications.  
 
 

III.3.  2D IMAGE MORPHING 
 
Image (or 2D) morphing can be defined as the construction of sequence corresponding to a 

gradual transition between a source image and a target one. Such techniques have been 

intensively used to produce visual effects for various entertainment applications. A lot of 

examples can be provided from the movie industry, starting with the first movie that 

implemented morphing, “Le Magicien” in 1898, and continuing with films like “Indiana Jones”, 

“Terminator”, or the more recent one “Transformers”.  

 
A particular case of morphing/interpolation is encountered in the field of medical imaging, in 

the case of MRI scans. Here, the acquired slices are available at a fixed inter-slice resolution. 

The distance between such slices is usually higher than the spatial resolution within each 

slice. For rendering and surface reconstruction, some interpolation between slices is 
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mandatory. Methods using image morphing to create intermediate images between slices 

are presented in [Rup94a][Rup94b]. Figure III.2 illustrates such an example, where the stack 

of original images completed with those created by morphing techniques looks much more 

smooth and realistic. 

 
Figure III.2. Volume representation of a stack of images: (a) without, (b) with interpolated 

images [Rup94a]. 
  

Generally, the morphing effects are obtained with the help of the well known cross dissolve 

or fading techniques which permit to achieve a smooth change of an image content (i.e. 

texture and/or color) from source to target frames. The color of each image pixel is 

interpolated over time from the source image value to the corresponding target image value. 

Most often, linear interpolation is utilized. This process is called cross-dissolve interpolation. 

Unfortunately, such naïve approaches do not allow obtaining a pleasant visual effect, 

because the two images (source and target) overlap gradually without any preliminary 

alignment of the main features of interest present in the content. This problem is illustrated in 

Figure III.3.a. Here, on the intermediate images obtained we can notice the presence of 

overlapped features (e.g., nose, eyes, mouth…) from both source and target models, which 

is visually uncomfortable.  

 
This example shows the interest of applying a global transformation between source and 

target images that can be able to align the main features involved. Such an alignment can be 

achieved with the help of the so-called warping methods [Gom99]. Image warping applies 2D 

geometric transforms to the images in order to obtain a geometric alignment of their features 

of interest, followed then by a color interpolation to blend their corresponding colors. 

 
The effectiveness of introducing warping methods in the morphing process is illustrated in 

Figure III.3.b. Here, image warping is combined with the classical cross dissolving. As the 

morphing process progresses, the source image is gradually warped into the destination 

image and faded out, while the target is gradually warped into the early picture and faded in. 

 
In this way, the first images in the morph sequence will be similar to the source, the middle 

images of the sequence will correspond to an average of the two source and target models 

and the last images will be similar to the target picture. 
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Figure III.3. Image Morphing: (a) Cross-dissolve; (b) Warping and cross dissolve [Gom99]. 

 
We can observe that the obtained sequence is visually more pleasant that in the case of a 

simple cross-dissolve, the transition between corresponding features being more natural. We 

also note that the middle images strongly determine the overall quality of the morphing 

process.  

 
Creating a morph using the deformation technique involves specifying a warp, i.e. a bijective 

(and so, invertible) transform of the source image into the target one. Some examples of 

basic geometric transforms that can be jointly used for warping purposes are illustrated in 

Figure III.4, for a checker board image.  

 
Figure III.4. Different types of warps: (a) original image; (b) shift to the right; (c) scaling in the vertical 

direction; (d) shear; (e) scaling in the horizontal direction; (f) rotation; (g) quadratic.  
 

The issue of constructing a smooth warping field between two different images has been 

extensively studied in the rich literature dedicated to the subject. Different approaches model 

the image with the help of a 2D elastic mesh and are known under the name of mesh 
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warping techniques [Wol90], [Sho03], [Kan97]. Multilevel free-form deformations [Lee95], 

field morphing [Bei92], [Nis93], radial basis functions [Edg03], or energy minimization [Lee96] 

can also be used to achieve 2D morphing. 

 
The warping-based morphing technique proposed in [Wol90], uses two 2D meshes MS and 

MT which are respectively associated with the source IS and the target IT images. The two 

meshes share the same connectivity and are thus defined with the same number of faces 

and vertices. A set of control features is determined starting from each source and target 

images and then associated with each mesh. The meshes are used to define the spatial 

transform, by linear interpolation, mapping all points in source image onto target image, while 

keeping initial and transformed meshes topologically equivalent, i.e., no folding, self-

intersection or discontinuities are permitted. Furthermore, for simplicity, the meshes are 

constrained to have fixed boundaries. 

 
Figure III.5 illustrates the morphing process in the case of two faces. Feature points 

correspond here to eyes, nose, cheeks and lips. In the top row, the mesh MS is deformed to 

mesh MT, producing an intermediate mesh M for each frame. These meshes are used to 

warp the source image into increasingly deformed images, thereby deforming IS from its 

original state to those defined by the intermediate meshes. The same process is presented in 

reverse order in the bottom row of Figure III.5, where IT is shown deforming from its original 

state.  

 
Figure III.5. Image mesh warping [Wol98]. 

 
The purpose of this procedure is to establish the feature alignment between IS and IT as they 

both deform to some intermediate state, producing the pairs images shown in the top and 
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bottom rows, respectively. Once the alignment is performed, the cross-dissolve between 

successive image pairs is applied, yielding the morphing sequence illustrated in the middle 

row. 

 
The field morphing technique proposed by Beier and Neely [Bei92] simplifies the task of 

feature specification by establishing a set of line segments in both images. For example, 

rather than requiring the correspondence points to lie on a mesh, line segments can be 

drawn along the mouth, nose, eyes, and cheeks of the source and target images.  

 
Therefore only a set of key features needs to be provided. Although this approach simplifies 

the specification of feature correspondence, the generation of the warping transform 

becomes more complex. This is due to the fact that all feature pairs must be considered 

before the mapping of each source point is known. 

 
The algorithm warps only the set of pixels (lines) specified by user, moving them exactly 

where the user want and everything else is blended smoothly based on those positions. This 

approach can lead to unexpected displacement between the control lines, which manifest by 

hiding parts of the image or showing them up in some other regions of the interpolated 

picture. Additional control line pairs must sometimes be supplied to counter the ill effects of 

the previous set. 

 
Edge and Maddock [Edg03] propose a more general form for feature specification that 

permits to specify landmarks on both images that consist of points, lines and curves. The 

authors use then radial basis functions [Dyn89] to put in correspondence the feature points, 

deforming the two input images accordingly.  

 
The above-described techniques do not guarantee the one-to-one property of the generated 

warp functions. When a deformation is applied to an image, the one-to-one property prevents 

the warped image from folding-over. Lee et al. [Lee96] propose an energy minimization 

approach in order to obtain a one-to-one warp function. The technique allows feature 

specification primitives such as points, segments and curves which are sampled and reduced 

to a set of points. Such points are then used to generate a warp function that is interpreted 

as a 2D deformation of a rectangular plate. The constraints for a one-to-one warp are 

represented in terms of energy minimization. The technique generates natural deformations 

since it is based on physically meaningful energy terms. The main limitation of the method is 

related to its high computational cost. 

 
A simpler and faster method is presented in [Lee95]. Multilevel free-form deformation 

(MFFD) is here applied across a hierarchy of control lattices in order to generate one-to-one 

and C2-continuous warp function. In particular, deformations are obtained from positional 
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constraints by introducing the MFFD as an extension to free-form deformation. Lee et al. use 

the bivariate cubic B-spline tensor product to define the free form deformation function. A 

new direct manipulation technique for free form deformations, based on 2D B-spline 

approximation, is applied to a hierarchy of control lattices to exactly satisfy the positional 

constraints. To guarantee the one-to-one property of a warp, a sufficient constraint for a 2D 

cubic B-spline surface to be one-to-one is presented. The MFFD generates C2-continuous 

and one-to-one warps that yield fluid image morphing sequences. 

 
However, the problem of the two dimensional images is that they do not take into account 

any information related to the shape of the objects present in the scenes. This results in a 

number of shortcomings in the transformation processes, due mainly to occlusion 

phenomena: since the 2D images often represent projections of virtual 3D scenes, the 

intermediate results of a 2D image morphing process may not correspond to the rendering of 

a morphed 3D scene. Thus, in the case of 2D morphing, pixel values are simply interpolated 

between source and target images. On the other hand; in the case of 3D morphing, for each 

intermediate stage a complete 3D representation of the scenes/shape is determined. Then, 

the intermediate shape is rendered and the associated photometric information is 

represented according to the 3D shape, lights and camera position. 

 
Thus, 3D representation of objects allows animation to be independent of any projection 

transformation and user to have the flexibility to change the position of camera during a 

certain transition, so that the morphing can be observe from different points of view. 

 
 

III.4.  3D OJECT MORPHING 
 
Let us first briefly overview the volume-based morphing approaches, which represent in a 

certain manner the direct extension of 2D image morphing techniques.  

 

III.4.1. 3D volume based morphing 
 

Depending of the way the control features required for guiding the morphing process is used, 

the following three families of volume-based morphing approaches are identified: 

 - cross dissolving - no control features are required in this case; 

 - field morphing - where control features are used to specify coordinate mappings; 

 - mesh warping - where control features define both volume subdivisions and coordinate 

mappings. 

 

Analogously to the case of 2D images, the cross dissolving technique involves a direct 

interpolation of the source and target 3D representations, without any geometric deformation 
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of the corresponding volumes (Figure III.6). The simplest cross dissolving method is a linear 

interpolation between source and target volumes [Pay92]. Without surprise, such a technique 

is too simplistic to yield satisfactory results. 

 
Figure III.6. 3D cross dissolve based morphing [Efr11]. 

 
To enhance the smoothness of the in-between volumes, a Fourier transform may be 

exploited within the framework of a non-linear interpolation scheme [Hug92]. In this case, the 

high frequencies of the source model are gradually removed during the morphing while the 

low frequencies are interpolated to those of the target and the high frequencies of the second 

model are gradually added in. 

 
Wavelet transform, which provide a multi-resolution space-frequency representation, can 

also be used in morphing purposes as proposed in [He94] (Figure III.7). The idea is to 

decompose the models into a set of frequency bands, apply smooth interpolation between 

the volumes to each band, and then reconstruct the morphed volume. Furthermore, the 

decomposition and reconstruction processes are accomplished in a multiresolution manner 

so that high frequency distortion can be adjusted to the desired level. 

 
Although they are easy to use and fast to run, such methods have difficulties in producing 

high quality results in most cases, especially when the transformations between two volumes 

involve scaling or rotation. 

 

 
Figure III.7. Wavelet Domain Volume Morphing[He94]. 

 
In the case of field morphing approaches, a set of control features is used to specify key 

regions of interest of the volumetric data that are exploited for performing in-between 

mappings. Such control features are represented as sets of points (point field)[Rup94b], lines 
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(line field) [Che95] or disks (disk field)[Che99] defined in the 3D volume. Most often, a user 

interaction is required to specify such control features. 3D feature-based morphing 

techniques naturally extend 2D image methods were they have demonstrated their flexibility 

and controllability in metamorphoses [Bei92].  

 
Given a starting volume 𝑉𝑉𝑝𝑝  and a final volume 𝑉𝑉𝑏𝑏 , both represented as a collection of voxels 

organized in the form of a three dimensional grid, the morphing process generates a 

sequence of in-between volumes 𝑉𝑉𝑛𝑛  which represent a smooth transformation from 𝑉𝑉𝑝𝑝  to 𝑉𝑉𝑏𝑏  

(Figure III.8). 

 

 
Figure III.8. A volumetric field morphing sequence: (a) source volume; (b)-(h) in-between volumes; (i) 

target volume; (j) disk fields that control the sphere-to-head morphing[Che99]. 
 
For the nth in-between volume 𝑉𝑉𝑛𝑛 , an intermediate control dataset is firstly obtained by linear 

interpolation of the original control features pairs. Thus, under the influence of the new 

control dataset, two deformed volumes  𝑉𝑉𝑛𝑛𝑝𝑝  and 𝑉𝑉𝑛𝑛𝑏𝑏  are obtained corresponding to 𝑉𝑉𝑝𝑝  and 𝑉𝑉𝑏𝑏 . 

The in-between volume 𝑉𝑉𝑛𝑛  is then simply an interpolation of those two volumes using a cross 

dissolving technique as previously presented. 

 
A method using a combination of different fields, which include points, lines and boxes, has 

been reported in [Ler95] and [Man99]. The naive extensions of point and line fields suffer 

from the inability to specify arbitrary 3D coordinate mappings. The problem can be solved by 

introducing a supplementary vector in each line field (or two vectors in each point field) 

[Che99], or by solving a set of error functions [Rup94b]. However, in contrast with the 2D 

case, such fields are generally difficult to define and manipulate. 

 
The mesh warping techniques are also based on a control feature set and extend the method 

proposed in [Wol98] for 2D images, where the control features are based on a planar 

subdivision associated to each image, typically a parametric grid or a triangular mesh. Two 

volume warping methods presented in [Che95] extrapolate such an approach for the case of 

3D volumes. Given a set of points, a volume subdivision can be automatically generated, for 
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instance, by 3D triangulation. In mesh warping, the distortion is constrained by individual 

elements, and it is therefore relatively easier to achieve a desired transformation without 

causing “ghost shadows” effects [Bei92] (i.e. no triangles overlapping) (Figure III.9). 

 
Figure III.9. Morphing by mesh warping[Efr11]. 

 
Volumes 𝑉𝑉𝑝𝑝  and 𝑉𝑉𝑏𝑏  are first partitioned respectively by two spatial subdivisions that are of an 

equal number of elements. Deformed subdivisions are then obtained for in-between volumes 

by interpolation. A voxel in an in-between volume is mapped onto a voxel in each of 𝑉𝑉𝑝𝑝  

and 𝑉𝑉𝑏𝑏 . The values of voxels in the in-between volume are determined by linearly 

interpolating those of the corresponding voxels in 𝑉𝑉𝑝𝑝  and 𝑉𝑉𝑏𝑏 . 

 
However, in most cases, both field morphing and warping-based methods require a high 

number of control elements, in order to avoid undesirable visual artifacts [Che95]. In addition, 

the manipulation of 3D subdivisions with dedicated user interfaces cannot be handled in a 

straightforward manner. 

 
The volume-based techniques offer the advantage of being less sensitive to different object 

topologies when compared with the surface based morphing techniques, since the objects 

are here defined on a fixed, voxelized topology. 

  
However, volumetric representations are useful in the case of some specific applications 

(i.e., medical imaging), but less used for general public applications, because of the 

bandwidth and storage capabilities required. In addition, the corresponding volume morphing 

approaches suffer in general from their high computational complexity.  

 
In the rest of this thesis we will focus on surface representation techniques and in particular 

on 3D meshes. 
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III.4.2.  3D mesh morphing 
 

Intensive research has been dedicated to the issue of 3D mesh morphing techniques, as 

testifies the rich literature on this subject. 

 
III.4.2.1. Problem statement 

 

Triangular 3D meshes are discrete 3D object representations that offer the advantage of 

being able to represent a large variety of complex geometries. In contrast with 2D images or 

3D volumes, which are defined on a fixed topology (i.e., 2D or 3D lattices), 3D meshes may 

exhibit significant differences in terms of topological properties. Thus, they can present 

different numbers of vertices/faces and are often defined on highly irregular connectivities.  

 
Because of such specificities, an initial stage is here required, which consists of establishing 

a correspondence between the two source and target 3D discrete surfaces defined by the 

meshes. Such a correspondence cannot be directly defined, because of the complexity of the 

topological and geometric information involved. Instead, the correspondence is achieved in 

an indirect manner with the help of parameterization techniques, which consists of 

establishing a bijective mapping between the mesh surface and a common 2D domain.  

 
The parameterization can be defined as a map Ω:𝑀𝑀 → 𝐷𝐷 of a 3D model 𝑀𝑀 to a parametric 

domain 𝐷𝐷. Most often, the domain 𝐷𝐷 is either the unit disc (planar parameterization), or the 

unit sphere (spherical parameterization) (Figure III.10). 

 
Figure III.10. Examples of 3D mesh parameterizations. 

 
The planar parameterization is useful in the case of 3D meshes that define an open surface 

with a unique connected component and border. Spherical parameterizations are necessary 

in the case of closed, connected 3D surfaces with genus-0 topology. Other parametric 

domains (e.g., torus, atlases, object-dependent …) can also be used for objects with more 

complex topologies.  

 
The parameterization represents a mandatory and important step in the morphing process 

and they condition the overall quality of the metamorphosis. Let us also note that such 

algorithms are generally time consuming and intractable in the case of complex 3D models 
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with hundreds of thousands of vertices. In this case, mesh simplification procedures may be 

required in order to reduce the computational complexity.  

 
However, parameterizing the source and target meshes on a common parametric domain 

does not entirely solve the correspondence problem. The mesh geometry (i.e., position of the 

mesh vertices in the 3D space) can be defined in arbitrary coordinate systems. Thus, 

preliminary normalization and alignment processes are required. Most often, such techniques 

exploit Principal Component Analysis (PCA) in order to define coordinate systems linked to 

the considered geometries that need to be aligned.  

 
Moreover, as in the case of 2D images, a feature alignment process is necessary in order to 

guarantee a successful morphing process. This comes to (1) define a set of features of 

interest on both source and target models and (2) apply a warping/deformation of the 

parametric domain in order to guarantee that the parametric position of the corresponding 

features are as closed as possible for both models. We speak in this case of overlaid 

parameterizations (Figure III.11). 

 
Figure III.11. Overlaid parameterization of two spherical mappings. 

 
The features of interest are in general sets of points, lines, curves, regions, defined over the 

models to be morphed. They correspond to intuitive, semantic morphological characteristics. 

As examples, in the case of morphing models of human faces such features may correspond 

to the regions of eyes, nose, mouth and ears on both objects. In the case of morphing 

models of animals they might correspond to the regions of limbs, tails, heads…  

 
In order to illustrate the necessity of specifying a number of correspondent features and to 

maintain them aligned through the transformation sequence, Figure III.12 presents an 

example of two different morphing sequences between two models of pigs (a young and an 

adult one). In the upper row, no features were specified and the resulting morph is 

unacceptable (8 legs are appearing in the middle models). The lower row of Figure III.12 
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shows a morph produced with a set of features (ears, eyes, hoofs, and the tail) put into 

correspondence. The result is visually more realistic. 

 
Figure III.12. Morphing between the models of a young pig and a grown-up pig. In the upper row, no 
feature is specified, which leads to unpleasant effects (8 legs). In the lower row, the eyes, ears, legs, 

and the tail are put into correspondence yielding a more natural transformation [Ale02].  
 
We have to note that the need of feature alignment becomes more obvious in the case 

where the models are from the same semantic category. This is because the user has a 

strong a priori expectation of that transformation, and expects that common features of the 

models (head, legs, tails...) to be preserved.  

 
Let us also note that establishing correspondences between features of interest requires, in 

general, a significant user interaction. Even some attempts to automate the process have 

been proposed in the case of some specific object classes [Urt04][Ath10], feature alignment 

need the development of appropriate user interfaces where features can be specified, 

selected and put into correspondence in an ergonomic manner. 

 
Once the source and target models are parameterized and aligned with respect to their 

corresponding features of interest, the final step necessary in the morphing process is the 

interpolation between objects. This can be done simply by determining the trajectory of the 

corresponding vertices on the representation obtained in the previous step. At the moment 

t = 0 (t = 1) the vertex positions with respect to the source (resp. target) object are known. 

The simplest way to interpolate between these points is a linear interpolation. 

 
Most of the morphing approaches are based on linear interpolation, but according with 

[Ale02] this works well only for objects which are rather similar and oriented in the same 

direction. Linear interpolation of vertices can lead to undesirable effects such as shortening 

the boundary parts during the transition or self intersections. An interpolation of higher 

degree is also possible. It yields smoother vertex trajectories, but on the other side it requires 

some additional information. An interesting idea is introduced in [Gre99], where the user is 

allowed to specify tangent vectors to define a path for some specific vertices. The modified 

trajectory is then propagated to the neighboring vertices. By a proper tangent vector 

specification some cases of self-intersection can be avoided. 
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The pipeline of a generic 3D mesh morphing scheme, including the various phases involved, 

is presented in Figure III.13.  

 
Figure III.13. Generic 3D mesh morphing scheme. 

 
Let us now analyze the solutions to each of the phases involved in a morphing process by 

the various 3D morphing techniques proposed in the literature. 

 
III.4.2.2. 3D mesh morphing techniques: state of the art  

 

Let us first mention the approach proposed by Kanai et al. [Kan98] which are among the first 

who used the harmonic mapping method in morphing of arbitrary triangular meshes with a 

topology equivalent to a sphere or to a disk. 

 
For open models the method follows the next principle. First, the user has to specify a 

boundary loop for each object together with a boundary control vertex, which allows the 

models alignment. Then, each mesh is embedded into a planar unit disk with the help of 

harmonic maps [Eck95]. 

 
The boundary vertices are mapped into the unit disc border, such that angle formed by two 

successive vertices and the domain center point is proportional with the arc length 

determined by the considered vertices. The remaining (interior) vertices are mapped into the 

interior of the unit disc by minimizing the total energy function defined in equation (III.1): 
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where i, j denotes the indices of two adjacent vertices, pi, pj represent their geometric position 

into the unit circle H and p is the set of all interior vertices pi. Edges(H) denotes the set of 

edges in H and {i, j} is an edge connecting vertices i and j. ki,j is a weight associated to each 

interior edge {i, j}, and defined  as described in relation (III.2). 



33 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES 

 

2

22

1

11

,,

2
,

2
,

2
,

,,

2
,

2
,

2
,

,
kji

jikjki

kji

jikjki
ji A

lll
A

lll
k

−+
+

−+
=  (III.2) 

where li,j denotes the length of edge {i, j} and Ai,j,k1 , Ai,j,k2 - the areas of adjacent triangles.   
 
Once the harmonic maps (𝑝𝑝𝐻𝐻  and 𝑝𝑝𝑝𝑝) of both source (𝑀𝑀𝐻𝐻) and target (𝑀𝑀𝑝𝑝) 3D meshes are 

computed, a new object, denoted by 𝑝𝑝𝑀𝑀 is created by overlapping and merging 𝑝𝑝𝐻𝐻  and 𝑝𝑝𝑝𝑝. 

𝑝𝑝𝑀𝑀, also called supermesh or metamesh, shares the connectivity of both original models and 

defines one-to-one correspondence between each position of 𝑀𝑀𝐻𝐻 to that of 𝑀𝑀𝑝𝑝. Kanai et al. 

[Kan98] starts the construction of the supermesh by rotating 𝑝𝑝𝐻𝐻 around the center of the unit 

disk so that a given boundary control vertex from 𝑝𝑝𝐻𝐻, selected by user, becomes coincident 

with the one specified for the target mesh 𝑝𝑝𝑝𝑝 (Figure III.14). 

 
Figure III.14. Maps overlapping and boundary control vertex alignment. 

 
Next, the corresponding 3D positions of the source vertices relatively to the target model are 

computed. First, to determine the 3D position at 𝑀𝑀𝑝𝑝 for each vertex 𝑝𝑝𝐻𝐻 from 𝑝𝑝𝐻𝐻, the triangle in 

𝑝𝑝𝑝𝑝  that includes 𝑝𝑝𝐻𝐻  is established. If 𝑝𝑝𝐻𝐻  is included in a face 𝑓𝑓(𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑏𝑏 ,  𝑝𝑝𝑐𝑐)  of 𝑝𝑝𝑝𝑝 , the 

barycentric coordinates (𝛼𝛼,𝛽𝛽, 𝛾𝛾)  are computed relative to 𝑓𝑓 . Using this coordinates a 

corresponding 3D position 𝑝𝑝𝑝𝑝 of vertex 𝑝𝑝𝐻𝐻 in 𝑀𝑀𝑝𝑝 is computed as follows: 

𝑝𝑝𝑝𝑝 = 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽𝑝𝑝𝑏𝑏𝑝𝑝 + 𝛾𝛾𝑝𝑝𝑐𝑐𝑝𝑝  (III.3) 

where 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1. In a similar way, for each vertex in 𝑝𝑝𝑝𝑝 its corresponding 3D position in 

the source mesh 𝑀𝑀𝐻𝐻  is calculated. Then, an edge-to-edge intersection between the 

connectivities of 𝑝𝑝𝐻𝐻 and 𝑝𝑝𝑝𝑝 is computed. For a given pair of intersecting edges, both edges 

are adequately divided and the mesh is re-triangularized. First, for each vertex, the incident 

edges are sorted in counterclockwise order. A new face 𝑓𝑓(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑝𝑝 ,  𝑝𝑝𝑝𝑝) is generated using two 

continuous edges 𝑒𝑒(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑝𝑝 )  and 𝑒𝑒(𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝)  if there is no edge between 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑝𝑝 . This 

operation continues until all 𝑝𝑝𝑀𝑀 edges have two adjacent faces. Figure III.15 illustrates the 

mesh merging process. 

 
Figure III.15. Supermesh construction. 
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The resulting super-mesh has a total number of vertices equal to 𝑁𝑁𝑀𝑀1 + 𝑁𝑁𝑀𝑀2 + 𝑁𝑁𝐼𝐼𝑛𝑛𝑝𝑝 , where 

𝑁𝑁𝑀𝑀1  and 𝑁𝑁𝑀𝑀2  are the number of vertices in source and target respectively, and 𝑁𝑁𝐼𝐼𝑛𝑛𝑝𝑝  is the 

number of edge intersections. This will obviously leads to huge meshes in the case of objects 

described by a large number of faces/vertices. A second drawback of the method consists in 

the fact that excepting the boundary loop and the boundary control vertex no other feature 

vertex is set up. Thus, the feature preservation principle cannot be effectively satisfied.  

 
In order to overcome such limitations, an extension of the method is proposed in [Kan00]. 

Here, the user is allowed to select multiple feature points in the two meshes. Based on this 

set of vertices, the models are cut into correspondent patches (also called tiles) such that the 

control points remain on the boundaries. By allocating such corresponding vertices to the 

boundaries of the tiles, the vertex correspondence is satisfied automatically. Next, the mesh 

patches are individually parameterized into the plane and the supermesh is constructed in a 

similar way as presented in [Kan98].  

 
Let us note that the specification of the feature vertices and the way the models are cut into 

patches have to be performed manually, which is poorly intuitive for the user. However, the 

quality and precision of this process has a great impact on the resulting correspondence. 

 
Finally, in order to interpolate between the source and target model a linear interpolation 

technique is applied.  

 
Since closed, genus-0 3D meshes are topologically equivalent to a sphere, 

Alexa et. al [Ale00], propose two solve the correspondence problem by a mapping the 

meshes into the spherical domain. Authors extend the straight-line embedding algorithm 

proposed by [Tut63] for planar mappings, to the case of spherical parameterizations. This 

transforms the problem into a nonlinear one, but which can be still solved through a 

relaxation process. The algorithm iteratively places each vertex at the center of its neighbors 

and then projects it to the unit sphere. In order to avoid the triangles overlapping or mesh to 

collapse into a single point, Alexa defines sets of anchor points in the parametric domain 

which changes at different times during the relaxation process. However, the final embedding 

is not guaranteed to be valid in all cases. 

  
Based on the feature pair vertices specified manually by user in both source and target 

models, the problem of feature alignment is established in the parametric domain with the 

help of a mesh deformation technique based on radial basis functions (RBF) [Ara95]. Given a 

vertex 𝑝𝑝 that should move to 𝑝𝑝′ the transformation 𝑓𝑓 is defined as: 

𝑓𝑓(𝑥𝑥) = �𝑥𝑥 + (𝑑𝑑 − ‖𝑥𝑥 − 𝑝𝑝‖)(𝑝𝑝′ − 𝑝𝑝)   if ‖𝑥𝑥 − 𝑝𝑝‖ < 𝑑𝑑
                  𝑥𝑥                                 if ‖𝑥𝑥 − 𝑝𝑝‖ ≥ 𝑑𝑑

� (III.4) 
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The pair of vertices p and p’ are iteratively displaced to the same position on the unit sphere 

through an iterative process. In the same time, the set of vertices included in the radius of 

influence d of the considered RBF (equation (III.4)) are also displaced. The amount of this 

displacement is less than the displacement of the vertex moved, though. However, if the 

control vertices are forced to reach their final position, the resulting mapping could be invalid. 

Thus, the features are displaced only as far as their movement did not introduce any 

foldover. 

 
In order to be able to transform from one object to another, a supermesh is constructed by 

overlapping the spherical embedding of the two models. Here, the problem of edge-to-edge 

intersection transforms into a problem of arc-to-arc intersection. Finally, the morphing 

sequence is obtained using a linear interpolation scheme. 

 
Lee et al. [Lee99] employ a multiresolution analysis in order to solve the correspondence 

problem by generating coarse, simplified models of the two input meshes which are used as 

base domains (Figure III.16).  

 
Here, MAPS (Multiresolution Adaptive Parameterization of Surfaces) [Lee98] 

parameterizations of the source and target objects are first constructed. The MAPS algorithm 

uses a course mesh built through successive removal of a maximally independent set of 

vertices, followed by re-triangulation of the resulting holes. A set of feature points specified 

by the user is here needed. Such feature points are never removed in the simplification 

process, thus guaranteeing that they are included in the base domain. Let us note that in 

addition to control vertices, user can specify also lines of correspondence (e.g., set of edges) 

to define similar features in the two models. In this case, the parameterization maps all points 

of the original feature line to a sequence of edges (possibly one) in the base domain. 

 
Figure III.16. (a) Source model; (b) the base domain of the source model; (c) target model; 

(d) the base domain of the target model; [Lee99] 
 
After the base domains are aligned, semiautomatic or manually (if the objects are 

significantly different from each other), the source map is projected into the target base 

domain. The initial projection is improved through an iterative relaxation procedure similar to 
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the technique introduced in [Tur92]. The two final parameterizations of the source and target 

meshes are obtained using a harmonic map approach in the base domain. Then the meta-

mesh including the whole set of source and target vertices is constructed.  

 
The method can morph between relatively dissimilar objects with higher genus manifold (but 

which share the same genus). The positions of intermediate meshes in the morph sequence 

are computed based on a linear interpolation. However, the user may have the possibility to 

control the acceleration of the process or to morph first certain regions before others. This 

property is illustrated in Figure III.17, where the hair of the character appears before the face. 

Other attributes such as normal, texture and color information between the source and the 

target can also be interpolated. 

 

 
Figure III.17. Morph sequence depending on location [Lee99]. 

 
Another multiresolution mesh morphing approach is the MIMesh (Multiresolution Interpolation 

Mesh) technique proposed by Michikawa et al. in [Mic01]. First, a base interpolation mesh 

𝑀𝑀0 is manually created by the user from the input meshes 𝑀𝑀𝐻𝐻 and 𝑀𝑀𝑝𝑝, which are partitioned 

into several patches according to the faces of the base interpolation mesh in a similar way as 

proposed in [Kan00].  

 
Each patch is then parameterized in the planar domain, using a shape preserving mapping 

algorithm [Flo97], in order to assign a 2D parameter value to each vertex of original models. 

Next, a subdivision fitting scheme, inspired from the remeshing technique of Guskov et al. 

[Gus00], is applied to create hierarchical interpolation meshes 𝑀𝑀1... 𝑀𝑀𝑛𝑛 , where 𝑛𝑛 denotes the 

number of subdivision levels. The method is illustrated in Figure III.18. 

 
The multiresolution interpolation mesh has a semi-regular mesh structure obtained by 

successive 4-to-1 triangle splits of the base interpolation mesh and only approximates the 

input models. To achieve the desired approximation accuracy, the number of refinement 

steps should be adapted to the local geometric complexity of the models. Even so, sharp 

features of the models cannot be recovered perfectly. In order to overcome this drawback, 

the authors propose several enhancements. Notably, they propose to exploit a so-called 

normal map, which corresponds to an image that stores information related to the mesh 

surface normals (Figure III.19). 
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Figure III.18. MIMesh algorithm: (1) Base interpolation mesh construction; (2) Mesh interpolation 

and parameterization; (3) Subdivision fitting scheme [Mic01]. 
 

 
Figure III.19. Normal Map [Mic01]. 

 
For each vertex the normal vector 𝑛𝑛(𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧) is computed and for each normal coordinate a 

value from 0 to 255 is assigned to, accordingly to its magnitude in order to create a normal 

map represented as RGB image. Pixels in the image map that do not correspond to any 

vertex, are computed based on barycentric interpolation. Thus, the 3D morphing algorithm 

interpolates not only between geometries, but also between two normal maps. Figure III.20 

presents a visual comparison between a classical MIMesh approximation and the result 

obtained when applying normal maps. 

