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“If there is a 50-50 chance that something can go wrong, then 9 times out of ten it will.”

Paul Harvey



Abstract

In this dissertation, we introduce new numerical methods for solving time-dependant differ-
ential equations. These methods involve dividing the domain of the problem into multiple sub
domains. The nonlinearity of the differential equations is dealt with by using a Gauss-Seidel
like relaxation or quasilinearisation technique. To solve the linearized iteration schemes
obtained we use either higher order compact finite difference schemes or spectral collocation
methods and we call the resulting methods the multi-domain compact finite difference re-
laxation method (MD-CFDRM), multi-domain compact finite difference quasilinearisation
method (MD-CFDQLM) and multi-domain bivariate spectral quasilinearisation method
(MD-BSQLM) respectively.

We test the applicability of these methods in a wide variety of differential equations. The
accuracy is compared against other methods as well as other results from literature. The
MD-CFDRM is used to solve famous chaotic systems and hyperchaotic systems. Chaotic
and hyperchaotic systems are characterized by high sensitivity to small perturbation on
initial data and rapidly changing solutions. Such rapid variations in the solution pose
tremendous problems to a number of numerical approximations. We modify the CFDs to
be able to deal with such systems of equations. We also used the MD-CFDQLM to solve
the nonlinear evolution partial differential equations, namely, the Fisher’s equation, Burgers-
Fisher equation, Burgers-Huxley equation and the coupled Burgers’ equations over a large
time domain. The main advantage of this approach is that it offers better accuracy on coarser
grids which significantly improves the computational speed of the method for large time
domain. We also studied the generalized Kuramoto-Sivashinsky (GKS) equations. The KS
equations exhibit chaotic behaviour under certain conditions. We used the multi-domain
bivariate spectral quasilinearisation method (MD-BSQLM) to approximate the numerical
solutions for the generalized KS equations.
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Chapter 1

Preliminaries

1.1 Introduction

Differential equations are used to model numerous natural occurring phenomena emanating
from fluid mechanics, mathematical biology, financial mathematics etc. Researchers are often
interested in determining long time behaviour of such differential equations. However, most
of the existing numerical methods converge slowly over large time intervals, often resulting
in inaccurate results. This leads many researchers to start investigating the use of spectral
methods in time. The main advantage of the spectral methods is their high accuracy, which
also means that the desired accuracy could be achieved with fewer grid points. However, for
large time-domain problems the spectral methods can also become less accurate, even with
an increase in the number of collocation points. Many researchers have addressed this by
using the multi-domain approach. The multi-domain approach assumes that the main interval
can be decomposed into a finite number of sub-intervals. It uses the divide-and-conquer
philosophy. A significant advantage of the multi-domain approach is that small time domains
are considered and hence the accuracy of the solution in each of the sub-intervals is improved
and it enhances the accuracy of the approximation significantly. According to Canuto et
al [12], the multi-domain approach has three main families, patching method, overlapping
and variation methods. In this study we focus on the patching method originally suggested
by Orszag [65]. There is quite a substantial number of articles in the literature where the
idea of domain decomposition has been applied for both analytical and numerical methods.
Examples of analytical multi-domain methods include the: Adomian decomposition method
[3, 37, 5], multistage homotopy analysis method [6, 1], multi-stage differential transformation
method [28, 32, 63], multi-stage variational iteration method [9, 33, 34], multistage homotopy
perturbation methods [16, 17, 15, 79]. Magagula et al [57] used the multi-domain technique
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together with the Spectral collocation method to solve non-linear evolution partial differential
equations. Examples of multi-domain (see[62, 61, 57])

In this work we implement the multi-domain approach on the spectral method and
compact finite differences to solve wide variety of nonlinear time-dependent differential
equations which are presented in Chapter 2 - Chapter 4.

To solve the nonlinear differential equations, we first linearize the differential equations.
In this dissertation we use the relaxation method [62] and quasi-linearization method [10] to
linearize the nonlinear operators of the differential equation.

1.2 Convergence, Consistency, and Stability

A problem in differential equations can rarely be solved analytically, and so often is dis-
cretized, resulting in a discrete problem which can be solved in a finite sequence of algebraic
operations, a numerical method or scheme is measured on how well the discrete solution Uh

approximates the exact solution u of the continuous problem.
Consider the following non-linear differential equation:

∂u
∂ t

= f
(

x, t,u,
∂u
∂x

,
∂ 2u
∂x2 . . . ,

∂ nU
∂xn

)
(1.1)

with boundary conditions

u(a, t) = a(t) (1.2)

u(b, t) = b(t)

and initial condition

u(x,0) = u0(x) (1.3)

valid in the physical region {(t,x)|t ∈ [t0,T ],x ∈ [a,b]} The constant n denotes the order of
differentiation and f is a function of u(x, t) and its spatial derivatives. Representing the above
equations as continuous problem denoted by

LU = F (1.4)
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where

LU =



∂u
∂ t , t ∈ [t0,T ]

u(xa, t)

u(xb, t)

u(x, t0)

(1.5)

F =


f (x, t,u(x, t),ux(x, t), . . . ,un(x, t)) , t ∈ [t0,T ]

a(t)

b(t)

u0(x)

(1.6)

If the exact solution u is evaluated at grid points xi = ih, i = 0,1,2, . . . ,N and t j = jn, j =
0,1,2, . . . ,N, then

LhUh = Fh (1.7)

denotes the corresponding discrete problem of (1.1) where Uh is the approximate solution
and h = xb−xa

N+1 as spatial step-size.

1.2.1 Convergence

The solution Uh of (1.7) converges [71] to the solution u of the continuous problem (1.5) if

∥uh −Uh∥→ 0 (1.8)

as h → 0. If there exist constant k > 0 and constant Co > 0 that does not depend on k, such
that

∥uh −Uh∥ ≤C0hk (1.9)

then the solution Uh converges and is a convergence of order hk and the numerical method or
scheme has k− th order accuracy.

1.2.2 Consistency and Stability

When the approximated solution Uh of (1.1) is substituted back in the continuous problem, it
results in the following equation

LhUh = Fh +∆ fh (1.10)
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where ∆ fh is the residual term.

The numerical solution giving rise to Uh is consistent with (refss1) if the residual term in
(1.10) satisfies ∥∆ fh∥→ 0 as h → 0. Similarly if the inequality

∥∆ fh∥ ≤C1hk (1.11)

where C1 > 0 and k > 0, then the method has consistency of order hk.

If the method approximated solution of a boundary value problem or initial value problem
is not oversensitive to small changes in boundary or initial conditions the numerical method
is said to be stable.

Moreover, the numerical method is stable if there exist h0 > 0 and ∆ > 0 such that for
any h < h0 and εh ∈ Fh such that ∥εh∥< ∆, we have

Lhwh = fh +∆εh (1.12)

and wh is one solution that satisfies

∥wh −Uh∥ ≤C∥εh∥ (1.13)

where C > 0 does not depend on h.

In Chapter 2, 3, and Chapter 4, we use the Chebyshev spectral collocation and Higher
order compact finite difference schemes to approximate the solutions for a number of
nonlinear initial and boundary value problems to demonstrate the Convergence, consistency
and stability of the proposed numerical techniques. In the next chapter, we demonstrate the
implementation of the proposed higher order (Sixth-Order) compact finite difference and the
Chebyshev spectral collocation method with Chebyshev-Gauss-Lobatto points.

1.3 Compact finite difference schemes

Compact finite difference schemes (CFDS) are capable of producing higher order accuracy
without any increase in the numerical stencil when compared with the traditional finite
difference schemes. Recently higher CFDS have become popular in solving differential
equations.
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In the derivation of the CFDS, a uniform one-dimensional mesh is considered on the
region [a,b] consisting of N points: a = x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xN = b.

Consider a function ui = u(xi) of one variable defined on the real line R at the nodes with
the spatial grid spacing h = xi − xi−1. The procedure of finding the spatial derivatives using
CFDS is as follows:

1.3.1 First-order derivative

The first-order derivative at i− th collocation point can be given as follow

α−1u′i−1 +u′i +α1u′i+1 =
β−2ui−2 +β−1ui−1 +β0ui +β1ui+1 +β2ui+2

h
(1.14)

where α−1,α1,β−2,β−1,β0,β1 and β2 are arbitrary constants. We expand (1.14) using the
Taylor series at the ith collocation point with respect to the step size h to get

0 = (−β−2 −β−1 −β0 −β1 −β2)
u(x)

h
(1.15)

+(1+2β−2 +β−1 −β1 −2β2 +α−1 +α1)u′(x)

+(−4β−2 −β−1 −β1 −4β2 −2α−1 +2α1)
h
2

u′′(x)

+(8β−2 +β−1 −β1 −8β2 +3α−1 +3α1)
h2

6
u3(x)

+(−16β−2 −β−1 −β1 −16β2 −4α−1 +4α1)
h3

24
u(4)(x)

+(32β−2 +β−1 −β1 −32β2 +5α−1 +5α1)
h4

120
u(5)(x)

+(−64β−2 −β−1 −β1 −64β2 +6α−1 +6α1)
h5

720
u(6)(x)

+(128β−2 +β−1 −β1 −128β2 +7α−1 +7α1)
h6

5040
u7(x)

+ . . .

The unknown constants α−1,α1,β−2,β−1,β0,β1 and β2 are obtained by equating the
Taylor series coefficients of various orders of h. As a result, we obtain a system of seven
linear algebraic equations as shown below
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−β−2 −β−1 −β0 −β1 −β2 = 0,

1+2β−2 +β−1 −β1 −2β2 +α−1 +α1 = 0,

−4β−2 −β−1 −β1 −4β2 −2α−1 +2α1 = 0,

8β−2 +β−1 −β1 −8β2 +3α−1 +3α1 = 0,

−16β−2 −β−1 −β1 −16β2 −4α−1 +4α1 = 0,

32β−2 +β−1 −β1 −32β2 +5α−1 +5α1 = 0,

−64β−2 −β−1 −β1 −64β2 +6α−1 +6α1 = 0.

Solving the above equations gives:

α−1 =
1
3
,α1 =

1
3
,β−2 =− 1

36
,β−1 =−7

9
,β0 = 0,β1 =

7
9
,β2 =

1
36

(1.16)

Therefore, the sixth-order CFDS approximation for first order derivatives is given by

1
3

u′i−1 +u′i +
1
3

u′i+1 =
7
9h

(ui+1 −ui−1)+
1

36h
(ui+2 −ui−2) (1.17)

with a local truncation error

τi =− 4h6

5040
u(7)i+η

, −2 < η < 2 (1.18)

For illustrative purpose, we describe the application of the CFDS to the following First
order differential equations:

u′ = f (x) (1.19)

with known boundary conditions at u(a) and u(b), where f (x) is a continuous function. Since
we know boundary conditions at i = 1 and i = N, the CFDS must be adjusted for the nodes
near the boundary points (one-sided schemes).

