13,758 research outputs found

    Putting a Slug to Work

    Get PDF
    In this article, the authors explore various uses of inexpensive embedded Linux devices such as the Linksys NSLU2 ( slug ). Embedded computing is a topic of growing interest. Although novel architectures such as cell processors, graphics processors (GPUs), and FPGAs are growing in popularity, conventional microproessor designs such as Intel\u27s Xscale (ARM) and Atom pack a punch in a small footprint, not to mention being widely supported by commodity operating system and development tools. We\u27re convinced that this entire space is a tool worth keeping in the scientific programmer\u27s and software developer\u27s toolchests

    Dynamics of a structured slug population model in the absence of seasonal variation

    Get PDF
    We develop a novel, nonlinear structured population model for the slug Deroceras reticulatum, a highly significant agricultural pest of great economic impact, in both organic and non-organic settings. In the absence of seasonal variations, we numerically explore the effect of life history traits that are dependent on an individual's size and measures of population biomass. We conduct a systematic exploration of parameter space and highlight the main mechanisms and implications of model design. A major conclusion of this work is that strong size dependent predation significantly adjusts the competitive balance, leading to non-monotonic steady state solutions and slowly decaying transients consisting of distinct generational cycles. Furthermore, we demonstrate how a simple ratio of adult to juvenile biomass can act as a useful diagnostic to distinguish between predated and non-predated environments, and may be useful in agricultural settings

    Inverse Uncertainty Quantification using the Modular Bayesian Approach based on Gaussian Process, Part 2: Application to TRACE

    Full text link
    Inverse Uncertainty Quantification (UQ) is a process to quantify the uncertainties in random input parameters while achieving consistency between code simulations and physical observations. In this paper, we performed inverse UQ using an improved modular Bayesian approach based on Gaussian Process (GP) for TRACE physical model parameters using the BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data. The model discrepancy is described with a GP emulator. Numerical tests have demonstrated that such treatment of model discrepancy can avoid over-fitting. Furthermore, we constructed a fast-running and accurate GP emulator to replace TRACE full model during Markov Chain Monte Carlo (MCMC) sampling. The computational cost was demonstrated to be reduced by several orders of magnitude. A sequential approach was also developed for efficient test source allocation (TSA) for inverse UQ and validation. This sequential TSA methodology first selects experimental tests for validation that has a full coverage of the test domain to avoid extrapolation of model discrepancy term when evaluated at input setting of tests for inverse UQ. Then it selects tests that tend to reside in the unfilled zones of the test domain for inverse UQ, so that one can extract the most information for posterior probability distributions of calibration parameters using only a relatively small number of tests. This research addresses the "lack of input uncertainty information" issue for TRACE physical input parameters, which was usually ignored or described using expert opinion or user self-assessment in previous work. The resulting posterior probability distributions of TRACE parameters can be used in future uncertainty, sensitivity and validation studies of TRACE code for nuclear reactor system design and safety analysis

    Content and action: The guidance theory of representation

    Get PDF
    The current essay introduces the guidance theory of representation, according to which the content and intentionality of representations can be accounted for in terms of the way they provide guidance for action. We offer a brief account of the biological origins of representation, a formal characterization of the guidance theory, some examples of its use, and show how the guidance theory handles some traditional problem cases for representation: the problems of error and of representation of fictional and abstract entities

    Spartan Daily, April 23, 2008

    Get PDF
    Volume 130, Issue 46https://scholarworks.sjsu.edu/spartandaily/10472/thumbnail.jp

    Ground resonance analysis using a substructure modeling approach

    Get PDF
    A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented

    Development of meteoroid simulators for hypervelocity impact studies

    Get PDF
    Developing aluminum meteoritic simulators for hypervelocity impact test using shaped charge
    • …
    corecore