 

 
Figure III.20. MIMesh approximation: (a) input model; (b) interpolated mesh 

without normal maps; (c) interpolated mesh using normal maps [Mic01].  
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Michikawa et al. in [Mic01] present also a non-uniform mesh interpolation technique that 

permits to locally morph first certain features or regions of interest. However, the drawback 

when morphing locally arises from the fact that corresponding features might not have the 

same position in the two models and thus the interpolation can lead to unpleasant artifacts. 

This effect is illustrated in Figure III.21 where only the nose is morphed. 

 
Figure III.21. Local morphing: (a) source model; (b) locally interpolated mesh; 

(c) target model [Ale02]. 
   

A solution to this problem consists of performing the interpolation in different spaces than the 

initial coordinate system. In [Ale01] and later in [Ale03], Alexa use a rather simple scheme, 

which represent the vertices in Laplacian coordinates. The Laplacian coordinates are linearly 

interpolated and the absolute coordinates are computed back. However, such a technique is 

suitable only for local morphing and the region of interest (ROI) has to be manually selected 

by user. The ROI boundary vertices acts as delimiter between the region which is 

transformed and the rest of the mesh which has to remain fix.  

 
The key problem in approaches like [Kan00] or [Mic01] which partition the models in multiple 

correspondent patches relates to the user ability to make an efficient dissection in which 

each patch of one model corresponds exactly to one patch in the other 3D object. In order to 

reduce the amount of manual intervention required, Yu and Chuang [Yu03] propose a similar 

technique, with the difference that closed models are initially cut only into two patches by 

connecting four user-specified points which are in correspondence in the source and target 

objects. Additional feature points can be specified by user.  

 
For each mesh patch, a base model is derived by applying a sequence of half-edge 

collapsing operations [Gar97]. The feature vertices selected by user are included in the 

decimated meshes. An initial embedding for the base mesh is constructed with the help of 

the mean value coordinates parameterization method proposed by Floater in [Flo03] and 

optimized using a stretch minimization scheme similar to that introduced in [San01].  
 
Let us note that in this case, the feature correspondence problem must be solved separately. 

Thus, all feature points in correspondence are aligned using a foldover-free warping 

algorithm [Fuj98]. Having the initial embedding of the base mesh with the aligned feature 



39 AN OVERVIEW OF 3D MESH MORPHING TECHNIQUES 

 

points and the refinement sequence, a coarse-to-fine parameterization is performed by 

remeshing the models uniformly or adaptively as in [Mic01]. 

 
In order to interpolate between different models, both linear and spline interpolation 

schemes, achieved in the spatial domain, are performed. Moreover, since the models are 

represented at different levels of resolution, the authors propose also an interpolation in the 

wavelet domain, which makes it possible to control interpolation starting time and speed at 

various resolutions (Figure III.22).  

 
Figure III.22. Morphing of scheduled interpolation in wavelet domain [Yu03]. 

 
The computational time required for parameterization and remeshing of two objects with 

10000 faces each is about 38 sec (35.69 for parameterization and 2.38 for remeshing) on a 

1.5Ghz AMD Athlon XP PC [Yu03]. 

 
Let us note that an advantage of the methods based on multiresolution interpolation consists 

in the fact that multiple models can be morphed simultaneously, since multiple shapes can 

be approximated with the same set of vertices. An example of multi-target morphing is 

presented in Figure III.23. 

 
Figure III.23. Multi-target morphing [Yu03]. 
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Lee and Huang [Lee03] propose the so-called called SMCC (Structures of Minimal Contour 

Coverage) technique, which aims at speeding up the merging process (e.g. less than a 

second between two models of almost 4000 vertices compared with 8 seconds produced 

with the Alexa algorithm [Ale00]).  

 
Given two 3D models, the user is required to select two sets of vertices on the models. The 

first set specifies the features needed to decompose the input meshes into several 

corresponding patches. The second one corresponds to additional control features, defined 

on each patch, for a finer correspondence control. Each patch is mapped into a 𝑛𝑛-sided 

regular 2D polygon. First, the 𝑛𝑛 points associated to the patch and selected by user in the 

first stage are assigned to the 𝑛𝑛 corners of the planar domain. Next, the other boundary 

vertices are mapped to an edge in the 2D domain. Finally, the interior vertices 𝑝𝑝𝑖𝑖  are initially 

mapped to the center position (0, 0), and iteratively displaced to a new position 𝑝𝑝′𝑖𝑖  using the 

following relaxation equation: 

𝑝𝑝′𝑖𝑖 = (1 − 𝜆𝜆)𝑝𝑝𝑖𝑖 + 𝜆𝜆
∑ (𝑤𝑤𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝 )𝑝𝑝𝑖𝑖
𝑝𝑝=1

∑ 𝑤𝑤𝑝𝑝
𝑝𝑝𝑖𝑖
𝑝𝑝=1

 (III.5) 

where 𝑝𝑝𝑖𝑖  represents the number of adjacent 𝑝𝑝𝑝𝑝  vertices at 𝑝𝑝𝑖𝑖 . Parameter 𝜆𝜆  takes values 

between 0 and 1 and controls the movement speed. The weights 𝑤𝑤𝑖𝑖𝑝𝑝  help to preserve the 

aspect ratio of original triangles into the parametric domain.  

 
Once the embeddings obtained, the control feature vertices have to be aligned. In order to 

solve this task, a free warping scheme based on a Gaussian radial basis function is 

employed. However, the warping can lead to foldovers. In this case, equation (III.5) is 

reiterated, while maintaining the feature vertices fixed. 

 
A supermesh structure is constructed by overlaying and merging the models 

parameterizations. In contrast with other methods, like the one proposed by Alexa [Ale00] 

which assume that none of the vertices of one embedding lies on a vertex or an edge of the 

other graph, Lee and Huang [Lee03] identify and solve all intersection cases, including the 

degenerate ones. The algorithm starts with the source embedding and treats each target 

edge independently, by determining all its intersections and adding corresponding new 

vertices. Obviously, a nontriangular planar graph is produced and additional edges must be 

inserted to retriangulate it. The positions of the new vertices, relatively to the input models, 

are computed based on the barycentric coordinates. Once the metamesh is constructed, the 

morphing sequence is obtained by linear interpolation. 

 
A very similar method with the one presented by Alexa in [Ale03] is proposed by Sheffer and 

Kraevoy in [She04]. The main difference consist in the fact that in contrast with Alexa’s 
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method which make use of the Laplacian coordinates to interpolate between the models, in 

[She04] is introduced a new set of coordinates, so-called pyramid coordinates. 

 
Pyramid coordinates measure the set of angles and lengths uniquely relating a vertex to its 

immediate neighbors (Figure III.24). Considering 𝑝𝑝  a vertex in 3D, let 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚 be its 

adjacent vertices. Given the normal 𝑛𝑛(𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧) at 𝑝𝑝, the projection plane П can be defined 

as: 

Π = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) |   𝑛𝑛𝑥𝑥𝑥𝑥 + 𝑛𝑛𝑦𝑦𝑦𝑦 + 𝑛𝑛𝑧𝑧𝑧𝑧 + 𝑑𝑑 = 0},        𝑑𝑑 = �𝑛𝑛 ∙ 𝑝𝑝𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (III.6) 

Denoting with p’ and pi’ the projections of p and pi to П, the description of the vertex with 

respect to its neighbors can be expressed as: 

 - a set of angles αi between the projected edges {p’, pi’} and {p’, pi+1’} (Figure III.24.b); 

 - a set of angles βi between n and the edges {p’, pi’} (Figure III.24.c); 

 - a set of projected edge lengths li = ||p’ - pi’||. 

 
Figure III.24. (a) Pyramid coordinates; (b) tangential components in the 

projection plane П; (c) normal component β 
 
Thus, pyramid coordinates represent a combination of tangential (α and l) and normal (β) 

components which have the property that both lengths and angles are invariant under rigid 

transformations. 

 
In contrast with the Laplacian coordinates which are not invariant under rotation and scaling, 

the pyramid coordinates capture the local shape (lengths and angles) of the mesh around 

each vertex and help maintain this shape under various transformations.  

 
Based on a small number of control vertices and a user-defined region of influence, the 

morphing procedure generates intermediate meshes which interpolate the shape properties 

of the input models. The method generates intermediate models based on interpolated 

pyramid coordinates. It can also take into account the trajectories of limited number of 

vertices provided by user. The user-specified vertices are linearly interpolated in time 
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between the source and the target values. For the remaining vertices, their positions are 

computed by a controlled reconstruction procedure using the pyramid coordinates.   

 
As opposed to other existing methods, the proposed technique gradually transforms original 

objects eliminating the risk that same features disappear and then grow again. In addition, 

the technique is particularly well-suited for local morphing operations where just some parts 

of the model are modified.  

 
An important advantage of this method is that although the algorithm does not explicitly 

prevent model self-intersections, the shape preservation property drastically reduces the risk 

of such self-intersections. 

 
Starting from the approach of [Kan00], Urtasun et al. proposed in [Urt04] a fully automatic 

method. The two source and target meshes are aligned automatically and the feature 

vertices are determined without the user intervention using a modified version of the Iterative 

Closest Point algorithm (ICP) [Dew04]. 

 
The ICP algorithm orients the original meshes in the same manner and centers them at the 

same position. However, only a rough correspondence of source and target vertices is 

provided, particularly in the cased where the two objects to be morphed present relatively 

different geometries. This can introduce disturbing artifacts in regions presenting salient 

features. Hopefully, such artifacts can be corrected using a local curvature matching.  

 
As in [Kan00], the models are partitioned into patches and projected onto the plane using the 

harmonic map, with the only difference that in this case the boundary control vertices are 

established automatically.  

 
The feature vertices are aligned using the warping method presented by Alexa [Ale00], 

adapted to the planar case. A supermesh is constructed with the help of a merging algorithm 

similar with the one proposed in [Kan00]. 

 
The interpolation between source and target geometries is then applied on the resulting 

supermesh. Here, a Slerp quaternion interpolation [Sho85] is preferred to the linear one, 

which makes it possible to obtain more smooth and realistic morphing sequences.  

 
A different concept of mesh morphing is proposed by Ahn et al. [Ahn02], [Ahn04]. The 

approach aims to create a morphing sequence where, in addition to the geometric 

transformation, the mesh connectivity is also gradually changed. The main advantage of the 

method is related to the connectivity of the obtained in-between meshes, which is much 

simpler than the one of a supermesh. 
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Starting with the spherical embeddings proposed by Alexa [Ale00], with the feature vertices 

already aligned, the two mappings are overlayed in order to establish the vertices positions 

with respect to the 3D source (𝑀𝑀𝐻𝐻) and target (𝑀𝑀𝑝𝑝) shapes. Two in-between meshes (𝑀𝑀′𝐻𝐻 

and 𝑀𝑀′𝑝𝑝) are constructed, each one containing a similar number of vertices (i.e., 𝑁𝑁𝐻𝐻 + 𝑁𝑁𝑝𝑝 −

𝑁𝑁𝐶𝐶 , where 𝑁𝑁𝐻𝐻 and 𝑁𝑁𝑝𝑝  are the number of vertices in source and target models while 𝑁𝑁𝐶𝐶  is the 

number of coincident vertices obtained after the mappings are overlaid). The in-between 

mesh 𝑀𝑀′𝐻𝐻 is constructed starting with the mapped source mesh topology to which the target 

vertices are added. If a vertex 𝑝𝑝𝑝𝑝of 𝑀𝑀𝑝𝑝can be mapped into a triangle 𝑓𝑓𝐻𝐻of 𝑀𝑀𝐻𝐻, then a new 

vertex 𝑝𝑝𝐻𝐻 is added on the mapped position of 𝑝𝑝𝑝𝑝. The mesh is retriangulated by connecting 

the new vertex 𝑝𝑝𝐻𝐻 to the three vertices of 𝑓𝑓𝐻𝐻. 𝑀𝑀′𝑝𝑝 is constructed in a similar manner. Thus, 

𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝 have an 1-to-1 correspondence, but 𝑀𝑀′𝐻𝐻 has the same shape as 𝑀𝑀𝐻𝐻 while 𝑀𝑀′𝑝𝑝 

has the same shape as 𝑀𝑀𝑝𝑝.   

 
The next step consists of defining the transformation from the converted source mesh into 

the converted target. This task is accomplished through a mesh connectivity transformation 

procedure that employs a sequence of edge swap operations (Figure III.25). The order in 

which edges are swapped during the morphing is established based on a geometric error 

that takes into consideration the distance between a given edge and the edge created by the 

swap. Thus, during the morphing process, the connectivity is transformed gradually and the 

vertex positions are linearly interpolated.  

 

 

Figure III.25. Primitive operations used to transform the mesh connectivity: (a) ESO – edge swap 
operation; (b) VRO – vertex removal operation; VSO – vertex split operation.  

 
Lin and Lee [Lin05a], propose a similar approach that aims to progressively transform the 

connectivity of the source model into that of the target during the morphing. The main 

difference consists in the fact that their algorithm avoid to creates the two in-between 

meshes 𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝. A list of operations to be performed over the mesh vertices/edges is 

directly created on source and target embeddings using three primitives operations (Figure 

III.25): ESO (edge swap operation), VRO (vertex removal operation); VSO (vertex split 

operation). 

 
The process of connectivity transformation is illustrated in Figure III.26. After the input 

models are mapped onto the parametric domain using a method proposed by the same 

authors in [Lee03], the two embeddings are overlapped. The almost incident vertices are 

merged and only the vertices of the source embedding are used to execute VRO and VSO 
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operations. Once a VSO is performed, a vertex is inserted on the source embedding. This 

operation might produce narrow triangles. Thus, local refinement is performed using ESO. 

Primitive operations are carried out iteratively until the source embedding is transformed into 

the target one. Finally, a priority control function is defined to establish an order in which the 

above operations will act during the morphing sequence. 

 

 
Figure III.26. The process of connectivity transformation employed in [Cha05]. 

 
This approach is further extended in [Lin05b] for the case of spherical embeddings. 

Specifically, there is a major difference required when an edge is inserted using a sequence 

of ESOs. On the spheres, an edge is an arc (i.e., the shortest path) between two points. 

Therefore, the arc and its intersections with other arcs defined by other edges must be 

computed before the sequence of ESOs. In order to obtain the spherical parameterization 

the Alexa’s algorithm [Ale00] is employed. 

 
Kaneko et al. [Kan06] present a simple method to automatically establish a semantic 

topology match between two objects that have to be morphed. The purpose of their work is 

to set-up a model generation system that enables to create 3D shapes easily by morphing. 

This system first decomposes both original objects into several semantic elements, by 

considering the watershed method proposed in [Man99]. Here, a feature value need to be 

assigned to each vertex to generate a topographic map as a height function derived from the 

feature values. Usually a curvature measure associated to each vertex is utilized. 

 
Then, the method automatically determines correspondences between each detected 

element/patch based on their relative location. Such regions are morphed one into each 

other independently using a simple algorithm which moves vertices from the initial surface 

toward the final one without modifying the vertex correspondence. 

 
Even it is not directly related to mesh morphing, let us also mention the method proposed by 

Wu et al. [Wu07] due to its high potential for a possible morphing application. Their 

framework aims to give a solution for establishing a correspondence between arbitrary 
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meshes by directly mapping the connectivity of the source model onto the target mesh 

without needing to segment the input objects.  

 
First, in order to establish a shape preserving correspondence between source and target 

meshes, a modified mean-value Laplacian fitting scheme is used. This operation is applied 

directly in the 3D space without being necessary to map the models onto a common 

parametric domain. The method achieves good results even with a reduced number of 

control features in the two models. In order increase accuracy, a vertex relocation approach 

is proposed. Finally, each vertex is gradually projected onto the target model’s surface to 

ensure a complete surface match. 

 
Based on a spherical parameterization, Zhu and Pang [Zhu09] present a morphing algorithm 

for arbitrary genus-0 models which requires the user interaction in order to specify a set of 

feature pairs used to align the source and target meshes in the parametric domain. 

 
The initial source and target models are first roughly aligned with the help of a principal 

component analysis (PCA). Then, the two PCA-normalized models are parameterized onto a 

common spherical domain. The spherical embedding is constructed using a relaxation 

operator R(pi) defined as follows: 

𝑅𝑅(𝑝𝑝𝑖𝑖) =
1
𝑑𝑑

� 𝑝𝑝𝑝𝑝   , 𝑖𝑖 ∈ {1, 2, … ,𝑁𝑁}
(𝑖𝑖 ,𝑝𝑝 )∈𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝

 (III.7) 

where d is the degree of vertex pi. Using the operator R(p) in an iteratively manner for each 

vertex and then normalizing R(pi) to unit length in order to maintain all the vertices on the unit 

sphere, the mapping of M can be achieved.  

 
The next step consists of refining the spherical parameterizations obtained such that each 

corresponding source and target feature points be placed to identical positions in the 

spherical domain. Starting from the spherical parameterization obtained the pairs of source 

and target feature points are first re-placed in their middle position on the unit sphere. The 

rest of the vertices from both source and target meshes are then iteratively re-distributed on 

the sphere with the help of the same relaxation operator R(pi). The authors claim that no 

triangle overlapping occurs even if a similar method is performed in [Ale00] and additional 

constraints are applied in order to avoid this problem. Based on the spherical embeddings, 

the positions of the source vertices relatively to the target shape are computed using 

barycentric coordinates. Finally, the morphing is obtained by interpolating the initial source 

vertices position with the new computed ones, without creating a metamesh. In this case, the 

target model could be only approximated with the source topology. 
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In [Ath12], Athanasiadis et al. present a method that performs morphing in a completely 

automatic manner, but which works well only in the case where similar source and target 

models, belonging to the same category are considered. Object alignment, feature detection 

and feature point matching is performed automatically with the help of a geometric local 

characteristic, so-called concavity intensity, inspired from [Sta07]. This feature is combined 

with an algorithm that detects the rapid variations of the surface normal, in order to obtain a 

region growing method that results in sets of points corresponding to the object individual 

features. The object features are then represented with the help of a connectivity graph that 

captures their adjacency information.  

 
For each graph edge the geodesic distances between the centroid of the corresponding 

feature regions are computed. The graph is then simplified by collapsing edges that 

correspond to large distances. In addition, small regions that can introduce noise and are not 

significant are merged. The reduced adjacency graphs are used to perform a 3D alignment 

of the two models and establish a correspondence between the region patches. 

 
For the initial mapping an improved Laplacian smoothing method is employed obtaining a 

spherical embedding which attempts to maintain uniform triangle areas and to avoid long 

edges. The Laplacian smoothing guarantees an unfolded mapping and preserves similarities 

with the initial mesh, but does not perform any triangle balancing and the mesh can 

degenerate. To avoid this, the authors use a weighted sum of the centroids of the 

surrounding triangles of each vertex, to determine their position. 

 
In order to align the features of the target model with those of the source object, an objective 

function has to be minimized, under a set of geometric constraints. The alignment process is 

carried out on the spherical embedding. Thus, a first condition to be respected requires that 

each vertex pi(xi, yi, zi) should lie on the surface of the unit sphere, as described in 

equation (III.14): 

𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2 = 1,∀𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) (III.8) 

In order to avoid triangle flipping, for each vertex of a face 𝑓𝑓(𝑝𝑝0,𝑝𝑝1,𝑝𝑝2), it must be imposed 

that the vertex remains on the same side of the plane defined by the other two vertices and 

the center of the sphere: 

(𝑝𝑝1 × 𝑝𝑝2) ∙ 𝑝𝑝0 > 0 (III.9) 

In addition to equation (III.15), the length of each edge must be preserved during the 

optimization: 

𝑝𝑝𝑖𝑖𝐻𝐻 ∙ 𝑝𝑝𝑖𝑖𝑝𝑝 = �𝑀𝑀�𝑝𝑝𝑖𝑖𝐻𝐻� − 𝑀𝑀(𝑝𝑝𝑖𝑖𝑝𝑝)� (III.10) 
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where M(p) is the initial position of vertex p on the original meshes. In this way, the 

morphology of the target object during the optimization process is preserved. This avoids 

introducing very long stretches of the mesh triangles. 

 
The objective function to be minimized represents the sum of all inner products of every 

mapped feature vertex pT of the target object with their corresponding feature vertex of the 

original mesh pS: 

�𝑝𝑝𝑝𝑝 ∙ 𝑝𝑝𝐻𝐻

∀𝑝𝑝𝑝𝑝
 (III.11) 

The optimization described in equation (III.16) is solved with the help of the method 

introduced in [Wac06], which provides a nonlinear programming technique that handles 

problems with a large number of inequality constraints. However, the main limitation of the 

method is related to the computational bulk since the time for mapping an object with 5600 

faces takes 15 minutes on an Intel Q6600 Core2 at 2.4GHz and GeForce 8600GT. 

 
Once the spherical mapping of the two objects achieved, a merging process of the two 

topologies is performed. First, for each source edge, a list of intersections with the target 

topology is determined. Additionally, for each vertex, a list of the edges incident to it in 

clockwise order is calculated. Based on this data each closed bounded region is traversed in 

a clockwise order and the retriangulated merged topology is computed. Figure III.27 

illustrates the merging process. Finally, the morphing sequence is performed based on a 

linear interpolation using directly the GPU (GLSL shaders). 

 
Figure III.27.The process of metamesh construction [Ath12]. 

 
The analysis of the state of the art shows that several phases involved in the morphing 

process are crucial for ensuring the quality of the resulting metamorphosis sequence. They 

notably concern:  

- The parameterization method involved, which should guarantee low geometric 

distortions in terms of lengths, angles and areas,  

- The warping of the source and target parametric domains, which should 

simultaneously guarantee a good match between corresponding feature points and a 

fold-over free deformation,  
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- The connectivity-related issues which should ensure a smooth and local adaptation 

between source and target models.   

 
Based on these considerations, we propose a 3D mesh morphing framework described in 

the next section.  

 

III.5.  OVERVIEW OF THE PROPOSED 3D MESH MORPHING 
FRAMEWORK 

 
The main steps involved in the proposed mesh morphing framework are illustrated in 

Figure III.28.  

 
The morphing method includes the following steps:  
 
 1. 3D model normalization - Since mesh models can be generated using a variety of 

techniques (e.g., 3D designers use CAD software, optical devices of 3D scanners) and, 

therefore, most of the 3D models available over the internet may have arbitrary scales, 

orientations and positions in the tridimensional virtual space, we first employ a PCA-based 

normalization [Jol02] in order to align the object with respect to its principal axes and scale it 

to the unit sphere. 

 

 
Figure III.28. Steps involved in our morphing process. 

 
 2. Mesh simplification – Since the parameterization process may require relatively 

important computational resources when dealing with highly complex meshes, described by 

thousands of vertices/triangles, we introduce a pre-processing step to produce coarser 

versions of the input meshes by iteratively reducing the number of vertices and triangles. In 

our work, we have adopted the QME surface simplification scheme introduced in [Gar97], 

and known as the QSlim method. A slight modification of the baseline technique has been 
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considered. Thus, in contrast with [Gar97], which can contract arbitrary two vertices, even if 

they are not connected by an edge, our method solely collapse adjacent vertices. This 

guarantees the preservation of the original model topology, which is strong constraint within 

the context of mesh morphing applications. 

 
 3. Mesh parameterization – Both the source and target models are mapped in a 

common parametric domain (i.e., planar domain if the models are open or spherical domain if 

the models are closed) in order to establish the correspondence between the main features 

of the two objects. We introduce here two novel methods: one that concerns a planar 

parameterization technique, so-called edge length ratio preserving (ELRP) parameterization 

and another one dedicated to spherical parameterization based on a Gaussian curvature 

criterion. 

 
 4. Feature correspondence - In order to ensure that the main characteristics of the 

models are preserved during the morphing process, it is necessary to re-place the user 

specified corresponding feature points such that they share the same position in the 

parameter domain. Such a re-placement requires a global deformation of the whole 

parametric domain, such that the corresponding meshes should be smoothly deformed 

without foldovers. The process is referred to as mesh warping. In order to accomplish this 

task we make use of radial basis functions that allows to displace all mesh vertices based 

only on the known displacement of some control points (feature vertices). 

 
 5. Pseudo metamesh construction - Once the two input models are parameterized in a 

common domain and the main features of the objects are aligned properly, the next natural 

step in a morphing framework is to establish a one-to-one correspondence between the 

models shapes. In order to accomplish this task we introduce a simple yet efficient technique 

to create a pseudo supermesh which avoids tracking the edge intersections. In addition, our 

method reduces drastically the number of vertices normally needed in a supermesh 

structure. 

 
 6. Interpolation – The objective of the mesh interpolation step is to determine appropriate 

trajectories for each vertex connecting the initial position, defined on the source surface, to 

the final position, defined on the target shape. We solve this step in a simple way by adopting 

a linear interpolation scheme.  

 
 

III.6.  CONCLUSIONS 
 
In this chapter, we first set the generic principles of visual object metamorphosis, starting 

with the case of 2D images. Then, we provided an overview of the main 3D mesh morphing 
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techniques proposed in the state of the art. The analysis of the state of the art reveals that, 

whatever the technique is used, the morphing process involves two different processes: the 

feature mapping and the interpolation problem.  

 
The correspondence problem, although intensively analyzed, remains a difficult step. In order 

to establish the correspondence between the vertices of the input models a great majority of 

approaches exploit a parameterization of the source and the target meshes over a common 

parametric domain. The feature correspondence issue is then established in the parameter 

domain, which can be either spherical (for genus 0 closed meshes)[Ale00], [Zhu09], [Ath12] 

planar (generally for open surfaces) [Kan98], [Kan00], [Yu03] or object-dependent (as in the 

case of MAPS parameterizations)[Lee99], [Mic01]. 

  
However, there are other approaches [Ahn04], [Lin05a], [Lin05b] which are based neither on 

disk nor spherical parameterization. These methods usually avoid creating an intermediate 

mesh which contain both source and target geometry as in the case of the embedding 

merging and multiresolution remeshing approaches. These methods aim to create a 

morphing sequence where beside the geometric transformation, the mesh connectivity is 

also changed. The drawback here is related to the difficulty of interaction with the end user. 

 
In the majority of cases, user intervention is required in order to specify some feature points 

and to establish the correspondence between the two objects. Some automatic solutions are 

proposed in the case of similar models, corresponding to a same category of objects [Urt04], 

[Ath10]. However, in the general case where morphing between arbitrary objects is required, 

such methods provide poor quality results.  

 
Concerning the interpolation issue, the most frequently used approach is the linear 

interpolation, which offers the advantages of speed and simplicity. However, this simple 

method can cause self-intersection and shape degeneration which is usually not a very 

pleasant effect. An interpolation of higher degree or in other spaces (i.e., Laplacian 

coordinates or Pyramid coordinates) is also possible, but without guaranteeing fold-over free 

morphing sequences in all cases. 

 
Finally, we have introduced the proposed morphing framework, with the various stages 

involved, which includes normalization, mesh simplification, parameterization, warping, meta-

mesh creation and interpolation.  

 

 



 

 

IV.  MESH PARAMETERIZATION 
 
 
 
 
 
 
 
 
 
 
 
 
Summary: This chapter introduces two main contributions of our work: The first one concern 

an enhanced 3D object planar parameterization method introducing a new barycentric 

mapping algorithm based on the length ratio preservation. A major advantage of our method, 

concerns the bijectivity property, which holds in all cases, and ensures valid and shape-

preserving embeddings for arbitrary open and triangular 3D meshes, regardless their 

complexity. The second proposed approach represents a spherical parameterization method 

which exploits the Gaussian curvature associated to the mesh vertices. Valid spherical 

embeddings are obtained by locally flattening the mesh in an iterative manner, starting from 

vertices with maximal curvature values. This principle makes it possible to define a sequence 

of flattening operations that transform the initial mesh into a rounded, sphere-like surface that 

can be mapped onto the unit sphere. 
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IV.1.  INTRODUCTION  
 
When considering a morphing process between two different source and target 3D meshes, 

the main difficulty to be overcome is related to topological problems related to different 

connectivities, numbers of vertices/faces that can describe the source and target shapes. 

Obviously, it is impossible to associate in a bilateral manner one vertex from the source to 

one vertex in the target model. The only solution is to consider the mapping between the two 

meshes as a mapping between their corresponding ℝ3 surfaces. Thus, for each vertex on the 

source (resp. target) model, a correspondent point on the target (resp. source) model has to 

be identified, as illustrated in Figure IV.1.  

 
Figure IV.1. Vertex to vertex correspondences. 

 
However, directly establishing such a correspondence is quite impossible, because of the 

complexity and diversity of shapes that can be modeled with 3D meshes. Instead, an indirect 

mapping method is preferred, which consist of:  

1. Parameterizing both source and target models onto a common, parametric domain; 

2. Warping the parametric domains in order to ensure a feature correspondence between the 

two 3D shapes to be morphed.  

 
In this chapter, we will consider solely the first of the above-mentioned stages, which 

concerns the mesh parameterization.  

 
In a general manner, the objective of any mesh parameterization method is to establish one-

to-one mapping (bijective) mapping between the surface of a given 3D models and a given 

2D parametric domain.  

 
Parameterizing the surface of a 3D model digitally represented as a collection of flat 

polygons in ℝ3, was firstly used in the computer graphics field in order to map textures onto 

surfaces [Hak00]. More recently, parameterization became an essential phase in numerous 

mesh processing applications such as surface-fitting [Pie01], mesh-editing [Bie02], re-

meshing [Smi06], compression [All05] and morphing [Zhu09].  
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The interest of 3D mesh parameterization techniques comes from the fact that complex 

operations that are intractable on the original 3D surface representation can be performed 

easily on a simple parametric domain such as the unit disk or the unit sphere. Various 

methods were developed for different kinds of parameter domains and parameterization 

properties. Before detailing them, let us first briefly establish some terminology. 

 
The parameterization of a given 3D surface S ⊂ IR3 is defined as a homeomorphism Φ:S→D 

which maps the surface S over an appropriate 2D domain D ⊂ IR2. In the case of 3D meshes, 

a parameterization is defined as a piece-wise linear embedding. More precisely, let 

M = (V, E, F) be a 3D triangular mesh, where V, E and F respectively denote the sets of 

vertices, edges and triangles.  

 
The parameterization of the mesh surface is completely specified by a function Φ:V→D, 

which associates to each vertex pi of V a point φi = φ(pi) in the 2D domain D. This process is 

illustrated in Figure IV.2. 

 
The bijection is required because each triangle of the mesh needs to have an appropriate 

image in the parameter domain. In other words, the faces in the parameter domain must not 

overlap.  

 
Figure IV.2. Mesh parameterization. 

 
With the introduction of the parameterization paradigm, we also have to distinguish two 

spaces – the object domain, i.e. the space in which the mesh is defined (generally ℝ3), and 

the parameter domain, i.e. the space in which the mesh is mapped onto. 

 
The selection of an appropriate 2D parametric domain D depends in most of the cases of the 

original model topology. For open triangular meshes, the intuitive way to obtain a 

parameterization is to map its vertices in a planar domain. For closed, genus 0 models, a 

spherical domain (i.e., the unit sphere) is more appropriate. 

 
In practice, guaranteeing a valid parameterization (i.e., continuous and bijective mapping 

function) is not straightforward. In particular, the phenomenon of triangle flipping (or mesh 

folding) can occur (Figure IV.3). 
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Figure IV.3. Fold-overs which lead to an invalid parameterization: 

(a) Boundary intersection; (b) Triangle flip. 
 
Numerous approaches [Des02], [Flo03], [Fri05], [Sor02], [She02] have been introduced in 

order to prevent the triangles from flipping. There are different measures to avoid overlaps 

depending on the type of fold. In general there are two causes for such folding: 

 
• The boundary of the parameter domain intersect itself (Figure IV.3.a) - This happens 

only in the case when the boundary is not predefined in the parametric domain, but can be 

handled by cutting along the borders of the intersection as described in [She01]. 

 
• Triangle flips (Figure IV.3.b) – This is the case when two adjacent triangles have 

opposite orientations. The mesh triangles orientation can be verified in the following manner: 

the vertices of the two adjacent triangles fm(pi, pj, pk) ϵ F and fn(pj, pk, pl) ϵ F are ordered in such 

a way that their associated coordinates in the parametric domain are in clockwise order; if we 

have the same order on their common edge ec(pj, pk) then we can say that one triangle lies on 

the other, i.e. their normals are flipped. Mathematically, we can check this by evaluating the 

following expression: 

𝑝𝑝𝑒𝑒𝑛𝑛((𝜑𝜑𝑖𝑖 × 𝜑𝜑𝑝𝑝 ) ∙ 𝜑𝜑𝑝𝑝) (IV.1) 
where sgn is the signum function and φi, φj φk are positions of the vertices of a triangle in the 

parameter domain. Relation (V.1) must be evaluated for each face. The parameterization is 

valid if all the triangles are oriented in the same way, i.e., the signum of the result of the 

equation (IV.1) is the same for each face. 

