
Loyola University Chicago
Loyola eCommons

Computer Science: Faculty Publications and Other
Works Faculty Publications

3-2009

Putting a Slug to Work
Konstantin Läufer
Loyola University Chicago, klaeufer@gmail.com

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Ryohei Nishimura

Carlos Ramirez Martinez-Eiroa

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in
Computer Science: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2009 Konstantin Läufer, George K. Thiruvathukal, Ryohei Nishimura, Carlos Ramírez Martínez-Eiroa

Recommended Citation
Konstantin Läufer, George K. Thiruvathukal, Ryohei Nishimura, Carlos Ramírez Martínez-Eiroa, "Putting a Slug to Work,"
Computing in Science and Engineering, vol. 11, no. 2, pp. 62-68, Mar./Apr. 2009, doi:10.1109/MCSE.2009.35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/48606697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/cs_facpubs
http://ecommons.luc.edu/faculty
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Editors: Konstantin Läufer, laufer@cs.luc.edu

Konrad Hinsen, hinsen@cnrs-orleans.fr

62 Copublished by the IEEE CS and the AIP 1521-9615/09/$25.00 © 2009 IEEE Computing in SCienCe & engineering

S C I E n t I f I C P r o g r A m m I n g

W e’ve been busy during the
past several months with
an emerging multidisci-

plinary research project focused on
environmental science in an urban
setting. Given that Chicago is our
hometown, matters of air and water
quality are near and dear to our hearts
(literally), so we hope to bring multi-
ple people and organizations together
to better understand them. Toward
this goal, we’ve been exploring several
technologies to support mobile and
wireless distributed computing, which
will play a crucial role in our project.
In this installment of Scientific Pro-
gramming, we’re going to talk about
our initial foray into embedded Li-
nux running on the slug, which is the
pet name for the Linksys NSLU2, a
home “appliance” aimed at providing
network-attached storage.

Although the slug is aimed at home
users wanting network-attached stor-
age (a form of storage not attached to
any one computer but accessible from
any computer on the LAN), we took
immediate notice of this device as a
prospective embedded host for other
kinds of USB devices—in particular,
those that can support various envi-
ronmental sensing technologies. Its
power footprint also attracted us: this
completely fanless, thus silent, com-
puter runs on a 12-V DC power input,
which you can power with a cigarette
lighter. If you’re nonsmokers like us,

you’ve probably been waiting for the
day when you could put that cigarette
lighter to use for something other than
its original intended purpose. In any
event, our hope is to use the slug as
a host for environmental monitoring,
which is becoming possible via a grow-
ing number of USB-capable sensors.

Although it has several physical
challenges to address (which we won’t
cover here), this platform is only one
of a whole class of computers that
can run embedded Linux—and run
it well, especially with all the work
going into lower-power processors.
The device firmware itself is Linux-
based and uses the GNU toolchain
and various utilities that most people
already know and love. Because Link-
sys made the decision to use Linux,
the firmware is bound by open source
licenses, and its source code is freely
available. Translation: hackers have
already figured out how to replace the
slug’s firmware, so you can turn this
device initially aimed at NAS into a
full-fledged Linux environment and
develop your own applications to run
on it. (Please note that replacing the
stock firmware voids your warranty.)

Even though Linksys has discontin-
ued this product, you can still get your
hands on one for roughly US$60 if you
look around a bit. What we cover here
also applies to various other similarly
hackable devices, including network
storage units and wireless routers. Be-

fore you buy, just make sure you do the
research on how hackable the device
is and what firmware supports which
of the hardware features (for example,
the USB ports in some wireless rout-
ers might not work).

Setting up the SlugOS
Let’s now focus on the nuts and bolts.
The first thing we did was to transplant
the firmware on the device, starting
with the extensive resources at www.
nslu2-linux.org. Although we initially
found the information perplexing, ow-
ing to the number of alternative distri-
butions available, we ultimately settled
on the SlugOS/BE distribution because
it appeared to have the most momentum
behind it, not to mention a large pack-
age database, which would eliminate
the need to rebuild most of the pack-
ages we needed from scratch. Ordinar-
ily, we wouldn’t be bothered by having
to build a few packages from scratch,
but memory is severely constrained
on the slug at 32 Mbytes RAM and 8
Mbytes flash (still better than your first
PC, mind you), so we’d need to set up a
cross-compiler to build a good number
of the available free and open source
software (FOSS) packages. Even so, the
other advantage of SlugOS/BE is that
most available packages have already
been tested on the slug and, whenever
possible, hand-tuned or written to keep
the memory footprint low.