When i = 2

u′2 +
1
3

u′3 =
1
h
(a1u1 +a2u2 +a3u3 +a4u4 +a5u5 +a6u6 +a7u7) (1.20)

We expand (1.20) using the Taylor series at the i− th collocation point with respect to the
step size h to get
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0 = (−a1 −a2 −a3 −a4 −a5 −a6 −a7)
u(x)

h
(1.21)

+(4−3a2 −6a3 −9a4 −12a5 −15a6 −18a7)
u′(x)

3

+(10−3a2 −12a3 −27a4 −48a5 −75a6 −108a7)
h
6

u′′(x)

+(7−a2 −8a3 −27a4 −64a5 −125a6 −216a7)
h2

6
u′′′(x)

+(44−3a2 −48a3 −243a4 −768a5 −1875a6 −3888a7)
h3

72
u(4)(x)

+(95−3a2 −96a3 −729a4 −3072a5 −9375a6 −23328a7)
h4

360
u(5)(x)

+(70−a2 −64a3 −729a4 −4096a5 −16525a6 −46656a7)
h5

720
u(6)(x)

The unknown constants a1,a2,a3,a4,a5,a6 and a7 are obtained by equating the Taylor
series coefficients of various orders of h. As a result, we obtain a system of seven linear
algebraic equations as shown below

−a1 −a2 −a3 −a4 −a5 −a6 −a7 =0, (1.22)
1
3
(4−3a2 −6a3 −9a4 −12a5 −15a6 −18a7) =0,

1
6
(10−3a2 −12a3 −27a4 −48a5 −75a6 −108a7) =0,

1
6
(7−a2 −8a3 −27a4 −64a5 −125a6 −216a7) =0,

1
72

(44−3a2 −48a3 −243a4 −768a5 −1875a6 −3888a7) =0,

1
360

(95−3a2 −96a3 −729a4 −3072a5 −9375a6 −23328a7) =0,

1
720

(70−a2 −64a3 −729a4 −4096a5 −16525a6 −46656a7) =0.

Solving the above equations gives:

a1 =− 7
45

,a2 =−17
12

,a3 =
83
36

,a4 =−11
9
,a5 =

2
3
,a6 =− 37

180
,a7 =

1
36

(1.23)

Therefore, the sixth-order CFDS approximation for first order derivatives at i = 2 is given by

u′2 +
1
3

u′3 =
1
h

(
− 7

45
u1 −

17
12

u2 +
83
36

u3 −
11
9

u4 +
2
3

u5 −
37

180
u6 +

1
36

u7

)
(1.24)
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and when i = N −1

1
3

u′N−2 +u′N−1 =
1
h
(b1uN +b2xN−1 +b3uN−2 +b4uN−3 +b5uN−4 +b6uN−5 +b7uN−6)

(1.25)

We expand (1.25) using the Taylor series at the ith collocation point with respect to the step
size h to get

0 = (−b1 −b2 −b3 −b4 −b5 −b6 −b7)
u(x)

h
(1.26)

+(4+3b2 +6b3 +9b4 +12b5 +15b6 +18b7)
u′(x)

3

+(−10−3b2 −12b3 −27b4 −48b5 −75b6 −108b7)
h
6

u′′(x)

+(7+b2 +8b3 +27b4 +64b5 +125b6 +216b7)
h2

6
u′′′(x)

+(−44−3b2 −48b3 −243b4 −768b5 −1875b6 −3888b7)
h3

72
u(4)(x)

+(95+3b2 −96b3 +729b4 +3072b5 +9375b6 +23328b7)
h4

360
u(5)(x)

+(−70−b2 −64b3 −729b4 −4096b5 −16525b6 −46656b7)
h5

720
u(6)(x)

The unknown constants a1,a2,a3,a4,a5,a6 and a7 are obtained by equating the Taylor
series coefficients of various orders of h. As a result, we obtain a system of seven linear
algebraic equations as shown below

−b1 −b2 −b3 −b4 −b5 −b6 −b7 =0, (1.27)
1
3
(4+3b2 +6b3 +9b4 +12b5 +15b6 +18b7) =0,

1
6
(−10−3b2 −12b3 −27b4 −48b5 −75b6 −108b7) =0,

1
6
(7+b2 +8b3 +27b4 +64b5 +125b6 +216b7) =0,

1
72

(−44−3b2 −48b3 −243b4 −768b5 −1875b6 −3888b7) =0,

1
360

(95+3b2 −96b3 +729b4 +3072b5 +9375b6 +23328b7) =0,

1
720

(−70−b2 −64b3 −729b4 −4096b5 −16525b6 −46656b7) =0.
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Solving the above equations gives:

b1 =
7

45
,b2 =

17
12

,b3 =−83
36

,b4 =
11
9
,b5 =−2

3
,b6 =

37
180

,b7 =− 1
36

(1.28)

Therefore, the sixth-order CFDS approximation for first order derivatives at i = N − 1 is
given by

1
3

u′N−2 +u′N−1 =
1
h

(
7

45
uN +

17
12

uN−1 −
83
36

uN−2 +
11
9

uN−3 −
2
3

uN−4

+
37

180
uN−5 −

1
36

uN−6

)
(1.29)

The approximations of the first derivatives at the end points are given by the above expres-
sions.

Combining Eq.(1.17), Eq.(1.24) and Eq.(1.29) into matrix form, the equations for approx-
imating the first order derivatives can be expressed as

A1U ′ = B1U +K1 (1.30)

where

A1 =



1 1
3

1
3 1 1

3
1
3 1 1

3
. . . . . . . . .

1
3 1 1

3
1
3 1


(N−2)×(N−2)

K1 =
1
h



− 7
45u1

− u1
36

0
...
...
0
uN
36

7
45uN


(N−2)×1

B1 =
1
h



−17
12

83
36 −11

9
2
3 − 37

180
1
36

−7
9 0 7

9
1

36
− 1

36 −7
9 0 7

9
1
36

. . . . . . . . . . . . . . .

− 1
36 −7

9 0 7
9

1
36

− 1
36 −7

9 0 7
9

− 1
36

37
180 −2

3
11
9 −83

36
17
12


(N−2)×(N−2)
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and
U = [u1,u2,u3, . . . ,uN ] (1.31)

The equation for approximating the first derivatives is given by

U ′ = E1U +H1 (1.32)

where
E1 = A−1

1 B1, H1 = A−1
1 K1

1.3.2 Second-order derivative

The second-order derivative at i− th collocation point can be given as follows

α1u′′i−1 +u′′i +α2u′′i+1 =
β−2ui−2 +β−1ui−1 +β0ui +β1ui+1 +β2ui+2

h2 (1.33)

We expand (1.33) using the Taylor series at the ith collocation point with respect to the step
size h to get

0 = (−β−2 −β−1 −β0 −β1 −β2)
u(x)
h2 (1.34)

+(2β−2 +β−1 −β1 −2β2)
u′(x)

h

+(2−4β−2 −β−1 −β1 −4β2 +2α−1 +2α1)
1
2

u′′(x)

+(8β−2 +β−1 −β1 −8β2 −6α−1 +6α1)
h
6

u3(x)

+(−16β−2 −β−1 −β1 −16β2 +12α−1 +12α1)
h2

24
u(4)(x)

+(32β−2 +β−1 −β1 −32β2 −20α−1 +20α1)
h3

120
u(5)(x)

+(−64β−2 −β−1 −β1 −64β2 +30α−1 +30α1)
h4

720
u(6)(x)

+(128β−2 +β−1 −β1 −128β2 −42α−1 +42α1)
h5

5040
u7(x)

+(−256β−2 −β−1 −β1 −256β2 +56α−1 +56α1)
h6

40320
u(8)(x)

+ . . .
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The unknown constants α−1,α1,β−2,β−1,β0,β1 and β2 are obtained by equating the Taylor
series coefficients of various orders of h. As a result, we obtain a system of seven linear
algebraic equations as shown below

−β−2 −β−1 −β0 −β1 −β2 = 0,

2β−2 +β−1 −β1 −2β2 = 0,

2−4β−2 −β−1 −β1 −4β2 +2α−1 +2α1 = 0,

8β−2 +β−1 −β1 −8β2 −6α−1 +6α1 = 0,

−16β−2 −β−1 −β1 −16β2 +12α−1 +12α1 = 0,

32β−2 +β−1 −β1 −32β2 −20α−1 +20α1 = 0,

−64β−2 −β−1 −β1 −64β2 +30α−1 +30α1 = 0,

128β−2 +β−1 −β1 −128β2 −42α−1 +42α1 = 0,

Solving the above equations gives

α−1 =
2

11
,α1 =

2
11

,β−2 =− 3
44

,β−1 =
12
11

,β0 =−51
22

,β1 =
12
11

,β2 =
3

44
(1.35)

Therefore, the sixth-order CFDS approximation for second-order derivatives at interior points
is given by

2
11

u′′i−1 +u′′i +
2

11
u′′i+1 =

12
11h2 (ui+1 −2ui +ui−1)+

3
44h2 (ui+2 −2ui +ui−2) (1.36)

with a local truncation error

τi =−16.7h6

40320
u(7)i+η

, −2 < η < 2 (1.37)

For illustrative purpose, we consider a single boundary value problem of the form

u′′+u′ = f (x), a < x < b, (1.38)

with Dirichlet boundary condition

u(a) = αa, u(b) = αb (1.39)
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where f (x) is a continuous function, αa and αb are known constants. Note that the schemes
at the boundaries are adjusted in order to maintain the O(h6) accuracy. This discussion will
only be limited to the derivation of CFDS for Dirichlet boundary conditions at both ends.

The procedure of deriving the schemes is similar to the previous section.
When i = 2

u′′2 +
11
2

u′′3 =
1
h2

(
31
45

u1 −
19

110
u2 −

339
110

u3 +
1933
396

u4

−40
11

u5 +
96
55

u6 −
479
990

u7 +
13
220

u8

)
(1.40)

and when i = N −1

2
11

u′′N−2 +u′′N−1 =
1
h2

(
31
45

uN − 19
110

uN−1 −
339
110

uN−2 +
1933
396

uN−3 −
40
11

uN−4

+
96
55

uN−5 −
479
990

uN−6 +
13

220
uN−7

)
(1.41)

Combining Eq.(1.36),Eq.(1.40) and Eq.(1.41) into matrix form, the equations for approx-
imating the second order derivatives can be expressed as

A2U ′′ = B2U +K2 (1.42)

where

A2 =



1 2
11

2
11 1 2

11
2
11 1 2

11
. . . . . . . . .

2
11 1 2

11
2

11 1


(N−2)×(N−2)

K2 =
1
h2



31u1
45
3u1
44
0
...
...
0

3uN
44

31uN
45


(N−2)×1
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B2 =
1
h2



− 19
110 −339

110
1933
396 −40

11
96
55 −479

990
13
220

12
11 −51

22
12
11

3
44

3
44

12
11 −51

22
12
11

3
44

. . . . . . . . . . . . . . .

3
44

12
11 −51

22
12
11

3
44

3
44

12
11 −51

22
12
11

13
220 −479

990
96
55 −40

11
1933
396 −339

110 − 19
110


(N−2)×(N−2)

and
U = [u1,u2,u3, . . . ,uN ] (1.43)

The equation for approximating the second derivatives is given by

U ′′ = E2U +H2 (1.44)

where
E2 = A−1

2 B2, H2 = A−1
2 K2

1.4 Spectral method

Spectral methods are powerful tools for solving differential equations if the physical domain
is simple and the solution is smooth. They are significantly more accurate than related nu-
merical methods such as finite differences and finite elements. Spectral methods approximate
functions by means of truncated series of orthogonal functions (polynomials). Example of
such orthogonal functions are the Fourier series which is used for periodic problems, Cheby-
shev, Legendre polynomials, etc. The speed of convergence is one of the great advantages of
spectral methods. The methods became famous in the 1970s [77, 12].