 
Even if the above conditions are satisfied, we cannot always speak about a “good” 

parameterization. Ideally, it is preferable that all triangles in the parametric domain have the 

areas proportional to those in the original space. However, in this case, the resulting triangles 

in the parametric domain risk to become degenerated / elongated and with disturbed aspect 

ratios.  

 
On the contrary, if we try to preserve the angles in the parametric domain, the area distortion 

might significantly increase. As a result, the 3D surface details cannot be properly described 

under such a parameterization. 
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In this context, Floater and Hormann [Flo05] define three types of mappings: 

• Conformal mappings – If the angles of any triangle in the parameter domain D are 

the same as those of the corresponding triangle in the original space M then that mapping is 

called conformal or angle preserving. 

• Equiareal mappings – If the area of any triangle in the parameter domain D is the 

same as that of the corresponding triangle in the original space M then that mapping is called 

equiareal, authalic or area preserving. 

• Isometric mappings – If the length of any edge in the parameter domain D is the 

same as that of the corresponding edge in the original space M then that mapping is called 

isometric or length preserving. 

 
Let us note that it can be demonstrated that every isometric mapping is conformal and 

equiareal, and every conformal and equiareal mapping is isometric [Kre59].  

 
In other words, isometric mapping is the ideal parameterization due to its zero distortions, 

which fully preserves angles and areas. Unfortunately, such an ideal parameterization can be 

determined solely in a small number of relatively simple cases. For example, when mapping 

into the plane, only developable surfaces (such as cylinders or cones) can admit planar 

isometric parameterization (Figure IV.4). For other, more general and complex surfaces, 

distortions must be tolerated, but minimized.  

 
Figure IV.4. Isometric parameterization of a cylinder. 

 
The majority of the approaches proposed in literature attempt to determine either a conformal 

mapping or an authalic mapping. In addition, they aim to minimizing some combination of 

angle and area distortions. The following sections will detail such methods for both planar 

and non-planar parameterizations. 

 
IV.2.  PLANAR PARAMETERIZATION OF TRIANGULAR MESHES 

 
The first research works presented in the field of mesh parameterization concerned the 

planar mapping of meshes with disk-like topology. Such approaches are based on the 

principle that a mesh can be compared with a physical system where mesh edges are 



3D MESH MORPHING  56 

 

springs that are connected to the vertices. If we consider fixed the mesh boundary in the 

parameter domain, then the inner vertices will relax in a configuration with minimum energy. 

 
For illustrating this process, let us consider the 1D example presented in Figure IV.5. 

Considering a sequence of n points p1, p2, ..., pn ϵ IR2 to be parameterized in an interval 

[a, b]⊂IR and connecting each pair of consecutive points (pi, pi+1) with a spring, we obtain a 

chain of n-1 springs (Figure IV.5.a). 

 
If all the points are forced to lie on an imaginary line with the endpoints p1 and pn fixed on a, 

respectively on b, then the result will be a contracted system with high energies stored in 

springs (Figure IV.5.b). 

 
Releasing the endpoints of the system, the springs will relax freeing the energies 

(Figure IV.5.c). This principle also applies in the case of 3D meshes parameterizations over 

2D domains. The difference here is that the springs energies cannot be completely 

eliminated. In this case, the objective is to relax the system in a configuration with minimum 

energy. 

 
Figure IV.5. Parameterization of a spring model: (a) original spring system; (b) parameterization 

with fixed boundary; (c) system relaxation. 
 

As a first planar parameterization method, let us mention the approach introduced by Eck et 

al. [Eck95], which consists of a generalization of the basic method proposed by Tutte [Tut63] 

for a planar graph. The spring energy is expressed in the following form: 
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where wi,j represent the spring constant defined for each edge e{i, j}, φi, φj are the vertex 

positions and u and v - the coordinates in the parameter domain.  

 
In order to obtain the minimum of this energy it is required that the partial derivatives of E 

with respect to ui and vi to be zero for all interior vertices φi: 
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Again, the boundary vertices are considered fixed in the parameter domain and their 

corresponding positions are pre-calculated. 

 
If we analyze equations (IV.3) and (IV.4), we can observe that every inner vertex can be 

expressed as a convex linear combination of its neighbors: 
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Where (ui, vj) are the 2D parametric coordinates of a vertex i, and λi,j denotes the normalized 

spring weights for an edge e{i, j} expressed as: 
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Let us observe that:  
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In equations (IV.5) and (IV.6), if we consider N the total number of points belonging to the 

mesh and n the number of inner vertices (non boundary points), then we can separate the 

interior and the boundary vertices in the sum in the following manner: 
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Here, without loss of generality, we consider that the boundary vertices are first indexed from 

1 to n and that the interior vertices have corresponding indices j>n.  The position of the 

boundary vertices is considered as fixed. 

 
Writing the two above equations for any interior vertices we obtain two linear systems of 

equation to be solved. These two systems can be expressed in the following matrix forms: 

UBUA =⋅  and VBVA =⋅                                             (IV.11) 

where the unknown U = [u1, u2, ..., un]T and V = [v1, v2, ..., vn]T are columns vectors 

corresponding to the u and v coordinates in the parameter domain D; Bu = [bu1, bu2, ..., bun]T 

and Bv = [bv1, bv2, ..., bvn]T are columns vectors with coefficients: 
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The existence and uniqueness of a solution for (IV.11) is equivalent to the non-singularity of 

the matrix A and is proven by Floater in [Flo97]. He also demonstrates that if the weights are 

positive and the matrix is symmetric, then the obtained parameterization exists and it is 

guaranteed to be bijective (i.e. there will be no overlapped triangles in the parameter 

domain). This theory is summarized by Gotsman et al. in [Got03] as the following theorem: 

 
Theorem IV.1: Given a planar 3-connected graph with a boundary fixed to a convex shape in 

ℝ2, the positions of the interior vertices form a planar triangulation (i.e., none of the triangles 

overlap) if and only if each vertex position is some convex combination of its neighbor's 

positions.  

  
The above-presented principle holds for arbitrary boundary to which the border vertices can 

be mapped onto. However, the selection of an appropriate shape for the boundary vertices 

might have a relatively important impact on the parameterization results, as discussed in the 

next section. 

 

IV.2.1. Selection of the boundary’s shape 
 

The convexity of the D domain boundary is a necessary condition in order to ensure that all 

the solutions of (IV.11) to belong to D. Thus, the problem of overlapping borders can be 

easily avoided, without any boundary optimization methods, if a convex shape is retained.  

 
However, the choice of an appropriate convex polygon for the boundary may affect the 

quality and usefulness of the results. A polygon with vertices on a unit circle may be a good 

boundary shape because all the points will be further away from the middle and vertices may 

be spaced easily on this circle at distances proportional to the edge lengths between them. 

Various approaches, particularly in the field of texture mapping methods (e.g. [San01], 

[Yos04], [Flo02a]) use as a boundary a square or a rectangle due to its similarity with a 

bitmap texture.  

 
Whatever the type of the considered parametric domain, the main issue to be solved is to 

map the boundary vertices accordingly.  
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Floater [Flo97] maps the boundary on the unit square or circle using chord length 

parameterization, while Greiner and Hormann [Gre96] determine the plane that optimally fits 

all the boundary vertices (in the least square error sense), and then orthogonally project 

them onto this plane. 

 
The requirements that the boundary should be fixed on a convex polygon may cause high 

distortion near the frontier. To overcome this drawback, various methods have been 

developed to allow free boundaries which treat both interior and border vertices in the same 

manner, in order to obtain simultaneously the boundary map and the mesh parameterization. 

Naturally, a higher similarity between the 2D and 3D boundary will lead to a smaller 

parameterization distortion.  

 
Within this framework, one of the first methods proposed is the Lee et. al. approach [Lee02], 

which creates a virtual boundary somehow fixed but more “natural”. Afterwards, others 

methods have been developed which require fixing only a few vertices in the parametric 

domain [Lev02], [Des02], while more recent researches focus on establishing full free 

boundaries [Cao10], [Liu08], [Zha05].  

 
In Figure IV.6, several methods with different boundary shapes are presented. Figure IV.6.b 

and Figure IV.6.c represent the 2D embedding of the 3D mesh, shown in Figure IV.6.a, in a 

parameter domain with a circle (respectively square) like boundary, while Figure IV.6.d 

presents the parameterization of the 3D mesh in a free boundary domain. 

 
Figure IV.6. Parameterization with different bounding polygons[Lee02]: (a) 3D original mesh; 

(b) circle; (c) square; (d) free boundary. 
 
In general, fixed boundary approaches offer the advantages of simplicity and of low 

computational complexity. In contrast, free boundary techniques generally produce 

significantly less distortion at the price of a higher computational cost. 

 

Another important issue to be specified concern the definition of appropriate spring weights 

(equation IV.2) for guiding the parameterization process. 
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IV.2.2. Spring weights specification 
 

In [Tut63], Tutte has chosen simple and uniform weights settings wi,j = 1 if {i, j} is an edge in 

the mesh. Tutte’s objective was to compute straight line embeddings of planar graphs, within 

a theoretic settting. Later, his technique has been applied to texture mapping applications.  

 
In such case, each point in the parameter domain is forced to be placed at the centroid of its 

neighbors. For this reason, the Tutte method has been called barycentric mapping.  

 
In this context, equation (IV.7) can be rewritten as: 

 𝜆𝜆𝑖𝑖 ,𝑝𝑝 = 1/deg(𝑖𝑖) (IV.14) 

where deg(𝑖𝑖) is the degree or the valence of the vertex pi. 

 
Although the resulting mapping is proved to be bijective, a main drawback of this approach is 

that it doesn’t fulfill the minimum requirement that would be expected from any 

parameterization method, which relates to the minimization of the geometric distortion 

measures. Thus, in practice the Tutte technique usually does not preserve any shape 

properties of the mesh because the choice of weights does not take into account any 

geometric property of the mesh, but solely its connectivity. 

 
A significant amount of research has been dedicated to the optimization of the 𝜆𝜆𝑖𝑖,𝑝𝑝  

coefficients, under the hypotheses of theorem IV.1.  

 
The main objective is to minimize the different distortion components, such as angle 

deformation (harmonic/conformal parameterizations), length deformation, or area 

deformation (authalic parameterization). 

 
The various approaches proposed are presented in the next section. 

 
IV.2.2.1. Discrete harmonic map (DHP) and Discrete 

conformal map (DCP) 
 

One of the first method proposed in this area is the so called discrete harmonic map 

introduced by Pinkall and Polthier [Pin93] in the context of differential geometry and adapted 

later by Eck et al [Eck95] for planar parameterization purposes. The goal of this approach is 

to minimize the Dirichlet energy, defined as:  

∫=
M

Dirichlet fgradfE 2||)(||
2
1)(  ,                              (IV.15) 
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where f is the mapping function. For a piecewise linear parameterization, corresponding to 

3D meshes, equation (IV.15) can be reformulated, resulting in the following energy that has 

to be minimized: 

∑ −=
},{ 

2
, ||||cot

jiEdgesOriented
jijiDCPE ϕϕα     ,                              (IV.16) 

with φi, φj - the vertex positions in the 2D parametric domain, and αij - the opposite left angle 

in the 3D space of the edge (i, j) (Figure IV.7). 

 
Calculating the partial derivatives of EDCP in respect with u and v - parametric coordinates – 

and imposing the necessary optimality conditions yields the following systems of equations: 
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The following weights are then obtained: 

ijijjiw βα cotcot, +=                                              (IV.19) 

where αij and βij are the opposite angles (in the 3D space) of the two triangles that share the 

same edge {i, j} (Figure IV.7). 

 
Figure IV.7. Angles used for weights computation. 

 
As introduced, the discrete harmonic map aims to be an angle preserving technique. 

However since the boundary vertices need to be fixed in the parametric domain the resulting 

triangles near the frontier would be distorted in both areas and angles.  

 
In order to overcome this limitation, Hormann and Greiner [Hor00] propose a free-boundary 

planar parameterization technique which requires that only two vertices to be fixed in the 

parametric domain. As in [Eck95], the mapping is determined as an energy minimization 

process which aims at maintaining low deformations. The energy to be minimized is defined 

as: 

)(2
||)cot(||)cot(||)cot()(
222

M
angle FArea
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                      (IV.20) 
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where a, b, c, are the edge length of triangle F that belong to original mesh, and α, β, γ are the 

angles in the parameter domain as presented in Figure IV.8. 

 

 
Figure IV.8. Edge and angle notation used in [Hor00]. 

 
The main advantage of this approach is that there is no more need to fix the parameter 

values of the boundary points in advance. Instead, the boundary of the parameterization will 

develop more naturally in such a way that the deformation energy is minimized. 

 
Desbrun et al. [Des02] start by minimizing the Dirichlet energy obtaining the same weights as 

in (IV.19). In contrast with the baseline technique, they compute the boundary position as a 

part of the minimization procedure constructing a more natural free edge. Thereby, Desbrun 

is able to achieve a significant lower angle distortion, obtaining the so called discrete 

conformal mapping.  

 
The harmonic and conformal mapping have the property to preserve the model shape, but 

not the area of the original mesh. Furthermore, the main drawback of these 

parameterizations is that the weights wi,j given by equation (IV.19) can be negative. 

According with the Floater demonstration [Flo97], this result can lead to non-bijective 

mapping and thus to triangle overlapping.  

 
If we express equation (IV.19) in the following manner:  

ijij

ijij
ijijjiw

βα
βα

βα
sinsin

)sin(
cotcot, ⋅

+
=+=                                      (IV.21) 

we can observe that the weights wi,j are positive if αij + βij ≤ π.  

 
In practice, this constraint is rarely satisfied. A solution may consist of inserting additional 

vertices/edges in order to bisect the obtuse angles [Des02]. In a general manner, it is 

necessary to verify that the mesh topology satisfies the Delaunay triangulation [Del34] 

condition, which states that no mesh vertex should lie in the interior of the circumscribed 

sphere of any non-adjacent triangle. 

 
Thus, Kharevych et al. [Kha06] demonstrate that if the mesh satisfies the Delaunay criterion, 

the parameterization obtained using the cotangent weights will always be bijective. In 

contrast with the baseline approach, Kharevych et al. formulate the discrete conformal 
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mapping in terms of circles and angles resulting from their intersection. The resulting method 

is called circle pattern parameterization. 

 
The algorithm starts by assigning to each edge (ei,j) of the mesh an angular weight θ(ei,j) 

which is expressed as: 

• the intersection angle of the circumscribing circles of the incident triangles, in the case of 

an interior edge,  

• the intersection angle of the circumscribing circle of the incident triangle with the 

considered edge, in the case of a boundary edge.  

This can be summarized as described in the following equation:  
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−−
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edgesboundary for                  
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,
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jiji
e γπ

βαπ
θ     ,                        (IV.22) 

where 𝛼𝛼𝑖𝑖 ,𝑝𝑝 , 𝛽𝛽𝑖𝑖,𝑝𝑝  and 𝛾𝛾𝑖𝑖 ,𝑝𝑝  are edge opposite angles as illustrated in Figure IV.9. The dotted line 

represents here a boundary edge. 

 

 
Figure IV.9. Angles used in the case of the circle patterns method. 

 
These angles serve to incorporate the original geometry into the circle pattern technique. 

After the angles are assigned, a circle pattern is defined in the parametric domain, which is 

combinatorial equivalent to the initial triangulation constituting a so-called coherent angle 

system [Bob04]. A coherent angle system is by definition an assignment of angles for all 

triangles in plane which satisfy the following conditions: 

 - the angles are all positives; 

 - in each triangle the angles sum to π; 

 - the angles satisfy the equation (IV.22), written in the parametric domain; 

 
Based on the 𝜃𝜃𝑒𝑒  angles computed on the original model, a coherent angle system in the 

parametric domain is established by minimizing the following objective function: 

𝐸𝐸 = ��𝜃𝜃𝑒𝑒𝑝𝑝� − 𝜃𝜃𝑒𝑒𝑝𝑝 �
𝑝𝑝

 (IV.23) 
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where 𝜃𝜃𝑒𝑒𝑝𝑝�  is defined in the same manner as 𝜃𝜃𝑒𝑒𝑝𝑝  but in the parametric domain. This quadratic 

minimization problem, with the above presented constraints, is solved using the Mosek 

quadratic minimization technique [Mos05]. Based on these angles, the radius of the circles 

that define the mesh edges in the parametric domain, as well as the length of each edge is 

also determined through an energy minimization process. 

Finally, the vertices coordinates u and v into the parameter domain are determined starting 

by placing one interior edge and then iteratively adding one edge after another by taking into 

account the previously computed angles and edge lengths.  

 
The method offers the advantage of supporting meshes of arbitrary topologies. As a 

drawback, let us note that the resulting parameterization can contain overlaps. To overcome 

this problem, Kharevych [Kha06] introduced an optimization method based on cone 

singularity vertices (i.e., vertices where angles of incident triangles do not sum to 2π) 

specified manually as boundary. Obviously, the inconvenient here is the amount of user 

interaction required.  

 
A closely related approach is the angle-based flattening (ABF) algorithm of Sheffer and 

Sturler [She01]. Authors define free boundary parameterization in terms of angles specifying 

a set of constraints to be satisfied. The algorithm minimizes the relative deformation of the 

angles in the plane with respect to their corresponding angles in the 3D mesh. The objective 

function to be minimized is defined as: 

𝐹𝐹(𝛼𝛼) =  ��(𝛼𝛼𝑖𝑖
𝑝𝑝 − 𝜙𝜙𝑖𝑖

𝑝𝑝 )2𝑤𝑤𝑖𝑖
𝑝𝑝

3

𝑝𝑝=1

𝑁𝑁𝐹𝐹

𝑖𝑖=1

 (IV.24) 

where 𝑁𝑁𝐹𝐹 represents the number of mesh triangles, 𝛼𝛼𝑖𝑖
𝑝𝑝  is the 𝑝𝑝 angle ( 𝑝𝑝 = 1, 2, 3 ) on the 𝑖𝑖th 

face in the 2D domain and 𝜙𝜙𝑖𝑖
𝑝𝑝  is the optimal angle for 𝛼𝛼𝑖𝑖

𝑝𝑝  in the 2D parametric mesh. Here,  

𝑤𝑤𝑖𝑖
𝑝𝑝  are positive weights defined as: 

𝑤𝑤𝑖𝑖
𝑝𝑝 = (𝜙𝜙𝑖𝑖

𝑝𝑝 )−2 (IV.25) 

The optimal angles 𝜙𝜙𝑖𝑖
𝑝𝑝are derived from the original mesh angles 𝛽𝛽𝑖𝑖

𝑝𝑝  as follows: 

𝜙𝜙𝑖𝑖
𝑝𝑝 (𝑝𝑝) = �

𝛽𝛽𝑖𝑖
𝑝𝑝 (𝑝𝑝) 2𝜋𝜋

∑ 𝛽𝛽𝑖𝑖
𝑝𝑝 (𝑝𝑝)𝑖𝑖

 , 𝑖𝑖𝑓𝑓 𝑝𝑝𝑝𝑝  is an interior node

            𝛽𝛽𝑖𝑖
𝑝𝑝 (𝑝𝑝)  ,                     𝑖𝑖𝑓𝑓 𝑝𝑝𝑝𝑝  is an boundary node  

�, (IV.26) 

where 𝑝𝑝𝑝𝑝  is the mesh node to which the face 𝑓𝑓𝑖𝑖  is attached to. In order to ensure a valid 

parameterization, the following set of constraints is imposed: 

   1)  all mesh angles should be higher than zero; 

   2)  the angles inside a triangle should sum to 𝜋𝜋; 

   3)  the angles around a point should sum to 2𝜋𝜋; 
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   4)  the following equation is satisfied for all interior mesh nodes: 

∏ sin(𝛼𝛼𝑖𝑖
𝑝𝑝 (𝑝𝑝)+1)𝑖𝑖

∏ sin(𝛼𝛼𝑖𝑖
𝑝𝑝 (𝑝𝑝)−1)𝑖𝑖

= 1 (IV.27) 

Equation (IV.27) can be intuitively interpreted with the so-called wheel paradigm. If the set of 

all adjacent triangles to a vertex is considered as a wheel and all adjacent edges are seen as 

spokes, then the constraint (4) guarantees that after fixing the length of one (arbitrary) spoke, 

browsing over all spokes in counterclockwise order around the wheel, the length of the last 

spoke should be equal to the length of the first spoke. This constraint is illustrated in 

Figure IV.10 (where the constraint is violated). 

 

 
Figure IV.10. Incompatibility of edge length in a wheel paradigm [She01]. 

 
The constrained minimization problem is solved by employing a preconditioned iterative 

solver as proposed in [Van92].  

 
The resulting map guarantees local bijectivity, but not a global one. It does not prevent the 

flat surface from generating self-intersections, in particular at the boundary level. To avoid 

this problem, additional constraints must be imposed and the algorithm reiterated.  

 
Unfortunately, in practice, the ABF method proves to be slow (e.g., 158 sec for a model with 

1032 triangles). In addition, in the case of meshes with a large number of vertices numerical 

stability problems appear. This is due to the iterative mechanism used to place the edges 

around a node which leads to error propagation. Each single vertex computation generates a 

small numerical error, but the accumulation of such errors for meshes with several thousands 

of triangles can be dramatic. Thus, in most of the cases the parameterization breaks out 

completely for models with more than 30K triangles.  

 
In order to overcome such limitations, an improved technique, so-called ABF++ is introduced 

in [She05]. A new mechanism for computing the 2D angles is here proposed, which is based 

on sequential linearly constrained programming. This technique for solving constrained 

minimization problems considers the constraints as linear at each iteration. This simplifies 

the system at the expense of a slightly increased number of iterations. 
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In addition, in contrast to the baseline ABF method, the new technique formulates the 

conversion problem as a global linear system and computes all the vertex coordinates 

simultaneously. This avoids error accumulation. This minimization problem leads to the 

following system of equations that have to be solved in order to obtain the vertex position in 

the parametric domain:                                

 0)( =−+− ikji
f ϕϕϕϕω   for Fkjif ∈=∀ ),,(   ,                   (IV.28) 

where:                                   
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Here, 𝛼𝛼1
𝑓𝑓 , 𝛼𝛼2

𝑓𝑓  and 𝛼𝛼3
𝑓𝑓  are the angles of a triangle 𝑓𝑓 specified in counterclockwise order and 

𝜑𝜑𝑖𝑖 , 𝜑𝜑𝑝𝑝  and 𝜑𝜑𝑝𝑝  their corresponding nodes in the parametric domain. For each triangle, two 

equations need to be written (for each of the u and v coordinates). 

  
In order to eliminate the remaining degrees of freedom for the parameterization, four 

constraints are introduced by fixing two vertices that share a common edge. Thereby, a 

2(N-2) x 2(N-2) system of equations is created. Let us note that with respect to the initial ABF 

method, this leads to a speed-up in computation. 

 
In order to reduce the drawback of the previous methods regarding the flipping triangles 

encountered due to the negative weights or the non-convexity of the parametric domain, 

Karni et al. [Kar05] propose an interesting method which consists of iteratively relocating the 

vertex position. The approach takes as input the results of an arbitrary mapping proposed in 

the above-presented methods as an initialization and then attempts to reduce the number of 

flipped triangles by reiterating the parameterization process. However, no guarantee of a flip-

free final triangulation is proposed.  

 
A well-known angle-preserving parameterization method is the mean value coordinates 

approach proposed by Floater in [Flo03]. Floater derives a generalization of barycentric 

coordinates, which allows a vertex in a planar triangulation to be expressed as a convex 

combination of its neighboring vertices. The approach is able to determine a new set of 

weights (IV.31) which has the property to be all positives keeping in the same time the 

simplicity of the Eck [Eck95] or Desbrun [Des02] approaches. The mean-value weights 

proposed are defined in the following manner: 
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where γi,j and δi,j are the angles in the two triangles shared by the edge {i, j} as illustrated in 

Figure IV.7. Based on these weights, similar matrix forms like that from equations (IV.9), 
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(IV.10) and (IV.11) can be constructed, with the difference that in this case the weights are 

not symmetric (λi,j ≠ λj,i).  

 
Although, the work of Tutte [Tut63] shows that in order to obtain a bijective mapping, the 

matrix has to be symmetric; Floater proves that mean-value parameterization is guaranteed 

to be bijective. However, in practice, there are some cases when the classical harmonic 

mapping preserves better the angles than the mean coordinates value approach. 

 
Let us now analyze the area-preserving parameterization methods proposed. 

 

IV.2.2.2. Discrete authalic map 
 

The objective of discrete authalic maps, also called equiareal mappings, is to provide an 

area-preserving parameterization.  

 
In [Flo05], Floater demonstrated that equiareal mappings, unlike the conformal ones, are not 

unique. Let us consider the example illustrated in Figure IV.11. Here, we can start from the 

left parameterization and construct different other mappings that preserve the areas (but not 

the angles). Thus, any attempt to minimize area deformation solely would lead to an ill-posed 

problem. For this reason, the majority of approaches combine the angular distortion 

minimization techniques with the ones of area-preservation [Pie10], [Dom10], [Des02], 

[Deg03], [Yan08]. 

 
Figure IV.11. Equiareal mapping [Flo05]: In the three cases, the areas of the 

corresponding cells are identical. 
 
Let us first mention the method introduced by Desbrun et al. in [Des02]. Here, authors 

introduce a tradeoff between angle and area distortions aiming to optimally (in the sense of 

an energy function to be minimized) map the 3D mesh onto the parametric domain. In 

addition to the conformal mapping approaches presented earlier, an area distortion metric is 

here included. The proposed energy function to be minimized is the Chi energy, defined by 

the following equation: 
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where the angles γi,j and δi,j are defined as illustrated in Figure IV.7.  

 
The critical point of the above energy could be determined by considering the set of partial 

derivatives, as described by the following relations: 
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A general distortion measure is then constructed as a linear combination of equations (IV.3), 

(IV.4) (IV.32), and (IV.33) 

χµµ EEEG )1( −+=   ,                                            (IV.34) 

where 𝜇𝜇 is a real parameter taking values in the [0, 1] interval that weights the conformal and 

authalic terms in the global energy.  

 
If we take into consideration only the area energy (𝜇𝜇 = 0), we would obtain a full discrete 

authalic energy. However, the method measures deformations in the area distribution only 

locally within each one-ring of a considered vertex. In this way, the approach can accumulate 

a small error with each local deformation, resulting in an unbalanced global area distribution. 

The ratio between the initial area in 3D and the area in the parametric domain of a triangle is 

similar for adjacent faces, but may differ drastically with the one in other mesh regions.  

 
Furthermore, it is not clear neither which is the optimal value for μ, nor if it depends on the 

considered 3D mesh models. Finally, let us point out that the method does not guarantee a 

valid planar embedding since the resulting linear systems obtained from (IV.32) and (IV.33) 

are not symmetric. 

 
A closely-related formulation is proposed by Degener et al. in [Deg03]. Authors introduce a 

new method aiming to simultaneously preserve both angles and areas. The energies to be 

minimized, besides being invariant under rotation and translation of the domain, are also 

designed to prevent triangle flips and do not require a fixed boundary of the parameter 

domain. 

  
The approach is actually an extension of a previous method proposed by Hormann and 

Greiner in [Hor00] which attempts to minimize only the angle distortion by optimizing a 

nonlinear functional that measures mesh conformability (equation IV.20). In addition, 

Degener et al. [Deg03] introduces an extra term that measures the area distortion of each 

triangle, defined as: 
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𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓) = 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝐷𝐷 )
𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝑀𝑀 ) + 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝑀𝑀 )

𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓𝐷𝐷 )      , (IV.35) 

where 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝(𝑓𝑓𝑀𝑀) represents the 𝑓𝑓𝑀𝑀 triangle area in the original mesh, while 𝐴𝐴𝑝𝑝𝑒𝑒𝑝𝑝(𝑓𝑓𝐷𝐷) is the 

area of the same triangle in the parametric domain. 

 
A real parameter θ allows the user to specify the relative importance of angle and area 

preservation in order to control the tradeoff between the related deformations; It is introduced 

in the following manner:  

𝐸𝐸𝐺𝐺(𝑓𝑓) = 𝐸𝐸𝑝𝑝𝑛𝑛𝑒𝑒𝑝𝑝𝑒𝑒 (𝑓𝑓) ∙ (𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑓𝑓))𝜃𝜃  (IV.36) 

The initial (non-optimized) 2D mapping is obtained through a hierarchical approach that 

computes progressive mesh sequences of the original mesh. The model is simplified until a 

base domain is obtained formed by an unique one triangle. The 2D coordinates of its vertices 

are initialized to a congruent triangle in the plane centered in the origin. Through vertex split 

operations all the removed vertices are iteratively reinserted into the mesh at the kernel 

center defined by its old adjacent nodes.  

 
Based on the isometric distortion defined in equation (IV.37) for each face, an error 𝐸𝐸𝑖𝑖  is 

computed for each vertex as the following partial sum: 

𝐸𝐸𝑖𝑖 = � 𝐸𝐸𝐺𝐺(𝑓𝑓)
𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒𝑛𝑛𝑝𝑝𝐹𝐹𝑝𝑝𝑐𝑐𝑒𝑒𝑝𝑝 (𝑖𝑖)

 (IV.37) 

Then, a non-linear conjugate gradient optimizer [Pre94] is employed to establish the optimal 

position for each vertex in the parametric domain such that to minimize the 𝐸𝐸𝑖𝑖  energy. Each 

vertex is treated separately while maintaining all other vertices fixed. 

 
In addition to conformal and equiareal mappings, other researches are focused on 

preserving the relative distances across the mesh [Lee05], [Gre96], [Flo97]. Such 

approaches are presented in the following section. 

 

IV.2.2.3. Distance preserving mapping 
 

The idea of considering spring weights that are proportional to the lengths of the 

corresponding edges in the triangle mesh was first used by Greiner and Hormann in [Gre96].  

 
They first orthogonally project the boundary vertices in a plane that best fits all these vertices 

in a least square sense. Then, the remaining points are forced to stay in the parameter plane 

in such a way that minimizes the following spring energy: 
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where wi,j represents the weight for the edge 𝑒𝑒𝑖𝑖𝑝𝑝  that connects the original vertices 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑝𝑝 . 

This weight is defined as: 1/�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝 �
𝑝𝑝  for some real positive parameter r. Here, 𝜑𝜑𝑖𝑖  and 𝜑𝜑𝑝𝑝  

are the corresponding positions in the 2D parametric domain of the corresponding vertices 𝑝𝑝𝑖𝑖  

and 𝑝𝑝𝑝𝑝 , while 𝐿𝐿𝑖𝑖,𝑝𝑝0 , defined as 𝛼𝛼�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝� is the initial length of the edge 𝑒𝑒𝑖𝑖𝑝𝑝 , with α a real-

valued and positive parameter . 

 
In this framework, for α = 0 and different values of parameter r we can encounter some well-

known parameterizations. Thus, for r = 0, we obtain the uniform parameterization proposed 

by Tutte [Tut63]. In the case where r = 0,5 the centripetal mapping [Lee89] is achieved. 

Finally, for r = 1 we obtain the chord length method presented by Floater in [Flo97].  

 
Let us also note that when parameter α = 0, equation (IV.38) remains quadratic and positive 

defined in the unknowns wi,j. Its minimum can be consequently determined by solving a linear 

and sparse system of equations. 

 
When parameter α ≠ 0 a better approximation of the model with a real spring system is 

achieved. However, the drawback here is that a non-linear optimization problem has to be 

solved. 

 
Another approach which constructs the weights of the spring model based on the geodesic 

distances between points of the original 3D model is proposed in [Lee05]. Authors start from 

the idea proposed by Floater in [Flo97], but avoid computing areas on a complex surface. 

Instead, they exploit the barycentric coordinates in a triangle expressed as length ratios: 
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where pi, pj, pk, pl are vertices represented as in Figure IV.12, and p’j is obtained so that the 

angles on each side of the line pjp’j are equal. Once the weights are computed two linear 

systems of equation, similar to those in equation (IV.11) have to be solved in order to 

establish the 2D coordinates. 

 
Figure IV.12. 𝑝𝑝𝑖𝑖  vertex projection into the triangle 𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝  
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More recently, in [Sun07] authors attempt to better preserve the shapes in the parametric 

domain with the help of straight distances computed with cutting planes. The principle is 

illustrated in Figure IV.13, where a base plane B  is created locally for each interior vertex. 