In the remaining discussion, we’ll

Although novel architectures such as cell processors, graphics processors, and FPGAs are growing in popularity,
conventional microprocessor designs pack a punch in a small footprint and are widely supported by commodity
operating system and development tools.

Putting a Slug to Work

By Konstantin Läufer, George K. Thiruvathukal, Ryohei Nishimura,
and Carlos Ramírez Martínez-Eiroa

marCh/april 2009 63

talk about how to get a complete slug
environment up and running. We’ll
also describe how to integrate the slug
into your existing home or office com-
puting setup, which will allow you to
login remotely via SSH for your own
experiments.

Step 1: Initial Setup
To set up the device, we recommend
that you have an existing Linux setup
somewhere on your LAN (your desk-
top or laptop will do):

Install the NSLU2 flash utility ap-•	
propriate for your host hardware
(upslug2 for Linux and Mac OS).
Download the latest SlugOS/BE bi-•	
nary image for NSLU2 from www.
slug-firmware.net.
Put the slug in upgrade mode fol-•	
lowing the instructions at www.ns
lu2-linux.org/wiki/HowTo/Use
TheResetButtonToEnterUpgrade
Mode. Similar to many other home
networking appliances (such as
routers), you power off the device
and then insert a pin or straightened
paper clip into the pinhole near the
back of the device. You then press
and release the power button exact-
ly as instructed.
Flash the image following the •	
 instructions at www.nslu2-linux.
org/wiki/SlugOS/UsingTheBinary.
If you’re on a Linux box (such as
Ubuntu or a similar major distribu-
tions), you can just install the up-
slug2 utility via aptitude or apt-get.
Wait for the slug to reboot.•	

Next, you’ll have to install the operat-
ing system.

Step 2: Installing the OS
The next step requires your network
to be set up properly—in particular,
if this is your home network, we rec-

ommend that you set your private IP
subnet to 192.168.1.0/255.255.255.0. By
default, the slug has a fixed address,
192.168.1.77; you might also want to
check in your router’s Dynamic Host
Configuration Protocol (DHCP) client
table whether the slug has come up with
a dynamic address. Another possibility
is to connect the device to any comput-
er that has more than one network port
and make sure the additional port is
configured to the same subnet. It’s per-
mitted to have more than one private
subnet (just make sure they’re not both
192.168.1.0). Now you just follow the
instructions at www.nslu2-linux.org/
wiki/OpenSlug/InitialisingOpenSlug:

Log into the slug: •	 ssh root@

192.168.1.77 (or actual dy-
namic address). The password is
 opeNSLUg (the letters in red must
be capitalized).
Initialize basic configuration: •	 turn-

up init.
Leave networking set to DHCP. •	
We’ll work on how to discover the
hostname later, which eliminates
the need for a static IP in most
situations.
Set the host name in accordance •	
with your project naming scheme,
such as luc-etl-slug0.
Using the “vi” editor, remove the •	
line containing w_g_name (domain-
name) from /etc/default/sysconf. It
should now look like this:

 [network]

 hw_addr=

 lan_interface=eth0

 disk_server_name=luc-

 etl-slug1

 bootproto=dhcp

Preserve basic configuration in •	
NVRAM: turnup preserve.
Reboot. •	

Not bad, right? Next, we’ll work on
the discovery.

Step 3:
Finding Your Device on the LAN
As indicated in Step 2, we’re big fans
of discovery, which is distributed sys-
tems speak for “I should be able to
browse for the device when it’s run-
ning.” DHCP is vastly underrated:
when you use it, you can actually dis-
cover all your attached devices (slug
included) simply by going to the net-
work router’s administrative interface.
(Most routers released within the past
few years support this capability.)

In recent years, however, Zeroconf
(www.zeroconf.org) has gained some
popularity. This multicast framework
for device announcement and discov-
ery has its roots in AppleTalk and now
lives as Bonjour (formerly Rendezvous).
Zeroconf lets us browse the network of
devices via a common name and look
up various properties about them, no-
tably their IP addresses. Translation:
set up Zeroconf on your slug and on
your computer (unless you’re using a
Mac, which means you already have
it running), and you’ll be able to find
your slug by its common name as set
in Step 2 (in our case, luc-etl-slug0).
Ubuntu Linux also supports Zeroconf
out of the box.