The Chebyshev spectral method approximate functions by means of truncated series
of Chebyshev orthogonal polynomials. The Chebyshev polynomials TN(x) of order N are
defined as

TN(x) = cos(N cos−1(x)), N ∈ N. (1.45)
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The Chebyshev interpolation uN(x) of a function u(x) at x = xi is defined by

uN(x) =
N

∑
i=0

u(xi)Li(x), (1.46)

where the collocation points xi are chosen to be the extrema of TN(x):

{xi}=
{

cos
(

πi
N

)}N

i=0
, x ∈ [−1,1]

which are the Chebyshev-Gauss-Lobatto points. This choice is made from the simple reason
that in Lagrangian interpolation, if the interpolation points are taken to be the zeros of the
polynomial, the error is minimized.

Li(x), i = 0,1,. . . ,N are Lagrange polynomials of order N based on the Chebyshev-Gauss-
Lobatto points defined as

Li(x) =
(−1)i+1(1− x2)T ′

N(x)
c̄iN2(x− xi)

, i = 0,1, . . . ,N (1.47)

where c̄0 = c̄N = 2, c̄i = 1 for i = 1,2, . . . ,N −1.
The derivatives of the approximate solution at the collocation points are computed as

dn

dxn u(xi) =
N

∑
j=0

u(xi)L(n)(x j) =
N

∑
j=0

D(n)
i j u(xi), (1.48)

where D(n)
i j = L(n)(xi) is an (N + 1)× (N + 1) Chebyshev differentiation matrix for i, j =

0,1, . . . ,N.

The first order Chebyshev derivative matrix at the collocation points is given by [12, 77]

Di j = D(1)
i j =



ci(−1) j+i

c j(x j − xi)
, i ̸= j

− xi

2(1− x2
i )
, (i = j) ̸= 0,N

2N2 +1
6

, i, j = 0

−2N2 +1
6

, i, j = N

(1.49)
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Extending the spectral collocation idea to partial differential equations (Bivariate Cheby-
shev spectral method), the Chebyshev polynomials TN(χ) of order N are defined as

TN(χ) = cos(N cos−1(χ)), N ∈ N. (1.50)

The Chebyshev interpolation uN(χ,τ) of a function u(χ,τ) at χ = χi and τ = τ j is defined
by

uN(χ,τ) =
M

∑
j=0

N

∑
i=0

u jiL j(τ)Li(χ) (1.51)

where the collocation points χi and τ j are chosen to be the extrema of TN :

{χi}=
{

cos
(

πi
N

)}N

i=0
, {τ j}=

{
cos

(
π j
M

)}M

j=0
. (1.52)

which are the Chebyshev-Gauss-Lobatto points. Li(χ), i = 0,1, . . . ,N, are Lagrange polyno-
mials of order N based on the Chebyshev-Gauss-Lobatto points defined as

Li(χ) =
(−1)i+1(1−χ2)T ′

N(χ)

c̄iN2(χ −χi)
, i = 0,1, . . . ,N (1.53)

where c̄0 = c̄N = 2, c̄i = 1 for i = 1,2, . . . ,N − 1. The polynomials L j(τ) are defined in a
similar manner.

The nth order space and time derivatives of the approximate solution at the collocation
points are computed as

∂ n

∂ χn u(χi,τ j) =
M

∑
q=0

N

∑
p=0

u(χp,τq)Lq(τ j)
dnLp(χi)

dχn =
N

∑
p=0

Dn
ipu(χp,τ j) = DnU j, (1.54)

∂ n

∂τn u(χi,τ j) =
M

∑
q=0

N

∑
p=0

u(χp,τq)
dnLq(τ j)

dτn Lp(χi) =
M

∑
q=0

dn
jqu(χi,τq), (1.55)

where Dip =
dLp(χi)

dχ
is an (N + 1)× (N + 1) Chebyshev differentiation matrix for i, p =

0,1, . . . ,N, and d jq =
dLq(τ j)

dτ
is an (M+1)× (M+1) Chebyshev differentiation matrix for

j,q = 0,1, . . . ,M,
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The first order Chebyshev derivative matrix at the collocation points is given by [12, 77]

Dip = D(1)
ip =



ci(−1)p+i

cp(χp −χi)
, i ̸= p

− χi

2(1−χ2
i )
, (i = p) ̸= 0,N

2N2 +1
6

, i, p = 0

−2N2 +1
6

, i, p = N

(1.56)

Similarly, we can compute the first order Chebyshev differentiation matrix d jq.

1.5 Multi-domain approach

In this section, we describe the development of a multi-domain approach. The multi-domain
approaches allow better conditioned matrices and larger step sizes than single domain compu-
tations. Also, an important effect of the multiple domain approaches is that they enhance the
accuracy of the approximation significantly. In such methods, the given domain is divided
into two or more sub-domains and the problem solved in each sub-domain with appropriate
interface conditions connecting the solution across the sub-domain boundaries.

We first decompose the interval of integration Ω = [0,T ] into non-overlapping intervals
Ωn = [tn−1, tn] where n = 1,2,3, . . . ,P, where t0 = 0 and tF = T . The main idea of the
multi-domain approach is that of determining the solution of equation differential equation
independently on each sub-interval, one at a time, beginning at the initial condition. The given
initial condition is considered to be the left boundary of the time interval and used to compute
the solution in the first sub-interval. The computed solution at the right hand boundary
of the first interval is used as an initial condition in the subsequent second sub-interval to
computed solution in the second sub-interval. The same process is repeated until the last
sub-interval. The process where the solutions in different intervals are matched along their
common boundary is called patching. The practical application of the multi-domain approach
is illustrated by solving the Chaotic and hyperchaotic systems, nonlinear evolution partial
differential equations and the generalized Kuramoto-Sivashinsky equation using higher order
CFDS or spectral collocation with chebyshev functions.
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Fig. 1.1 The multi-domain grid

1.6 Dissertation outline

This dissertation consists of five chapters:
Chapter 2 In this chapter, we present a new application of higher order compact finite

differences to solve nonlinear initial value problems exhibiting chaotic behavior. The method
involves dividing the domain of the problem into multiple sub domains, with each sub
domain integrated using higher order compact finite difference schemes. The nonlinearity is
dealt with by using a Gauss-Seidel like relaxation. The method is therefore referred to as
the multi-domain compact finite difference relaxation method (MD-CFDRM). In this new
application, the MD-CFDRM is used to solve famous chaotic systems and hyperchaotic
systems.

Chapter 3 We investigate a new application of higher order compact finite differences to
solve nonlinear evolution partial differential equations. The method involves dividing the
domain of the problem into multiple sub-domains, with each sub-domain integrated using
higher order compact finite difference schemes. The nonlinearity of the evolution partial
differential equations is dealt with by using the quasi-linearization technique. The method
is therefore referred to as the multi-domain compact finite difference quasi-linearization
method (MD-CFDQLM). In this work, the method is used to solve nonlinear evolution partial
differential equations, namely, the Fisher’s equation, Burgers-Fisher equation, Burgers-
Huxley equation and the coupled Burgers’ equations over a large time domain.
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Chapter 4 We solve the Kuramoto-Sivashinsky (KS) equation which is a well known par-
tial differential equation exhibiting chaos. Chaotic systems are characterized by rapidly and
sharply changing solutions. As a result, computing their solutions is a bit tricky especially for
large domains. In this chapter, we use the multi-domain bivariate spectral quasi-linearization
method to solve different examples of the KS equations. The method uses the idea of domain
decomposition to handle the continuously changing solutions.

Chapter 5 Conclusion of the work in this dissertation.



Chapter 2

Compact finite difference relaxation
method for chaotic and hyperchaotic
initial value systems

2.1 Introduction

Chaotic behavior can be observed in a variety of systems such as electrical circuits, lasers,
fluid dynamics, mechanical devices, time evolution of the magnetic field of celestial bodies,
population growth, and many other areas of scientific application. This kind of behavior
was first observed by Lorenz [55] in 1963 on a system of ordinary differential equations
modelling weather phenomena. Later on Rössler [70] observed hyperchaotic behavior on
the ordinary differential equations for modeling chemical reactions. The difference between
the two is that, chaotic systems consist of only one positive Lyapunov exponent whereas
hyperchaotic systems have at least two positive Lyapunov exponents. Hyperchaotic systems
generally have more complex dynamical behaviours than the ordinary chaotic systems.

Chaotic systems are characterized by high sensitivity to small perturbation on initial
data and rapidly changing solutions. Such rapid variations in the solution pose tremendous
problems to a number of numerical approximations. This often requires using a large number
of grid points. However, that leads to large memory requirements. Also, for methods like the
pseudo-spectral method the approximations can exhibit spurious oscillations which can lead
to nonlinear instabilities if the number of grid points is very big. A number of researchers
have tried to circumvent this problem by considering domain decomposition techniques, in
which the domain of the problem is divided into two or more sub-domains. Multi-domain
approaches allow better conditioned matrices and larger step sizes than single domain
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computations. Also, an important effect of the multiple domain approaches is that they
enhance the accuracy of the approximation significantly. In such methods, the given domain
is divided into two or more sub-domains and the problem solved in each sub-domain with
appropriate interface conditions connecting the solution across the sub-domain boundaries.

There is quite a substantial number of articles in the literature where the idea of domain
decomposition has been applied specifically to chaotic and hyperchaotic systems. Examples
of semi-analytical multi-domain methods applied to chaotic and hyperchaotic systems include
the multi-stage Adomian decomposition method [3, 37, 5], multistage homotopy analysis
method [6, 1], multi-stage differential transformation method [28, 32, 63], multi-stage
variational iteration method [9, 33, 34], multistage homotopy perturbation methods [16, 17,
15, 79]. The analytical nature of these methods and their application in many subintervals
makes the whole computation process tedious and time-consuming.

Recently, Motsa et al [61, 62] implemented the multi-domain approach on the Chebyshev
spectral collocation method which is completely numerical. They used this to solve a few
examples of chaotic and hyperchaotic systems. Their approach was very efficient and easy to
implement and gave remarkable results. Their work has motivated the current project. In this
work, instead of using the Chebyshev spectral method, we use higher order compact finite
difference schemes (CFDS) to discretize in each subinterval. The advantage of the higher
order CFDS over the standard second order finite difference, is that they give high accuracy
on coarser grids with greater computational efficiency [44]. When compared to spectral
methods, compact schemes are more flexible in terms of application to complex geometries
and boundary conditions. CFDS have largely been applied to solve partial differential
equations e.g. Burger’s equation [73, 84], Navier-Stokes equation [75] , Korteweg-de Vries
equation [52], Black-Scholes equation [30], and many more [8, 72, 74]. Before applying
the CFDS, we deal with the nonlinearity of the chaotic and hyperchaotic systems by using a
Gauss-Seidel relaxation approach. So, we refer to the method as the multi-domain compact
finite difference relaxation method (MD-CFDRM). We examine it’s applicability on 3 chaotic
systems and 2 hyperchaotic chaotic systems. The numerical results are compared with Motsa
et al’s multi-domain spectral relaxation method (MSRM) [62, 61].