The normal BNormal of the base plane B is computed by area-weighted averaging of 

neighboring face normals of pi as: 

∑
∈

=
)(iNeighborsj

jjB NormalwNormal                                           (IV.40) 

A cutting plane P passing through pi, pj and perpendicular on plane B is finally determined. 

The difference of the approach [Sun07] compared with the previous method [Lee05] consist 

in the way that the vertex p’j is computed. Here, the point p’j is obtained as the intersection of 

edge { pk , pl } with the cutting plane P. 

 
Figure IV.13. Local straightest path. 

 
Table IV.1 summarizes the various planar parameterization techniques discusses in this 

section, with related principle, advantages and limitations.  

 
Unfortunately, despite numerous existing planar parameterization techniques, as the analysis 

of the state of the art shows, only few of them can ensure a valid embedding with low 

distortions reported to the original 3D model shape.  

 
In the following section we introduce a novel method of planar parameterization that belongs 

to the distance preserving mapping approaches. The proposed technique attempts to jointly 

minimize angle and area distortion based on edge length ratios. A major advantage of our 

method, concerns the bijectivity property, which holds in all cases, and ensures valid and 

shape-preserving embeddings for arbitrary open and triangular 3D meshes, regardless their 

complexity. 
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Table IV.1. Description of planar parameterization methods 

Method 
Type of 

distortion 
minimized 

Complexity Computation
al time Comments 

[Tut63] 
Tutte 

 
None + 

(Linear) + 

- simple and uniform weights wij = 1 
- bijective mapping 
- do not preserve the shape of the mesh 
- fixed and convex boundary 

[Eck95] 
Eck Angles + 

(Linear) + 

- the parameterization may not be always 
bijective 
- require fixed and convex boundary 
- discrete harmonic mapping 
- do not preserve the area of the model 

[Flo97] 
Floater Angles ++ 

(Liniar) + 

- shape preserving mapping 
- bijective parameterization 
- require a fixed and convex boundary 
- high distortion across the border 

[Flo03] 
Floater Angles + 

(Linear) + 

- bijective mapping 
- require a fixed and convex or star shaped 
boundary 
- high distortion across the border 

[Des02] 
Desbrun 

Angles and 
Areas 

++ 
(Linear) ++ 

- almost free boundary (require to fix at least two 
border vertices) 
- the result is sensitive to the choice of the fixed 
vertices 
- possible triangles over lapping (non-bijective 
mapping) 
- suffer from high shrinkage 

[Hor00] 
Hormann Angles +++ 

(Non Linear) ++++ 
- free boundary 
- bijective mappings 
- low distortions 

[Deg03] 
Degener 

Angles and 
Areas 

+++ 
(Non Linear) +++++ 

- the importance between angle and area 
preservation can be controlled manually 
- free boundary 
- use a hierarchical solver to speed up the 
nonlinear optimization 
- bijective mappings 

[San01] 
Sander Lengths ++++ 

(Non Linear) +++++ 

- free boundary 
- create the parameterization using a corse-to-
fine optimization strategy 
- partition mesh into charts and map each one 
on the plane 
- applicable also for closed meshes 

[Kha06] 
Kharevych Angles +++ 

(Non Linear) ++++ 

- free boundaries or user controlled boundary 
shape via prescribed curvatures 
- map meshes with arbitrary topology to the 
plane 
-meshes of genus zero can be parameterized 
over the sphere 
- the parameterization can contain global 
overlaps 

[She01] 
Sheffer Angles ++++ 

(Non Linear) +++++ 

- local bijectivity, but not global (self intersection 
of the boundary; if this happens a number of 
optimization has to be made) 
- very slow 
- instable for meshes with medium number of 
vertices ( >10k ), and impractical for meshes 
with more than 30k vertices 

[She05] 
Sheffer Angles +++ 

(Non Linear) +++ 

- improve the [She01] method introducing a new 
numerical solution technique to speed up the 
parameterization 
- free boundary 
- can process models with millions of triangles 
relatively fast implementing a coarse to fine 
parameterization 

[Sun07] 
Sungyeol Lengths ++ 

(Linear) +++ 

- free boundary 
- comparative distortions with the Floater 
method [Flo03] 
- there is no guaranty for a bijective mapping 
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IV.2.3. Edge length ratio preserving (ELRP) planar parameterization  

 

The basic principle of the proposed method consists of defining a new set of weights, 

determined based on the local geometry of the original model.  

 
Concerning the boundary specification issue, we have adopted a fixed and unique boundary, 

which is the unit circle. Let us note that this choice is without any loss of generality, since the 

proposed method can be adapted to any type of boundary (including free boundaries). 

 
We first set an arbitrary border vertex on the unit circle and then place the rest of the vertices 

along the boundary domain such that the geodesic distances between them to be 

proportional to the original edge lengths. For this purpose, we let 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚  be the ordered 

boundary vertices and identify 𝑝𝑝𝑚𝑚+1 = 𝑝𝑝1. The bijectivity of the parameterization is assured if 

the corresponding parameter points 𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑚𝑚  of the boundary vertices form a convex 

polygon, which can be achieved by placing them on the unit circle. If we write the parameter 

points as: 

𝜑𝜑𝑖𝑖 = �
𝑐𝑐𝑐𝑐𝑝𝑝𝛼𝛼𝑖𝑖
𝑝𝑝𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖 �   , i = 1,…, m+1 (IV.41) 

A reasonable measure of the distance between 𝜑𝜑𝑖𝑖  and 𝜑𝜑𝑖𝑖+1is the corresponding arc length 

difference 𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖  as the length of the arc between those two points (Figure IV.14). Thus, 

the parameterization of the boundary can then be regarded as a univariate mapping problem 

with parameter points 𝛼𝛼𝑖𝑖  and fixed endpoints 𝛼𝛼1 = 0 and 𝛼𝛼𝑚𝑚+1 = 2𝜋𝜋. The problem can be 

solved by writing: 

𝛼𝛼𝑖𝑖+1 = 𝛼𝛼𝑖𝑖 +
2𝜋𝜋

𝑑𝑑𝑖𝑖 ∑ 1/𝑑𝑑𝑝𝑝𝑚𝑚
𝑝𝑝=1

 (IV.42) 

where 𝑑𝑑𝑝𝑝  represents the chord length weights defined as: 

𝑑𝑑𝑖𝑖 =
1

‖𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖‖
 (IV.43) 

 
Figure IV.14. Parameterizing the boundary over the unit circle. 
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Establishing the weights for the spring system described by equation (IV.11) is highly 

important and can significantly affect the parameterization quality in terms of angle and area 

distortion. Most of the methods presented in the previous section returns less satisfactory 

results when considering the area distortion criterion. In order to overcome this drawback, we 

propose a new set of weights that minimize the areal deformation while maintaining a low 

angle distortion.  

 
Each inner vertex of a mesh can be expressed as a linear combination of its neighbors. A 

weight, associated to each edge in the mesh (Figure IV.15), is computed as the ratio of the 

distance between the current vertex pi and the adjacent vertex pj normalized to the total sum 

of lengths for all edges incident to pi, as described by the following equation: 

∑
∈

=

)(iNeighborsj
ij

ij
ij l

l
w                                                        (IV.44) 

 
When considering the above-defined weights, equation (IV.9) and (IV.10) can be rewritten in 

the following form: 

00 =∑
∈

+∑
∈
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∑

∈

∑
∈
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iu       (IV.45) 

00 =∑
∈

+∑
∈

−⇒=
∑

∈

∑
∈

−
i)Neighbors(j jvi,jl

i)Neighbors(j ijliv

i)Neighbors(j ijl
i)Neighbors(j jvi,jl

iv       (IV.46) 

 
Figure IV.15. The one-ring neighbors of vertex pi and the associated lengths. 

 
As it can be observed, in this case the resulting system of equations is symmetric and all the 

elements from the matrix A (as defined in equation (IV.11)), excepting the main diagonal are 

positive. This property guarantees the bijectivity of our parameterization. Furthermore, the 

resulted matrix is sparse since the non-zero elements depend only on the adjacent vertices. 

This allows us to compute the spring system solution by using the conjugate gradient method 

[Pre02] that iteratively solves the sparse linear system. 
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IV.2.4. Objective experimental evaluation of planar mesh 
parameterization methods  

 

In order to evaluate and validate the proposed ELRP parameterization method, we retained 

for comparison the following three state of the art approaches: 

• Uniform parameterization, which corresponds to the baseline planar graph method 

proposed by Tutte [Tut63]. 

• Mean Value Coordinates [Flo03], which aims to preserve the angles of the original 

mesh in the parametric domain. 

• Harmonic Mapping – conceptually elaborated by Pinkall and Polthier [Pin93] in the 

differential geometry context, and integrated by Eck et al. [Eck95] for mesh parameterization 

purposes. The harmonic mapping aims to preserve the angles, but the considered weights 

not always ensure a valid parameterization. 

 
For each technique, we analyzed the mesh deformation measures in the parametric domain, 

in terms of angles, areas and lengths. More precisely, as evaluation metrics we have 

considered are the angle, area (surface) and length distortions (respectively denoted by 

DA, DS  and DL) as introduced in [Lee05] and defined as follows: 
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where T is the number of triangles, N represent the number of vertices, α denote the mesh 

angles and A represents the triangle areas. Indices M and S respectively indicate original and 

parameterized models. Ideally, all the three types of distortions should be as close as 

possible to zero. 

 
We have considered an object corpus of 10 3D mesh models from the Princeton Shape 

Benchmark (http://shape.cs.princeton.edu/benchmark/) and from the MPEG 7 3D model test 

set (http://3d.csie.ntu.edu.tw/). The selected objects are open manifold triangular mesh 

models characterized by complex geometries and including various types of shapes.  

 
Figure IV.16 and Figure IV.17 presents some visual results obtained after applying all the 

considered algorithms on some of our test models. As is can be observed, our method 
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always returns valid embedding for any arbitrary open and triangular 3D meshes, regardless 

their complexity.  

 
The results synthesized in Table IV.2 present the distortions obtained with our proposed 

ELRP method, together with those corresponding to the state of the art. For each model and 

for each distortion criterion the best performances are marked in bold.  

 
Table IV.2. Comparative study concerning area, angles and length distortions. 

Model No. 
vert 

Uniform 
parameterization 

[Tut63] 
Mean Value Coordinates 

[Flo03] 
Harmonic Mapping 

[Eck95] ELRP 

DS DA DL DS DA DL DS DA DL DS DA DL 

Cow 1023 13.169 0.297 14.081 21.612 0.106 16.948 167.85 0.037 40.011 0.079 0.287 1.402 
Chess 
horse 143 49.724 0.483 67.425 46.319 0.183 45.889 9.229 0.209 15.678 0.801 0.618 7.774 

Lion 575 1.945 0.259 9.022 10.758 0.150 18.036 34.501 0.071 29.822 0.066 0.303 1.549 

Delphin 355 0.795 0.331 3.755 409.06 7.910 7.885 Overlapping triangles 0.033 0.392 0.787 

Cat 352 0.612 0.160 3.994 0.757 0.052 3.992 1.042 0.029 4.807 0.042 0.185 0.879 

Hand 300 0.286 0.649 5.936 18579.1 0.587 608.36 Overlapping triangles 0.025 0.773 1.708 

Statue 458 0.002 0.370 0.207 0.003 0.221 0.169 0.004 0.246 0.205 0.001 0.294 0.101 

Face 1500 0.263 0.233 1.293 0.044 0.030 0.394 0.083 0.025 0.494 0.011 0.171 0.304 

Beethoven 1200 0.003 0.283 0.179 0.001 0.083 0.071 0.001 0.072 0.065 0.001 0.219 0.078 

Cat Head 135 0.177 0.159 2.251 0.104 0.057 1.352 0.098 0.043 1.311 0.027 0.175 0.567 

 
Concerning the Tutte [Tut63] method, although the resulting mapping is bijective, the 

numerical examples show that this technique does not preserve any shape properties of the 

mesh. One reason for this bad behavior is that the choice of weights does not take into 

account the geometry of the mesh, but solely its connectivity. 

 
The harmonic mapping globally preserves the model shape, but the corresponding areas are 

severely distorted. In addition, for some models the associated weights take negative values 

which leads to non-bijectivity and thus non-valid parameterizations. In the case of mean 

value coordinates even though the resulted matrix looses the symmetric property, the 

resulted embedding is valid in all cases. However, the major drawback of this method is 

related to the computational complexity because in this situation it is impossible to use the 

fast conjugate gradient algorithm to solve the linear systems involved. The analysis of the 

results obviously shows that the proposed length ration method outperform the other 

approaches in the case of both area (with a mean 78,5 % reduction) and length (with a global 

average of 57% reduction) distortions. For the angle distortion, the best performances are 

achieved by the harmonic mapping technique. However, the harmonic mapping fails in the 

case of some models due to the negative weights in the energy spring system. Thus, the 

proposed ELRP method offers the advantage of a larger applicability. 
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IV.3.  SPHERICAL PARAMETERIZATION OF TRIANGULAR MESHES 

 
 
If for open, single-connected triangle meshes (i.e. disk topologically equivalent to the unit 

disk) the planar prameterization are naturally adapted, in the case of closed 3D meshes 

different solutions have to be investigated. 

 

IV.3.1. State of the art on spherical embedding 
 

The most straightforward method to handle closed 3D models is to create an artificial 

boundary by determining a closed path along the mesh edges and cut the mesh along the 

path. This process will result in two open patches that can be individually parameterized with 

respect to the unit disk by applying arbitrary planar parameterization methods. Different 

techniques of the literature adopt this paradigm [Pip00], [Sor02], [She02a], [She02b].  

 
The simplest way to obtain the boundary which makes the object to be open is to eliminate 

an arbitrary triangle from the mesh [Cla04].  

 
More sophisticated methods attempt to optimize the considered boundaries (Figure IV.18). 

However, even so, because of discontinuities introduced by the mesh cuts at the level of the 

boundary edges, the resulting distortions can be very high. 

 
Figure IV.18. Planar parameterization of a closed genus-0 3D mesh by cuts [She02]. 

 
In order to overcome such a difficulty, a different family of approaches [Wu05], [She03], 

[Asi05], [Li07], [Qiu09] consists of directly parameterizing closed genus-0 meshes onto a 

spherical domain (i.e., unit sphere), since such objects are topologically equivalent to a 

sphere. 

 
Thus, the spherical parameterization problem is considered as an embedding of the model in 

the unit sphere. All the mesh vertices will lie on the sphere’s surface and the condition to be 

satisfied in order to obtain a valid spherical parameterization is to ensure that the resulting 

spherical triangles are non-overlapping.  
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In practice, determining valid spherical parameterization proves to be a more challenging 

task than the planar case. 

 
Historically, one of the very first spherical parameterization techniques proposed was 

introduced in [Ken92]. The method returns a valid embedding only if the original mesh has a 

convex shape. A convex model has the property that any two vertices can be connected by a 

straight line segment which lies inside the model and does intersect the shape. In this case, 

the parameterization becomes quite simple. The model is first translated so that its centroid 

coincide with the origin of the given coordinate system and then the vector position of each 

vertex is normalized to unity. As a result, all the vertices will lie on the unit sphere surface.  

 
This simple spherical projection can be extended to the class of so-called star-shaped 

models. Such objects have the property that there is at least one point in the interior of the 

model which can be connected with all the mesh vertices by a straight line without generating 

multiple intersections with the mesh surface. The only problem is to determine the interior 

points (called also kernel points) which satisfy such properties. In the case of star-shaped 

objects, the kernel can be determined as the intersection of all semi-spaces defined by the 

set of mesh faces. 

 
Such simple approaches are illustrated in Figure IV 19. For simplicity, we have illustrated 

here the 2D case (i.e., closed and planar polygons parameterized onto the unit disk). 

Figure IV 19.a presents the case of a convex polygon. The blue point represents the 

corresponding gravity center. Figure IV 19.b illustrates the case of a star shape polygon. The 

center of the unit disk is here placed in an arbitrary position, which does not correspond to a 

kernel point. As a result, the resulting parameterization is not valid (overlapping arcs on the 

unit disk represented in red). In contrast, in Figure IV 19.c, for the same star shape polygon, 

the center of the unit disk is placed into a kernel point. As a result, the obtained 

parameterization is in this case valid. 

 
Figure IV 19. Shape projection on a circle. (a) Kent method applied on a convex shape; (b) Kent 

method applied on a non convex shape; (c) kernel approach. 
 
Let us note that such simple approaches do not optimize neither angle nor area distortions, 

since no geometric information is taken into account. In addition, they can be useful for 
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simple shapes but in the case of real life objects, the assumptions of convexity or star shape 

do not hold.  

 
Starting from the Kent et al. [Ken92] approach, Alexa [Ale00] develop a method to project 

any kind of 3D genus-0 meshes onto the unit sphere. In order to deal with the triangle 

overlapping problem, the author introduces a vertex relaxation process which consists of an 

iterative procedure that repeatedly places each vertex at the center of its neighbors. Since 

the new vertex position is not on the sphere, a normalization operation is required: 
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where 1+l
iϕ is the position, in the parameter domain, of the vertex l

iϕ  after the (l+1) relaxation 

iterations. The process continues until the largest displacement of any mesh vertex becomes 

smaller than a predefined threshold. 

 
However, the relaxation process can lead to mesh collapses into a single point. In order to 

solve this problem, it is necessary to fix several vertices (called anchors) in the parametric 

domain. Unfortunately, without a sufficient number of adequately selected anchors the 

embedding may also collapse, as illustrated in Figure IV.20.a. Here, 4 anchor points have 

been considered.  

 
Figure IV.20. Problems encountered in sphere parameterization: (a) Collapsed mapping; 

(b) Overlapped triangles in sphere parameterization [Ale00]. 
 
In addition, because the position of the anchors is fixed, this can lead to triangle overlapping 

(Figure IV.20.b). In order to solve the problem, a heuristic scheme is developed which 

consists of changing the anchor points after a given number of iterations. The relaxation 

process is illustrated in Figure IV.21 for a 3D model representing a horse.  

 
Figure IV.21. Spherical parameterization using relaxation approach proposed by Alexa[Ale00]. 

 



3D MESH MORPHING  82 

 

The method provides valid parameterization in a majority of cases. However, the relaxation 

process is difficult to be controlled and does not guarantee a valid embedding in all cases.  

 
Another interesting method starts by reconsidering the principle of virtually cutting the mesh 

through a path in order to obtain an artificial boundary [Hak00] (Figure IV.22). A conformal 

planar parameterization is first computed using an arbitrary mesh triangle as a boundary. 

Then, a stereographic projection of the resulting planar mapping is performed in order to 

obtain the spherical parameterization. The boundary triangle will represent the north pole of 

the sphere.  

 
Figure IV.22. Spherical parameterization using the Haker’s approach [Hak00]. 

 
The approach offers the advantage of simplicity since authors construct only a sparse, real, 

symmetric, linear system of equations.  

 
Despite its simplicity, the conformal surface parameterization proposed by Haker [Hak00], 

presents some important drawbacks. First of all, the results are strongly influenced by the 

choice of the boundary triangle. In addition, all the vertices of the mesh tend to cluster in the 

center of considered triangle leading to a significant area distortion in the parameter domain. 

Finally, the inverse stereo projection technique does not preserve the geometric properties of 

the planar triangulation so the result will be even more distorted. Finally, and more important, 

the method generally suffers from foldovers.  

 
Extending the idea of opening the genus-0 meshes in order to map them with the help of 

existing planar parameterization methods, various approaches cut the mesh into two parts, 

each topologically equivalent to a disk. The two parts are parameterized each over a planar 

disk with a common boundary, and then each disk is mapped onto a hemisphere of the unit 

sphere. 

 
One of the first approaches based on this principle is proposed in [Ise01]. A so-called vertex 

separator algorithm is here proposed which partitions the mesh into two components with 

approximately equivalent numbers of vertices and with and a common boundary. A modified 

version of the Tutte parameterization [Tut63] is used for parameterizing each of the two 

components. Then the two planar embeddings are mapped onto the sphere using the 

stereographic projection. Naturally, the results strongly depend on the considered cut. 
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More recently, starting from the same idea, Jianping Hu et al. [Hu08] present a similar 

method. The difference here concerns a novel splitting technique which cuts the mesh into 

two parts based on the optimum reflective plane approach introduced in [Kaz03]. After the 

mesh partition is achieved, an initial planar parameterization as the one proposed by Floater 

in [Flo03] is applied for the two mesh pieces. In addition, a spherical stretch optimization is 

performed in the parametric domain. 

 
Within the same family of approaches, Zayer [Zay06] propose a method which re-formulates 

the problem in a curvilinear coordinates system (i.e. spherical coordinates with radius = 1), 

hence reducing it to a 2D problem where the each vertex position is represented by the 

azimuth angle (longitude) 𝜃𝜃 ∈ (0, 2𝜋𝜋) and the elevation angle (latitude) 𝜙𝜙 ∈ (0,𝜋𝜋). In order to 

eliminate the pole singularity problem, the two poles of the model are determined and 

removed. 

 
The shortest path between the two poles, called date line is then determined with the help of 

the Dijkstra algorithm [Dij59]. This path is then used for cutting the mesh, which yields an 

open mesh. In this manner, an initial harmonic map as proposed in [Eck95] or the mean 

coordinates value approach [Flo03] can be next applied to obtain the corresponding planar 

parameterization.  

 
In order to reduce the distortions particularly at triangles located near the cut path, an 

optimization step is performed based on the tangential Laplacian operator. The various steps 

of the methods are illustrated in Figure IV.23. 

 
Figure IV.23. Curvilinear Spherical Parameterization [Zay06]. (a) mesh cut along the date line; (b) the 

initial parameterization in curvilinear coordinates (with high distortions); (c) the improved mapping 
taking into account spherical distortion; (d) the final spherical parameterization. 

 
Gotsman et al. [Got03] propose an extension of the theory of barycentric coordinates used in 

the planar mapping case to the spherical case. However, such an extension requires a 

transition from a linear to a non-linear framework. Thus, in order to embed a closed mesh 

with n vertices into the unit sphere, a positive weight wij is defined for each edge {i, j}. The 

procedure leads to the following set of 4n non-linear equations with 4n unknowns for the 

embedding coordinates φi(xi, yi, zi) and auxiliary variables αi: 
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The auxiliary variables αi: are real numbers that are introduced in order to simultaneously 

solve the system in its null space. 

 
Similarly to the planar case, the characteristics of the parameterization can be controlled by 

the weights wij. Starting from the above system of equations, Gotsman et al. [Got03] obtain 

different parameterizations using various weights: the uniform Tutte weights, the cotangential 

weights for a conformal angle-preserving mapping proposed by Eck et al. [Eck95] or those 

introduced by Desbrun [Des02]. 

 
In [Got03] the authors do not provide an efficient way to solve the resulting system (IV.51). 

Using generic non-linear solvers can lead to a prohibitive computational cost, which limits the 

applicability of the method to meshes described by a high number of faces/vertices.  

 
More recently, Saba et al. [Sab05] have proposed a solution to efficiently solve such a 

system. Their approach breaks down the problem into a two-step procedure involving two 

systems of equations, one linear and one non-linear. The linear system is solved using a 

multiresolution algebraic multigrid approach and its solution is used as an initial guess for 

solving the nonlinear system.  

 
In order to generate the initial guess, Saba et al. [Sab05] use a variant of the method 

proposed by Isenburg et al. [Ise01]. They first partition the mesh into two balanced sub-

meshes and then embed each sub-mesh in a planar disk using the barycentric method with 

weights wij. Next, the two planar parameterizations with the common boundary are mapped 

onto the sphere using the inverse stereographic projection. The nonlinear system presented 

in equation (IV.51) is finally solved using a variation of the Gauss-Seidel method.   

 
An interesting method which directly parameterizes a closed genus-0 mesh on the unit 

sphere is the one proposed by Sheffer et al. in [She03]. They present an algorithm for 

spherical embedding that extends the planar mapping approach in [She01]. Authors 

formulate the following set of necessary and sufficient conditions for the angles to form a 

valid spherical triangulation: 
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where: j
iα represent the 𝑝𝑝 spherical angle and ei the spherical excess of the 𝑖𝑖th triangle. 𝑁𝑁𝑣𝑣 

and 𝑁𝑁𝐹𝐹 denote the number of mesh vertices and faces respectively. The excess of a triangle 

is defined as the area of the region on the sphere determined by that triangle. 

 
This set of equations and conditions can be transformed into a constrained minimization 

problem, where the least-squares distance of the solution values ( j
iα and ei) from their target 

values ( j
iβ and '

ie ) are minimized: 
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The energy function in equation (IV.53) allows to control the shape of the parameterization 

by optimizing spherical angles and/or area values. For example, if a conformal mapping is 

required, the target values of angles can be set to be equal to the angles in the initial object 

space. On the contrary, if an equiareal mapping is required, then the target values for areas 

are set equal to the areas of triangles in the original space. 

 
Once the parametric angles 𝛼𝛼𝑖𝑖

𝑝𝑝  are determined, the spherical triangulation may be generated. 

Starting from an arbitrary triangle, a vertex is fixed on the sphere and then according with 

formulas from spherical trigonometry the remaining triangle vertices are placed accordingly. 

Thus, the lengths of triangle edges (𝑝𝑝, 𝑏𝑏 and 𝑐𝑐) are computed using the cosine rule: 

𝑝𝑝 = arccos(
𝑐𝑐𝑐𝑐𝑝𝑝𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝐶𝐶

𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑛𝑛𝐶𝐶
) (IV.54) 

where 𝐴𝐴, 𝑐𝑐 and 𝐶𝐶 are angles in the considered triangle opposed to 𝑝𝑝, 𝑏𝑏 and 𝑐𝑐. Lengths 𝑏𝑏 and 

𝑐𝑐 are computed similarly with 𝑝𝑝. Based on the first fixed vertex arbitrary position, the previous 

computed edge lengths and the triangle angles, the 2D position of the other two vertices is 

straightforward. Then the vertex positions for the neighboring triangles of the first chosen 

triangles are determined.  

 
Unfortunately, it seems that the spherical formulation is numerically much less stable than its 

planar equivalent [She01]. For this reason, it can be applied only for meshes with less than a 

few hundreds of vertices. 
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A multiresolution technique, inspired from the approaches introduced in [Sha98] and [Hor99], 

is proposed in [Pra03].The original mesh is first simplified by applying a sequence of vertex 

removal operations, until a tetrahedron is obtained. The tetrahedron is then simply projected 

onto the unit sphere. Next, the vertices are inserted into the sphere in a progressive mesh 

sequence constructed with the help of a vertex split operation.  

 
Each vertex split specifies a ring of vertices that represents the neighbors of the new vertex 

to be inserted. In order to obtain a valid embedding (with no overlapped triangles), the new 

vertex will be placed inside of the spherical polygon described by his neighbors. An 

optimization procedure is applied in order to minimize the stretch metric of the 

parameterization.  

 
A similar approach is proposed in [Bir04], where the mesh is also simplified to a tetrahedron. 

The tetrahedron is then mapped onto a spherical surface and afterwards the simplification 

process is reversed by iteratively inserting the vertices on the surface of the sphere. The 

process optimizes the position of each new inserted vertex until it becomes the barycenter of 

its neighbors. This procedure yields an initial parameterization. This initialization is then 

optimized in order to preserve as well as possible the angles between the edges and the 

ratio of the edge-lengths. This is achieved by minimizing the weighted square sum of angles 

to all neighboring vertices: 

∑
∈

⋅
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,
2)arccos(

iNeighborsj
jiji wϕϕ                                            (IV.55) 

where 𝜑𝜑𝑖𝑖  represents the considered vertex position in the parametric domain and 𝜑𝜑𝑝𝑝  belongs 

to its adjacent neighbors. The edge weights 𝑤𝑤𝑖𝑖,𝑝𝑝  can be chosen as uniform [Tut63] or as the 

mean value coordinates of Floater [Flo03].  

 
Despite the various optimizations involved, the resulting mapping suffers from high 

distortions. This limitation is illustrated in Figure IV.24, for two different textured meshes.  

 

 
Figure IV.24. Two textured meshes after a spherical parameterization with Birkholz approach [Bir04]. 
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In addition to planar and spherical parameterization methods which are only applicable to 

surfaces with disk topology and genus zero meshes respectively; there are also approaches 

that treat models with arbitrary genus. Generally, the process of parameterization is done by 

first segmenting the mesh into disk-like patches which are then mapped into the planar 

domain as illustrated in Figure IV.25. This consists of defining a so-called atlas of 

parameterizations.  

 
Within the framework of parameterization methods, the involved segmentation techniques 

aim at partitioning the surface into a set of patches such that the parameterization distortions 

of each patch are minimized. An additional constraint requires to keep a low number of 

patches with associated boundaries as short as possible. Since planar patches are by 

definition developable, one possible approach is to segment the surface into nearly planar 

patches [San01], [Mai93], [San03]. 

 
The main challenge in this case concerns determining mappings that are smooth across the 

patch boundaries. The first methods proposed in this area [Pra01], [Gus02], [Flo02b], are 

penalized by this problem. However, there are some solutions [Gu03], [Kho03]) which 

guarantee a globally smooth parameterization with only a few singularities points. 

 

 
Figure IV.25. Planar parameterization of meshes with arbitrary genus. 

 
Such a type of parameterization is particularly adapted for various applications, including 

texture mapping, compression or remeshing. However, because of the relatively high number 

of patches which can be generated and the uncontrolled shape of the boundaries, it is not 

suitable for morphing applications, where a correspondence between patches and vertices of 

two models needs to be determined. 

 
The various spherical parameterization techniques described in this section, with 

corresponding properties are summarized in Table IV.3 and Table IV.4 . 
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Table IV.3. Comparison of spherical parameterization methods – Part 1. 

Method 
Type of 

distortion 
minimized 

Complexity Computational 
time Comments 

[Ken92] 
Kent 

 
None + + 

- applicable for genus-0 meshes 
- bijective mapping only for convex models 
- do not preserve the shape of the mesh 
- the parameterization is made directly on the 
unit sphere 

[Ale00] 
Alexa None ++ 

 +++ 

- applicable for any genus-0 meshes 
- an iterative process is performed to position 
each vertex at the center of its neighbors 
- require to fix some vertices on the sphere 
(which are changed after few relaxation steps) 
- the method not guarantees a valid 
embedding all the time 

[Hak00] 
Haker Angles ++ 

(Linear) + 

- applicable for any genus-0 meshes 
- eliminate a triangle from the mesh to create a 
virtual boundary 
- make the parameterization into the plane of 
the resulting open mesh and then using stereo 
projection technique embed the model on the 
sphere 
- the stereographic projection technique does 
not preserve the shape 
-the mapping depends heavily on the 
eliminated triangle 
- the result is not bijective 

[Hu08] 
Hu Angles ++ 

(Linear) + 

- split the model into two pieces based on the 
optimum reflective plane 
- make a planar parameterization based on the 
Floater [Flo03] method 
- implement an optimization technique for the 
vertices along the cut (since here are the 
biggest distortions) 

[Zay06] 
Zayer Angles ++ 

(Linear) + 

- the parameterization is performed on the 
curvilinear coordinates 
- set two vertices (poles) then cut the model 
between this points and open it 
- apply a planar parameterization (a 
modification of the Floater [Flo03] approach) 
- implement an optimization step in the 
curvilinear coordinates along the cut 

[Got03] 
Gotsman 

Angles or 
Area or 

Distances 

+++++ 
(Non Linear) +++++ 

- extend the barycentric coordinates used in 
planar parameterization, but this lead to a non-
linear problem 
- can implement different weights depending 
on the type of distortions to be minimized 
- for meshes with a high number of vertices the 
problem remain unsolved 

[Sab05] 
Saba 

Angles or 
Area or 
Lengths 

+++ 
(Non Linear) ++++ 

- find a solution for the [Got03] method using a 
multigrid computational approach 
- for an initial embedding, they partition the 
mesh into two pieces and parameterize each 
one into the plane, then implement the 
stereographic projection 
- the parameterization do not guarantee to be 
always bijective 

[She03] 
Sheffer 

Angles 
and/or  
Areas 

++++ 
(Non Linear) +++++ 

- extend the idea present in [She01] for 
spherical case 
- the parameterization is made directly on the 
unit sphere 
- the triangles angles are first determined, then 
the vertices are placed on the sphere one by 
one 
- the method is not stable 
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Table IV.4. Comparison of spherical parameterization methods – Part 2. 