On the slug, you need to use the
intrinsic packaging system (ipkg)
to set up Zeroconf support via the
 Avahi project:

First, make sure your package data-•	
base is up to date: ipkg update.
While you’re at it, make sure •	
all packages are current: ipkg

upgrade.
Install the Avahi daemon:•	 ipkg

install avahi-daemon.
Make sure it’s running: •	 /etc/

init.d/avahi-daemon start.

S C I E n t I f I C P r o g r A m m I n g

64 Computing in SCienCe & engineering

(Optional) set up the Avahi utili-•	
ties, which let you browse your full
network from the device: ipkg in-
stall avahi-utils.

You’ll also want to install Zero-
conf if you’re running on Windows
or Linux. For Linux distributions,
you should see packages named ava-
hi-*. We use Ubuntu Linux, which
provides two important packages:
apt-get install avahi-daemon

avahi-utils. Technically, you
don’t need to install avahi-daemon.
We list it here just in case you’re
running an older version of (Ubun-
tu) Linux. As noted for the slug,
avahi-utils lets you browse the
network of devices via a command-
line utility named avahi-browse.
For Windows, you can download
an installer from http://support.
apple.com/downloads/Bonjour_for
_Windows_1_0_5.

Once you install Zeroconf, you’ll be
able to access the device from any IP-
enabled program (Web browser, SSH,
and so on) via a common name such as
<device-name>.local. We have several
devices in our laboratory, so we use
luc-etl-slugN.local (N = 1, 2, ...).

Whether you browse the network
on the slug (schneckle, the South Ger-
man diminutive for slug) or on your
other computer (feldberg, in this case),
you should now see the same list of
services, as in Figure 1.

Step 4: Getting a
Bigger Root Filesystem
Once you’ve completed Steps 1
through 3, you could consider your-
self done in a technical sense, and you
might well feel like calling it a day.
You might even want to pour yourself
a glass of wine to celebrate, but hold
off until you make sure the following
command works:

ssh root@<my-slug-hostname>.

local

Once you log in, though, you’ll real-
ize that this isn’t your father’s (or your
mother’s) Linux system. You can try
various utilities to get an idea of the
available resources:

top

cat /proc/cpuinfo

cat /proc/meminfo

df -h /

This might take you for a walk down
memory lane to your first PC, the
Commodore 64, the Timex-Sinclair
SX80, or perhaps the Eniac or Z3.
You’ll be looking for every superla-
tive or exaggeration until you realize
that this is still a powerful computer.
It has a reasonably zippy CPU and 32
Mbytes of RAM. You even have built-
in flash storage; otherwise, how would
your data persist?

But then you realize you want more.
This happened to us, and we de-

cided that the best way to get “more”
yet maintain the spirit of this device is
to use an external USB stick to hold
the root filesystem. After all, the slug
has two USB ports (with the ability to
support more than two via a USB hub,
if you wish) and a network port, so we
opted to pick up some USB sticks (a
five-pack of 2-Gbyte sticks at the time
of this writing was US$25). Having 2
Gbytes of storage makes our system
even more upgradeable and usable for
applications. In our work, we need to
run a significant number of develop-
ment tools and services, and we also
use the device itself to host simple
databases of environmental data until
we can push it out to a remote server
(such as a data warehouse), so addi-
tional storage is crucial to doing any-
thing useful.

To get this benefit, insert your ad-
ditional storage device into one of
the slug’s USB ports (doesn’t matter
which):

The device might mount automati-•	
cally in /media/<device-name>.
You’ll need to look for /dev/sda* or
/dev/sdb* and unmount the parti-
tion. For example, if /dev/sda1 is
mounted as /media/happy, just do
umount /media/happy.
The reason we need to ensure noth-•	
ing is mounted is that we need to
create a proper filesystem that will
work nicely with Linux: ext3. In
most cases, the device should be
/dev/sda (you’ll know if Linux tried
to mount your FAT filesystem or
whatever was on your USB drive in
the first bullet). Try creating a par-
tition on /dev/sda using fdisk (not
covered here) and then do mkfs.
ext3 /dev/sda1.
If you’re at all unsure what the de-•	
vice name is, it’s usually harmless to
just try /dev/sda. You can verify that
you’ve got the right one by looking
at the dmesg output and using grep
to search for the detected device,
dmesg | grep sd[a-z].
After creating the filesystem, we •	
need to copy the existing root filesys-
tem to the new device, turnup mem-
stick -i /dev/sda1 -t ext3.