2.2 Multi-domain compact finite difference relaxation method
- MD-CFDRM

In this section, we give a brief description of the numerical scheme. We employ the multi-
domain compact finite relaxation method (MD-CFDRM) for the solution of common chaotic
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and hyperchaotic systems governed by nonlinear systems of first order IVPs. The MD-
CFDRM algorithm is based on Gauss-Seidel type of relaxation that decouples and linearises
the system and the use of compact finite difference method to solve the linearised equations
in a sequential manner. We consider chaotic and hyperchaotic systems of the form

ẋr(t) =
m

∑
k=1

αr,kxk(t)+ fr[x1(t),x2(t), . . . ,xm(t)], (2.1)

subject to the initial conditions

xr(0) = x∗r , r = 1,2, . . . ,m (2.2)

The scheme compute the solution of equation (2.1) in a sequence of equal subintervals
that makes the entire interval.We first decompose the interval of integration Ω = [0,T ] into
non-overlapping intervals Ωi = [ti−1, ti] where i = 1,2,3, . . . ,F , where t0 = 0 and tF = T .
Equation (2.2) is used as the initial condition for obtaining the solution in the first sub-interval
[t0, t1].The solution of equation (2.1) is computed in the first interval [t0, t1] and is labeled as
x1

r (t), and xi
r(t) be the solutions in the subsequent sub-intervals Ωi (i = 2, . . . ,F). The value

of the solution at last node of the first interval Ω1 = (t0, t1), given by x1
r (t1) is used as an

initial condition in the second sub-interval. Then we use the continuity condition between
neighbouring sub-intervals to obtain the initial conditions for solving (2.1) in the rest of the
Ωi sub-intervals. Thus, in each interval [ti−1, ti] we must solve

ẋi
r =gr +αr,rxi

r +(1−δr,k)
m

∑
k=1

αr,kxi
k + fr[xi

1,x
i
2, . . . ,x

i
m] (2.3)

subject to
xi

r(ti−1) = xi−1
r (ti−1) (2.4)

where δrk is the Kronecker delta. As mentioned earlier, the main idea behind the MD-
CFDRM scheme is decoupling the system of nonlinear IVPs using the Gauss-Seidel idea of
decoupling systems of algebraic equations. The proposed MD-CFDRM iteration scheme for
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the solution in the interval Ωi = [ti−1, ti] is given as

ẋi
1,s+1 −α1,1xi

1,s+1 =g1 +
m

∑
k=2

α1,kxi
k,s + f1[xi

1,s, . . . ,x
i
n,s] (2.5)

ẋi
2,s+1 −α2,2xi

2,s+1 =g2 +
m

∑
k=1
k ̸=2

α2,kxi
k,s + f2[xi

1,s+1, . . . ,x
i
n,s] (2.6)

...

ẋi
m,s+1 −αm,mxi

m,s+1 =gm +
m−1

∑
k=1

αm,kxi
k,s + fm[xi

1,s+1, . . . ,x
i
m−1,s+1,x

i
m,s] (2.7)

subject to the initial conditions

xi
r,s+1(ti−1) = xi−1

r (ti−1), r = 1,2,3, . . . ,m (2.8)

xi
r,0(t) =

x∗r i f i = 1,

xi−1
r (ti−1) i f 2 ≤ i ≤ F

(2.9)

We use the sixth order compact finite difference schemes to solve (2.5 - 2.7) on each
interval. The sixth order CFDS for approximating the first derivative is given by

1
3

ẋi−1 + ẋi +
1
3

ẋi+1 =
14
9

xi+1 − xi−1

2h
+

1
9

xi+2 − xi−2

4h
, (2.10)

The approximations of the first derivative at the end points are given by the following:

ẋ2 +
1
3

ẋ3 =
1
h
(− 7

45
x1 −

17
12

x2 +
83
36

x3 −
11
9

x4 +
2
3

x5

− 37
180

x6 +
1

36
x7) (2.11)

1
3

ẋN−2 + ẋN−1 +
1
3

ẋN =
1
h
(
451
180

xN − 1003
180

xN−1 +
20
3

xN−2 −
55
9

xN−3

+
125
36

xN−4 −
67
60

xN−5 +
7

45
xN−6) (2.12)

ẋN−1 +
1
3

ẋN =
1
h
(
35
36

xN − 7
12

xN−1 +
7

36
xN−2 − xN−3

+
7
12

xN−4 −
7

36
xN−5 +

1
36

xN−6) (2.13)
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Combining (2.10 - 2.13) into matrix form, we have

AẊ = BX+K (2.14)

where

A =



1 1
3

1
3 1 1

3
1
3 1 1

3
. . . . . . . . .

1
3 1 1

3
1
3 1


(N−1)×(N−1)

K =
1
h



− 7
45x1

− 1
36x1

0
...
0
0


(N−1)×1

B =
1
h



−17
12

83
36 −11

9
2
3 − 37

180
1

36
−7

9 0 7
9

1
36

− 1
36 −7

9 0 7
9

1
36

. . . . . . . . . . . . . . .

− 1
36 −7

9 0 7
9

1
36

7
45 −67

60
125
36 −55

9
20
3 −1003

180
451
180

1
36 − 7

36
7

12 −1 7
36 − 7

12
35
36


(N−1)×(N−1)

From 2.14 we have
Ẋ = EX+H (2.15)

where
E = A−1B, H = A−1K (2.16)

X i
t,s+1 = [xi

r,s+1(t
i
0),x

i
r,s+1(t

i
1), . . . ,x

i
r,s+1(t

i
N)] are the vector functions at the grid points t i.

Applying the CFDS in (2.5 - 2.7) gives

ArX
j
r,s+1 = Ri

r, Xi
r,s+1(t

i−1
N ) = Xi−1

r (t i−1
N ), (2.17)

r = 1,2, . . . ,m



24
Compact finite difference relaxation method for chaotic and hyperchaotic initial value

systems

Ar =E−αr,rI, (2.18)

Ri
1 =g1 +

m

∑
k=2

α1,kXi
k,s + f1[Xi

1,s, . . . ,X
i
m,s]−H (2.19)

Ri
2 =g2 +α2,1Xi

1,s+1 +
m

∑
k=3

α2,kXi
k,s + f2[Xi

1,s+1,X
i
2,s, . . . ,X

i
m,s]−H (2.20)

...

Ri
m =gm +

m−1

∑
k=1

αm,kXi
k,s+1 + fm[Xi

1,s+1, . . . ,X
i
m−1,s+1,X

i
m,s]−H (2.21)

fr is a diagonal matrix of size (N −1)× (N −1) and I is identity matrix of order N −1,
for r = 1,2, . . . ,m. gr is gr multiplied by a vector of ones of size (N −1)×1. Thus, starting
from the initial approximation (2.9), the recurrence formula

X j
r,s+1 = A−1

r Ri
r, r = 1,2, . . . ,m (2.22)

can be used to find the solution xi
r(t) in the interval [ti−1, ti]. The solution approximating xi(t)

in the entire interval [a,b] = [t0, tF ] is given by

xr(t) =



x1
r (t) , t ∈ [t0, t1]

x2
r (t) , t ∈ [t1, t2]

...

xF
r (t) , t ∈ [tF−1, tF ]

(2.23)

2.3 Numerical examples

In this section, we apply the proposed MD-CDFRM to systems of IVPs with chaotic and
hyperchaotic behavior to illustrate its effectiveness. To demonstrate that the method is as an
appropriate tool for solving complex dynamical systems, we consider the chaotic Lorenz,
Chen, the Rikitake systems, the hyperchaotic Chua and Robinovich-Fabrikant system. The
results obtained are compared to results obtained by the Multi-domain spectral relaxation
method (MSRM)[62, 61].

Example 1: Lorenz system
The nonlinear differential equations that describe the Lorenz system [55] is a dynamical
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system which is commonly used to explore chaotic behavior. The set of autonomous
differential equations is given by

ẋ1 = a(x2 − x1),

ẋ2 =−x1x3 +bx1 − x2,

ẋ3 = x1x2 − cx3,

(2.24)

where a,b,c are all greater than zero. These system of differential equations were derived
by Lorenz [55] in the modeling of two dimensional fluid cell between two parallel plates at
different temperatures. In this example, the parameters αr,k, gr and fr are defined as

α1,1 =−a, α1,2 = a, α2,1 = b,

α2,2 =−1, α3,3 =−c, (2.25)

f2 =−x1x3, f3 = x1x2

with all other αr,k and gr = fr = 0 for r,k = 1,2,3. The Lorenz system was solved using
a = 10,b = 28,c = 8/3 with initial conditions x1(0) = 1,x2(0) = 5,x3(0) = 10.

Example 2: Chen system In this example we consider the Chen dynamical system
[13]. This is a three-dimensional system of ordinary differential equations with quadratic
nonlinearities, defined as 

ẋ1 = a(x2 − x1),

ẋ2 = (c−a)x1 − x1x3 + cx2,

ẋ3 = x1x2 −bx3.

(2.26)

In this example, the parameters αr,k, gr and fr are defined as

α1,1 =−a, α1,2 = a, α2,1 = c−a, α2,2 = c,

α3,3 =−b f2 =−x1x3, f3 = x1x2

with all other αr,k and gr = fr = 0 for r,k = 1,2,3. The Chen system was solved using the
parameters a = 35,b = 3,c = 28 and the initial conditions x1(0) =−10, x2(0) = 0, x3(0) =
37.
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Example 3: Rikitake system Here, we consider the Rikitake system [69, 81] which is a
model that attempts to explain the reversal of Earth’s magnetic field. This system describes
the currents of two coupled dynamo disks. The governing equations are

ẋ1 =−bx1 + x2x3,

ẋ2 =−bx2 + x1(x3 −a),

ẋ3 = 1− x1x2.

(2.27)

In this example, the parameters αr,k, gr and fr are defined as

α1,1 =−b, α2,1 =−a, α2,2 =−b, f1 = x2x3,

f2 = x1x3, f3 =−x1x2, g3 = 1 (2.28)

with all other αr,k and gr = fr = 0 for r,k = 1,2,3. The system was solved for the param-
eters a = 5,b = 2 and the initial conditions x1(0) = 7,x2(0) = 11,x3(0) = 15 in [69, 81].

Example 4: Hyperchaotic Chua system The Chua system was originally proposed for
an electric circuit by Leon Chua in 1983 [46]. The system is a set of equations with a smooth
nonlinearity given by 

ẋ1 = b(x2 −ax3
1 − (1+ c)x1)

ẋ2 = x1 − x2 + x3

ẋ3 =−βx2 − γx3

(2.29)

Based on the Chua oscillator, Rech and Albuquerque [68] constructed a new four-dimensional
system by introducing a fourth variable x4 which is an adequate feedback controller to the
third equation in system (2.29), to obtain

ẋ1 = b(x2 −ax3
1 − (1+ c)x1)

ẋ2 = x1 − x2 + x3

ẋ3 =−βx2 − γx3 + x4

ẋ4 =−sx4 + x2x3

(2.30)

When a= 0.03,b= 30,c=−1.2,β = 50,γ = 0.32,s= 0.1060, the system (2.30) has two pos-
itive Lyapunov exponents and hence exhibits a hyperchaotic behavior [14]. The hyperchaotic
system (2.30) was solved for the initial conditions x1(0) = 3,x2(0) = 1,x3(0) = 6,x4(0) = 1.
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In this example, the parameters αr,k, gr and fr are defined as

α1,1 =−b(1+ c), α1,2 = b, α2,1 = 1, α2,2 =−1,

α3,2 =−β , α3,3 =−γ

α3,4 = 1, α4,1 =−s, f1 =−bax3
1, f4 = x2x3

with all other αr,k and gr = fr = 0
for r,k = 1,2,3,4.

