152 research outputs found

    Cumulative reports and publications through 31 December 1983

    Get PDF
    All reports for the calendar years 1975 through December 1983 are listed by author. Since ICASE reports are intended to be preprints of articles for journals and conference proceedings, the published reference is included when available. Thirteen older journal and conference proceedings references are included as well as five additional reports by ICASE personnel. Major categories of research covered include: (1) numerical methods, with particular emphasis on the development and analysis of basic algorithms; (2) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; and (3) computer systems and software, especially vector and parallel computers, microcomputers, and data management

    A multi-domain implementation of the pseudo-spectral method and compact finite difference schemes for solving time-dependent differential equations

    Get PDF
    Abstract : In this dissertation, we introduce new numerical methods for solving time-dependant differential equations. These methods involve dividing the domain of the problem into multiple sub domains. The nonlinearity of the differential equations is dealt with by using a Gauss-Seidel like relaxation or quasilinearisation technique. To solve the linearized iteration schemes obtained we use either higher order compact finite difference schemes or spectral collocation methods and we call the resulting methods the multi-domain compact finite difference relaxation method (MD-CFDRM), multi-domain compact finite difference quasilinearisation method (MD-CFDQLM) and multi-domain bivariate spectral quasilinearisation method (MD-BSQLM) respectively. We test the applicability of these methods in a wide variety of differential equations. The accuracy is compared against other methods as well as other results from literature. The MD-CFDRM is used to solve famous chaotic systems and hyperchaotic systems. Chaotic and hyperchaotic systems are characterized by high sensitivity to small perturbation on initial data and rapidly changing solutions. Such rapid variations in the solution pose tremendous problems to a number of numerical approximations. We modify the CFDs to be able to deal with such systems of equations. We also used the MD-CFDQLM to solve the nonlinear evolution partial differential equations, namely, the Fisher’s equation, Burgers- Fisher equation, Burgers-Huxley equation and the coupled Burgers’ equations over a large time domain. The main advantage of this approach is that it offers better accuracy on coarser grids which significantly improves the computational speed of the method for large time domain. We also studied the generalized Kuramoto-Sivashinsky (GKS) equations. The KS equations exhibit chaotic behaviour under certain conditions. We used the multi-domain bivariate spectral quasilinearisation method (MD-BSQLM) to approximate the numerical solutions for the generalized KS equations.M.Sc. (Pure and Applied Mathematics

    Cumulative reports and publications thru 31 December 1982

    Get PDF
    Institute for Computer Applications in Science and Engineering (ICASE) reports are documented

    Tracking Vector Magnetograms with the Magnetic Induction Equation

    Full text link
    The differential affine velocity estimator (DAVE) developed in Schuck (2006) for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch (2007). The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Inter-comparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence -- the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.Comment: 30 pages, 13 figure

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Cumulative reports and publications through December 31, 1988

    Get PDF
    This document contains a complete list of ICASE Reports. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence

    Get PDF
    Small droplets in turbulent flows can undergo highly variable deformations and orientational dynamics. For neutrally buoyant droplets smaller than the Kolmogorov scale, the dominant effects from the surrounding turbulent flow arise through Lagrangian time histories of the velocity gradient tensor. Here we study the evolution of representative droplets using a model that includes rotation and stretching effects from the surrounding fluid, and restoration effects from surface tension including a constant droplet volume constraint, while assuming that the droplets maintain an ellipsoidal shape. The model is combined with Lagrangian time histories of the velocity gradient tensor extracted from DNS of turbulence to obtain simulated droplet evolutions. These are used to characterize the size, shape and orientation statistics of small droplets in turbulence. A critical capillary number, CacCa_c is identified associated with unbounded growth of one or two of the droplet's semi-axes. Exploiting analogies with dynamics of polymers in turbulence, the CacCa_c number can be predicted based on the large deviation theory for the largest Finite Time Lyapunov exponent. Also, for sub-critical CaCa the theory enables predictions of the slope of the power-law tails of droplet size distributions in turbulence. For cases when the viscosities of droplet and outer fluid differ in a way that enables vorticity to decorrelate the shape from the straining directions, the large deviation formalism based on the stretching properties of the velocity gradient tensor loses validity and its predictions fail. Even considering the limitations of the assumed ellipsoidal droplet shape, the results highlight the complex coupling between droplet deformation, orientation and the local fluid velocity gradient tensor to be expected when small viscous drops interact with turbulent flows

    Cumulative reports and publications

    Get PDF
    A complete list of Institute for Computer Applications in Science and Engineering (ICASE) reports are listed. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. The major categories of the current ICASE research program are: applied and numerical mathematics, including numerical analysis and algorithm development; theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and computer science
    • …
    corecore