Once you’ve done these steps, you
now have a usable root filesystem, but
we still need to do some final steps to
ensure that the USB stick is mounted
as root, provided it’s already inserted
when you power up the slug. Go ahead
and mount it on your Linux computer,
say, on a temporary directory, /mnt:

Add a disk label for your root file-•	
system, tune2fs -L root /dev/
sda1.

marCh/april 2009 65

Add an entry to /mnt/etc/fstab, •	
LABEL=root / ext3 noatime

1 1.
Obtain the volume ID (its UUID), •	
vol_id /dev/sda1.
Reboot the slug without any USB •	
drives present.
Edit /linuxrc (using “vi” or your fa-•	
vorite editor) on the slug to refer to
the UUID obtained earlier.
Reboot the slug after inserting the •	
USB stick.

We’re almost there!

Step 5: Some Final Tweaking
to Ensure Happiness
For the most part, you can consider
yourself done, but this last step is es-
sential if you plan to do serious devel-
opment on your device—that is, you’re
not just planning on using it as an ap-
pliance. We’re perfectionists, which
means we can’t live with annoyances,
such as an incorrect time of day. Thanks
to Step 4, which expanded the available
storage for applications and data, this
last step will let you grow the system as
your needs and interests evolve:

Turn off getty in /etc/inittab by •	
commenting out the correspond-
ing line using vi; getty isn’t needed
because there’s no console attached.
(You can probably add one using
your other USB port, if you have a
spare Zenith, VT, or Wyse dumb
terminal lying around.)
Populate the lists of available pack-•	

ages via the commands we covered
in Step 3 (with ipkg update and
ipkg upgrade).
Set up the right time zone (optional •	
but highly recommended), ipkg
install tzdata-right ; ln -s

/usr/share/zoneinfo/right/

CST6CDT /etc/localtime.
Set up automatic time synchroniza-•	
tion, ipkg install ntpclient.
Set up Optware following the in-•	
structions at www.nslu2-linux.org/
wiki/Optware/Slugosbe.

Note that you now have two versions
of ipkg, /usr/bin/ipkg to manage over
4,000 OpenEmbedded packages and
/opt/bin/ipkg-opt to manage over
800 Optware packages. In particular,
Optware has numerous useful server
packages (media servers, print servers,
Web servers, and so on). What gets a
bit messy is the automatic starting and
stopping of Optware services at boot
and shutdown time. At www.nslu2-
linux.org/wiki/OpenWrt, you’ll see
how to do this for another embedded
Linux distribution called OpenWRT,
but the instructions work equally well
for SlugOS. Some packages exist in
both places, and which version is bet-
ter varies from package to package.

Optionally, if you want to be able to
find your slug using DNS in addition
to Zeroconf, set up Dynamic DNS us-
ing inadyn, a very lightweight DDNS
client found in Optware: ipkg-opt
install inadyn. You can set up
/opt/etc/inadyn.conf according to the

instructions at www.dyndns.org. If
you want inadyn to start automati-
cally, you must first create the startup
script /opt/etc/init.d/inadyn with the
contents shown in Figure 2, then cre-
ate symbolic links to the script, and
start it up:

ln -s /opt/etc/init.d/inadyn /opt/•	
etc/init.d/S60inadyn
ln -s /opt/etc/init.d/inadyn /opt/•	
etc/init.d/K60inadyn
/opt/etc/init.d/inadyn start.•	

If ipkg ever starts failing, you might
be out of memory. In that case, remove
/var/lib/ipkg/* and /opt/lib/ipkg/*,
then update the lists for each reposi-
tory. In some cases, it helps to down-
load the package file manually using
wget and then installing it locally us-
ing ipkg. You might also want to add
a swap partition to make software in-
stallation and configuration smoother.
Because flash memory can handle only
a limited number of writes, you should
remove the swap partition once you
put the slug into production. For the
same reason, you should turn off most
logging as well.