Method 
Type of 

distortion 
minimized 

Complexity Computational 
time Comments 

[Pra03] 
Praun Lengths ++++ 

(Non Linear) +++++ 

- the method is based on a multiresolution 
technique which reduce the model to a 
tetrahedron 
- the tetrahedron is then simple map on the 
sphere, and then the vertices are reintroduced 
in a progressive mesh sequence 
- the result is a bijective mappings 

[Bir04] 
Birkholz 

Areas and 
Lengths 

++++ 
(Non Linear) +++++ 

- the method is similar with [Pra03], but 
additionally it introduces  an algorithm which 
tries to preserve  the angles and the ratio of 
the edge-lengths 
- the optimization algorithm proves not to be so 
good, resulting a very distorted 
parameterization 

[Kha06] 
Kharevych Angles +++ 

(Non Linear) ++++ 

- free boundaries or user controlled boundary 
shape via prescribed curvatures 
- map meshes with arbitrary topology to the 
plane 
-meshes of genus zero can be parameterized 
over the sphere 
- the parameterization can contain global 
overlaps 

 
The next section introduces the curvature-driven spherical parameterization method 

proposed.  

 

IV.3.2. Curvature-driven spherical parameterization 
 

The proposed spherical parameterization method is dedicated to closed 3D, genus-0, two-

manifold meshes. The main principle consists of exploiting the Gaussian curvature in order to 

jointly minimize length, angular and area distortions.  

 
Let us first briefly recall definitions of a 3D surface Gaussian curvature and describe how 

such a measure can be computed in the case of 3D meshes. 

 
IV.3.2.1. Theoretical aspects 

 

In the 2D Euclidian space the curvature of a planar curve can be interpreted as a measure of 

the local variation to the curve’s tangent in a given point. Such a measure provides the 

amount by which the considered curve deviates from a straight line (Figure IV 26.a).  

 
If we consider a planar curve C, at a given point p∈C, the curvature value can be determined 

as the inverse radius r of an osculating circle OC. A larger value for the osculation circle 

radius implies a smaller magnitude for the curvature. A straight line has zero curvature.  

 
In the case of surface in the ℝ3 space, the notion of curvature becomes more complex. Let 

us consider a point 𝑝𝑝 on a continuous and C2 smooth surface S defined in the ℝ3 domain. If 
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we take the surface intersection with the family of planes pathing through 𝑝𝑝 and including the 

normal vector at point 𝑝𝑝 with the surface S, we obtain a family of 2D curves (Figure IV 26.b).  

 
Figure IV 26. The curvature in a point for a: (a) curve; (b) 3D surface. 

 
For each of them a curvature value can be determined. The minimum and maximum values 

are called principal curvatures and are denoted by k1 and k2.  

 
Based on these norms, two types of measures can be computed: Gaussian (K) and mean 

(H) curvature, defined by the following equations: 

21 kkK ⋅=    and   
2

21 kkH +
=                                         (IV.56) 

Curvature measures are by definition expressed as functions of the second order surface 

derivatives. Thus, they are associated with smooth, C2–continuous surfaces. However, 3D 

meshes are at most C0–continuous surfaces and do not fulfill the smoothness conditions 

required. In this case, it is necessary to perform a piecewise linear approximation in order to 

obtain an approximation of the of the curvature values.  

 
In our work, we have adopted the approximation technique introduced in [Zxu09], recalled 

here-below.  

 
For a vertex p of a mesh M, let {pi ϵ Neighbors(p)| i=1, 2, ..., l} be the set of the one-ring 

neighbor vertices and {(pippi+1)ϵF| i=1, 2, ..., l} the set of adjacent triangles. If we denote by αi 

the angle determined by pi, p, and pi+1, then we can compute the angular defect at the point p 

as: 

∑−=
i

iαπδ 2                                              (IV.57) 

The Gaussian curvature is then defined as described by the following equation: 

G
K i

i∑−
=

απ2
                                                       (IV.58) 

where G is a geometrical factor directly correlated with the model. We have adopted the 

approach proposed in [Zxu09] where G is selected as: 

∑=
i

i pAG 3/)(   ,                                                   (IV.59) 
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where 𝐴𝐴𝑖𝑖(𝑝𝑝) denotes the areas of triangles adjacent to vertex 𝑝𝑝. We obtain thus, the following 

approximation for the Gaussian curvature: 

∑
∑−

=

i
i

i
i

pA
K

)(

)2(3 απ
                                                 (IV.60) 

The next section describes how this curvature measure is exploited for spherical 

parameterization purposes. 

 
IV.3.2.2. Core algorithm 

 
The proposed parameterization algorithm consists of the following three core steps: 

 
• Step1 - Curvature-driven iterative flattening 

 
First, we compute the Gaussian curvature Kp for each vertex p of the mesh. Then, we 

determine the vertex pmax with the maximum absolute value of the Gaussian curvature. The 

barycenter of its neighboring nodes is computed, as described by the following equation: 

)(
'

max

)(
max

max

pval

p
p pNeighp

i
i

∑
∈=   ,                                          (IV.61) 

where Neigh(pmax) denotes the set of vertices adjacent to pmax and val(pmax) represents its 

valence.  

 
If the Euclidian distance between new and initial positions ||p’max - pmax|| is superior to a 

threshold dist, its position is changed to p’max. Otherwise, the considered vertex is not affected 

and the algorithm selects as a candidate the following highest curvature vertex, reiterating 

the process. 

 
When modifying the position of a vertex, the various measures (triangle areas and angles) 

involved in the computation of the Gaussian curvatures, need to be re-computed. This is 

done locally, exclusively for the displaced vertex and for its neighbors, since the other mesh 

vertices are not affected. 

 
This process is recursively repeated: 

   1. Determine the vertex with maximum Gaussian curvature, 

   2. Compute the barycentric coordinates, 

   3. Displace the vertex and re-compute Gaussian curvature K only for the affected vertices.  

 
In this manner, salient mesh vertices are firstly detected and processed, leading, after each 

iteration, to a locally flattened version of the 3D mesh model. At the end of the process, a 

sphere-like surface is obtained. In contrast with [Ben08] that also use the Gaussian curvature 
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in parameterization purposes, in order to identify the high-curvature vertices and concentrate 

the entire mesh curvature there, our goal is to determine such vertices in order to distribute 

the curvature to its neighbors and thus construct models with constant curvature values, like 

the unit sphere.  

 
This process is illustrated in Figure IV.27, which presents the evolution of a given 3D mesh 

after a certain number of iterations.  

 
Figure IV.27. Iterative curvature-driven flattening. 

 
The Gaussian curvature in equation (V.60) privileges the selection of vertices located in 

densely sampled mesh regions, where the triangle areas tend to zero. Unfortunately, this 

behavior can penalize our algorithm, which can perform long sequences of iterations inside 

such regions.  

 
In order to avoid such a problem, we have considered a modified expression of the Gaussian 

curvature, defined as:  

∑
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   ,                                          (IV.62) 

where χS denotes the average triangle area, computed over the entire mesh. The correction 

factor χS makes it possible to reinforce, in the selection process, the influence of the angular 

defect term (2𝜋𝜋 − ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 ) and thus to avoid long loops in densely sampled regions 

characterized by low values of triangle areas. 

  
Step 1 is successively repeated for a number 𝐼𝐼𝑝𝑝 of iterations. In practice, the usual value for 

parameter 𝐼𝐼𝑝𝑝 is set to be five times the number of vertices.  

 
At the end of step 1, a size normalization process is applied in order to avoid shrinkage 

problems (i.e., the model is centered at the origin and the maximum distance between any 

vertex and the origin is used to normalize the vertices positions). 

 
• Step 2 - Visibility check and projection onto the sphere 

 
At this stage, we first check if the mesh obtained at the end of step 1 can be 

stereographically projected onto the sphere. This consists in applying for each mesh vertex a 

visibility test performed with the help of a ray casting operation. If all mesh vertices are visible 
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from the object’s gravity center, the mapping onto the unit sphere is simply obtained by a 

vertex projection defined as described by the following equation: 

i

i
ii p

p
Vp =∈∀ φ         ,                                                (IV.63) 

where ϕi is the image on the unit surface sphere of the vertex pi. The visibility property 

ensures that the obtained parameterization is bijective. If the visibility condition is not 

satisfied, then step 1 is re-iterated. 

  
• Step 3 - Vertex split sequence 

 
Here, all the vertices removed in the mesh simplification are iteratively re-inserted on the 

sphere by constructing a progressive mesh sequence analogously to the method described 

in [Hop93] by Hoppe and Praun. The algorithm exploits the fact that a contraction operation 

is invertible. For each edge collapse, a corresponding inverse operator, called vertex split, is 

defined (Figure IV.28). 

 
Figure IV.28. Vertex split operation. (a) inner vertex; (b) border vertex. 

 
Thus, starting from a coarser version of a 3D model together with a series of records, 

indicating how it was simplified, we can produce a sequence of intermediate models applying 

a series of vertex split operations until we reach the original object. Normally, this requires for 

each item in the split sequence to encode the vertex being split �̅�𝑝, positions for the two initial 

vertices p1, p2 and all the original adjacencies. 

 
In contrast with Hoppe and Praun [Hop93] objectives that try to reconstruct the original shape 

of the model from a coarser version of it, we aim to return to the original mesh topology with 

its surface directly mapped on the sphere. Thus, in our case, in the mesh simplification 

process, we will store only the vertex obtained after each edge collapse operation, the two 

original edge endpoints and the corresponding adjacencies. When employ a vertex split 

operation, the positions of p1 and p2 must be computed accordingly with the adjacent vertex 

coordinates. 

 
Additionally, the objective is to re-insert a removed vertex in the mesh structure without 

generating triangle flipping or degenerate faces. This requires a position optimization of the 
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vertex to be inserted. In contrast to the approach in [Pra03], which implements also a 

parameterization technique based on mesh simplification followed by a vertex split process,   

we have adopted a simple, yet efficient optimization procedure, illustrated in Figure IV.29. 

 
The first ring neighborhood from which the considered vertex was removed (Figure IV.29.a) 

is first subdivided in order to obtain a set of potential positions (Figure IV.29.b) where the 

vertex to be inserted. Each face is split after a 1-to-4 triangles scheme and 3 levels of such 

subdivisions are performed. 

 
A sub-set of valid possibilities (i.e., position which do not lead to overlaps or degenerate 

triangles) is then determined (Figure IV.29.c). In order to accomplish this task, we establish 

for each potential position if the new edges that would form intersect the boundary edges 

defined by the first ring neighborhood. If no intersection is produced then the position is 

considered valid.      

 
Figure IV.29. Vertex insertion operation: (a) initial configuration; (b) polygon subdivision; (c) set of valid 

positions; (d) final retained position and the new configuration. 
 
Among them, the vertex which provides the optimal angular distribution of the corresponding 

triangles is determined (Figure IV.29.d). In order to reach this objective, we select the 

position which yields the maximal value of the minimal angle of the adjacent triangles.  

 
Let us note that if the mapping is an embedding prior the vertex split operation, then it should 

remain also valid after the insertion. 

 

IV.3.3. Experimental evaluation 
 

This section aims to provide several experimental results regarding the performance of our 

spherical mesh parameterization algorithm based on surface Gaussian curvature. In order to 

validate the proposed algorithm we have considered from the Princeton Shape Benchmark 

and MPEG 7 database a set of eight closed, manifold, triangular mesh models characterized 

by various types of geometries, complexities and shapes.  

 
We pre-process each 3D model using with the modified version of the QME mesh 

simplification technique introduced in [Gar97], in order to reduce the total number of mesh 

vertices and thus to considerably decrease the computational complexity. 
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Figure IV.30 and Figure IV.31 present some results obtained after applying the proposed 

algorithm, with the various intermediate stages involved. In all cases, the obtained spherical 

parameterizations yield valid embeddings which preserve well the shape of the test models. 

 
In order to objectively evaluate our approach, we have accomplished a comparative analysis 

of our implementation and the ones proposed by Alexa [Ale02] and Praun et al. [Pra03] in 

terms of angle (AD) and area (SD) distortions. AD and SD are defined as described by the 

following equations [Yos04]: 
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Ideally, both distortions should be as close as possible to zero, which correspond to the case 

when all mesh triangles remain unmodified after the mapping process. The results 

synthesized in Table IV.5 show that the proposed method provides superior performances in 

terms of both angular and area distortions, with gains of 36,72% and 19,04% respectively 

when compared to Alexa’s method and gains of 35,85% for angular distortions and 19,55% 

for area distortions compared with Praun’s method. 

 
Table IV.5. Comparative study concerning area and angle distortions. 

Name Model No. of 
vertices 

Proposed 
method 

Alexa method 
[Ale02] 

Praun et. al. 
method 
[Pra03] 

AD SD AD SD AD SD 

Man 
 

14603 0.454 1.417 0,793 1,431 0,651 1,452 

Lyon 
 

956 0.371 1.174 0,512 1,388 0,445 1,413 

Hand  25001 0.353 1.126 Overlapping 0,573 1,538 

Face 
 

17358 0.347 0.576 0,456 0,933 0,521 0,775 

Horse 
 

19851 0.391 1.194 0,803 1,636 0,637 1,726 

Rabbit 
 

453 0.311 0.682 0,362 0,891 0,364 0,782 

Alien  16266 0.368 1.288 Overlapping 0,872 1,673 

Dino 
 

16995 0.384 1.417 0,962 1,552 0,896 1,728 
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Regarding the processing requirements, the proposed algorithm is slightly slower than the 

other two approaches. This is due to the iterative computation of the Gaussian Curvature. In 

contrast, the approach proposed by Alexa projects directly the vertices onto the sphere 

employing simple vertex normalizations operations and different relaxation processes. 

However, Alexa’s technique does not guarantee a valid embedding for all the models. 

 
Concerning the Praun’s method, the mesh simplification process is here performed until a 

simple tetrahedron, which can be directly projected onto the unit sphere. Despite the 

optimization procedure employed when re-inserting the initial mesh vertices, the resulting 

distortions are here more important. This shows the interest of stopping the simplification 

process with the help of a geometric distortion criterion. The role of the Gaussian curvature-

driven mesh flattening phase, which makes it possible to directly project the simplified model 

onto the unit sphere, is here fundamental. 

 

IV.4.  CONCLUSIONS 
 
 
In this chapter, we first proposed a survey of the most representative 3D mesh 

parameterization techniques. The analysis of the state of the art showed that determining a 

smooth and valid parameterization for 3D triangular meshes still remains a challenging task, 

especially when certain distortion measures (in terms of angles, lengths, areas) need to be 

controlled or minimized. Thus, the main challenges of any parameterization concern the 

guarantee of no triangle overlappings and of low distortions.  

 
While meshes with disk topology are naturally mapped in a planar domain; closed, manifold, 

genus-0 meshes are topologically equivalent to a sphere and hence the most natural 

parameter domain for them is the unit sphere. Both types of approaches are presented and 

discussed, with principles, advantages and limitations. In addition, some parameterization 

techniques dedicated to more complex models of arbitrary genus have also been presented.  

 
Two main contributions have been introduced in this chapter. The first one concerns a planar 

parameterization technique, so-called edge length ratio preserving (ELRP) parameterization. 

The method involves a barycentric technique based on length ratio preservation. The 

experimental results demonstrate the superiority of our method compared with other state of 

the art algorithms by providing low distortions rates in terms of area and lengths, especially 

for complex objects, with distortion reduction of more than 78,5% and 57% respectively. 

 
The second method concerns a novel spherical parameterization method based on a 

Gaussian curvature criterion. The proposed approach makes it possible to detect iteratively 

salient mesh vertices and to locally flatten them, until a sphere-like surface is obtained, 
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adapted to a direct spherical mapping. The experimental evaluation, carried out on a set of 

3D models of various shapes and complexities, shows that the proposed method makes it 

possible to reduce both angle and area distortions with more than 35% and 19% 

respectively. 

 
Finally, as a key factor of the proposed method, let us mention its complete automatic nature: 

our planar and spherical parameterization algorithms do not require any human intervention. 
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V.  MESH DEFORMATION FOR FEATURE ALIGNMENT 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary: This chapter tackles the issue of feature alignment between the source and 

target models considered in the morphing process. We solve this problem in the parametric 

domain with the help of various mesh warping techniques. However, not all existing 

deformation techniques are well-suited for our purpose. Thus, in this chapter, we propose an 

evaluation of the warping algorithms and we retain the ones that meet the constraints related 

to feature alignment of meshes defined in the parametric domain and which lead to a 

minimum mesh distortion. 
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V.1.  INTRODUCTION 
 
 
After the parameterization of the two source and target models, we can directly overlay the 

obtained embeddings, apply an arbitrary interpolation procedure and obtain a morphing 

sequence. However, such an approach would fail keeping aligned the relevant 

characteristics of the 3D models to be morphed in the intermediate morphing models, and 

would suffer from the same limitations as the simple cross-dissolve techniques discussed in 

Chapter III.   

 
The characteristics of the 3D models are described by a set of features, specified on both 

source and target models and supposed to be available. In a general manner, such features 

are defined as sets of points, lines, curves on the corresponding 3D surfaces. Figure V.1 

illustrates such a set of features, for a 3D model of a face. Here, the features correspond to 

the eyes, mouth, nose, ears, forehead.  

 

 
Figure V.1. 3D Mesh models and associated feature points. 

 
In our work, we considered uniquely sets of feature points, defined as vertices of the source 

and target meshes. Each point on the source model has its correspondent point on the target 

object.  

 
Let us note that such features are strongly dependent of each 3D representation. Even if 

some automatic feature extraction and matching methods are available in some particular 

cases, the general case requires a manual specification.  

 
In order to ensure that the features are preserved during the morphing process, the 

corresponding feature points should have the same positions in the parametric domain 

(vertex to vertex correspondence). However, this property is not guaranteed by any mesh 
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parameterization method and the feature points can have strongly different positions in the 

parametric domain (Figure V.2). 

 
Figure V.2. Illustration of two parameterizations where feature are not aligned: (a), (d) original models; 

and (b), (c) their embeddings. 
 
Thus, in a first phase, it is necessary to re-place the corresponding feature points such that 

they share the same position in the parameter domain. Such a re-placement requires a 

global deformation of the whole parametric domain, such that the corresponding 2D maps 

should be smoothly deformed without foldovers. Such a process is referred to as mesh 

warping. In order to accomplish this task, it is necessary to consider appropriate mesh 

deformation techniques. 

 
Various shape deformation methods have been developed within the context of various 

applications (e.g., 3D animation techniques, special effects, viseme synthesis…). Let us 

analyze further how the deformation techniques presented in the literature can suit the mesh 

warping purposes.  

 
 

V.2.  RELATED WORK 
 

V.2.1. Space deformations  
 

With space deformations, a deformed shape is obtained by repeated transformations of the 

space in which the initial shape is embedded. In 3D, a space deformation can be defined by 

a global function U:IR3 →IR3, where: 

𝑈𝑈(𝑝𝑝) = 𝑈𝑈(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3) = �
𝑈𝑈1(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)
𝑈𝑈2(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)
𝑈𝑈3(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)

� (V.1) 

Historically, the first global function used as a modeling tool was introduced by Barr 

in [Bar84]. Barr refers to U as a globally specified deformation and proposes several 

examples including functions for twisting, bending and tapering. Such deformations are still 

used today and are incorporated into various modeling and animation software as so-called 

nonlinear deformers [Ali05]. Figure V.3 illustrates some examples of space deformations. 
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Figure V.3. Space deformations [Bar84]: (a) rotation in z – twist; (b) scale – taper; 

(c) rotation in y – bend. 
 
Barr also defines a locally specified deformation as the 3x3 Jacobian matrix of U: 

𝐽𝐽 =  
𝜕𝜕𝑈𝑈
𝜕𝜕𝑝𝑝

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑈𝑈1

𝜕𝜕𝑝𝑝1
   
𝜕𝜕𝑈𝑈1

𝜕𝜕𝑝𝑝2
   
𝜕𝜕𝑈𝑈1

𝜕𝜕𝑝𝑝3
𝜕𝜕𝑈𝑈2

𝜕𝜕𝑝𝑝1
   
𝜕𝜕𝑈𝑈2

𝜕𝜕𝑝𝑝2
   
𝜕𝜕𝑈𝑈2

𝜕𝜕𝑝𝑝3
𝜕𝜕𝑈𝑈3

𝜕𝜕𝑝𝑝1
   
𝜕𝜕𝑈𝑈3

𝜕𝜕𝑝𝑝2
   
𝜕𝜕𝑈𝑈3

𝜕𝜕𝑝𝑝3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (V.2) 

The matrix J indicates how differential vectors are transformed by the function U. In addition, 

a method to convert from a locally specified deformation of a primitive back to a global 

specification via integration is also proposed. Starting from an arbitrary origin (the constant of 

integration), the differential changes are integrated across the primitive to determine the 

globally deformed positions. 

 
In his pioneering work, Barr set the premises of the well-known free-form deformations 

(FFD), recalled in the next section.  

 

V.2.2. Free-form deformations  
 

Free-form deformations (FFD) represents a space deformation technique originally 

formulated by Sederberg and Parry [Sed86] and then extended by MacCracken [Mac96] or, 

more recently, by Ju et al. [Ju05].  

 
The FFD principle consists of embedding the 3D model to be deformed into a 3D lattice of 

control points. Such a set of control points makes it possible to define a global deformation of 

the ℝ3 space, by considering for example B-Spline or NURBS functions.  
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A useful property of free-form deformations is that the generated transformation is 

independent of the complexity of the model being deformed. Another advantage comes from 

manipulation capabilities of such a deformation: the user can locally and intuitively control the 

deformation by modifying the position of the desired control points. 

  
Figure V.4 shows an example of such deformation. The deformation complexity is correlated 

with the density of the control lattice. FFDs only need a very coarse regular control lattice to 

create coarse-scale deformations of a model. However, for finer-scale deformations, a very 

dense control lattice is usually required. 

 
Figure V.4. Free form deformation. 

 
Since the mapping from the lattice to the model is generally defined without considering the 

embedded model geometry, FFD may incorrectly influence regions that are spatially close 

with respect to a Euclidian distance, but relatively far in what concerns the geodesic 

distance. In addition, the lattice-based approaches have a low precision in moving vertices. 

 
FFDs are often used in professional modeling applications (e.g., 3DS Max, Maya), as they 

are computationally fast and do not require any constraints regarding the representations of 

the models (e.g., irregular meshes, point clouds, parametric surfaces). 

 
Borrowing the principle of defining a deformation with a set of controllers, Singh [Sin98] 

proposes to use domain curves, so-called wires, to define the domain of deformation for an 

object (Figure V.5). Wires follow the deformable features of an object as such they provide a 

coarse geometric representation of the model, together with an intuitive way to deform it. 

 
Figure V.5. Wires: A geometric deformation technique [Sin98]. 
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Sumner et al. [Sun07] propose to use the so-called deformation graph, which is a more 

general deformation domain, for intuitive deformation of a wide range of shape 

representations and editing scenarios. Their method supports direct manipulation of a mesh 

being deformed and makes the deformation graph transparent to the user. 

 

FFD methods are suitable for smooth surfaces, but present several drawbacks when dealing 

with objects with a high level of details (such as those acquired from scanning devices). 

Since the deformations are globally controlled by the lattice grid, the details of the shape 

cannot be preserved in an efficient manner. 

 

V.2.3. Skeletal deformation  
 

Skeletal deformations (Figure V.6) are highly popular in the field of real-time animation of 

articulated 3D models. They can also be applied to a wide range of soft objects, for example 

to cloth simulation [Cor05].  

 

 

Figure V.6. Skeleton based deformation [Yan08b]. 
 
Such techniques exploit a hierarchical structure of object’s skeleton. The skeleton is 

represented as a tree structure whose nodes are identified with the joints (given by their 

positions and orientations) and edges with the corresponding bones. A skeleton provides the 

domain of deformation for the 3D mesh. For each bone, a region of influence (i.e., set of 

vertices) on the 3D mesh is associated to. Thus, when moving the skeleton’s bones, the 

associated skin, i.e., the 3D model surface, will be displaced accordingly. A linear weighting 

method is applied at the level of joints in order in order to avoid foldovers at the level of 

surface points that are influenced by multiple bones. The vertex weights, which denote the 

amount of influence of individual bones, must be specified during the so-called skinning 

process. The deformation of each vertex is then defined as a weighted blending of the 

transformations of its associated bones. Let us note that the quality of the deformation is 

strongly influenced by this weighting mechanism.  

 
Automatic skeleton extraction according to the geometric information of a given mesh is in 

general very difficult. The topology of the extracted skeleton is often not satisfactory since the 
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extraction process is sensitive to the shape perturbation of the skin surface. Instead, Baran 

and Popovic [Bar07] present a method to automatically fit a given template skeleton with the 

fixed topology to a mesh. 

 
Skeletal deformation is particularly useful for objectives of virtual character animation, where 

the hierarchical skeleton structure fits well the anatomy of the considered characters. 

However, in a more general case and notably for mesh warping purposes, defining 

appropriate sets of bones/joints is not straightforward.  

 
In this case, more general deformation techniques have to be considered. A first solution is 

provided by the so-called multiresolution mesh editing methods, described in the next 

section.  

 

V.2.4. Multiresolution mesh editing  
 

One of the very first multiresolution shape editing was introduced [Zor97]. The underlying 

principle of multiresolution mesh editing consists of hierarchically decomposing a complex 

object into a coarse, base mesh and a set of gradually finer levels of detail. The differences 

between each level of detail are stored in the associated representation, for reconstruction 

purposes.  

 
Analogously to Fourier analysis, this process can be interpreted as a decomposition of the 

3D geometry signal into low and high frequencies. Let us note that a generalization of the 

wavelet transform to 3D mesh models can be obtained with the help of such a 

representation.  

 
Zorin et al. [Zor97] combine this technique with a free-form deformation in order to achieve a 

detail preserving mesh editing tool. The manipulation is done in the classic FFD manner, but 

the user is allowed to select a specific level of detail. If only the base mesh is deformed, all 

the details, corresponding to the higher frequency components of the mesh are retained. The 

advantage, with respect to the classic FFD, is the detail preserving editing that allows the 

manipulation of complex shapes with a large number of vertices. 

  
The drawback of the method relates to the disturbing artifacts that might appear at the 

borders between patches of the base mesh. Here, different deformations are applied 

independently to each patch, which does not guarantee the creation of a globally smooth 

deformation field.  

 
A solution to this problem is proposed by the so-called Laplacian mesh editing technique, 

described in the following section. 
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V.2.5. Laplacian mesh editing 
 

The mesh deformation approaches discussed so far directly apply transformation to a 

Cartesian representation of the 3D model’s geometry. Since an important goal to achieve 

when considering mesh deformation concerns the detail preservation, it would be more 

advantageous to consider an intrinsic, differential mesh representation, where such details 

can be identified and preserved. 

 
Differential representations can capture information about the local shape properties of a 

mesh, such as curvature, scale or orientation. One of the most popular differential 

representation of a 3D geometry concerns the so-called Laplacian coordinates (also known 

as differential coordinates or δ-coordinates). Laplacian coordinates have been first used for 

3D mesh morphing and deformation purposed in [Ale03].  

 
Let us recall the definition of Laplacian coordinates. Let us consider a mesh 𝑀𝑀(𝑉𝑉,𝐸𝐸,𝐹𝐹) with 

𝑉𝑉,𝐸𝐸 and 𝐹𝐹 respectively denoting the sets of vertices, edges and faces (triangles). For each 

mesh vertex 𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖), the differential (or the 𝛿𝛿-coordinates) are defined as the difference 

between the absolute coordinates of 𝑝𝑝𝑖𝑖  and the center of mass of its adjacent vertices: 

𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 �𝛿𝛿𝑖𝑖
(𝑥𝑥),𝛿𝛿𝑖𝑖

(𝑦𝑦),𝛿𝛿𝑖𝑖
(𝑧𝑧)� = 𝑝𝑝𝑖𝑖 −

1
𝑑𝑑𝑖𝑖
∑ 𝑝𝑝𝑝𝑝𝑝𝑝∈𝑁𝑁(𝑖𝑖)     , (V.3) 

where 𝑁𝑁(𝑖𝑖) = {𝑝𝑝|(𝑖𝑖, 𝑝𝑝) ∈ 𝐸𝐸} and 𝑑𝑑𝑖𝑖 = |𝑁𝑁(𝑖𝑖)| is the number of vertices adjacent to 𝑝𝑝𝑖𝑖  (i.e, its 

valence). Globalizing this transformation to the whole mesh can be written in matrix form. Let 

us consider A the adjacency (connectivity) matrix of the mesh, defined as: 

𝐴𝐴𝑖𝑖𝑝𝑝 = �1   , 𝑖𝑖𝑓𝑓 (𝑖𝑖, 𝑝𝑝) ∈ 𝐸𝐸
0   , 𝑐𝑐𝑝𝑝ℎ𝑒𝑒𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑒𝑒 

� (V.4) 

Let us also denote by 𝐷𝐷 the (𝑉𝑉 × 𝑉𝑉) diagonal matrix such that 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖 . Then, the Laplacian 

matrix 𝐿𝐿 is defined as:  

𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−1𝐴𝐴 (V.5) 
By applying the linear operator associated to the Laplacian matrix 𝐿𝐿 to the geometry signal, 

we obtain the following equation, which describes the relation between Cartesian and 

Laplacian coordinates: 

𝐿𝐿𝐻𝐻𝑿𝑿 = 𝐷𝐷𝛿𝛿(𝑥𝑥), 𝐿𝐿𝐻𝐻𝒀𝒀 = 𝐷𝐷𝛿𝛿(𝑦𝑦), and 𝐿𝐿𝐻𝐻𝒁𝒁 = 𝐷𝐷𝛿𝛿(𝑧𝑧), (V.6) 

where 𝑿𝑿  (resp. 𝒀𝒀  and 𝒁𝒁 ) is an 𝑉𝑉 -dimensional vector containing the 𝑥𝑥  (resp. 𝑦𝑦  and 𝑧𝑧 ) 

Cartesian values of all the mesh vertices, and 𝛿𝛿(𝑥𝑥) , 𝛿𝛿(𝑦𝑦)  and 𝛿𝛿(𝑧𝑧)  are the corresponding 

Laplacian coordinates.  

 
In practice, it is more convenient to consider the symmetric version of the L matrix defined 

as: 
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𝐿𝐿𝐻𝐻 = 𝐷𝐷𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴   , (V.7) 
where 

(𝐿𝐿𝐻𝐻)𝑖𝑖𝑝𝑝 = �
𝑑𝑑𝑖𝑖         𝑖𝑖 = 𝑝𝑝  
−1    (𝑖𝑖, 𝑝𝑝) ∈ 𝐸𝐸
  0   𝑐𝑐𝑝𝑝ℎ𝑒𝑒𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑒𝑒

�   . (V.8) 

Figure V.7 presents an example of a mesh and its associated matrices. The matrix LS (or L) 

is called the topological (or graph) Laplacian of the mesh. Graph Laplacians have been 

extensively studied in algebra and graph theory [Chu97], primarily because their algebraic 

properties related to the combinatorial aspects of the graphs they represent. 

 

 
Figure V.7. An example of a triangular mesh and its associated symmetric Laplacian matrix. 

 
Let us observe that equation (V.3), expressing the differential coordinates of a vertex 𝑝𝑝𝑖𝑖 , can 

be re-written as: 

𝛿𝛿𝑖𝑖 =
1
𝑑𝑑𝑖𝑖

� (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝 )
𝑝𝑝∈𝑁𝑁(𝑖𝑖)

 (V.9) 

If we now assume that the mesh M represents a piecewise-linear approximation of a smooth 

surface, then the sum in equation (V.8) can be interpreted as a discretization of the following 

curvilinear integral:  

1
|𝛾𝛾|

� (𝑝𝑝𝑖𝑖 − 𝑝𝑝)𝑑𝑑𝑝𝑝(𝑝𝑝)   
𝑝𝑝∈𝛾𝛾

, (V.10) 

where 𝛾𝛾 represent a closed surface curve around vertex 𝑝𝑝𝑖𝑖  and |𝛾𝛾| is the length of 𝛾𝛾.  

 

It is known from differential geometry [Tau95] that: 

lim|𝛾𝛾|→0
1

|𝛾𝛾|∫ (𝑝𝑝𝑖𝑖 − 𝑝𝑝)𝑑𝑑𝑝𝑝(𝑝𝑝)𝑝𝑝∈𝛾𝛾 = −𝑝𝑝(𝑝𝑝𝑖𝑖)𝑛𝑛𝑖𝑖    , (V.11) 

where 𝑝𝑝(𝑝𝑝𝑖𝑖)  and 𝑛𝑛𝑖𝑖  respectively denote the mean curvature and the normal vector at 

point 𝑝𝑝𝑖𝑖 . 