Example 5: Hyperchaotic Rabinovich-Fabrikant System The Rabinovich-Fabrikant
system models the dynamical behavior arising from the modulation instability in a non-
equilibrium dissipative medium [20, 56]. The system was introduced by Rabinovich and
Fabrikant [67]. The Rabinovich-Fabrikant equation possesses multiple chaotic attractors.
The system is described by the following set of equations:

ẋ1 = x2(x3 −1+ x2
1)+ax1,

ẋ2 = x1(3x3 +1− x2
1)+ax2,

ẋ3 =−2x3(b+ x1x2),

(2.31)

with parameters a,b > 0. Luo et al [20] reported that different chaotic behaviors are observed
for different values of a and b. In this example, the parameters αr,k, gr and fr are defined as

α1,1 = a, α1,2 =−1, α2,1 = 1, α2,2 = a,

α3,3 =−2b,

f1 = x2x3 + x2x2
1, f2 = 3x1x3 + x3

1, f3 =−2x1x2x3.

with all other αr,k and gr = fr = 0 for r,k = 1,2,3. The hyperchaotic systems (2.31) was
solved for a = 0.1,b = 0.98 with initial conditions x1(0) = 0.5,x2(0) = 6,x3(0) = 1.1.

2.4 Results and discussion

In this section, we present the results obtained from implementing the multi-domain compact
finite difference relaxation method (MD-CFDRM) to the five examples given in the previous
section. To show the performance of the proposed method, we present graphical and tabular
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comparisons with the multistage spectral relaxation method (MSRM). We also show plots
of the phase portraits of each example. The phase portrait is a plot of a vector field which
qualitatively shows how the solutions to the equations will go from a given starting point. In
generating all the results presented in this work, it was found that N = 10 grid points in each
interval (ti−1, ti) was sufficient to give good accuracy. The MD-CFDRM algorithm was run
repeatedly in each interval until the norm of the difference between successive iterations was
less than 10−6. The results were validated by computing the residual at each time level.

Table 2.1 Numerical solution for the Lorenz system compared with the MSRM results [62].

x1(t) x2(t) x3(t)
t MD-CFDRM MSRM MD-CFDRM MSRM MD-CFDRM MSRM
2 -1.444359 -1.444359 -1.074977 -1.074977 19.517057 19.517057
4 -14.675080 -14.675080 -20.189107 -20.189107 29.063361 29.063362
6 -2.883028 -2.883028 -4.763557 -4.763557 20.355558 20.355558
8 -2.679253 -2.679252 1.429476 1.429476 27.105659 27.105659

10 -12.026645 -12.026646 -17.520281 -17.520281 24.300154 24.300159

Table 2.2 Numerical solution for the Chen system compared with the MSRM results [62].

x1(t) x2(t) x3(t)
t MD-CFDRM MSRM MD-CFDRM MSRM MD-CFDRM MSRM
1 -15.904923 -15.904923 -13.162222 -13.162222 32.090048 32.090048
2 16.318160 16.318160 6.369432 6.369432 40.655948 40.655948
3 -10.705249 -10.705249 -8.474057 -8.474057 30.502592 30.502592
4 3.771507 3.771509 12.524291 12.524292 37.032302 37.032301
5 -1.751032 -10.751032 2.618147 2.618147 25.328889 25.328889

Table 2.3 Numerical solution for the Rikitake system compared with the MSRM results [62]

x1(t) x2(t) x3(t)
t MD-CFDRM MSRM MD-CFDRM MSRM MD-CFDRM MSRM
2 0.982780 0.982780 0.000756 0.000756 3.663515 3.663515
4 -0.061809 -0.061809 -0.018351 -0.018351 5.695371 5.695371
6 -0.641786 -0.641786 -0.372575 -0.372575 7.641621 7.641621
8 -0.219972 -0.219972 0.249986 0.249986 4.871418 4.871418

10 0.439362 0.439362 0.220305 0.220305 6.827688 6.827688
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We remark that the accuracy of the MD-CFDRM can also be improved by increasing the
number of iterations of the MD-CFDRM algorithm in each interval Ωi.

Tables 2.1 - 2.3 show the comparison of the MD-CFDRM with the MSRM results reported
in [62] for the Lorenz, Chen and Rikitake systems at selected values of time. The two sets of
results are in good agreement. This fact is also shown graphically in Figures 2.1- 2.3. The
phase portraits in Figures 2.1d, 2.2d and 2.3d are similar to the ones reported by Motsa et. al.
[62].

Table 2.4 Comparison of the numerical solution of the hyperchaotic Chua system obtained
by the MD-CFDRM and MSRM.

x1(t) x2(t)
t MD-CFDRM MSRM MD-CFDRM MSRM
2 -0.170293 -0.170293 1.551695 1.551695
4 3.990219 3.990219 2.525985 2.525985
6 5.159513 5.159513 3.058536 3.058536
8 4.648366 4.648366 1.76664 1.76664

10 2.583704 2.583704 -0.980654 -0.980654
x3(t) x4(t)

MD-CFDRM MSRM MD-CFDRM MSRM
2 11.014651 11.014651 -1.493298 -1.493298
4 7.011997 7.011997 -3.597274 -3.597274
6 -6.752382 -6.752382 -7.371016 -7.371016
8 -22.334344 -22.334344 -16.055827 -16.055827

10 -27.076591 -27.076591 -22.167142 -22.167142

Table 2.5 Comparison of the numerical solution of Rabinovich-Fabrikant equations obtained
by the MD-CFDRM and MSRM for a = 0.1 and b = 0.98.

x1(t) x2(t) x3(t)
t MD-CFDRM MSRM MD-CFDRM MSRM MD-CFDRM MSRM

10 -0.193770 -0.193770 5.046955 5.046955 0.964454 0.964454
20 0.030179 0.030179 -1.020136 -1.020136 0.000192 0.000192
30 0.878727 0.878727 -1.845389 -1.845389 0.399523 0.399523
40 -1.029824 -1.029824 1.771524 1.771524 0.000093 0.000093
50 1.037551 1.037551 -0.878634 -0.878634 0.000091 0.000091
60 1.034005 1.034005 0.277127 0.277127 0.002862 0.002862
70 0.798540 0.798540 -0.876128 -0.876128 0.457949 0.457949
80 1.026191 1.026191 -1.979857 -1.979857 0.000876 0.000876
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For the hyperchaotic cases, the results are given in Tables 2.4 and 2.5. Again the MD-
CFDRM and MSRM [61] yield comparable results. Figures 4 and 7 also depict similar
observations. The phase portraits are shown in Figures 2.5 and 2.6 for the Chua system and
Figure 2.7d for the Rabinovich-Fabrikant system
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The accuracy of the results is determined by computing the residual at each time level.
The graphs of the residual against time, for all the examples, are shown in Figure 2.8. It can
be seen that the residual varies between 10−9 −10−15 which shows good accuracy.

2.5 Conclusion

In this work, we have presented the multi-domain compact finite difference method (MD-
CFDRM) to solve nonlinear chaotic and hyperchaotic systems. The method is based on blend-
ing gauss-Siedel relaxation method and the sixth-order compact finite difference schemes. We
used the MD-CFDRM to solve dynamical systems like the chaotic and hyperchaotic sytems.
The accuracy of the proposed method was confirmed by comparing tabulated results of the
numerical solutions against the MSRM [62, 61] solutions. Graphical results for the time
series solutions and corresponding phase portraits of the governing chaotic and hyperchaotic
systems confirmed that the MD-CFDRM results were in agreement with the MSRM. The
numerical experiments confirms that the MD-CFDRM is highly accurate. We also remark it
is computationally efficient and reliable method for solving complex dynamical systems with
chaotic and hyperchaotic behavior. The method can easily be extended to general classes of
nonlinear IVPs systems arising from a wide variety of other dynamical system applications.



Chapter 3

Multi-Domain Compact finite difference
quasi-linearization method for nonlinear
evolution partial differential equations

3.1 Introduction

Naturally occurring phenomena and their respective dynamics can be captured accurately
using nonlinear partial differential equations(NPDEs). Nonlinear evolution partial differ-
ential equations are useful for modeling many naturally occurring phenomena. These are
equations arising in a number of fields of science and engineering. They are used to describe
many complex nonlinear settings in applications such as vibration and wave propagation,
fluid mechanics, plasma physics, quantum mechanics, nonlinear optics, solid state physics,
chemical kinematics, physical chemistry, population dynamics, and many other areas of
mathematical modeling (see[2, 11] ). It is however difficult to obtain analytic solutions of
NPDEs due to their nonlinearity and complexities over large time domains. The development
of numerical solutions to solve such problems continues to be an active area of research.

Many researchers who prefer finite difference methods to approximate solutions of
differential equations are now using higher order compact finite difference schemes (CFDS)
as a substitute of the conventional second order finite differences [27, 30, 52, 73, 75]. The
CFDS are highly accurate and computationally efficient. This is because they require few
grid points to achieve high accuracy. Various CFDS for application such as evaluating higher
order derivatives, interpolating and filtering were presented by Lele [51]. The CFDS have
been used to solve the Shrödinger’s equations [23, 44, 82, 75], Burger’s equations [53] and
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other equations. Sari and Guraslan [74] used a sixth-order compact finite difference method
to solve the one-dimensional sine-Gordon equation.

A number of researchers use the CFDS for space variables and combine them with
another numerical technique for the time variable when solving time-dependent PDEs
[26, 84, 52, 73, 74]. Dlamini and Khumalo [25] used the CFDS in both space and time
in order to improve the accuracy and computational speed in numerical simulations. The
numerical method gave accurate results for smaller time domains. In this paper we propose
to extend the work of Dlamini and Khumalo [25] by using the multi-domain approach for
the time domain. This leads to significant improvements in the accuracy of the method
for large time domains. Linear forms of the evolution partial differential equations are
obtained by using quasi-linearization method developed by Bellman and Kalaba [10]. The
sixth order CFDS applied both in space and time variables of the linearized equations. The
method is therefore called multi-domain compact finite difference quasi-linearization method
(MD-CFDQLM). The accuracy and reliability of the method is tested by solving a number of
nonlinear evolution equations, namely Fishers, Burgers-Fisher, Burgers-Huxley and coupled
Burgers equations.

3.2 Multi-domain compact finite difference quasi-linearization
method

In this section, we give a brief description of the numerical method of solution and illustrate
how it is used to solve nonlinear evolution partial differential equations. Without loss of
generality, we consider an nth order NPDE of the form:

∂U
∂ t

= G
(

U,
∂U
∂x

,
∂ 2U
∂x2 . . . ,

∂ nU
∂xn

)
(3.1)

with the physical region {(t,x)|t ∈ [T0,TF ],x ∈ [a,b]} The constant n denotes the order of
differentiation and G is a function of U(x, t) and its spatial derivatives.