By the way, some older slugs are un-
derclocked; if you’re brave, see www.
nslu2-linux.org/wiki/HowTo/OverClock
TheSlug for a fix that requires remov-
ing a resistor from the PCB (at your
own risk).

At this point, you should now con-
sider enjoying your second glass of
wine (if you haven’t finished the bottle

avahi-browse -a -t

+ eth0 IPv4 EPSON Stylus C80 @ feldberg _ipp._tcp local

+ eth0 IPv4 Brother HL-2040 series @ feldberg _ipp._tcp local

+ eth0 IPv4 SqueezeCenter on feldberg _http._tcp local

+ eth0 IPv4 MythTV server on feldberg _http._tcp local

+ eth0 IPv4 SFTP File Transfer on feldberg _sftp-ssh._tcp local

+ eth0 IPv4 SFTP File Transfer on schneckle _sftp-ssh._tcp local

+ eth0 IPv4 feldberg _ssh._tcp local

+ eth0 IPv4 schneckle _ssh._tcp local

+ eth0 IPv4 feldberg [00:xx:xx:xx:xx:xx] _workstation._tcp local

+ eth0 IPv4 schneckle [00:xx:xx:xx:xx:xx] _workstation._tcp local

figure 1. List of locally available services. the avahi-browse utility lets you browse your full network for available Zeroconf
services.

S C I E n t I f I C P r o g r A m m I n g

66 Computing in SCienCe & engineering

already) because you’ve really earned
it. You now have a complete environ-
ment to try some of our examples and
sample applications that we developed
in our group.

Applications
The next question is how to put the
slug to use. In general, the slug excels
at providing services that require rela-
tively little CPU power and should be
always available without drawing a lot
of current or requiring a full-fledged
server. Let’s look at some of the wide-
ranging possibilities that you can
combine freely as long as you have
memory left or add a swap partition
on a conventional hard drive.

Media Server
Using the slug as a media server prob-
ably comes closest to what it was mar-
keted for originally. You can plug an
external USB hard drive into the sec-

ond USB port, or you can use a USB
hub to connect additional drives or
other devices.

Depending on your specific needs,
you’ll want a combination of these
services:

Network File System (NFS),•	
CIFS (Samba),•	
Firefly (mt-daapd) media server for •	
iTunes,
UPnP media server, and•	
Podget or some other automated •	
podcast downloader.

Just keep in mind that the slug doesn’t
have the capacity to perform any
CPU-intensive tasks such as media
transcoding.

Print Server
Unless your printer is already net-
work-enabled, you need to connect it
to a specific computer’s USB port (via

a suitable adapter in some cases). This
isn’t convenient if, say, you have only
laptops in your household.

Commercially available print serv-
ers solve this problem, but the slug
handles it equally well along with lots
of other functions. None of these em-
bedded servers, slug included, have
the power to run a full-fledged instal-
lation of the Common Unix Printing
System (CUPS) that provides spooling
and transformation of documents into
PostScript or other printer languages.
Instead, they expose the printer di-
rectly using the AppSocket protocol
and assume that all the work happens
on the client.

To set up your slug as a print server,
all you need is p910nd from Optware.
You’ll have to run one instance of
p910nd for each printer you’re expos-
ing. Unlike the print servers embed-
ded in typical network printers, using
a slug in this way lets you choose a
nice host name. In addition, you can
expose each printer as a Zeroconf ser-
vice so your clients find them easily.

Telephony Server
Believe it or not, most of the setup de-
scribed in a previous issue1 runs fine
on a slug. Most of the work the Aster-
isk telephony server does in this mini-
mal setup is routing Session Initiation
Protocol (SIP) packages, which play a
role in setting up a call, while the ac-
tual voice traffic occurs between the
call’s resulting endpoints. The key is
to avoid CPU-intensive codecs or oth-
er features that could bog down As-
terisk. Consequently, CPU utilization
remains below 10 percent even when a
call is active, and the number of calls
is usually very low for a home setup.