 
The orientation of the differential coordinate vector 𝛿𝛿𝑖𝑖  approximates the local normal direction 

and its magnitude is proportional to the local mean curvature. Thus, 𝛿𝛿𝑖𝑖  encapsulates the local 

shape information of the considered surface. 
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However, the above-described discrete approximation does not hold in the case of a non-

uniform, irregular mesh sampling. In order to overcome such a drawback, equation (V.9) can 

be extended by considering a weighting scheme as described in the following equation: 

𝛿𝛿𝑖𝑖 =
1

∑𝑤𝑤𝑖𝑖𝑝𝑝
� 𝑤𝑤𝑖𝑖𝑝𝑝 (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝 )

𝑝𝑝∈𝑁𝑁(𝑖𝑖)

 (V.12) 

where 𝑤𝑤𝑖𝑖𝑝𝑝  is the weight associated to the edge (𝑖𝑖, 𝑝𝑝).  

 
There are several alternatives to define the weights 𝑤𝑤𝑖𝑖𝑝𝑝 . When 𝑤𝑤𝑖𝑖𝑝𝑝 = 1 ∀𝑖𝑖, 𝑝𝑝, then equations 

(V.9) and (V.12) become identical. This scheme is called uniform weighting. It only describes 

the topological properties of the mesh, but not the geometrical ones, since the coordinates 𝛿𝛿 

are defined by the mean of the surrounding vertices without considering their geometry. 

 
Two other different weighting schemes are proposed in the literature, so-called the cotangent 

weighting and tangent weighting. They are inspired from the [Eck95] and [Flo03] 

parameterization methods presented in Chapter IV.   

 
Thus, Meyer et al. [Mey03] propose to use the so called cotangent weights, defined as: 

𝛿𝛿𝑖𝑖𝑐𝑐 =
1

|Ω𝑖𝑖 |
�

1
2

(𝑐𝑐𝑐𝑐𝑝𝑝𝛼𝛼𝑖𝑖𝑝𝑝 + 𝑐𝑐𝑐𝑐𝑝𝑝𝛽𝛽𝑖𝑖𝑝𝑝 ) (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝 )
𝑝𝑝 ∈𝑁𝑁(𝑖𝑖)

 (V.13) 

where |Ω𝑖𝑖 | is the size of the Voronoi cell of i and 𝛼𝛼𝑖𝑖𝑝𝑝 , 𝛽𝛽𝑖𝑖𝑝𝑝  represent the two opposite angles of 

edge (i,j).  

 
However, since the cotangent weights can be negative due to large angles in the mesh 

structure, usually it is more convenient to use the mean value coordinates, also called 

tangent weights, defined as described in Section IV.2.2.1.  

 
The reconstruction of the mesh surface (i.e., recovery of the initial geometry in Cartesian 

coordinates from differential coordinates) can be obtained by solving the following linear 

system of equations: 

𝐿𝐿𝑷𝑷 = 𝛿𝛿 (V.14) 

for each dimension 𝑿𝑿,𝒀𝒀 and 𝒁𝒁. 

 
Let us observe that the matrix 𝐿𝐿 is singular, since its rows sum up to zero. More precisely, it 

can be shown that matrix 𝐿𝐿  has the rank 𝑉𝑉 − 1  if the mesh is connected [Sor06]. This 

property is related to the translational invariance property of the differential coordinates. As a 

consequence, matrix 𝐿𝐿 is not invertible and therefore, the system of equations (V.14) is not 

analytically solvable. Instead, it should be solved in the mean square error sense, for 

example with the help of a pseudo-inverse method [Pen55].  
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In order to obtain a unique solution is necessary to specify the Cartesian coordinates for at 

least one mesh vertex. In practice, such coordinates are specified more generally for a set of 

vertices whose spatial location is known. Such points are called constraint (or anchor) points. 

The system (V.14) becomes in this case: 

� 𝐿𝐿
𝜔𝜔𝐼𝐼𝑚𝑚×𝑚𝑚 | 0 

�𝑷𝑷 = � 𝛿𝛿𝑷𝑷
𝜔𝜔𝑐𝑐1:𝑚𝑚

�   , (V.15) 

where 𝑐𝑐 denotes a constraint on spatial location and 𝜔𝜔 represent a weight that can be used 

to influence the importance of the positional constraints.  

 
Let us observe that solving equation (V.15) in the mean square error sense is equivalent to 

minimizing the following energy functional:  

𝑥𝑥� = 𝑝𝑝𝑝𝑝𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛(�𝐿𝐿𝑥𝑥 − 𝛿𝛿(𝑥𝑥)�
2

+ �𝜔𝜔2�𝑥𝑥𝑝𝑝 − 𝑐𝑐𝑝𝑝 �
2

𝑝𝑝∈𝑐𝑐

) (V.16) 

The system in equation (V.15) is a sparse linear system that can be efficiently solved with 

dedicated representations. Thus, a general storage scheme is the so-called compressed 

column storage format [Pre02]. Here, only three vectors are used to store all the Laplacian 

matrix values:  

• a first one for the nonzero values as they are traversed column by column,  

• a second vector for the corresponding row indices of each value, and  

• a third vector to store the locations in the other two arrays that start a column.  

 
Sparse matrices provide the possibility to significantly accelerate the classic matrix 

algorithms. A well known efficient algorithm consist in the Cholesky decomposition. The 

solution of the linear system is precomputed with a Cholesky factorization that splits the 

matrix in an upper and a lower triangular matrix. This decomposition is done once, while the 

new coordinates are computed very fast by a simple forward and back substitution for each 

dimension. 

 
The classical Laplacian coordinates method as presented above solves equation (V.15) in 

the sense of least squares minimization. This leads to low displacement accuracy (i.e., the 

anchor vertices will not reach the exact final position established). Thus, we propose to 

modify the system by replacing the normal equations corresponding to control vertices with 

constraint equations that impose those vertices to reach their correct final position.  

 
In the case of unitary weights, we will call this technique the Uniform Fix Laplacian 

coordinate deformation method (UFLC). For mean value coordinates weights, we will call it 

the Tangential Laplacian coordinate deformation method (TLC).       
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Another high popular approach for 3D mesh deformation is based on the so-called radial 

basis functions. 

 

V.2.6. Radial basis functions  
 

The radial basis function (RBF) approach represents an important tool in approximation 

theory due to spectral accuracy, flexibility with respect to geometry, dimensional 

independence and ease of implementation especially when interpolating scattered data in 

multidimensional spaces.  

 
In the case of mesh deformation, the RBF approach makes it possible to interpolate the 

displacement of the whole set of mesh vertices based only on the known displacement of 

some control points. The method offers the advantage that no grid connectivity information is 

required and only a small system of equation needs to be solved depending on the number 

of constrained vertices. The displacement of the mesh vertices are characterized by an 

interpolation function 𝑝𝑝, which is defined as the sum of a set of radial basis functions, as 

described in the following equation: 

∀ 𝑝𝑝 = 1, … ,𝑉𝑉,       𝑝𝑝�𝑝𝑝𝑝𝑝 � = �𝛼𝛼𝑖𝑖𝜙𝜙��𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑐𝑐𝑖𝑖�� + 𝑃𝑃(𝑝𝑝𝑝𝑝 )
𝑛𝑛𝑐𝑐

𝑖𝑖=1

 ,     (V.17) 

where 𝑉𝑉 is the total number of mesh vertices, 𝑛𝑛𝑐𝑐  the number of control points, 𝑝𝑝𝑐𝑐𝑖𝑖 = 𝑝𝑝𝑐𝑐𝑖𝑖(𝑥𝑥𝑐𝑐𝑖𝑖 ,

𝑦𝑦𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑐𝑐𝑖𝑖)  their spatial positions, P a given polynomial function of degree | P |, and ϕ is the 

given radial basis function defined with respect to the Euclidian distance (||.||).  

 
The coefficients of the polynomial P and the coefficients 𝛼𝛼𝑖𝑖 = [𝛼𝛼𝑖𝑖𝑥𝑥 ,𝛼𝛼𝑖𝑖𝑦𝑦 ,𝛼𝛼𝑖𝑖𝑧𝑧  ] in equation (V.17) 

can be determined from the interpolation conditions ((V.18) and (V.19)): 

∀ 𝑝𝑝 = 1, … , 𝑛𝑛𝑐𝑐     ,       𝑝𝑝�𝑝𝑝𝑐𝑐𝑖𝑖� = 𝑑𝑑𝑐𝑐𝑖𝑖  (V.18) 

where 𝑑𝑑𝑐𝑐𝑖𝑖  is a vector specifying the displacement of the control vertex 𝑝𝑝𝑐𝑐𝑖𝑖 .  

 
When the polynomial term 𝑃𝑃  is included, the system is completed with the additional 

conditions: 

�𝛼𝛼𝑖𝑖𝑞𝑞(𝑥𝑥𝑐𝑐𝑖𝑖) = 0
𝑛𝑛𝑐𝑐

𝑖𝑖=1

 (V.19) 

for all polynomials q with a degree equal to or less than | P |.  

 
According to Boer et al. [Boe07], the minimal degree of P depends on the choice of the basis 

function ϕ. More precisely, an unique interpolant is needed if the basis functions are 

positively defined. If the basis functions meet this requirement and they are of order less than 

or equal to 2, then a linear polynomial can be used. Since linear polynomials have the 
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property to recover exactly a model after a rigid transformation, we only further consider 

solely basis functions that satisfy this criterion. 

 
The values for αj and the polynomial P are determined by rewriting equation (V.17) as 

follows: 

�𝑑𝑑𝑐𝑐0 � = �
𝑀𝑀𝑐𝑐 ,𝑐𝑐   𝑅𝑅𝑐𝑐
𝑅𝑅𝑐𝑐𝑝𝑝      0 � �

𝛼𝛼
𝛽𝛽� (V.20) 

with α containing the coefficients αi, β the coefficients of the linear polynomial P, Rc an nc x 4 

matrix where each row i is given by [1  𝑥𝑥𝑐𝑐𝑖𝑖   𝑦𝑦𝑐𝑐𝑖𝑖   𝑧𝑧𝑐𝑐𝑖𝑖  ] and Mc,c an nc x nc matrix containing the 

basis function: 

𝑀𝑀𝑐𝑐 ,𝑐𝑐 = �
𝜙𝜙𝑝𝑝1𝑝𝑝1   𝜙𝜙𝑝𝑝1𝑝𝑝2  ⋯    𝜙𝜙𝑝𝑝1𝑝𝑝𝑛𝑛𝑐𝑐  
 ⋮           ⋮                  ⋮      

𝜙𝜙𝑝𝑝𝑛𝑛𝑐𝑐 𝑝𝑝1   𝜙𝜙𝑝𝑝𝑛𝑛𝑐𝑐 𝑝𝑝2  ⋯    𝜙𝜙𝑝𝑝𝑛𝑛𝑐𝑐 𝑝𝑝𝑛𝑛𝑐𝑐
� (V.21) 

with 𝜙𝜙𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝 = 𝜙𝜙(�𝑝𝑝𝑐𝑐𝑖𝑖 − 𝑝𝑝𝑐𝑐𝑝𝑝 �).  

 
Once the coefficients 𝛼𝛼 and 𝛽𝛽 have been determined, the interpolation function in equation 

(V.17) can be used to compute, point by point, the displacement of all non-constraint vertices 

of the mesh. 

 
Let us note that the determined displacement is interpolated separately for each spatial 

direction. Also, the size of the system that has to be solved in (V.20) is equal to (nc  + 4) x 

(nc + 4), which is relatively small, depending on the number of specified control vertices. 

 
In order to avoid numerical stability issues the linear system of equations (V.20) is solved 

with the help of singular value decomposition (SVD)-based pseudo-inverse method [Pre02], 

ensuring a least square solution.   

 
Let us note that in this case, only an approximate solution can be obtained, i.e., the actual 

deformations  𝑝𝑝�𝑝𝑝𝑐𝑐𝑖𝑖� obtained for the control points will approximate, in the means square 

error sense the specified displacements 𝑑𝑑𝑐𝑐𝑖𝑖 .  

 
There are various radial basis functions available in the literature, which can be divided in 

two groups: functions with compact support and functions with global support. Functions with 

compact support can be defined as: 

    𝜙𝜙(𝑥𝑥) = � 𝑓𝑓(𝑥𝑥)      0 ≤ 𝑥𝑥 ≤ 1
    0               𝑥𝑥 > 1    

� (V.22) 

where f(x) ≥ 0. The function is generally scaled with a support radius r to control the compact 

support. The following composite function is then obtained: 

ϕr = ϕ(x/r) = ϕ(h) (V.23) 
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In this manner, solely the mesh vertices lying inside a sphere of radius r around the control 

point pi are influenced by the movement of this point.  

 
Thus, higher values for r lead to more global deformations solutions, but with the cost of 

dense matrix systems that might augment the computational time needed to solve 

equation (V.21). 

  
On the contrary, lower values of r result in more local deformation fields, concentrated 

around the considered control point. In addition, this will yield a sparse matrix in equation 

(V.21) which can be solved more efficiently.  

 
Table V.1 summarizes various radial basis functions reported in the literature, with either 

compact or global support.  
Table V.1. Radial basis functions. 

No. Name Type Radial basis function 
1. CP C0 CS (1 − ℎ)2 
2. CP C2 CS (1 − ℎ)4(4ℎ + 1) 

3. CP C4 CS (1 − ℎ)6(
35ℎ2

3
+ 6ℎ + 1) 

4. CP C6 CS (1 − ℎ)8(32ℎ3 + 25ℎ2 + 8ℎ + 1) 
5. CTPS C0 CS (1 − ℎ)5 

6. CTPS C1 CS 1 + 80ℎ2

3
− 40ℎ3 + 15ℎ4 − 8ℎ5

3
+ 20ℎ2log(ℎ)  

7. CTPS C2
a CS 1 − 30ℎ2 − 10ℎ3 + 45ℎ4 − 6ℎ5 − 60ℎ3log(ℎ) 

8. CTPS C2
b CS 1 − 20ℎ2 + 80ℎ3 − 45ℎ4 − 16ℎ5 + 60ℎ4log(ℎ) 

9. Thin plate spline (TPS) GS 𝑥𝑥2log(𝑥𝑥) 

10. Multiquadric biharmonics 
(MQB) GS √𝑝𝑝2 + 𝑥𝑥2  

11. Inverse multiquadric 
biharmonics (IMQB) GS � 1

𝑝𝑝2+𝑥𝑥2  

12. Quadric biharmonics GS 1 + 𝑥𝑥2  

13. Inverse quadric 
biharmonics GS 1

1+𝑥𝑥2  

14. Gaussian GS 𝑒𝑒−𝑥𝑥2   
CS – Compact support             GS – Global support 

 
The compact support property of the RBFs in rows 1 to 8 in Table V.1 is ensured by 

truncating the function to the [0, 1] interval. Let us note that this is always possible, the 

resulting functions remaining continuous since they take the value 0 in the set {0, 1}.   

 
The functions CP C0, CP C2, CP C4 and CP C6 are based on polynomials chosen to have the 

lowest degree of all polynomials that create a Cn continuous basis function with n ϵ {0, 2, 4, 

6}. The next four are a series of functions based on the thin plate spline interpolation which 

creates Cn continuous basis functions with n ϵ {0, 1, 2}. 
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The MQB and IMQB techniques use the a parameter in order to control the shape of the 

basis functions. A large value of a return flat functions, while small values of a gives narrow, 

localized functions. 

 
In order to establish an objective comparison between various deformation methods, it is 

necessary to first specify a set of mesh quality metrics. The adopted solutions are described 

in the following section.  

 
 

V.3.  MESH QUALITY METRICS 
 
The considered mesh quality metric is based on the approach proposed by Knupp [Knu03] 

which uses a set of Jacobian matrices defined for each mesh triangle. The method is 

dedicated to 2D meshes, such as those obtained after a parameterization process.  

 
Considering a mesh triangle, with the coordinates of the vertices defined by (𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝) , 

𝑝𝑝 = 1,2,3  where 𝑝𝑝  denotes the vertices of the triangle, we can construct three Jacobian 

matrices 𝐴𝐴𝑝𝑝  , one around each node 𝑝𝑝 as: 

∀ 𝑝𝑝 ∈ �1,  2,  3�,    𝐴𝐴𝑝𝑝 =  �
𝑥𝑥𝑝𝑝+1 − 𝑥𝑥𝑝𝑝    𝑥𝑥𝑝𝑝+2 − 𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝+1 − 𝑦𝑦𝑝𝑝    𝑦𝑦𝑝𝑝+2 − 𝑦𝑦𝑝𝑝� (V.24) 

Since the determinant 𝛼𝛼𝑝𝑝  of each Jacobian matrix in equation (V.24) represents twice the 

area of the considered triangle and it is independent of the node on which it is computed, the 

subscript 𝑝𝑝 can be skipped.  

 
Additionally, a metric tensor 𝜆𝜆 can be computed as: 

    𝜆𝜆 = 𝐴𝐴𝑝𝑝𝐴𝐴  (V.25) 

Matrix 𝜆𝜆 is a 2x2 symmetric matrix with components 𝜆𝜆𝑖𝑖𝑝𝑝 , 𝑖𝑖, 𝑝𝑝 = 1,2. Intuitively, 𝜆𝜆11 and 𝜆𝜆22 are 

measures of the squared lengths of two triangles edges and 𝜆𝜆12 is a measure of the angle 

between them. Thus, let us also note that the dot product between the two edges is given by: 

𝜆𝜆12 = �𝜆𝜆11𝜆𝜆22𝑐𝑐𝑐𝑐𝑝𝑝𝜃𝜃 (V.26) 

where 𝜃𝜃 is the angle between the two sides joined at the considered node.  

 

It can be shown that the triangle area a can be expressed as: 

    𝛼𝛼2 = 𝜆𝜆11 𝜆𝜆22 − λ12
2 =  𝜆𝜆11 𝜆𝜆22𝑝𝑝𝑖𝑖𝑛𝑛2𝜃𝜃 (V.27) 

 
The size metric 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒  is defined as: 

    𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒 = min(𝜏𝜏, 1/𝜏𝜏) (V.28) 

where 𝜏𝜏 = 𝛼𝛼/𝑤𝑤 is the ratio between the area of a triangle in the deformed mesh and the area 

of the reference (initial) triangle. 
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The measure 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒  reaches its maximum value, equal to 1, if and only if the final mesh 

triangle has the same area as the reference triangle. On the contrary, when 𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒  is equal to 

zero, the deformed triangle is degenerated (i.e., zero area). 

 
The shape quality metric 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒  aims at measuring distortions in the shape of triangle, 

independently of its size, and is defined relatively to an equilateral triangle as described by 

the following equation: 

    𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 = √3𝛼𝛼
𝜆𝜆11 +𝜆𝜆22−𝜆𝜆12

 (V.29) 

Using equation (V.27) and the low of cosines, equation (V.29), can be rewritten in a form 

which shows the relationship of the shape quality metric and the angle at the considered 

point: 

    𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 = √3𝑝𝑝  𝑝𝑝𝑖𝑖𝑛𝑛𝜃𝜃
1−𝑝𝑝 𝑐𝑐𝑐𝑐𝑝𝑝𝜃𝜃+𝑝𝑝2 (V.30) 

where 𝑝𝑝 = �𝜆𝜆22/𝜆𝜆11.  

 
The shape quality metric 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒 is equal to 1 if the final mesh triangle is equilateral, and it is 

zero if the triangle is degenerate. 

 
Finally, for each triangle of the mesh, the quality metric is a scalar quantity defined by the 

product: 

    𝑓𝑓𝑝𝑝𝑝𝑝 =  𝑓𝑓𝑝𝑝𝑖𝑖𝑧𝑧𝑒𝑒  ⋅ 𝑓𝑓𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒      . (V.31) 

The triangle with 𝑓𝑓𝑝𝑝𝑝𝑝 = 1 refers to the ideal triangle (i.e., the equilateral triangle with the area 

equal to the area of a pre-established triangle considered as the reference/initial element). 

 
The extension of the 𝑓𝑓𝑝𝑝𝑝𝑝 quality metric for the 3D case is straightforward, taking into account 

that the 𝑝𝑝 parameter in equation (V.30) is actually the ratio of two consecutive edge lengths, 

and 𝜃𝜃 represents the angle between them.   

 
Beside the two metrics presented above, we also seek to evaluate the displacement 

accuracy of each deformation technique, i.e., the average error between the actual 

displacement and the specified positions of the control points. Mathematically, we can define 

a new metric as: 

    𝐷𝐷𝑖𝑖𝑝𝑝 = 1
𝑛𝑛𝑐𝑐

 ∑
�𝑝𝑝𝑐𝑐𝑖𝑖−𝑝𝑝𝑐𝑐𝑖𝑖

𝑑𝑑𝑖𝑖𝑝𝑝 �

�𝑝𝑝𝑐𝑐𝑖𝑖−𝑝𝑝𝑐𝑐𝑖𝑖
𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝 �

∗ 100 𝑛𝑛𝑐𝑐
𝑖𝑖=0  (V.32) 

where 𝑛𝑛𝑐𝑐  denotes the total number of control vertices,  𝑝𝑝𝑐𝑐𝑖𝑖
𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝  and 𝑝𝑝𝑐𝑐𝑖𝑖  represent the initial 

position and the final place the point 𝑖𝑖 should reach, while 𝑝𝑝𝑐𝑐𝑖𝑖
𝑑𝑑𝑖𝑖𝑝𝑝  is the actual position where 

point 𝑖𝑖 is placed after the movement. Ideally the value of 𝐷𝐷𝑖𝑖𝑝𝑝 should be zero.      
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V.4.  EXPERIMENTAL EVALUATION 

 
In order to establish the most suitable method that could successfully meet the constraints 

related to feature alignment of meshes defined in the parametric domain, we have 

considered the following set of requirements: 

• Topology consistency – the mesh warping technique should ensure that the mesh 

connectivity remains unchanged during the movement. 

• No foldovers - the deformation method should not flip the mesh triangles. 

• Smoothness – the movement process should be continuous, with no discontinuities. 

• Large displacements – the mesh deformation technique should allow relatively large 

displacements of vertices. 

• Accurate displacement – the source mesh feature vertices should reach as close as 

possible the position of their target counterparts. 

• Low distortions – the variation in terms of shape and size of the mesh triangles 

should be minimized. 

• Spatial domain conservation – since we aim to deform meshes in the parametric 

domains, it is desirable that all mesh vertices remain in the considered domain (i.e., planar or 

spherical domain).  

 
After analyzing the properties the methods presented in Section V.2.  we can conclude that 

only the Laplacian coordinates and the Radial basis functions techniques seem convenient 

for mesh warping purposes.  

 
For space, free-form, skeletal or multiresolution based deformation techniques would be too 

complicated to perform fine locally movements of vertices in the parameterization domain 

and they would require the user intervention for an accurate displacement.  

 
In order to demonstrate the use of RBF and Laplacian coordinates as mesh deformation 

strategies we have considered several test cases, including rotation, translation and 

deformation of a rectangular block specified on a 2D, uniform mesh grid (Figure V.8.a). 

 
In [Boe07], several different radial basis functions were compared for a variety of test cases. 

The results obtained showed that the CP C2 function offers the best trade-off between 

computational efficiency and deformed mesh quality. In our work, we aim at comparing 

different RBFs and different Laplacian coordinates variants in terms of quality deformation, 

computational efficiency and moreover, displacement accuracy. Further we establish the 

most suitable method to warp a parameterized mesh and better maintain model vertices in 

the parametric domain, without introducing triangle overlapping. We considered three basis 

functions, namely the CTPS C2
a, CP C2, and Gaussian.  
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Concerning the methods based on Laplacian coordinates, we aim to analyze the Classical 

Laplacian coordinates technique that obey to equation (V.15) and solve it in the sense of 

least squares minimization, as well as the two modified versions described in 

Section V.2.5. Uniform Fix Laplacian coordinate deformation method (UFLC) and Tangential 

Laplacian coordinate deformation method (TLC).     

 

V.4.1. Deformation in 2D test cases  
 

The first test scenarios consist of a unit square domain. An inner rectangle is included in this 

domain and undergoes different translations, rotations and scaling in the 2D space. The unit 

square domain is sampled uniformly in each direction into 35 points and then triangulated. 

The resulting mesh is illustrated in Figure V.8.a. The test mesh has a total of 1225 grid 

vertices of which 136 are boundary nodes that are constrained to remain fixed during the 

deformation process. 

 
A set of control points, corresponding to a rectangle with initial size of (3 × 6) intervals of the 

sampling grid is then defined (Figure V.8.a). Various motions are associated with the test 

rectangle. More precisely, we have considered the following three different cases: 

• the first one concerns a simple translation of the rectangle in the plane, with 6 

sampling intervals over both x and y directions (Figure V.8.b),  

• the second case involves a translation combined with both a rotation of 45° and with 

a scaling (with a factor √2 ) (Figure V.8.c),  

• the third test considers a high amplitude deformation corresponding to a combined 

rotation (with 90°), translation (12 intervals along the x direction and 4 interval along the y 

axis) and scaling (with a factor 2) (Figure V.8.d). 

 

 
Figure V.8. Test mesh and the control rectangle with the (a) initial position and ((b), (c), (d)) final 

positions of rectangle corresponding to the three test cases considered. 
 
When using the RBF deformation method, we have retained for evaluation the CTPS C2

a and 

CP C2 compact basis functions, which were proved to provide the best performances in 

[Boe07]. The associated support radius (parameter 𝑝𝑝) has been varied in a range from 2 to 

10. In addition, we perform the mesh deformation in a variable number of steps that 
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iteratively displace the control vertices from their initial position to the final location. The 

number of intermediary steps ranges from 1 to 50 steps. 

 
In the case of Laplacian techniques, it does not make sense to apply a deformation in steps 

because for these methods the Laplacian matrix L and the free term δ of the system of 

equations, are constructed based on the initial shape of the input mesh. If we consider a 

deformation in steps an intermediary phase n will try to approximate the model obtained at a 

previous step n-1 (and not the original), which translates into an error accumulation that 

decreases significantly the performance of the algorithm. 

 
Figures V.9 to Figure V.20 present the results obtained for both CTPS C2

a and CP C2 RBFs 

in terms of minimum and average 𝑓𝑓𝑝𝑝𝑝𝑝 quality metric (respectively denoted by 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝)  and, 

𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝)), over the whole set of the mesh grid triangles, as function of the number of 

intermediate steps used to achieve the deformation (from 1 to 50). We also report the values 

of the displacement accuracy (𝑑𝑑𝑖𝑖𝑝𝑝), as well as the computational time for all three proposed 

scenarios.  

 
Figure V.9. Quality of the worst triangle of the mesh for (a) CTPS C2

a and (b) CP C2 (Case 1). 
 

 
Figure V.10. The mean quality of all triangles in the mesh for (a) CTPS C2

a and (b) CP C2 (Case 1) 

 
Figure V.11. Accuracy displacement of the control points for (a) CTPS C2

a and (b) CP C2 (Case 1). 
 



3D MESH MORPHING  120 
 

 

 
Figure V.12. CPU computational time for (a) CTPS C2

a and (b) CP C2 (Case 1). 
 

 
Figure V.13. Quality of the worst triangle of the mesh for (a) CTPS C2

a and (b) CP C2 (Case 2). 
 

 
Figure V.14. The mean quality of all triangles in the mesh for (a) CTPS C2

a and (b) CP C2 (Case 2). 
 

 
Figure V.15. Accuracy displacement of the control points for (a) CTPS C2

a and (b) CP C2 (Case 2). 

 
Figure V.16. CPU computational time for (a) CTPS C2

a and (b) CP C2 (Case 2). 
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Figure V.17. Quality of the worst triangle of the mesh for (a) CTPS C2

a and (b) CP C2 (Case 3). 
 

 
Figure V.18. The mean quality of all triangles in the mesh for (a) CTPS C2

a and (b) CP C2 (Case 3). 
 

 
Figure V.19. Accuracy displacement of the control points for (a) CTPS C2

a and (b) CP C2 (Case 3). 
 

 
Figure V.20. CPU computational time for (a) CTPS C2

a and (b) CP C2 (Case 3). 
 
The analysis of the experimental results presented in Figure V.9 to Figure V.20 leads to the 

following conclusions: 

 
1. For all scenarios and for both RBFs (CTPS C2

a and CP C2), the parameter 𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝) 

reaches its maximum value when the support radius 𝑝𝑝 is increased starting from values of 

𝑝𝑝  = 8). However, excessively increasing the support radius 𝑝𝑝  (up to 10) also leads to a 

greater error in terms of approximation precision (parameter 𝑑𝑑𝑖𝑖𝑝𝑝). In the context of mesh 

warping, such a behavior would translate into an imprecise feature vertex alignment. Thus, a 
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trade-off between mesh quality and displacement accuracy has to be determined. In our 

examples, values of 𝑝𝑝 inferior to 5 seem to provide a fair compromise. 

  
2. When more intermediary steps are used to deform the mesh, we notice that for both RBFs 

the minimum value of 𝑓𝑓𝑝𝑝𝑝𝑝 is increasing. This shows the interest of considering a step-by-step 

approach. However, when analyzing the average values of 𝑓𝑓𝑝𝑝𝑝𝑝 , we can observe that the 

mean quality of the mesh is reducing when increasing number of steps. This can be 

explained by the fact that when the rectangle is moved directly (a single step), a large part of 

the original mesh remains cuasi-constant, and only a small part of triangles is distorted. On 

the contrary, when the rectangle is displaced through more steps a greater area of the 

original mesh is smoothly deformed since, at each step, more triangles are captured within 

the radius of influence of the considered RBF. This phenomenon is illustrated in Figure V.21. 

However, a larger number of steps is preferable since when performing single step 

deformations the affected triangles are highly distorted (cf. values of parameter 𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝)). 

 
Figure V.21. The influence of the number of steps on the deformed mesh. 

   
3. In the case of a strong deformation such as the one considered in case 3, the impact of 

the intermediary number of steps used for warping it is even more important because when 

this parameter has a low value (one or two steps) the mesh triangles overlap. 

  
4. If we highly increase the number of intermediate steps, we will not obtain any considerable 

improvements on the overall quality. Thus, starting from a number of 10-15 steps, the results 

are quite equivalent. 

 
5. The CPU computational time is, without surprise and in all cases, linearly affected by the 

number of deformation steps. Concerning the support radius 𝑝𝑝, it has a negligeable impact 

on the computation times. The computation times reported here have been obtained on an 

Intel Core2Duo machine at 2,13GHz and with 3GB Ram under a Windows XP SP2 platform. 

 
Based on these considerations, we have selected for further evaluations, a value of 4 for the 

support radius 𝑝𝑝. The chosen value establishes a trade-off between the mesh deformation 

quality expressed through the metric 𝑓𝑓𝑝𝑝𝑝𝑝  and the accuracy displacement given by the 𝑑𝑑𝑖𝑖𝑝𝑝 

parameter. Concerning the number of intermediate steps, it was set to 15. Figure V.22 
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presents an example of the deformation evolution when applying the CTPS C2
a function with 

the support radius 𝑝𝑝 set to 4 and the number of intermediary steps equal to 15.     

 
Let us now compare both RBF and Laplacian deformation methods. Table V.2 summarizes 

the 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) quality metric, 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝), displacement accuracy (𝑑𝑑𝑖𝑖𝑝𝑝), and computational time 

for the considered warping methods in all three scenarios presented earlier. Some visual 

results are presented in Figure V.23.  

 

 
Figure V.22. RBF mesh deformation on steps. 

 
After evaluating the experimental results, a first conclusion can be derived: when using the 

UFLC and TLC techniques in the planar domain a mesh overlapping is produced. This is 

caused by the strict conditions imposed on the control points (i.e. they should reach exactly 

the final destination). The classical Laplacian method leads to a valid deformed mesh, but 

with relatively high distortions (50% greater than the RBF-related distortions) and also large 

values of the accuracy parameter 𝑑𝑑𝑖𝑖𝑝𝑝. 
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Table V.2. Mesh deformation quality analysis for 2D test cases. 