The multi-domain approach assumes that the time interval can be decomposed into P
non-overlapping sub-intervals. Let t ∈ ω , where ω = [T0,TF ], be the time interval where the
solution of the non-linear PDE exist. The set of intervals are defined as

ωl = (tl−1, tl), l = 1,2, . . . ,P with T0 = t0 < t1 < t2 <,. . . ,< tP = TF (3.2)
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The main idea of the multi-domain approach is that of determining the solution of
equation (3.1) independently on each sub-interval, one at a time, beginning at the initial
condition. The given initial condition is considered to be the left boundary of the time
interval. The given initial condition is used to compute the solution in the first sub-interval.
The computed solution at the right hand boundary of the first interval is used as an initial
condition in the subsequent second sub-interval. The computed solution in the first interval
is then used to compute the solution in the second sub-interval. The same process is repeated
until the last sub-interval. The process where the solutions in different intervals are matched
along their common boundary is called patching. The patching condition requires that

u(l)(x, tl−1) = u(l−1)(x, tl−1), x ∈ [a,b] (3.3)

where u(l)(x, t) denotes the solution of equation (3.1) at each sub-interval ωl with 1 ≤ l ≤ P.
Therefore, in each sub-interval, we are required to solve the nonlinear parabolic equation

∂ul

∂ t
= G

(
ul,

∂ul

∂x
,
∂ 2ul

∂x2 . . . ,
∂ nul

∂xn

)
, t ∈ [T0,TF ], x ∈ [a,b] (3.4)

subject to
u(l)(x, tl−1) = u(l−1)(x, tl−1), (3.5)

where l = 1,2, . . . ,P. To solve (3.4) in each interval we first use the quasi-linearization
technique to linearize (3.1), then solve the derivatives using the higher order compact finite
difference schemes. Equation (3.4) can be expressed in the form:

H[ul
(x,0),u

l
(x,1),u

l
(x,2), . . . ,u

l
(x,n)]−ul

(t,1) = 0, (3.6)

where ul
(x,n) denote the nth partial derivative of u(x, t) with respect to x in the lth sub-interval.

Similarly, ul
(t,1) the first partial derivative with respect to t in the lth sub-interval and H is

the nonlinear operator.If we assume that the difference u(l)
(x,0,s+1)−u(l)

(x,0,s) and all its space
derivatives is small, then we can approximate the nonlinear operator H using the linear terms
of the Taylor series and thus

H[ul
(x,0),u

l
(x,1),u

l
(x,2), . . . ,u

l
(x,n)]≈ H[ul

(x,0,s),u
l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)]

+
n

∑
k=0

∂H
∂ul

(x,k)

(u(l)
(x,k,s+1)−u(l)

(x,k,s)) (3.7)
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where s and s+1 denote previous and current iterations respectively.

Let
∂H

∂ul
(x,k)

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), . . . ,u

(l)
(x,n,s)

]
= Ω

(l)
(k,s)[u

l
(x,0,s),u

l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)] (3.8)

Therefore equation (3.7) can be expressed as

H[ul
(x,0),u

l
(x,1),u

l
(x,2), . . . ,u

l
(x,n)]≈ H[ul

(x,0,s),u
l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)]

+
n

∑
k=0

Ω
(l)
(k,s)[u

l
(x,0,s),u

l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)]u

l
(x,k,s+1)

−
n

∑
k=0

Ω
(l)
(k,s)[u

l
(x,0,s),u

l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)]u

l
(x,k,s) (3.9)

Let

R(l)
s [ul

(x,0,s),u
l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)] =

n

∑
k=0

Ω
(l)
(k,s)[u

l
(x,0,s),u

l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)]u

l
(x,k,s)

−H[ul
(x,0,s),u

l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)] (3.10)

Equation (3.8) can be expressed as

H[ul
(x,0),u

l
(x,1),u

l
(x,2), . . . ,u

l
(x,n)]≈

n

∑
k=0

Ω
(l)
(k,s)[u

l
(x,0,s),u

l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)]u

l
(x,k,s+1)

−R(l)
s [ul

(x,0,s),u
l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)] (3.11)

Substituting equation (3.11) into equation (3.6), we get linearized form of equation (3.4) as
follows:

n

∑
k=0

Ω
(l)
k,su

(l)
(x,k,s+1)−u(l)

(t,1,s+1) = R(l)
s [ul

(x,0,s),u
l
(x,1,s),u

l
(x,2,s), . . . ,u

l
(x,n,s)] (3.12)

Using the CFDS to evaluate (3.12) at each grid point (xi, t j), we get

n

∑
k=0

ΩΩΩk,sE(x,k)U
(l)
·, j,s+1 −

Nt

∑
k=1

e j,kU
(l)
·,k,s+1 = R(l)

s −
n

∑
k=1

ΩΩΩk,sH(x,k) (3.13)
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for j = 1,2, . . . ,Nt , where ΩΩΩk,s is a diagonal matrix given by:

ΩΩΩk,s =


Ωk,s(x2, t j)

Ωk,s(x1, t j)
. . .

Ωk,s(xNx−1, t j)

 (3.14)

and
U (l)
·, j = [u(l)(x2, t j),u(l)(x3, t j), . . . ,u(l)(xNx−1, t j)]

Since the initial condition is known, then we express equation (3.13) as

n

∑
k=0

ΩΩΩk,sE(x,k)U
(l)
·, j,s+1 −

Nt

∑
k=2

e j,kU
(l)
·,k,s+1 = R(l)

s −
n

∑
k=1

ΩΩΩk,sH(x,k)− e j,1U (l)
·,1 , j = 2,3, . . . ,Nt

(3.15)
Equation (3.15) can be expressed as the following (Nt −1)(Nx −1)× (Nt −1)(Nx −1)

matrix system 
A2,2 A2,3 . . . A2,Nt

A3,2 A3,3 . . . A3,Nt
...

... . . . ...
ANt ,2 ANt ,3 . . . ANt ,Nt




U (l)
·,2

U (l)
·,3
...

U (l)
·,Nt

=


B(l)

2

B(l)
3
...

B(l)
Nt

 , (3.16)

where

Ai,i =
n

∑
k=0

ΩΩΩk,sE(x,k)− ei,iI, i = 2,3, . . . ,Nt (3.17)

Ai, j =−ei, jI, when i ̸= j i, j = 2,3, . . . ,Nt (3.18)

B j = R(l)
s −

n

∑
k=1

ΩΩΩk,sH(x,k)− e j,1U (l)
s,1 , j = 2,3, . . . ,Nt (3.19)

E,H, R and e are the Sixth order compact schemes defined in chapter (1), I is the identity
matrix of size (Nx −1)× (Nx −1) and E(x,0) = I. Solving equation (3.15) gives u(l)(xi, t j) as
the approximate solution for equation (3.4) at each sub-interval.

3.3 Numerical Experiments

In this section, we apply the proposed MD-CDFQLM to well-known nonlinear PDEs of
the form (3.1) with exact solutions. In order to determine the level of accuracy of the MD-
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CFDQLM approximation solution, at a particular time level, in comparison with the exact
solution we report maximum error and compare the MD-CFDQLM with CFDQLM [27]
results. In this work,we consider nonhomogeneous Dirichlet boundary conditions. The space
and time domains are given by [a,b] = [0,5] and [t0,T ] = [0,10] respectively for most of the
numerical experiments. We choose a T = 10 to show the accuracy of the algorithm over a
large time domains.

Example 1: Fisher’s equation
We consider the Fisher’s equation which represents a reactive-diffusive system and is

encountered in chemical kinetics and population dynamics applications. The equation is
given by

∂u
∂ t

=
∂ 2u
∂x2 +αu(1−u), (3.20)

subject to the initial condition

u(x,0) =
1(

1+ e(
√

α

6x )
)2 , (3.21)

and exact solution (Wazwaz and Gorguis [80])

u(x, t) =
1(

1+ e(
√

α

6x−5αt/6)
)2 , (3.22)

where α is a constant (set to be α = 1 in this study). The Fisher equation represents a
reactive-diffusive system and is encountered in chemical kinetics and population dynamics
applications. The Fisher’s equation has been solved by Olmos et al. [64], Hariharan et
al. [39] using nonstandard finite differences, spectral collocation and Haar wavelet method
respectively. For this example, the appropriate nonlinear operator H are chosen as

H(u) = u
′′
+αu−αu2 (3.23)

The primes denote differentiation with respect to x. We use [a,b] = [0,5] and [t0,T ] = [0,10]
as our x and t domains, respectively. We linearize the nonlinear operator H by expanding us-
ing the Taylor series expansion. We assume that the difference u(l)s+1 −u(l)s and it’s derivatives
is very small.

Example 2: Burgers-Fisher equation
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We consider the generalized Burgers-Fisher equation [35]

∂u
∂ t

+αuδ ∂u
∂x

=
∂ 2u
∂x2 +βu(1−uδ ), (3.24)

subject to the initial condition

u(x,0) =
[1

2
+

1
2

tanh
( −αδ

2(δ +1)
x
)] 1

δ (3.25)

and exact solution

u(x, t) =
[1

2
+

1
2

tanh
( −αδ

2(δ +1)

[
x−

(
α

δ +1
+

β (δ +1)
α

)
t
])] 1

δ (3.26)

where α,β and δ are parameters. In this work, the parameters are chosen to be α = β = δ = 1.
The Burgers-Fisher equation has been solved by Javidi et al. [43], Moghimi and Hejazi [60],
Golbabai and Javidi [36] using spectral collocation method, spectral domain decomposition
and Homotopy analysis method respectively. The nonlinear operator H is chosen as

H(u) = u
′′
+u−uu

′
−u2 (3.27)

We use [a,b] = [0,5] and [t0,T ] = [0,10] as our x and t domains, respectively. We linearize
the nonlinear operator H by expanding using the Taylor series expansion. We assume that
the difference u(l)s+1 −u(l)s and it’s derivatives is very small.

Example 3: Burgers-Huxley equation
We consider the generalized Burgers-Huxley equation

∂u
∂ t

+αuδ ∂u
∂x

=
∂ 2u
∂x2 +βu(1−uδ )(uδ − γ), (3.28)

where α,β ≥ 0 are constant parameters, δ is a positive integer (set to be δ = 1 in this study)
and γ ∈ (0,1). The exact solution subject to the initial condition

u(x,0) =
1
2
− 1

2
tanh

[
β

r−α
x
]
, (3.29)

is
u(x, t) =

1
2
− 1

2
tanh

[
β

r−α
(x− ct)

]
, (3.30)
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where
r =

√
α2 +8β , c =

(α − r)(2γ −1)+2α

4
(3.31)

The Burgers-Huxley has been solved by Batiha et al. [9], Darvishi et al. [21], Dehghan et al.
[22] using the VIM, spectral collocation and finite differences, respectively. In this example,
the nonlinear operator H is chosen as

H(u) = u
′′
−βγu−αuu

′
+β (1+ γ)u2 −βu3 (3.32)

Example 4: Consider the Coupled Burgers equations

∂u
∂ t

− ∂ 2u
∂x2 −2u

∂u
∂x

+
∂ (uv)

∂x
= 0 (3.33)

∂v
∂ t

− ∂ 2v
∂x2 −2v

∂v
∂x

+
∂ (vu)

∂x
= 0 (3.34)

with the initial conditions
u(x,0) = v(x,0) = sin(x) (3.35)

and the exact solutions
u(x, t) = v(x, t) = e−tsin(x) (3.36)

The nonlinear operator H is chosen as

H(u) = u
′′
−2uu

′
+(uv)

′
(3.37)

H(v) = u
′′
−2vv

′
+(uv)

′
(3.38)

We use [a,b] = [c,d] = [0,5] and [t0,T ] = [0,10] as our x and t domains, respectively where
[a,b] are nodes for u and [c,d] are nodes for v.