User-Space IP
Address Registration Server
As part of our research project into

#!/bin/bash

CONF=/opt/etc/inadyn.conf

PROGRAM=/opt/bin/inadyn

if [! -f $CONF] ; then

 echo “No configuration file, exiting”

 exit 2

fi

See how we were called.

case “$1” in

 start)

 start-stop-daemon -S -x $PROGRAM -- \

 --input_file $CONF --background

 ;;

 stop)

 start-stop-daemon -K -x $PROGRAM

 ;;

 *)

 echo “Usage: inadyn {start|stop}”

 exit 1

esac

exit 0

figure 2. Startup script. By creating this script, you’re well on the way to
automatically starting inadyn.

marCh/april 2009 67

distributed sensor networks, we need-
ed a service for keeping track of the
IP addresses of nodes as they become
available or unavailable. Although
(Dynamic) DNS serves a similar
purpose, we wanted something light-
weight that we could run in user-space
(not requiring privileged access) and
evolve as needed.

In our network, we want to be able
to create namespaces and register in-
dividual nodes within them. We take a
resource-oriented approach typically
associated with the representational
state transfer (REST) architectural
style, meaning that each thing that
matters is an addressable resource that
has at least one uniform resource iden-
tifier (URI) and supports a standard
set of operations exposed as HTTP
methods, including PUT (create),
GET (retrieve), POST (update), and
DELETE (delete).

The registry and its namespaces and
nodes map naturally to this style:

The registry lives at http://host/•	
registry.
To create a namespace, we sub-•	
mit a PUT request to http://host/
registry, where the payload is a rep-
resentation of the namespace to be
created—that is, the namespace’s
name, such as myns.org. Once we
create this namespace, it has the
URI http://host/registry/myns.org.
To delete a namespace, we submit a •	
DELETE request to that URI.
To retrieve a namespace, we submit a •	
GET request to the same URI. Now,
following the resource- oriented ap-
proach, we get back a suitable rep-
resentation of the resource, in this
case, a list of nodes currently regis-
tered within this namespace.
Namespaces don’t support renam-•	
ing, which we would otherwise have
mapped to the POST method.

Similarly, to register a node within a
namespace, we submit a PUT request
to the namespace’s URI, http://host/
registry/myns.org, where the payload
is a representation of the host regis-
tration. In practice, this means a Web
form with these parameters:

host=myhostname,•	
ip=10.20.30.40, and•	
ttl=3600 # time-to-live in seconds.•	

The resulting URI for the registered
host is http://host/registry/myns.org/
myhostname. To retrieve a registered
host, we submit a GET request to this
URI and get back a representation
like the one we submitted to create
the host. To delete a registered host,
we simply submit a DELETE request
to the same URI, and to update a reg-
istered host’s registration informa-
tion, we submit a POST request to
the URI whose payload is the updated
registration information (such as the
new IP address).

As part of his undergraduate research
project in our group, Ryohei imple-
mented this service on the slug. He
chose Python as the implementation
language because Python 2.5 (the one
from Optware, not OpenEmbedded)
runs out of the box on SlugOS/BE, has
bindings to the lightweight SQLite da-
tabase, and provides the BaseHTTP-
Server package as a good starting point
for Web service development (the
HTTP methods map to Python func-
tions by name, such as do_PUT).

Because we use standard HTTP
request methods, we don’t even need
to write a dedicated client. Instead,
we simply use the cURL command-
line client, which supports all request
methods, form submission, file upload,
and so on. In real life, the hosts would
use the cURL client to register them-
selves, as you can see in Figure 3.

Webcam Server
In the broader context of our sensor
network project, Carlos set up a slug
as a webcam server for a class project.
Besides integrating the required hard-
ware drivers and software, he used
PHP, XHTML, and JavaScript to de-
velop a Web interface for the w3camd
application. Consequently, a user can
take pictures remotely and view them
on the Web, and the application en-
sures that the drivers are loaded and
the connected camera model is sup-
ported. Detailed project documenta-
tion is available at http://code.google.
com/p/slurchin/.

A t this point, you might be won-
dering whether you can run Java

on the slug. The answer is a cautious,
“yes, but not as well as Python.”

We tried JamVM with GNU Class-
path, intended as a replacement for
Sun’s Java SE API. Both packages
are available in Optware and install
without problems. Unfortunately, we
couldn’t get JamVM to run anything
much beyond a “Hello Slug” console
app. Some developers have reported
success with older versions of JamVM,
but we haven’t had a chance to cross-
compile it yet for the slug. We’ll also
try to cross-compile GCC with sup-
port for the GNU Java compiler (gjc)
in our future work.