Method 𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒅𝒅𝒎𝒎𝒔𝒔 Inverted 
triangles 

CPU 
Time 
(sec) 

Test case 1 
RBF - CTPS C2

a 0.148 0.271 6.51*10-5 0 18.9 
RBF – CP C2 0.152 0.270 0.230 0 21.6 
RBF – Gaussian 0.103 0.258 0.013 0 20.7 
Classical Laplacian 0.091 0.366 6.030 0 0.9 
UFLC 0 0.379 9.53*10-9 21 1 
TLC 0 0.381 1.41*10-9 15 1.3 
Test case 2 
RBF - CTPS C2

a 0.091 0.271 1.13*10-5 0 19.1 
RBF – CP C2 0.089 0.271 0.456 0 17.8 
RBF - Gaussian 0.051 0.304 0.031 0 20.8 
Classical Laplacian 0.106 0.373 14.276 0 0.9 
UFLC 0 0.386 1.01*10-8 23 1 
TLC 0 0.388 1.56*10-9 17 1.9 
Test case 3 
RBF - CTPS C2

a 0.021 0.247 8.34*10-6 0 21.1 
RBF – CP C2 0.017 0.232 0.334 0 18.6 
RBF - Gaussian 0 0.198 0.043 22 21.3 
Classical Laplacian 0.001 0.331 20.501 0 0.8 
UFLC 0 0.354 6.26*10-9 60 0.9 
TLC 0 0.355 1.03*10-9 51 1.5 

 
Concerning the radial basis functions, CTPS C2a and CP C2 return comparable results in 

terms of 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝), but a higher accuracy is obtained for CTPS C2a. In this 

case, the final position of the control points is reached with an error inferior to 10-4. When 

warping the mesh using the RBF Gaussian function the experimental results show the 

lowest values for the 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) compared to any other analysed RBF function. The results 

are even more disturbing in the third scenario (high amplitude deformation) when the 

method is not able to conduct to a valid deformation (triangles fold-over). 

 
When comparing the computational times, it can be observed that the Laplacian functions 

have the lowest processing requirements and in most of the cases the final result is obtained 

in less than a second. This observation can be motivated by the total number of intermediary 

steps involved in the deformation: for the Laplacian algorithm the displacement is made 

directly while for the RBF functions we used 15 steps in order to achieve a high quality for 

the deformation. As it can be noticed from Table V.2, all RBF functions are computed in 

almost the same CPU time (about 20 seconds)  
 

V.4.2. Deformation in 3D test cases  
 

The second set of test scenarios consist of a square domain with an inner rectangle, 

characterized by the same parameters as presented in Section V.4.1. that undergoes 

different geometric transforms, this time in the 3D space, out of the plane where the mesh 

grid is defined. Here again, we consider the following three different cases:  
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• a translation in space (along the 𝑧𝑧 axis): The control rectangle is translated in the 𝑥𝑥 

and 𝑦𝑦 directions by 6 units each and in the 𝑧𝑧 direction by 10 units (a unit corresponds to a 

sampling interval of the considered mesh grid);  

 
• a translation combined with a moderate rotation and scaling: here, the control 

rectangle is translated in the 𝑥𝑥 direction by 7 units, 2 units in the 𝑦𝑦 direction and 10 units in 

the 𝑧𝑧 direction. Furthermore, a rotation of 450 clockwise and a scaling by a factor √2 are 

applied; 

 
• a high amplitude rotation, translation and scaling: in this case, the control rectangle is 

translated in the  𝑥𝑥 direction by 12 units, 4 units in the 𝑦𝑦 direction and 10 units in the 

𝑧𝑧 direction. Furthermore, a rotation of 900 clockwise and a scaling of a factor 2 are applied.  

 
We started our experiments by visually analyzing the impact of the support radius 𝑝𝑝 and the 

number of intermediary steps over the mesh deformation. Figure V.24 presents some results 

obtained for the CTPS C2
a function for the third test scenario. We can observe that smoother 

deformation fields are obtained when increasing both the support radius and the number of 

intermediate steps. In the same time, the spatial extent of the deformation field is also 

increased in such cases.  

 
Figure V.25, Figure V.26 and Table V.3 present the comparative evaluation for the 

considered methods, in all scenarios proposed for the 3D space.  

 
In terms of  𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝) quality metrics the best results are obtained by the 

classical Laplacian method. For example, in the first scenario, the classical Laplacian returns 

a value for 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) of 0.29, which is with 13% higher than the best result acquired by a RBF 

function (CP C2). Concerning the 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝) parameter, the Laplacian improves the results 

with more than 10% compared with the Gaussian function which returns now the best 

performances from all RBF techniques. However, as in the 2D case, the displacement 

accuracy of this method is poor (with a parameter 𝑑𝑑𝑖𝑖𝑝𝑝 of one order of magnitude greater than 

in the case of RBFs).  

 
If in the 2D case, the mesh deformation techniques based on UFLC and TLC led to triangle 

overlapping, in the 3D case this problem is avoided since the warping is performed in space. 

In terms of (𝑓𝑓𝑝𝑝𝑝𝑝) , these methods return comparable results as the ones obtained by the 

classical Laplacian, but with a 𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) inferior with more than 68%.  

 
These results can be explained by the fact that the overall structure of the mesh remains 

almost unmodified, only the regions near the displaced rectangle are significantly altered. As 
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it can be noticed UFLC and TLC methods have the benefit of the most accurate mesh 

displacement (i.e., the rectangle is displaced exactly into the desired position).  

 
Table V.3. Mesh deformation quality analysis for 3D test cases. 

Method 𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒔𝒔𝒔𝒔) 𝒅𝒅𝒎𝒎𝒔𝒔 CPU Time 
(sec) 

Test case 1 
RBF – CTPS C2

a 0.232 0.598 0.001 19.8 
RBF – CP C2 0.251 0.597 0.249 19.3 
RBF – Gaussian 0.135 0.605 0.010 23.1 
Classical Laplacian 0.291 0.672 6.031 0.21 
UFLC 0.075 0.676 5.50*10-9 0.19 
TLC 0.091 0.672 1.01*10-9 0.49 
Test case 2 
RBF – CTPS C2

a 0.228 0.583 5.64*10-6 21.2 
RBF – CP C2 0.227 0.577 0.331 18.4 
RBF – Gaussian 0.127 0.544 0.020 21.1 
Classical Laplacian 0.301 0.675 9.488 0.22 
UFLC 0.081 0.683 5.58*10-9 0.21 
TLC 0.092 0.679 1.03*10-9 0.73 
Test case 3 
RBF – CTPS C2

a 0.118 0.465 3.36*10-6 19.7 
RBF – CP C2 0.104 0.438 0.168 19.1 
RBF – Gaussian 0.064 0.426 0.012 23.8 
Classical Laplacian 0.228 0.613 14.751 1.12 
UFLC 0.047 0.623 4.53*10-9 0.31 
TLC 0.045 0.618 8.82*10-10 0.89 

   

If we analyze only the radial basis functions we observe that the best results, in terms of 

𝑚𝑚𝑖𝑖𝑛𝑛 (𝑓𝑓𝑝𝑝𝑝𝑝) and 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝), are obtained for the CTPS C2
a function which offers also the best 

displacement accuracy.  

 
The experimental results show that RBF method (and, in particular the CTPS C2

a function) 

offer a good compromise between displacement accuracy and mesh quality. We have thus 

retained this method for performing warping of the parametric domain meshes.  
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V.5.  FEATURE ALIGNMENT BASED ON MESH WARPING  
 
We have chosen to apply CTPS C2

a function in steps because a direct RBF implementation 

would lead to a deformed mesh with the feature vertices placed at the right location, but with 

the mesh surface not on the unit sphere.  

 
The algorithm splits the distance between any feature-pair (𝑝𝑝𝑖𝑖𝐻𝐻′ ,𝑝𝑝𝑖𝑖𝑝𝑝′ ) proportionally with the 

maximum geodesic distance between any pair and apply for each interval the RBF algorithm 

that deform the meshes accordingly. Due to the movement, not all vertices may be on the 

sphere anymore. We guarantee that the final embedding remains valid we propose 

projecting the mesh back on the unit sphere after each intermediary step. 

 
Additionally, in order to further reduce the distortion rate we constrain that both source and 

target feature vertices to move in their middle position (𝑝𝑝𝑖𝑖𝐻𝐻′ +  𝑝𝑝𝑖𝑖𝑝𝑝′)/2.  

 
Figure V.27 and Figure V.28 present two examples of spherical warping. Each example 

contains two 3D closed models with feature vertices already specified by user, their initial 

spherical mappings and their final embeddings (where pair vertices are put in 

correspondence on the parametric domain). 

 

 
Figure V.27. Feature vertices correspondence through spherical embeddings warping 

(Hipo-Cow case). 
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Figure V.28. Feature vertices correspondence through spherical embeddings 

warping (Igea-ManHead case). 
 

V.6.  CONCLUSIONS 
 
In this chapter, we have first provided an overview of the various methods of mesh 

deformation. After the basic concepts were outlined we have selected for a more detailed 

evaluation the radial basis function method and the Laplacian coordinates technique, which 

are the most well-suited for mesh warping purposes.  

 
In order to evaluate the capacity of RBF and Laplacian coordinates as mesh movement 

strategies we employed several test cases in both 2D and 3D space and we have analyzed 

the algorithms behavior in terms of deformation quality and displacement accuracy.  

 
Regarding the radial basis functions we have demonstrated that a deformation through steps 

returns better results than a direct one. The higher the number of intermediary steps the 

higher quality is obtained, but with the cost of more computational resources. However, after 

a number of 10 to 15 steps, the overall quality will not increase considerably. 

 
From the six methods considered for evaluation, the Uniform Fix Laplacian coordinate 

(UFLC) and Tangential Laplacian coordinate (TLC) deformation methods offers the highest 

values for the 𝑚𝑚𝑒𝑒𝑝𝑝𝑛𝑛(𝑓𝑓𝑝𝑝𝑝𝑝)  and 𝑑𝑑𝑖𝑖𝑝𝑝  metrics when warping in the 3D space. However, the 

distortions near the control points are unacceptable compared with other methods and, 

moreover, in the 2D deformation scenarios, such techniques lead to fold-overs.  

 
As a consequence, we have retained for mesh warping purposes, the CTPS C2

a RBF 

method, which offers a good compromise between displacement accuracy and overall quality 

of the deformed mesh. 



 

 

VI.  SUPERMESH CONSTRUCTION AND 
INTERPOLATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
Summary: This chapter first provides an overview of the algorithms used in the state of the 

art for the creation of the so-called supermesh structure. We introduce a novel method that 

avoids the classical edge-to-edge intersection procedure. The supermesh is constructed with 

the help of progressive subdivisions, accordingly to the topology of both source and target 

input models. A short overview of the mesh interpolation techniques is also supplied. Finally, 

we present our graphical user interface elaborated for mesh morphing purposes in this 

thesis. 
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VI.1.  INTRODUCTION  
 
Once the two input models are parameterized onto a common domain and the main features 

of the objects are properly aligned, the next step required in a morphing framework is to 

establish a one-to-one correspondence between the shapes to be morphed. In order to 

accomplish this task, the two embeddings need to be overlapped. In addition, a new mesh 

structure that can represent the connectivities of both models need to be constructed. The 

resulting mesh is called supermesh or metamesh (𝐻𝐻𝑀𝑀 ). The main principle behind the 

supermesh construction is to merge the two topologies into a single one by inserting edges 

of the target model into the source structure.  

 
The main advantage of the metamesh consists of its property of sharing both the source and 

target topologies. Thus, the two model shapes can be accurately approximated by the new 

mesh structure. The metamesh will represent in a morphing sequence the source model at 

the first frame and the target model at the last frame. Thus, for each vertex 𝑝𝑝𝑖𝑖  of the 

supermesh we must determine two positions: a first one relative to the source shape (𝑝𝑝𝑖𝑖0) and 

a second one corresponding to the target shape (𝑝𝑝𝑖𝑖1). For intermediary frames, the vertices 

positions of each supermesh vertex are interpolated between the initial and final states. 

However, determining appropriate trajectories for connecting the initial position 𝑝𝑝𝑖𝑖0 to the final 

position 𝑝𝑝𝑖𝑖1 still remains a challenging issue. The process of transforming the shape of the 

source mesh into the shape of the target mesh (and vice versa), based on the established 

vertex trajectories, is called mesh interpolation. 

 
The following sections describe the various approaches of supermesh construction proposed 

in the literature as well as the different mesh interpolation methods proposed.  

 
 

VI.2.  TOPOLOGY MERGING FOR MESH MORPHING  
 
The concept of topology merging for mesh morphing was first introduced in [Ken92]. Let us 

already note that the source and target connectivities cannot be directly merged in the 

original space, since the edges are in the general case nonparallel and nonintersecting. 

Instead, the process can be performed within the parametric domain, where the edges lie on 

a planar or spherical surface. Therefore, the metamesh construction can be achieved by: (1) 

overlapping the parameterizations; (2) performing exhaustively the edge intersection of the 

two meshes. The last phase requires a local triangulation that allows obtaining the shared 

triangular topology, as illustrated in Figure VI.1 for the planar parameterization case.  
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Figure VI.1. Constructing the supermesh: (a) embedding of the two connectivities in the common 

parametric domain; (b) Edge to edge intersection; (c) Triangulation. 
 
The merging algorithm proposed by Kent et al. [Ken92] is based on the assumption that, 

after the overlapping the parameterizations, no parametric vertices of the two models are 

coincident, and no parametric vertex of one model lies on an edge on the other model. In 

order to illustrate the proposed procedure, let us consider the example presented in 

Figure VI.2. Here, the blue color represents source elements while the red color the target 

ones.  

 
Figure VI.2. Edge intersection algorithm of [Ken92]. 

 
Starting with an arbitrary edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝  from the target mapping (𝑝𝑝𝑝𝑝), with the endpoints 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝  and 

𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝 , the triangle of the source parameterization (𝑝𝑝𝐻𝐻 ) in which the vertex 𝑝𝑝𝑚𝑚

𝑝𝑝𝑝𝑝  lies is first 

determined, with the help of a point in triangle test. In our example, the face 𝑓𝑓1
𝑝𝑝𝐻𝐻  is thus 

determined. The incident target edges to 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝  are then added to a list of edges to be 

processed, called the work list. The edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝   is the first one in this list. Since it is known 

that 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝  lies inside the triangle 𝑓𝑓1

𝑝𝑝𝐻𝐻 , the first intersection of the edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝  should be with an 

edge of this face. Thus, 𝑒𝑒𝑝𝑝 ,𝑏𝑏
𝑝𝑝𝐻𝐻 , 𝑒𝑒𝑏𝑏 ,𝑐𝑐

𝑝𝑝𝐻𝐻  and 𝑒𝑒𝑐𝑐 ,𝑝𝑝
𝑝𝑝𝐻𝐻  are added to a list of candidate edges that 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝  

might intersect. In the case presented in Figure VI.2, 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝  intersects 𝑒𝑒𝑏𝑏 ,𝑐𝑐

𝑝𝑝𝐻𝐻 . Using the topology 

of 𝑝𝑝𝐻𝐻  it can be determined that 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝  crosses the triangle 𝑓𝑓2

𝑝𝑝𝐻𝐻 . Thus, 𝑒𝑒𝑏𝑏 ,𝑑𝑑
𝑝𝑝𝐻𝐻  and 𝑒𝑒𝑐𝑐 ,𝑑𝑑

𝑝𝑝𝐻𝐻  are 

considered potential edges that 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝  might intersect. Similarly, at the intersection of 𝑒𝑒𝑐𝑐 ,𝑑𝑑

𝑝𝑝𝐻𝐻  with 

𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝 , edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝  crosses the triangle 𝑓𝑓3
𝑝𝑝𝐻𝐻  and edges 𝑒𝑒𝑑𝑑 ,𝑒𝑒

𝑝𝑝𝐻𝐻  and 𝑒𝑒𝑐𝑐 ,𝑒𝑒
𝑝𝑝𝐻𝐻  are added to the candidate 

list. At the intersection of 𝑒𝑒𝑑𝑑 ,𝑒𝑒
𝑝𝑝𝐻𝐻  and 𝑒𝑒𝑚𝑚 ,𝑛𝑛

𝑝𝑝𝑝𝑝 , edge 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝  crosses the face 𝑓𝑓4

𝑝𝑝𝐻𝐻 . Since 𝑒𝑒𝑚𝑚 ,𝑛𝑛
𝑝𝑝𝑝𝑝  does not 

intersect either 𝑒𝑒𝑑𝑑 ,𝑓𝑓
𝑝𝑝𝐻𝐻  or 𝑒𝑒𝑒𝑒 ,𝑓𝑓

𝑝𝑝𝐻𝐻 , vertex 𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝  must lie on face 𝑓𝑓4

𝑝𝑝𝐻𝐻 . This fact is recorded and the 

untreated target edges incident to 𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝  are added to the work list. The above technique is 

repeated for each edge in the work list until it remains empty. At the end of the process, a 

new mesh structure is obtained. However, the resulting structure will contain faces with more 
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than three edges. In order to obtain a valid mesh structure, a heuristic mesh triangulation 

procedure is finally applied.  

 
Next, the algorithm establishes, using the point-in-triangle test, which triangles of 𝑝𝑝𝑝𝑝 contain 

each vertex of 𝑝𝑝𝐻𝐻 . These information together with those that indicates which face of 𝑝𝑝𝐻𝐻 

contains each vertex of 𝑝𝑝𝑝𝑝 are used to determine where the vertices of one model map onto 

the surface of the other. This task is accomplished using the barycentric coordinates. If we 

consider for example the vertex 𝑝𝑝𝑚𝑚
𝑝𝑝𝑝𝑝  as presented in Figure VI.2, once the barycentric 

coordinates 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are computed relatively to face 𝑓𝑓1
𝑝𝑝𝐻𝐻 , we can establish the position of 

𝑝𝑝𝑚𝑚𝐻𝐻  on the original source model shape (𝑀𝑀𝐻𝐻) as: 

𝑝𝑝𝑚𝑚𝐻𝐻 = 𝛼𝛼𝑝𝑝𝑝𝑝𝐻𝐻 + 𝛽𝛽𝑝𝑝𝑏𝑏𝐻𝐻 + 𝛾𝛾𝑝𝑝𝑐𝑐𝐻𝐻 (VI.1) 
where 𝑝𝑝𝑝𝑝𝐻𝐻, 𝑝𝑝𝑏𝑏𝐻𝐻 and 𝑝𝑝𝑐𝑐𝐻𝐻 are the vertex positions on the original source surface. 

 
The drawback of the proposed method is related to the underlying non-coincidence 

hypothesis of source and target mesh vertices, which limits its applicability in practice.  

 
In order to overcome such a limitation, Kanai et al. [Kan98] propose a slightly different 

method which is able to take into account coincident vertices/edges. In order to avoid 

numerical errors, the coincident vertices are first determined. The source and target 

parameterizations HS  and HT are then re-calculated by maintaining these vertices fixed to an 

average position. The operation is iterated until no coincident vertices are generated. The 

case of a vertex of one embedding lying on an edge of the other embedding is treated in a 

similar manner.  

 
After this pre-processing step, the supermesh construction is performed in a similar manner 

with the one proposed in [Ken92]. In addition, in order to speed up the searching of a face 

including a vertex, the authors use a spatial partitioning procedure based on a quad-tree data 

structure [Fol90]. 

 
The mesh retriangulation is realized as follows: The adjacent edges to a vertex are sorted in 

a counterclockwise order. If two consecutive edges 𝑒𝑒𝑖𝑖 ,𝑝𝑝  and 𝑒𝑒𝑝𝑝 ,𝑝𝑝  are not already connected by 

another edge 𝑒𝑒𝑖𝑖.𝑝𝑝 , then the edge 𝑒𝑒𝑖𝑖.𝑝𝑝  is created as well as a new face 𝑓𝑓(𝑖𝑖, 𝑝𝑝,𝑝𝑝). This operation 

is performed until all edges have a triangular face on both sides. 

 
In order to solve the coincidence problem, Alexa [Ale00] proposes to use a symbolic 

perturbation scheme as the one described in [Her90] which makes it possible to avoid the 

cases when a vertex of one embedding lies on a vertex/edge on the other graph. 

 
Since the method proposed by Alexa[Ale00] parameterizes the models onto the unit sphere, 

the problem of edge-to-edge intersection transforms into an arc-to-arc intersection. Here, the 
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edge between two points 𝑝𝑝1
𝑝𝑝 and 𝑝𝑝2

𝑝𝑝 on the sphere should be seen as the shorter arc of the 

circle with radius 1 and the same center as the sphere, passing through the points. The 

intersection point 𝑝𝑝𝐼𝐼𝑝𝑝  between two edges 𝑒𝑒(𝑝𝑝1
𝑝𝑝 ,𝑝𝑝2

𝑝𝑝) and 𝑒𝑒(𝑝𝑝3
𝑝𝑝 ,𝑝𝑝4

𝑝𝑝) is established using the 

following equation: 

𝑝𝑝𝐼𝐼𝑝𝑝 = ±(𝑝𝑝1
𝑝𝑝  × 𝑝𝑝2

𝑝𝑝) × (𝑝𝑝3
𝑝𝑝  × 𝑝𝑝4

𝑝𝑝) (VI.2) 

Actually, 𝑝𝑝𝐼𝐼𝑝𝑝 specifies the two positions where the great circles defined by the two considered 

edges intersect. The following system of equation has to be solved in order to determine 

whether the intersections lie on both arcs: 

𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝 = 𝑝𝑝1
𝑝𝑝 + 𝑝𝑝𝑝𝑝�𝑝𝑝2

𝑝𝑝 − 𝑝𝑝1
𝑝𝑝� 

𝑝𝑝𝑏𝑏𝑝𝑝𝐼𝐼𝑝𝑝 = 𝑝𝑝3
𝑝𝑝 + 𝑝𝑝𝑏𝑏�𝑝𝑝4

𝑝𝑝 − 𝑝𝑝3
𝑝𝑝� 

(VI.3) 

where ta, tb and sa, sb are unknowns that specify if the intersection is a common point of the 

two arcs. If sa, sb ϵ(0,1) and ta, tb > 0, then the two arcs intersects in 𝑝𝑝𝐼𝐼𝑝𝑝. 

 
The rest of the supermesh construction process remains similar with the previous 

approaches, only with the difference that Alexa uses a more sophisticated data structure to 

represent the models, which consists of a  double connected edge list. 

 
In [Urt04], authors re-visit the reference concept of metamesh construction introduced by 

Kent et al. [Ken92], and propose to improve it by taking into consideration the known vertex 

positions of the 3D shapes. If the metamesh construction process starts with the source 

topology, the target vertices are added progressively into the structure as well as the new 

points resulted after the edge intersection. When the supermesh takes the shape of the 

source model, these vertices are placed on the source faces forcing them to be flat, while 

their real position should be at some distance above or below the considered face.   

 
If we consider for example the vertex 𝑝𝑝𝑚𝑚

𝑝𝑝𝑝𝑝  as presented in Figure VI.2, once the barycentric 

coordinates 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are computed relatively to face 𝑓𝑓1
𝑝𝑝𝐻𝐻 , in contrast with equation (VI.1), 

the 3D coordinates of 𝑝𝑝𝑚𝑚  relatively to the original source mesh shape are computed as: 

𝑝𝑝𝑚𝑚𝐻𝐻 = 𝛼𝛼(𝑝𝑝𝑝𝑝𝐻𝐻 + 𝑛𝑛𝜌𝜌1) + 𝛽𝛽(𝑝𝑝𝑏𝑏𝐻𝐻 + 𝑛𝑛𝜌𝜌2) + 𝛾𝛾(𝑝𝑝𝑐𝑐𝐻𝐻 + 𝑛𝑛𝜌𝜌3) (VI.4) 
where the vertex 𝑝𝑝𝑚𝑚  lies on the source surface on the face 𝑓𝑓1

𝐻𝐻(𝑝𝑝𝑝𝑝
𝐻𝐻,𝑝𝑝𝑏𝑏𝐻𝐻 ,𝑝𝑝𝑐𝑐𝐻𝐻), 𝑛𝑛 is the vertex 

normal of 𝑝𝑝𝑚𝑚  and 𝜌𝜌𝑖𝑖  (𝑖𝑖 = 1, 2, 3) is given by: 

𝜌𝜌𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑝𝑝𝜑𝜑𝑖𝑖 + 𝑑𝑑𝑖𝑖�
(1 − 𝑐𝑐𝑐𝑐𝑝𝑝2𝜑𝜑𝑖𝑖)(1 − 𝑐𝑐𝑐𝑐𝑝𝑝𝜙𝜙𝑖𝑖)

1 + 𝑐𝑐𝑐𝑐𝑝𝑝𝜙𝜙𝑖𝑖
 (VI.5) 

𝑐𝑐𝑐𝑐𝑝𝑝𝜙𝜙𝑖𝑖 ≅ 𝑛𝑛 ∙ 𝑛𝑛𝑖𝑖    ;     𝑐𝑐𝑐𝑐𝑝𝑝𝜑𝜑𝑖𝑖 ≅
𝑛𝑛∙𝑑𝑑𝑖𝑖
||𝑑𝑑𝑖𝑖||

 (VI.6) 

where ni is the vertex normal of 𝑝𝑝𝑖𝑖𝐻𝐻 (𝑖𝑖 corresponding here to indices 𝑝𝑝, 𝑏𝑏 or 𝑐𝑐), while di is the 

vector between one vertex of 𝑓𝑓1
𝐻𝐻(𝑝𝑝𝑝𝑝

𝐻𝐻 ,𝑝𝑝𝑏𝑏𝐻𝐻 ,𝑝𝑝𝑐𝑐𝐻𝐻) and the projection of the new vertex on the face.  
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In [Lee03], authors introduce a new approach called SMCC (Structures of Minimal Contour 

Coverage) that handles all coincident, degenerate cases with the help of a simple data 

structure. The merging algorithm overlays each target edge on the source topology. 

Depending on the place where the edge endpoints and the new vertices lie on the metamesh 

triangles different cases of intersection are distinguished. When an edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) is 

overlaid on 𝑝𝑝𝐻𝐻, this edge can be split into several line segments by the  triangles 𝑓𝑓𝑝𝑝𝐻𝐻 . 

 
This principle is illustrated in Figure VI.3, where the green dots represent vertices obtained 

after the intersection. The following three cases can be encountered for the point 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 : (1) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies inside a triangle 𝑓𝑓𝑝𝑝𝐻𝐻 , (2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝  coincides with another vertex 𝑝𝑝𝑝𝑝𝐻𝐻  , and (3) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝   

lies on an edge 𝑒𝑒𝑝𝑝𝐻𝐻 . If 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑
𝑝𝑝𝑝𝑝  is not in the same triangle as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 , then the edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) 

is split and the new intersection point becomes a new 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 . This process is repeated until 

𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑
𝑝𝑝𝑝𝑝  will find on the same triangle as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝  (on a vertex, on an edge or inside the same 

triangle). 

 
Figure VI.3. Edge intersection scheme labeled according to the SMCC algorithm [Lee03]. 

 
Based on this principle, 18 different cases of intersections can be identified. They are 

illustrated in Figure VI.4: 

 - Case 1: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 ,  𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻 and at least one 

intersection point 𝑝𝑝𝐼𝐼  is obtained. 

 - Case 2: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to another edge of 𝑓𝑓𝑝𝑝𝐻𝐻  and no 

additional intersection points exist. 

 - Case 3: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 ,  𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is inside of 𝑓𝑓𝑝𝑝𝐻𝐻  and no additional 

intersection points exist. 

 - Case 4: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻  and the inserted edge 

𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) lies on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated. 

 - Case 5: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices, 

and the inserted edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) lies on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated. 

 - Case 6: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  lies on an edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices, 

but the inserted edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) does not lie on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated. 
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 - Case 7: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝  lies on the same edge of triangle𝑓𝑓𝑝𝑝𝐻𝐻 . 

 - Case 8: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻  and at least one 

intersection point 𝑝𝑝𝐼𝐼 is obtained. 

 - Case 9: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 opposite 

edge and no additional intersection points exist. 

 - Case 10: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is inside of 𝑓𝑓𝑝𝑝𝐻𝐻and no additional 

intersection points exist. 

 - Case 11: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices, 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻  and the 

inserted edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) lies on the edge where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is situated. 

 - Case 12: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝  coincides with another 

𝑓𝑓𝑝𝑝𝐻𝐻vertex. 

 - Case 13: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻 vertices and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 belongs to an adjacent 

edge of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 . 

 - Case 14: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻  and at least one intersection 

point 𝑝𝑝𝐼𝐼 is obtained. 

 - Case 15: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝  belongs to an edge of 𝑓𝑓𝑝𝑝𝐻𝐻  and no additional 

intersection points exist. 

  - Case 16: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  and 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 are inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 and no additional intersection points 

exist. 

 - Case 17: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 ,  𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 is outside of 𝑓𝑓𝑝𝑝𝐻𝐻  and the inserted edge 

𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) crosses through a vertex of triangle𝑓𝑓𝑝𝑝𝐻𝐻 . 

 - Case 18: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  is inside of triangle𝑓𝑓𝑝𝑝𝐻𝐻 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 coincides with one of the𝑓𝑓𝑝𝑝𝐻𝐻vertices and no 

additional intersection points exist. 

 
In the example from Figure VI.3, for each line segment of 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑
𝑝𝑝𝑝𝑝 ) an appropriate case 

is assigned to. 

 
Based on the three possibilities in which the starting point of an edge can be found (inside 

triangle, on an edge or coincident with another vertex), three kinds of SMCC (Structures of 

Minimal Contour Coverage) are defined as illustrated in Figure VI.5: 

1. if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  falls on a vertex 𝑝𝑝𝑝𝑝𝐻𝐻 , its SMCC is 𝑝𝑝𝑝𝑝𝐻𝐻 ’s first ring structure on  𝑝𝑝𝐻𝐻. 

2. if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  falls on an edge 𝑒𝑒𝑝𝑝𝐻𝐻 , its SMCC is a 4-sided polygon containing 𝑒𝑒𝑝𝑝𝐻𝐻 . 

3. if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝  falls on an triangle 𝑓𝑓𝑝𝑝𝐻𝐻 , its SMCC is the triangle 𝑓𝑓𝑝𝑝𝐻𝐻 . 
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Figure VI.4. Different cases of intersection. 

 
Figure VI.5 shows that each 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝  is enclosed by its SMCC. In order to compute the 

intersections, the following two parameters are determined for each edge of the SMCC: 

𝑀𝑀 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝��������������������⃗ � ⋅ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻������������������⃗ ) 

𝑁𝑁 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝��������������������⃗ � ⋅ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑖𝑖+1

𝑝𝑝𝐻𝐻�������������������⃗ ) 
(VI.7) 

where 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  and 𝑝𝑝𝑖𝑖+1

𝑝𝑝𝐻𝐻  are two adjacent vertices of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ’s SMCC. 
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Figure VI.5. The three kinds of SMCC for 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝  on 𝑝𝑝𝐻𝐻: (a) first ring; (b) 4-sided 
polygon; (c) a triangle. 

 
The intersection computation can be evaluated as follows: 

   - If 𝑀𝑀 < 0 and 𝑁𝑁 > 0 then edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) intersects 𝑒𝑒(𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ,𝑝𝑝𝑖𝑖+1

𝑝𝑝𝐻𝐻 ); 

   - If 𝑀𝑀 = 0 then edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) cross through vertex 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ; 

   - If 𝑁𝑁 = 0 then edge 𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝 ,𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑

𝑝𝑝𝑝𝑝 ) cross through vertex 𝑝𝑝𝑖𝑖+1
𝑝𝑝𝐻𝐻 ; 

   - Else another edge of the SMCC is analyzed.    

 
Once the merging is completed, a non-triangulated planar graph is obtained. In order to 

retriangulate it and obtain the final metamesh, additional edges must be inserted. This 

process can be described as follows. For each vertex 𝑝𝑝𝑚𝑚  of the metamesh, the algorithm 

connects the neighboring points by finding the 1-ring cycles, using the smallest interior 

angles. For example, in Figure VI.6 vertex 𝑝𝑝1will be connected with 𝑝𝑝6 through a new edge 

and not with 𝑝𝑝5 (or other vertices) since the angle ∠(𝑝𝑝1𝑝𝑝𝑚𝑚𝑝𝑝6) is smaller than ∠(𝑝𝑝1𝑝𝑝𝑚𝑚𝑝𝑝5).     

 
Figure VI.6. First ring neighbors retriangulation. 

 
A different approach that avoids to construct the supermesh using a combination of 

operations between the topologies of the two models is proposed by Michikawa et al. 

[Mic01]. In this case, the resulted structure that can interpolate between various object 

shapes is called MIMesh (Multiresolution Interpolation Mesh). The multiresolution 

interpolation mesh has a semi-regular mesh structure defined by regularly subdividing faces 

from a base mesh (named base interpolation mesh). A 4-to-1 triangle split scheme is used to 

subdivide a face into sub-faces. MIMesh triangles are saved in a quad-tree data structure, as 

illustrated in Figure VI.7. In this structure, the base interpolation mesh triangles are stored in 

the root node. Each node has links to four child nodes, and each child node stores one of 
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four sub-faces. The interpolation mesh at an arbitrary subdivision level can be obtained by 

traversing such a quad tree structure. 