3.4 Results and Discussion

In this section, we present and discuss the numerical results. To establish the accuracy of the
proposed method, we compute the maximum error ENx which is the maximum difference
between the approximate solution and the exact solution at each time level, that is,

ENx = max
k

|ua(xk, t)−ue(xk, t)|, : 0 ≤ k ≤ Nx (3.39)
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where ua(xk, t) is the approximate solution and ue(xk, t) is the exact solution at the time level
t. We analyze the effects of dividing the domain into sub-domains on the accuracy and
computational time. This is done by solving each example with p = 1 and p = 10 (p is the
number of sub-domains). The method is just the compact finite difference quasi-linearization
method (CFDQLM) when p = 1. Dlamini and Khumalo [25] introduced the CFDQLM to
solve the same examples considered in this work but they only considered small time domains.
They obtained highly accurate results. In this work we deal with large time domains. We
compare the results for p = 1 and p = 10 and display results in tables. In all cases we used
Nt = 10 and varied the values of Nx.

Table 3.1 Maximum error estimates ENx for the Fishers equation, with Nt = 10.

CFDQLM MD-CFDQLM
t/Nx 20 50 20 30
1.0 4.805e-004 4.807e-004 4.733e-009 1.237e-010
2.0 1.132e-004 1.132e-004 8.466e-009 1.677e-010
3.0 4.259e-005 4.262e-005 5.192e-009 3.030e-011
4.0 1.542e-005 1.543e-005 1.090e-009 1.862e-011
5.0 3.168e-006 3.169e-006 9.989e-010 1.387e-011
6.0 1.289e-006 1.289e-006 1.039e-010 3.344e-012
7.0 5.391e-007 5.395e-007 8.829e-011 1.242e-013
8.0 3.798e-007 3.798e-007 2.194e-011 2.095e-013
9.0 7.504e-007 7.517e-007 3.861e-012 4.741e-014

10.0 4.099e-006 4.109e-006 1.218e-012 2.753e-014
CPU time: 0.123795s 0.205661s 0.116480s 0.138220s

In Table 3.1, the maximum errors for the Fisher equation are displayed. We observe
much better accuracy for the MD-CFDQLM than the CFDQLM. The computational time
is also slightly lower for the MD-CFDQLM. This is because it achieves high accuracy on
remarkably small number of grid points Using Nx = 20 for the MD-CFDQLM produces more
accurate results for the CFDQLM with Nx = 20 and Nx = 50. For the CFDQLM increasing
Nx does not improve the solution as it can be seen from Table 3.1.

Results of the Burgers-Fisher equation are shown in Table 3.2. Again the MD-CFDQLM
shows superiority in terms of accuracy and computational speed when compared to the
CFDQLM. The same trend is observed for the results of the Burgers-Huxley which are
shown in Table 3.3. The same observations are seen in Figure 3.4 which shows the maximum
errors for each of the equations considered. It can be seen that MD-CFDQLM gives highly
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Table 3.2 Maximum error estimates ENx for the Burgers-Fisher equation, with Nt = 10.

CFDQLM MD-CFDQLM
t/Nx 20 50 20 30
1.0 4.498e-004 4.508e-004 1.069e-008 8.357e-010
2.0 1.569e-004 1.569e-004 6.020e-009 1.812e-010
3.0 6.663e-005 6.665e-005 1.564e-009 9.970e-011
4.0 1.869e-005 1.869e-005 3.333e-010 4.445e-011
5.0 5.022e-006 5.022e-006 7.224e-011 1.768e-012
6.0 1.646e-006 1.647e-006 1.540e-011 1.128e-012
7.0 8.277e-008 8.300e-008 2.664e-012 2.128e-013
8.0 9.022e-007 9.029e-007 6.029e-013 5.673e-014
9.0 2.356e-006 2.358e-006 1.482e-013 3.320e-014

10.0 1.074e-005 1.074e-005 3.586e-014 1.621e-014
CPU time: 0.025197s 0.421462s 0.015197s 0.074305s

accurate solutions with errors of at least 10−8 for the values of t considered. Another
remarkable observation is that the method gives accurate results even for large time domains.
A lot of methods loose significant accuracy when t is very big.

Table 3.3 Maximum error estimates ENx for the Burgers-Huxley equation, with Nt = 10.

CFDQLM MD-CFDQLM
t/Nx 40 50 30 40
1.0 6.565e-006 6.570e-006 7.169e-008 6.711e-010
2.0 2.215e-006 2.214e-006 1.083e-007 1.008e-009
3.0 8.862e-007 8.868e-007 8.132e-008 1.865e-009
4.0 1.629e-007 1.628e-007 4.554e-008 5.667e-010
5.0 3.330e-008 3.336e-008 3.202e-008 3.244e-010
6.0 5.831e-008 5.835e-008 4.444e-008 7.128e-010
7.0 2.665e-007 2.665e-007 2.979e-008 3.439e-010
8.0 4.883e-007 4.887e-007 1.196e-007 1.629e-009
9.0 1.133e-006 1.133e-006 3.779e-008 1.353e-009

10.0 5.361e-006 5.360e-006 1.088e-007 1.391e-009
CPU time: 0.236870s 0.423499s 0.187576s 0.218691s

Figure 3.2 shows good agreement between the exact and approximation solution for the
proposed method. Table 3.4 shows the maximum errors for the coupled Burgers’ system.
Even for the system of equations the MD-CFDQLM gives more accurate results and is more
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Fig. 3.1 Error norms ENx at different time levels

Table 3.4 Maximum error estimates ENx for the coupled Burgers system, with Nt = 10.

CFDQLM Nx = 40 MD-CFDQLM Nx = 20
t/Nx u(x, t) v(x, t) u(x, t) v(x, t)
1.0 1.04232e-001 1.04232e-001 8.85687e-008 8.85687e-008
2.0 3.83453e-002 3.83453e-002 4.74018e-008 4.74018e-008
3.0 1.41068e-002 1.41068e-002 2.56153e-008 2.56153e-008
4.0 5.18979e-003 5.18979e-003 1.25629e-008 1.25629e-008
5.0 1.90935e-003 1.90935e-003 5.78707e-009 5.78707e-009
6.0 7.02498e-004 7.02498e-004 2.56926e-009 2.56926e-009
7.0 2.58493e-004 2.58493e-004 1.10716e-009 1.10716e-009
8.0 9.51340e-005 9.51340e-005 4.66891e-010 4.66893e-010
9.0 3.50247e-005 3.50247e-005 1.93682e-010 1.93683e-010

10.0 2.81025e-007 2.81025e-007 7.93165e-011 7.93174e-011
CPU time: 0.914139s 0.914139s 0.800893s 0.800893s
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efficient in terms of speed than the CFDQLM. This fact is also portrayed graphically in
Figure 3.3, where we see the maximum error ranging between 10−7 and 10−11.

3.5 Conclusion

In this paper, we have extended and implemented for the first time a new approach named
the multi-domain compact finite difference quasi-linearization method (MD-CDFQLM) for
solving nonlinear parabolic PDEs. The method uses compact finite difference schemes
in both space and time. The time domain is also divided into small sub-domains and the
equation solved in each sub-domain. As a result the method is able to handle problems with
large time-domains. This idea was tested on Fisher’s, Burgers-Fisher, Burgers-Huxley, and
Burgers systems. The MD-CFDQLM method gave more accurate results than the CFDQLM
[25] over large domains.



Chapter 4

Numerical solutions of the generalized
Kuramoto-Sivashinsky equation using
Multi-Domain Bivariate Pseudospectral
Method

4.1 Introduction

In this chapter, we consider the generalized Kuramoto-Sivashinsky (GKS) equation

ut +uux +αuxx +βuxxx + γuxxxx = 0, x ∈ [a,b], t ∈ [0,T ] (4.1)

where α,β and γ are constants.
For β = 0, the equation is called the Kuramoto-Sivashinsky (KS) equation.

ut +uux +αuxx + γuxxxx = 0, x ∈ [a,b], t ∈ [0,T ] (4.2)

The KS equation is a nonlinear evolution partial differential equation with applications
in various physical phenomena, such as plasma and chemical reaction dynamics [18, 47],
reaction diffusion systems [47], long waves on thin films and on the interface between two
viscous fluids [40], two-phase flows in cylindrical pipes [66] and many more [38, 42, 47, 54,
58, 19, 76].

A number of numerical schemes have been used to compute solutions of the KS equation.
These include the local discontinuous Galerkin method [83], tanh function method [41],
homotopy analysis method [48], inverse scattering method [29], homogeneous balance
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method [31], Lattice Boltzmann method [49], cubic B-spline finite difference-collocation
method [50], quintic B spline collocation method [59], a higher-order finite element approach
[7], finite difference discretization [4], fourth-order singly diagonally implicit Runge-Kutta
method [24], etc.

The KS equation exhibit chaotic behaviour under certain conditions. Rapidly changing
solutions and high sensitivity to small perturbations of the initial data are some of the
characteristics of chaotic differential equations. These characteristics pose some problems
when it comes to numerical simulations especially for large spatial and temporal domains.
This is because, for large domains, the computed numerical solutions may fail to converge
even when the step size is decreased, thus compromising the accuracy and efficiency of the
numerical simulations. It often requires using a large number of grid points. However, that
leads to large memory requirements. Also, for methods like the pseudo-spectral method the
approximations can exhibit spurious oscillations which can lead to nonlinear instabilities
if the number of grid points is very big. Because of the success over short time intervals,
modifications have been made to a number of numerical methods to be able to deal with
chaotic behaviour over large intervals. Such modifications involve domain decomposition
techniques, in which the domain of the problem is divided into two or more sub-domains.
Multi-domain approaches allow better conditioned matrices and larger step sizes than single
domain computations. Basically, the domain of the problem is divided into two or more sub-
domains and the problem solved in each sub-domain with appropriate interface conditions
connecting the solution across the sub-domain boundaries.