On the upside, the phoneME im-
plementation of the Java ME platform
does work. But because it targets mo-
bile phones and other limited devices,
it comprises a stripped-down API
that’s missing some of the packages
servlet containers such as Jetty expect.
Fortunately, an embedded subset of
Jetty also works. The MinimalServ-
lets example represents this subset and
serves as our starting point for further
exploration on the Java ME side.

S C I E n t I f I C P r o g r A m m I n g

68 Computing in SCienCe & engineering

In any event, please stay tuned. We
hope to cover progress on this topic in
the near future.

Acknowledgments
George and Konstantin are grateful
to Chandra Sekharan, chairperson of
Loyola University Chicago’s Depart-
ment of Computer Science, for having
funded our initial equipment purchases.
Carlos is grateful to Corby Schmitz for
general guidance and security-related
advice on his webcam project.

Reference
g.K. thiruvathukal and K. Läufer, “What I 1.
Did on my Summer Vacation,” Computing
in Science & Eng., vol. 10, no. 6, 2008, pp.

76–81.

Konstantin Läufer is a professor of com-

puter science at Loyola University Chicago.

His research interests include programming

languages, software architecture and frame-

works, distributed systems, mobile and

embedded computing, human-computer

interaction, and educational technology.

Läufer has a PhD in computer science from

the Courant Institute at new York University.

Contact him via www.cs.luc.edu/laufer.

George K. Thiruvathukal is an associate

professor of computer science at Loyola

University Chicago and is now an associate

editor in chief of this magazine. His technical

interests include parallel/distributed systems,

programming language design/implementa-

tion, and computer science across the disci-

plines. thiruvathukal has a PhD in computer

science from the Illinois Institute of technol-

ogy. Contact him via http://gkt.etl.luc.edu.

Ryohei Nishimura recently graduated from

Loyola University Chicago with a BS in com-

puter science. His technical interests include

programming languages, embedded sys-

tems, and distributed systems. Contact him

at nishimura.ryohei@gmail.com.

Carlos Ramírez Martínez-Eiroa is a gradu-

ate assistant at Loyola University Chicago. His

technical interests include Web development,

distributed systems, and embedded systems.

ramírez martínez-Eiroa has an mS in com-

puter science from Loyola University Chicago.

Contact him at crme1980@gmail.com.

curl http://schneckle.local/registry

empty response: no namespaces in registry

curl -X PUt -d myns.org http://schneckle.local/registry

curl -X PUt -d myotherns.org http://schneckle.local/registry

curl http://schneckle.local/registry

http://schneckle.local/registry/myns.org

http://schneckle.local/registry/myotherns.org

curl http://schneckle.local/registry/myns.org

empty response: no hosts in namespace

curl -X PUt -d host=myhost1 -d ip=10.20.30.40 -d ttl=3600 \

 http://schneckle.local/registry/myns.org

curl -X PUt -d host=myhost2 -d ip=11.22.33.44 -d ttl=3600 \

 http://schneckle.local/registry/myns.org

curl http://schneckle.local/registry/myns.org

http://schneckle.local/registry/myns.org/myhost1

http://schneckle.local/registry/myns.org/myhost2

curl http://schneckle.local/registry/myns.org/myhost1

namespace=myns.org

host=myhost1

ip=10.20.30.40

ttl=3600

curl -X PoSt -d ip=17.27.37.47 -d ttl=7200 \

 http://schneckle.local/registry/myns.org/myhost1

curl http://schneckle.local/registry/myns.org/myhost1

namespace=myns.org

host=myhost1

ip=17.27.37.47

ttl=7200

curl -X DELEtE http://schneckle.local/registry/myns.org

curl http://schneckle.local/registry/myns.org

HttP/1.0 404 not found

curl http://schneckle.local/registry

http://schneckle.local/registry/myotherns.org

figure 3. registry client code using cUrL. Because we use standard HttP request methods, we don’t even need to write a
dedicated client. Instead, we simply use the cUrL command-line client, which supports all request methods, form submission,
file upload, and so on. In real life, the hosts would use the cUrL client to register themselves.

on all conferences sponsored

by the IEEE Computer Society

Save
25%

IEEE Computer Society
Members

www.computer.org/join

	Loyola University Chicago
	Loyola eCommons
	3-2009

	Putting a Slug to Work
	Konstantin Läufer
	George K. Thiruvathukal
	Ryohei Nishimura
	Carlos Ramirez Martinez-Eiroa
	Recommended Citation

	tmp.1322015010.pdf.Bjt3O