 
Figure VI.7. Quad-tree structure of MIMesh [Mic01]. 

 
In order to better approximate the local geometry of the models without increasing 

dramatically the number of triangles, the algorithm allows to adaptively modify the number of 

refinement steps through a local subdivision fitting scheme. An approximation error is defined 

for each triangle by taking into account the Euclidian distance between its vertices and the 

original mesh. If the approximation error exceeds a pre-established threshold, the face is split 

into 4 triangles. However, such a process leads to the apparition of so-called T-vertices, at 

the level of adjacent triangles with different subdivision levels (Figure VI.8). If a given triangle 

includes a unique T-vertex, a re-triangulation as the one illustrated in red in Figure VI.8 is 

applied. If the number of T-vertices is two, the triangulation illustrated in green is applied, 

followed by a red triangulation to its neighboring triangle.  

 
Figure VI.8. Adaptive subdivision scheme to resolve the T-vertices [Mic01]. 

 
However, since the vertices and edges of the two input models are not directly used, it is 

difficult to accurately approximate both the source and target shapes with a fixed vertex set 

and connectivity. Thus, in such a re-meshing based approach, a large number of subdivision 

levels is required, which results in a highly complex MIMesh. 

  
A different concept is introduced by Ahn et al [Ahn04], which creates in-between meshes 

based on topology transformation. Given the two input models, their connectivities 𝑀𝑀𝐻𝐻 and 
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𝑀𝑀𝑝𝑝  are first converted into some refined meshes, denoted by 𝑀𝑀′𝐻𝐻  and 𝑀𝑀′𝑝𝑝 , which are 

described by an identical number of vertices.  

 
The converted version (𝑀𝑀′𝐻𝐻) of the source mesh topology 𝑀𝑀𝐻𝐻 is constructed in the following 

way. After the two spherical embeddings of the models 𝑝𝑝𝐻𝐻  and 𝑝𝑝𝑝𝑝  are overlaid, for each 

parametric vertex 𝑝𝑝𝑝𝑝𝑝𝑝  of the target a position into a parametric face 𝑓𝑓𝑝𝑝𝐻𝐻 can be found by 

projection. Then, a vertex 𝑝𝑝𝑝𝑝𝐻𝐻 is created at the mapped position and connected to the three 

vertices of 𝑓𝑓𝑝𝑝𝐻𝐻 . This process is performed for all target vertices. Thus a new mesh structure 

𝑀𝑀′′𝐻𝐻  which contains all the source and target vertices is obtained. Let us note that 𝑀𝑀′′𝐻𝐻 has a 

different connectivity than 𝑀𝑀𝐻𝐻 or 𝑀𝑀𝑝𝑝 (Figure VI.9.b), but can adapt to the 𝑀𝑀𝐻𝐻 ’s shape. 

 
Figure VI.9. Vertices embedding: (a) original configuration of target vertices mapped onto a source 

triangle; (b) result of simple embedding; (c) enhanced result after edge swaps [Ahn04] 
 
The edges of 𝑀𝑀′′𝐻𝐻 connecting the target vertices may differ considerably from the edges in 

𝑀𝑀𝑝𝑝. In order to reduce the differences, a sequence of edge swap operations is applied to 

𝑀𝑀′′𝐻𝐻. An edge 𝑒𝑒′′𝐻𝐻 of 𝑀𝑀′′𝐻𝐻 is swapped only if its endpoints are vertices belonging to the target 

and the operation reduces the number of intersections between 𝑀𝑀′′𝐻𝐻 and 𝑀𝑀𝑝𝑝 on the common 

embedding. After these operations, the desired converted mesh 𝑀𝑀′𝐻𝐻 is obtained. 𝑀𝑀𝑝𝑝can be 

converted to 𝑀𝑀′𝑝𝑝 in the same way. Thus, 𝑀𝑀′𝐻𝐻 and 𝑀𝑀′𝑝𝑝 contain an identical number of vertices 

equal to 𝑁𝑁𝐻𝐻 + 𝑁𝑁𝑝𝑝 − 𝑁𝑁𝐶𝐶 , where 𝑁𝑁𝐻𝐻  and 𝑁𝑁𝑝𝑝  are the number of vertices in source and target 

models, while 𝑁𝑁𝐶𝐶  is the number of coincident vertices obtained after the mappings are 

overlaid. 𝑀𝑀′𝐻𝐻 (resp. 𝑀𝑀′𝑝𝑝) can take the exact shape of the source (resp. target) model.   

 
Next the idea is to construct a minimum edge swap sequence that can transform the 

connectivity from 𝑀𝑀′𝐻𝐻 to 𝑀𝑀′𝑝𝑝. This task is accomplished by defining an error metric for each 

edge swap operation as the shortest distance in 3D between an edge and its swapped 

version. The edges with the minimum error are treated first. However, an edge 𝑒𝑒 of 𝑀𝑀′𝐻𝐻 is 

swapped only if the number of intersections of 𝑒𝑒 with 𝑀𝑀′𝑝𝑝 structure decreases.  

 
The drawback of the method comes from the fact that, during the morphing process, the 

geometric transformation may not be well correlated with the topology. As a consequence, 

unpleasant visual artifacts may appear. Thus, when an edge swap operation is performed, a 

pop-up effect may occur if the 3D positions of the initial endpoints of the edge are very 

dissimilar with the new endpoints. Figure VI.10 illustrates such a pop-up effect. 
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Figure VI.10. Pop-up effect due to edge swap: (a) original mesh; (b) swapped edge 

 
The analysis of the state of the art shows that existing approaches  [Ken92], [Kan98], 

[Ale00], [Urt04], [Lee03] are dealing with the supermesh construction problem by overlapping 

the two maps of the models, followed by an iterative operation of edge insertion. The 

metamesh obtained when merging the source and target edges includes all the source and 

target vertices as well as the new additional intersection points of the edges. However, such 

an approach proves to highly increase the number of mesh triangles and is very challenging 

due to numerical instabilities that arise when computing intersections between source and 

target edges. Thus, a method to create a supermesh characterized by a relatively small 

number of vertices represents a promising direction of research that we have considered in 

our work. 

 
In the following section we introduce the proposed method that allows us to obtain a one-to-

one correspondence between the shapes of both source and target models, with the help of 

an adaptive pseudo-mesh construction method. 

 
 

VI.3.  ADAPTIVE PSEUDO-METAMESH CONSTRUCTION  
 
The proposed technique is able to create a so-called pseudo supermesh that avoids 

performing and tracking edge intersections. In addition, our method reduces drastically the 

number of vertices normally needed in a supermesh structure. We call our structure pseudo-

metamesh since it is not created in the classical manner based on edge intersection, and 

also it only approximates the two source and target shapes. 

 
We initialize first the supermesh structure with the one of the target parameterization. Then, 

for each source parametric vertices we establish the supermesh triangle in which it can be 

projected. In the 2D case (i.e., planar parameterization), this process can be described as 

follows: Considering the source mapping overlaid on the supermesh structure initialized with 

the target parameterization, we aim to establish for each source vertex, the target face in 

which it lies. Considering 𝑓𝑓𝑝𝑝𝑀𝑀  a face of the metamesh in the parametric domain 𝑝𝑝𝑀𝑀 

described by three vertices (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 ) and 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻  a parametric vertex of the source mesh, 
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we can determine if 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  lies on 𝑓𝑓𝑝𝑝𝑀𝑀 by computing the areas of triangles formed by any two 

vertices of 𝑓𝑓𝑝𝑝𝑀𝑀  and 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 . 

 
The area of a triangle f(pA, pB, pC) in plane is given by the following relation:  

𝐴𝐴𝑓𝑓 =
1
2

(𝑥𝑥𝐴𝐴(𝑦𝑦𝑐𝑐 − 𝑦𝑦𝐶𝐶) + 𝑥𝑥𝑐𝑐(𝑦𝑦𝐶𝐶 − 𝑦𝑦𝐴𝐴) + 𝑥𝑥𝐶𝐶(𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑐𝑐)) (VI.8) 

which can be further written as: 

𝐴𝐴𝑓𝑓 =
1
2 �
𝑥𝑥𝐴𝐴    𝑦𝑦𝐴𝐴    1
𝑥𝑥𝑐𝑐    𝑦𝑦𝑐𝑐    1
𝑥𝑥𝐶𝐶    𝑦𝑦𝐶𝐶    1

� (VI.9) 

Let us note that if the triangle points are specified in counter-clockwise order then the 

resulting area is positive, whereas the area is negative if the points are specified in clockwise 

order. This observation makes it possible to decide if a point is situated inside or outside a 

triangle. Thus, considering the scenario illustrated in Figure VI.11, where the vertex 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  is 

inside the triangle 𝑓𝑓𝑝𝑝𝑀𝑀 , we have the following conditions: 

 - if the area of triangle (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ) is positive, then 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 must be to the left of the 

edge (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 ). 

 - if the area of triangle (𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ) is positive, then 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 must be to the left of the 

edge (𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 ). 

 - if the area of triangle (𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻 ) is positive, then 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻 must be to the left of the 

edge (𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 ). 

 
Figure VI.11. Point inside triangle test. 

 
If all the above areas are positives, then the point is inside the considered triangle. 

Furthermore, if one area is zero, and the other areas are positives, then 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  is on an edge, 

and if two areas are zero and the other positive, then the vertex is situated on another vertex. 

Otherwise, 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  is outside the considered triangle. 

 
In the case of spherical parameterization, the problem of determining the metamesh triangle 

to which a source vertex belongs becomes more complicated. Here, we employ the following 

ray triangle intersection test in order to establish the location of the source vertices on the 
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metamesh. We consider the starting point of the ray, the origin of the spherical domain OS, 

and its direction specified by a unit vector u defined as 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻– OS. For a given triangle, et n be 

the associated normal vector, and d a scalar value such that the triangle’s plane consists of 

points x satisfying the following equation: 

𝑛𝑛 ∙ 𝑥𝑥 = 𝑑𝑑 (VI.10) 
If the triangle’s vertices are provided in a counterclockwise order, then the vector n is 

considered to point in an upward direction. Values for n and d can be computed using the 

following equations: 

𝑛𝑛 = �𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀� × (𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 − 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀) (VI.11) 

𝑑𝑑 = 𝑛𝑛 ∙ 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 (VI.12) 

Let us denote by 𝑞𝑞 the point that intersects the plane defined by the triangle 𝑓𝑓𝑝𝑝𝑀𝑀 . With the 

ray 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻– OS. We first test if point 𝑞𝑞 lies on the triangle plane: 

𝑑𝑑 = 𝑞𝑞 ∙ 𝑛𝑛 = 𝑂𝑂𝐻𝐻 ∙ 𝑛𝑛 + 𝑝𝑝𝑢𝑢 ∙ 𝑛𝑛 (VI.13) 

Solving equation (VI.13) for parameter r yields: 

𝑝𝑝 =
𝑑𝑑 − 𝑂𝑂𝐻𝐻 ∙ 𝑛𝑛
𝑢𝑢 ∙ 𝑛𝑛

 (VI.14) 

If this test finds that r < 0, then there is no intersection. By further analysing the sign of either 

𝑢𝑢 ∙ 𝑛𝑛 or 𝑑𝑑 − 𝑂𝑂𝐻𝐻 ∙ 𝑛𝑛, we can establish whether the point 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  lies above or below the surface. In 

order to determine further if the point 𝑞𝑞 is inside or outside 𝑓𝑓𝑝𝑝𝑀𝑀  we compute the barycentric 

coordinates of 𝑞𝑞 with respect to the considered triangle. Thus, the position of the point 𝑞𝑞 is 

expressed as a convex combination of the vertices 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 : 

 𝑞𝑞 = 𝛼𝛼 ∙ 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 + 𝛽𝛽 ∙ 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 + 𝛾𝛾 ∙ 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀  (VI.15) 

where the weights of the convex combination α, β,  γ are the barycentric coordinates. Note 

that α + β + γ = 1, and α, β, γ are all non-negatives. One way to express the barycentric 

coordinates is in terms of areas of the triangles formed by vertices 𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 and 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻  : 

𝛼𝛼 =
|𝐴𝐴�∆𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻  �|
|𝐴𝐴�∆𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀�|
  ;  𝛽𝛽 =

|𝐴𝐴�∆𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 ,𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  �|

|𝐴𝐴�∆𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀�|

  ;  𝛾𝛾 =
|𝐴𝐴�∆𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻  �|
|𝐴𝐴�∆𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 , 𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 , 𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀�|
 (VI.16) 

If all the barycentric coordinates α, β, γ belong to (0, 1) interval, then we can affirm that point q 

lies inside triangle 𝑓𝑓𝑝𝑝𝑀𝑀  (𝑝𝑝𝐴𝐴
𝑝𝑝𝑀𝑀 ,𝑝𝑝𝑐𝑐

𝑝𝑝𝑀𝑀 ,𝑝𝑝𝐶𝐶
𝑝𝑝𝑀𝑀 ) and in the same time the point 𝑝𝑝𝑖𝑖

𝑝𝑝𝐻𝐻  lies on the 

spherical triangle 𝑓𝑓𝑝𝑝𝑀𝑀 . If the point 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  lies on some of vertices 𝑝𝑝𝐴𝐴

𝑝𝑝𝑀𝑀 ,𝑝𝑝𝑐𝑐
𝑝𝑝𝑀𝑀 ,𝑝𝑝𝐶𝐶

𝑝𝑝𝑀𝑀 , then one 

barycentric coordinates is equal to one and the remaining to zero, whereas if only one 

barycentric coordinate is null, then the vertex 𝑝𝑝𝑖𝑖
𝑝𝑝𝐻𝐻  is located on an edge. 
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Once we determine the face in which a source vertex lies, we split the triangle after a 1-to-4 

scheme as illustrated in Figure VI.12. The process is applied for all the source vertices until 

each triangle in the target mesh includes uniquely a single source vertex. 

 

Figure VI.12. 1-to-4 subdivision scheme. 
 
Obviously, the obtained pseudo-metamesh does not have anymore a triangular structure 

since, after a triangle subdivision the adjacent faces are not triangles anymore. Thus, a mesh 

retriangulation is required. This task is performed only after all source vertices are used to 

split the metamesh triangles.  

 
The retriangulation process can be easily accomplished if we store the elements of the 

metamesh structure in appropriate lists which are updated accordingly after each triangle 

split. We consider 𝑉𝑉{𝑝𝑝1, … ,𝑝𝑝𝑁𝑁𝑉𝑉 } and 𝐹𝐹{𝑓𝑓1, … ,𝑓𝑓𝑁𝑁𝐹𝐹 } the metamesh list of vertices and faces 

respectively, where 𝑁𝑁𝑉𝑉  and 𝑁𝑁𝐹𝐹  denote the initial numbers of vertices and faces, after the 

initialization of the metamesh with the target model. For each vertex 𝑝𝑝𝑖𝑖 , the list of adjacent 

faces 𝐹𝐹𝑖𝑖/𝑝𝑝𝑑𝑑𝑝𝑝  is known. 

 
In order to illustrate the retriangulation process, let us consider the example in Figure VI.13. 

The triangle 𝑓𝑓𝑝𝑝  defined by vertices 𝑝𝑝𝐴𝐴 ,𝑝𝑝𝑐𝑐 ,𝑝𝑝𝐶𝐶  (Figure VI.13.a) is split after 1-to-4 subdivision 

scheme resulting three new faces 𝑓𝑓𝑁𝑁𝐹𝐹+1,𝑓𝑓𝑁𝑁𝐹𝐹+2,𝑓𝑓𝑁𝑁𝐹𝐹+3, which are added in the 𝐹𝐹 list. The most 

inner triangle obtained after the subdivision process will take the place of the initial triangle in 

the 𝐹𝐹 list. Also three new vertices, 𝑝𝑝𝑁𝑁𝑉𝑉+1,𝑝𝑝𝑁𝑁𝑉𝑉+2,𝑝𝑝𝑁𝑁𝑉𝑉+3, are added in the 𝑉𝑉 list.  

 
The lists of the adjacent faces are updated as follows: 

   - 𝑝𝑝𝐴𝐴 replace the adjacent face 𝑓𝑓𝑝𝑝  with 𝑓𝑓𝑁𝑁𝐹𝐹+1; 

   - 𝑝𝑝𝑐𝑐 replace the adjacent face 𝑓𝑓𝑝𝑝  with 𝑓𝑓𝑁𝑁𝐹𝐹+2; 

   - 𝑝𝑝𝐶𝐶 replace the adjacent face 𝑓𝑓𝑝𝑝  with 𝑓𝑓𝑁𝑁𝐹𝐹+3; 

   - the new vertex 𝑝𝑝𝑁𝑁𝑉𝑉+1 add in the 𝐹𝐹𝑁𝑁𝑉𝑉+1/𝑝𝑝𝑑𝑑𝑝𝑝  list the following triangles: 𝑓𝑓𝑁𝑁𝐹𝐹+2, 𝑓𝑓𝑝𝑝 , 𝑓𝑓𝑁𝑁𝐹𝐹+3; 

   - the new vertex 𝑝𝑝𝑁𝑁𝑉𝑉+2 add in the 𝐹𝐹𝑁𝑁𝑉𝑉+2/𝑝𝑝𝑑𝑑𝑝𝑝  list the following triangles: 𝑓𝑓𝑁𝑁𝐹𝐹+3, 𝑓𝑓𝑝𝑝 , 𝑓𝑓𝑁𝑁𝐹𝐹+1; 

   - the new vertex 𝑝𝑝𝑁𝑁𝑉𝑉+3 add in the 𝐹𝐹𝑁𝑁𝑉𝑉+3/𝑝𝑝𝑑𝑑𝑝𝑝  list the following triangles: 𝑓𝑓𝑁𝑁𝐹𝐹+1, 𝑓𝑓𝑝𝑝 , 𝑓𝑓𝑁𝑁𝐹𝐹+2; 

Note that the triangles 𝑓𝑓𝐴𝐴 ,𝑓𝑓𝑐𝑐 ,𝑓𝑓𝐶𝐶  are not added in the lists of adjacent faces of the new 

vertices.  
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The list of faces is traversed and the “triangles” with more than 3 vertices are detected. In 

Figure VI.13, we establish, for example, that face 𝑓𝑓𝐶𝐶 is not well defined and the vertex 𝑝𝑝𝑁𝑁𝑉𝑉+3 

split the edge 𝑒𝑒(𝑝𝑝𝐴𝐴 , 𝑝𝑝𝑐𝑐) in two halves. This is simple established by analyzing the lists of 

faces adjacent to vertex 𝑝𝑝𝑁𝑁𝑉𝑉+3. If two vertices of a triangle have only one common adjacent 

face then that face must be retriangulated. In our example, 𝑝𝑝𝐴𝐴 and 𝑝𝑝𝑐𝑐 have only the face 𝑓𝑓𝐶𝐶 

adjacent. Thus, 𝑓𝑓𝐶𝐶 will be split into two triangles and the metamesh lists updated accordingly. 

The two new faces are verified if should be further split.      

 
Figure VI.13. Mesh retriangulation: (a) the pseudo-metamesh before the subdivision; (b) the pseudo-

metamesh obtained after the 1-to-4 subdivision scheme; (c) retriangulated pseudo-metamesh. 
 
In this manner, the final retriangulated pseudo-metamesh contains only the target vertices 

and the new vertices obtained by triangle split operations.  

 
The next step aims to establish the 3D positions of these vertices relatively to both source 

and target shapes. The 3D position of the new vertices relatively to the target shape can be 

easily established since we know that after each split operation, the new vertices are inserted 

at the middle of an existing edge. For example, in Figure VI.13, the 3D position of 𝑝𝑝𝑁𝑁𝑉𝑉+3 

relatively to the target model can be computed as: 

𝑝𝑝𝑁𝑁𝑉𝑉+3
𝑝𝑝 = (𝑝𝑝𝐴𝐴𝑝𝑝 + 𝑝𝑝𝑐𝑐𝑝𝑝)/2 (VI.17) 

The 3D positions of all pseudo metamesh vertices relatively to the source shape can be 

computed employing a point-in-triangle test as we have presented earlier in this section. 

 
Figure VI.14 illustrates two examples of pseudo-metameshes obtained with the proposed 

approach. We can observe that the mesh structure remains simple and in the proximity of 

existing features the supermesh is adaptively remeshed in order to better approximate both 

original models.  

 
Table VI.1 presents the characteristics of some pseudo-metameshes in terms of number of 

vertices and triangles compared with the original models. Let us note that in most of the 

cases the pseudo metamesh number of vertices does not exceed the sum of the source and 

target vertices, which is quite a remarkable result. 

 
The final step required for obtaining the morphing sequence concerns the interpolation of the 

geometric positions of the source and target vertices of the pseudo metamesh involved.  
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Figure VI.14. Pseudo metameshes: (a) original models; (b) spherical parameterization; 

(c) overlaid maps; (d) final pseudo metamesh. 
 

Table VI.1. Pseudo metamesh characteristics. 

 Model No. of 
vertices 

No. of 
triangles  No. of 

vertices 
No. of 

triangles 

Source Man 14603 29202 Pseudo 
metamesh 34796 69588 

Target Alien 16267 32530 

Source Head1 17358 34712 Pseudo 
metamesh 22467 44930 

Target Head2 7896 15788 

Source Dino 16996 33988 Pseudo 
metamesh 31082 62080 

Target Horse 19851 39698 

Source Cow 11610 23216 Pseudo 
metamesh 13386 26768 

Target TRex 2832 5660 

Source Igea 15002 30000 Pseudo 
metamesh 24789 49574 

Target Head1 17358 34712 
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VI.4.  MESH INTERPOLATION 

 
The objective of the mesh interpolation step is to determine appropriate trajectories for each 

vertex connecting the initial position 𝑝𝑝𝑖𝑖𝐻𝐻 to the final position 𝑝𝑝𝑖𝑖𝑝𝑝 in the metamesh.  

 
Used in the majority of morphing applications [Ken92], [Kan00], [Ale00], [Ahn04], [Ath12], the 

simplest way to interpolate between the initial and the final positions of a vertex is the linear 

interpolation: 

𝑝𝑝𝑖𝑖𝑝𝑝 = 𝑝𝑝𝑖𝑖𝐻𝐻 + 𝑝𝑝(𝑝𝑝𝑖𝑖𝑝𝑝 − 𝑝𝑝𝑖𝑖𝐻𝐻) (VI.18) 

where 𝑝𝑝𝑖𝑖𝑝𝑝  is the position of the ith vertex of the metamesh at the moment of time t . 𝑝𝑝𝑖𝑖𝐻𝐻 and 𝑝𝑝𝑖𝑖𝑝𝑝 

are the extreme vertex positions at the moment t = 0, and t = 1 respectively.  

 
Due to its simplicity, we have adopted the linear interpolation approach in our work. 

Figure VI.15 to Figure VI.20 illustrates some examples of metamorphosis between different 

3D models obtained using our algorithm. The considered subset of objects consists of 3D 

closed genus-0 manifold models with various complexities and shapes. All the models are 

freely available over the Internet and are part of the Princeton and MPEG-7 databases.  

 

 
Figure VI.15. Morphing between Igea and Head1 models. 

 

 
Figure VI.16. Morphing between Cow and TRex models. 

 

 
Figure VI.17. Morphing between Horse and Lion models. 
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Figure VI.18. Morphing between Dino and Horse models. 

 
 

 
Figure VI.19. Morphing between Armadillo and Man models. 

 

 
Figure VI.20. Morphing between DinoSkeleton and Dino models. 

 
We can observe that in the majority of cases the resulting morphing sequences ensure a 

gradual and visually pleasant transition between source and target models. In addition, the 

pseudo metamesh proposed is able to adapt to both source and target shapes.   

 
However, it can be observed that are some cases when the linear interpolation leads to 

some minor self-intersections in the model during the morphing sequence. This is visible 

especially in Figure VI.19 where the hands of the Armadillo model are placed in an entirely 

different position in space than those of the Man model.  

 
A solution to this problem can be achieved by considering more advanced interpolation 

methods. Thus, as demonstrated by Alexa in [Ale02], the linear interpolation works well for 

morphing between 3D models that are similar and oriented in the same direction. For objects 

with strongly different shapes the linear vertex interpolation may introduce self intersections 

or some sort of collapsing, which may create disturbing visual effects. 

 
More advanced interpolation techniques are also available, which provide smoother vertex 

trajectories, but with the cost of higher computational complexity. Usually, they require some 

additional information, as control vertices for the case of a Bezier interpolation or some 

tangents information for a Hermite interpolation [Mic01].  
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A different idea was proposed by Gregory et al. in [Gre99] where the user can specify 

tangent vectors for the vertex path. The modified trajectory is then spread with some falloff to 

the neighboring vertices. Defining suitable tangent vectors some cases of self-intersection 

can be avoided. 

 
Besides the methods which interpolate between corresponding vertices, there are the so 

called intrinsic interpolation methods which take into account intrinsic shape parameters. 

Intrinsic parameters are, e.g., edge lengths or angles between adjacent edges or faces, face 

areas, etc. By interpolation of such parameters it is possible to force the angles or edges to 

change monotonically without creating degenerate triangles or generate self intersections. 

An example of such an intrinsic representation is the edge-angle representation proposed in 

[Sun97] or the strain field interpolation proposed in [Yan07]. 

 
Finally, let us mention the prototype morphing application that allows the user to interactively 

operate with 3D models and control each step of the morphing process. The intuitive 

interface permits user to select the correspondent vertices in the two models or to save the 

processed meshes at any time.  

 
Figure VI.21 shows different views of the user interface layout. The left window display the 

source model, while the right one displays the target object. The user has the possibility to 

specify a set of corresponding feature points on both source and target models. Once the 

computation of the supermesh is completed, this one is displayed on the left part. 

 

 
Figure VI.21. Graphical user interface: (a) view with the input models; (b) view during mesh 
simplification; (c) view during parameterization; (d) view with the final spherical embeddings. 
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VI.5.  CONCLUSIONS 

 
In this chapter we have first presented the state of the art algorithms employed for the 

construction of a supermesh model. Generally, the supermesh is necessary to interpolate 

between the source and target shapes and is obtained in the parametric domain by 

overlapping the mappings of the input models. Most of the approaches proposed in the 

literature employ an edge intersection scheme between the topology of the two models. 

Unfortunately, such techniques suffer from numerical instabilities especially when edge 

intersections are performed in dense regions of vertices. Additionally, the number of vertices 

increase drastically compared with the input models. 

 
To overcome such limitations, we have introduced in this chapter a new method which build 

a pseudo metamesh that starts with the target mesh structure and is adaptively refined such 

that to better approximate both source and target model. Thus, our approach avoids the 

edge-to-edge intersection process and returns mesh structures with a reduced number of 

vertices, which is generally inferior the sum of source and target vertices. 

 
The proposed pseudo metamesh has been exploited for morphing purposes, with the help of 

a linear interpolation technique. 

  
Perspectives of future work mainly concern the issue of smooth interpolation between source 

and target metamesh vertex positions. More advanced techniques are here required in order 

to avoid self intersection in the case of meshes with strongly different geometries.  
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VII.  CONCLUSIONS AND FUTURE WORK 
 
In this thesis, we have proposed a novel framework for 3D mesh morphing capable to 

interpolate between arbitrary genus-0 objects. The technique can be used as an animation 

method for creation of some special effects or in the design area where two existing shapes 

are combined in order to obtain new shapes. 

 
Our method is dependent on the objects representation, but it can be easily adapted for 

various types of descriptions. Based on the analysis provided in Chapter II we have decided 

to focus, in this thesis, on the mesh boundary representation, since it is very widespread in 

professional animation tools, easy to store, render and edit. 

 
Chapter III presents the state of the art in both 2D and 3D morphing, highlighting the main 

principles, advantages and limitations of each family of methods. The morphing framework 

proposed and considered in our work is also presented here.   

 
In Chapter IV, two different approaches are proposed in order to construct valid 

parameterizations for both open 3D objects topologically equivalent to a disc and for closed 

3D models with sphere-like topology.  

 
Our first approach is a planar parameterization method, which introduces a new barycentric 

mapping algorithm based on the preservation of the mesh length ratios. The experimental 

results have proved the superiority of our algorithm compared with state of the art methods 

by providing low distortions rates in terms of area and lengths especially for complex models. 

Another major advantage of our method, concerns the bijectivity property, which holds in all 

cases and ensures valid embeddings for arbitrary open and triangular 3D meshes. 

 
A second contribution concerns a spherical parameterization method, suitable for 3D closed 

two manifold models. The key point of our method concerns the Gaussian curvature criterion, 

which makes it possible to iteratively detect salient mesh vertices and to locally flatten them, 

until a sphere-like surface, adapted to a direct spherical parameterization is obtained. A 

notable advantage concerns the bijectivity properties that guarantee for any closed 3D mesh, 

a valid embedding regardless their complexity. The experimental evaluation, carried out on a 

set of 3D models of various shapes and complexities, has demonstrated a significant 

improvement in terms of both angle and area distortions. 
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Another distinctive factor is the complete automatic nature of our planar and spherical 

parameterization techniques which do not require any human intervention. 

 
Based on the detailed analysis and evaluation of the most important mesh deformation 

techniques made in Chapter V we have established that the CTPS C2
a radial basis function 

represents the most suitable method for mesh warping purposes. However, we have adjust 

this warping technique such that to meet the constraints related to feature alignment of 

meshes defined in the parametric domain and to produce minimum mesh distortions. Our 

approach allows to deform the two mesh embeddings until the feature vertices of the two 

input models are put in correspondence in the parametric domain maintaining a valid 

spherical mapping through the entire iterative deformation process.   

 
Based on the previous established feature correspondence, in Chapter VI we introduced a 

novel algorithm for construction of a pseudo-metamesh that avoids the complex process of 

edge intersections encountered in the state-of-the-art. Additionally, the obtained mesh 

structure is characterized by a small number of vertices (i.e., inferior to the sum of source 

and target vertices) and is able to approximate both the source and target shapes. Finally, 

the proposed pseudo metamesh has been exploited for morphing purposes, with the help of 

a linear interpolation technique, which leads to the desired transformation sequence between 

3D character models while preserving the necessary features. 

 
The entire mesh morphing algorithm was integrated in an interactive application that allows 

the user to control and visualize all the stages of the morphing process. 

 
Our perspectives of future research concern different axes: 

• Morphing objects with different genus is still an issue that has to be resolved. Extension to 

this problem could require the modification of the entire framework; 

• Interpolation of surface attributes as normals, colors, textures; 

• Advanced interpolation schemes for obtaining more visually pleasing results, while 

avoiding the self intersection problem during the morphing especially when the source and 

target models present strongly different geometric and topological characteristics; 

• Specify a fully automatic morphing method or at least minimize the required user 

interaction. 
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 Abstract 
 
 
Morphing methods are today extensively used in computer graphics to simulate the 

transformation between two completely different objects or to create new shapes by a 

combination of other existing shapes. It has a variety of applications ranging from special 

effects in film industry and other visual arts to medical imaging and scientific purposes. 

 
This Ph.D. thesis specifically deals with the issue of metamorphosis of 3D objects 

represented as 3D triangular meshes. The objective is to elaborate a complete 3D mesh 

morphing methodology which can ensure high quality transition sequences, smooth and 

gradual, consistent with respect to both geometry and topology, and visually pleasant. The 

various steps involved in the transformation process are developed within this thesis.  

 
Our first contributions concern the two different approaches of parameterization: (1) a new 

barycentric mapping algorithm based on the preservation of the mesh length ratios, and (2) 

a spherical parameterization technique, exploiting a Gaussian curvature criterion. The 

experimental evaluation, carried out on 3D models of various shapes, demonstrated a 

considerably improvement in terms of mesh distortion for both methods. 

 
In order to align the features of the two input models, we have considered a warping 

technique based on the CTPS C2
a radial basis function suitable to deform the models 

embeddings in the parametric domain maintaining a valid mapping through the entire 

movement process. We show how this technique has to be adapted in order to warp 

meshes specified in the parametric domains.  

 
A final contribution consists of a novel algorithm for constructing a pseudo-metamesh that 

avoids the complex process of edge intersections encountered in the state-of-the-art. The 

obtained mesh structure is characterized by a small number of vertices and it is able to 

approximate both the source and target shapes. 

 
The entire mesh morphing framework has been integrated in an interactive application that 

allows the user to control and visualize all the stages of the morphing process. 

 

 

 

 

 

 