Motsa et al [62, 61] have used the idea of domain decomposition to solve chaotic and
hyperchaotic ordinary differential equations. They used the Chebyshev spectral method to
discretize the time variable over multiple intervals making the entire domain of the problem.
The method was able to capture rapidly changing solutions even for large time intervals. In
this work we extend Motsa et al’s approach to chaotic partial differential equations, with
the KS equation as an example. We use the ideas of Magagula et al [57] by employing the
Chebyshev spectral method to discretize on both space and time and using the multi-domain
approach in the time variable. This leads to significant improvements in the accuracy of the
method for large values of time t. Before applying the Chebyshev spectral method the KS
equation is linearized using the quasi-linearization technique introduced by Bellman and
Kalaba [10]. Results show that for small values of t, the single domain spectral method
gives accurate results, but the accuracy deteriorates as t increases. On the other hand, the
multi-domain approach produces accurate results even for large t.
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4.2 Multi-domain bivariate spectral quasi-linearisation method
(MD-BSQLM)

In this section we detail the multi-domain spectral quasi-linearization method and illustrate
how it is used to solve the GKS equation. The method is a combination of 3 elements which
are the bivariate Chebyshev spectral method, multi-domain approach and quasi-linearization
technique. The following subsections describe each of these elements and how they combine
to form the MD-BSQLM and how it is used to solve the GKS equation

4.2.1 Quasi-linearization

In this section we illustrate how we use the quasi-linearization technique to linearize any 4th

order parabolic PDE of the form

ut = H
[
u(x,0),u(x,1),u(x,2),u(x,3),u(x,4)

]
, (4.3)

where H is a nonlinear function of u(x, t) and it’s space derivatives.If we assume that the
difference us+1 −us and all its space derivatives is small where s and s+1 denote previous
and current iterations, respectively, the nonlinear function H can be approximated by using
the linear terms of the Taylor series and thus H

H
[
u(x,0),u(x,1),u(x,2),u(x,3),u(x,4)

]
≈ H

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
+

4

∑
k=0

∂H
∂u(x,k)

(
u(x,k,s+1)−u(x,k,s)

) (4.4)

Let

∂H
∂u(x,k)

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
=Ω(k,s)

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
(4.5)

Therefore equation (4.4) can be expressed as

H
[
u(x,0),u(x,1),u(x,2),u(x,3),u(x,4)

]
≈ H

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
+

4

∑
k=0

Ω(k,s)

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
u(x,k,s+1)

−
4

∑
k=0

Ω(k,s)

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
u(x,k,s)

(4.6)
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Let

Rs

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
=

4

∑
k=0

Ω(k,s)

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
u(x,k,s)

−H
[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

] (4.7)

Therefore, equation (4.5) can be expressed as

H
[
u(x,0),u(x,1),u(x,2),u(x,3),u(x,4)

]
≈

4

∑
k=0

Ω(k,s)

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

]
u(x,k,s+1)

−Rs

[
u(x,0,s),u(x,1,s),u(x,2,s),u(x,3,s),u(x,4,s)

] (4.8)

Substituting Eq. (4.8) into Eq. (4.3), we get

u(t,1,s+1)+
4

∑
k=0

Ωk,su(x,k,s+1) = Rs (4.9)

4.2.2 Multi-Domain Approach

Before solving the linearized form of the KS equation, we first decompose the interval of
integration 0 ≤ t ≤ T into non-overlapping intervals defined as

ωl = [tl−1, tl], l = 1,2,3, ...,F

where
0 = t0 ≤ t1 ≤ t2 ≤ . . .≤ tF = T

The objective of the multi-domain approach is to solve for u in Eq. (4.9) in each of the
sub-intervals. The initial condition is used for obtaining the solution in the first sub-interval
[t0, t1]. After that, we use the continuity condition between neighbouring sub-intervals to
obtain the initial conditions for the subsequent intervals. Basically, the solution at the last
point of each interval becomes the initial condition for the next interval. The process where
the solutions in different intervals are matched along their common boundary is called
patching. The patching condition requires that

u(l)(x, tl−1) = u(l−1)(x, tl−1), x ∈ [a,b] (4.10)
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where u(l)(x, t) denotes the solution of Eq.(4.9) at each sub-interval ωl with 1 ≤ l ≤ P. The
given physical regions, t l ∈ [tl−1, tl], is converted to the region τ ∈ [−1,1] using the linear
transformation

t =
1
2
(tl − tl−1)τ +

1
2
(tl + tl−1)

and x ∈ [a,b] is converted to the region χ ∈ [−1,1] using the linear transformation

x =
1
2
(b−a)χ +

1
2
(b+a).

Therefore,in each sub-interval, we are required to solve

ul
(τ,1,s+1)+

4

∑
k=0

Ω
l
k,su

l
(χ,k,s+1) = Rl

s (4.11)

subject to
u(l)(χ, tl−1) = u(l−1)(χ,τl−1), χ ∈ [a,b] (4.12)

4.2.3 Application to the generalized Kuramoto-Sivashinsky equation

The linearized version of the GKS equation is

ul
(τ,1,s+1)+

4

∑
k=0

Ω
l
k,su

l
(χ,k,s+1) = Rl

s (4.13)

with

Ω0,s = u(χ,1,s),

Ω1,s = u(χ,0,s),

Ω2,s = α,

Ω3,s = β ,

Ω4,s = γ,

Rs = u(χ,0,s)u(χ,1,s)

From Eqs. (1.54) and (1.55), Eq. (4.13) at the collocation points (xi, t j) becomes

Nt

∑
q=0

d̂ jqU (l)
s+1,q +

4

∑
k=0

Ω
(l)
k,sD̂

kU (l)
s+1, j = R(l)

s (4.14)
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for j = 0,1,2, . . . ,Nt , where D̂ = 2
b−a ,

ˆd jq =
2
T and

Ωk,r =


Ωk,s(χ0,τ j)

Ωk,s(χ1,τ j)
. . .

Ωk,s(χNx ,τ j)

 (4.15)

Since the initial condition is known, then we express Eq.(4.14) as

Nt−1

∑
q=0

d̂ jqU (l)
s+1,q +

4

∑
k=0

Ω
(l)
k,sD̂

kU (l)
s+1, j = R(l)

j (4.16)

where

R(l)
j = R(l)

s − d̂ jNtU
(l)
Nt
, for j = 0,1,2, . . . ,Nt −1

Eq.(4.16) can be expressed as the following M(N +1)×M(N +1) matrix system
A0,0 A0,1 A0,3 . . . A0,M−1

A1,0 A1,1 A1,2 . . . A1,M−1
...

...
... . . . ...

ANt−1,0 AM−1,1 AM−1,2 . . . AM−1,M−1




U (l)
0

U (l)
1
...

U (l)
M−1

=


R(l)

0

R(l)
1
...

R(l)
M−1

 (4.17)

where

Ai,i =
4

∑
k=0

Ωk,sD̂k +di,iI,

Ai, j = d̂i, jI, when i ̸= j

and I is the identity matrix of size (N +1)× (N +1). Solving Eq.(4.16) gives ul(χi,τ j)

in each interval l.

4.3 Numerical experiments

In this section, we give computational results for examples of the KS equation solved using
the MD-BSQLM. In order to determine the level of accuracy of the MD-BSQLM approximate
solution, at a particular time level, in comparison with the exact solution, we report maximum
error which is defined by
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EN = max
r

{|u(l)(xr, t j)− û(l)(xr, t j)|, : 0 ≤ r ≤ N}, (4.18)

where ûl(xr, t j) is the approximate solution at each sub-interval and ul(xr, t j) is the exact
solution at the time level t.

We varied the number of sub-domains, P, between P = 1,10 and 20. P = 1 implies
that the domain of the problem is not decomposed. This is included to compare with the
multi-domain approach and see the effect of the domain decomposition on the accuracy of the
MD-BSQLM for t ≥ 1. Setting P = 1(single domain) show better accuracy as for t ≤ 1 and
loses accuracy as time domain increase. Increasing the number of sub-domains(P) improves
the accuracy of the numerical solution as time t increases. The results are displayed in tables
and graphs as shown in the examples below.

Example 1:
In this example, we consider the GKS equation, with α = γ = 1 and β = 4.

ut +uux +uxx +4uxxx +uxxxx = 0, t > 0 (4.19)

The exact solution is [45]

u(x, t) = 11+15tanh(θ)−15tanh2(θ)15tanh3(θ)

with θ =−1
2x+t the solution was evaluated at t = 0, as the initial condition, and the boundary

functions from the exact solution on the interval [−10,10].
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Fig. 4.1 The physical behaviour of Example 4.3 in (a) two-dimensions and (b) three-
dimensions for t ≤ 10
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Table 4.1 Results of MD-BSQLM method for Example 4.3.

Time t = 1 t = 5 t = 10
P = 1 2.360e-007 2.807e+002 3.340e+003

P = 10 1.3229e-007 2.3576e-007 2.7376e-007
P = 20 1.7568e-007 6.7083e-007 2.7590e-007
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Fig. 4.2 Error for Example 4.3 at different values of t

Figure 4.1 shows the graphical representation of the results of Example 4.3 in 2 dimen-
sions and 3 dimensions. In Figure 4.1a a comparison between the numerical (MD-BSQLM)
and the exact solution for t = 1,5 and 10 is displayed. A good agreement between the two
solutions is observed. Table 4.1 gives maximum errors for different values of P (P is the
number of sub-domains). We observe that the single domain is only accurate for small values
of t. As t is increased it significantly loses accuracy. The multi-domain, P = 10 and 20,
is able to retain accuracy as t is increased. The error at each time level is shown by Figure 4.2.

Example 2: In this example, we consider the GKS equation, with α = 2, γ = 1 and
β = 0.

ut +uux +2uxx +uxxxx = 0, t > 0 (4.20)

The exact solution is [45]

u(x, t) =− 1
K
+

60
19

K(−38γK2 +α) tanh(θ)+120γK3 tanh3(θ).

where θ = Kx+ t and K = (1/2)
√

11α/19γ . Similar to the previous example, we extract
the required boundary functions from the exact solution on the interval [−10,10].
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Fig. 4.3 The physical behaviour of Example 4.3 in (a) two-dimensions and (b) three-
dimensions for t ≤ 10

Table 4.2 Results of the MD-BSQLM for Example 4.3

Time t = 1 t = 5 t = 10
P = 1 2.741e-008 5.334e+005 3.093e+006

P = 10 2.0323e-007 3.7119e-005 1.2489e-004
P = 20 1.3926e-007 3.7000e-005 1.2396e-004
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Fig. 4.4 Error for Example 4.3 at different values of t
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The comparison between the exact and the MD-BSQLM results for Example 4.3 is
depicted by Figure 4.3a for t = [1,5,10]. The two results are comparable. Figure 4.3b shows
the 3 dimensional solution obtained by the MD-BSQLM. The results for single domain
is only accurate for small values of t. As t is increased the method loses accuracy. The
multi-domain approach also loses accuracy a little bit in this example but still provides good
enough results with a large t. This observation can be seen in Table 4.2 which shows the
number of subdomains, P, being varied between 1,10 and 20. Figure 4.4 shows the error at
each time level.

Example 3: In this example, we consider the GKS equation, with α = 1, γ = 0.5 and
β = 0.

ut +uux +uxx +0.5uxxxx = 0, t > 0 (4.21)

The exact solution is [45]

u(x, t) =−0.1
K

+
60
19

K(−38γK2 +α) tanh(θ)+120γK3 tanh3(θ),

where θ = Kx+0.1t and K = (1/2)
√

11α/19γ . Again, we extract the required boundary
functions from the exact solution on the interval [−10,10].
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Fig. 4.5 The physical behaviour of Example 4.3 in (a) two-dimensions and (b) three-
dimensions for t ≤ 10

The results for Example 4.3 are shown in Table 4.3 and Figures 4.5 and 4.6. The same
trend as with the previous examples is observed. The error at each time level is displayed in
Figure 4.6.
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Table 4.3 Results of the MD-BSQLM for Example refE3r.

Time t = 1 t = 5 t = 10 t = 20
P = 1 9.397e-008 1.160e-008 4.908e-008 4.913e+000

P = 10 4.2401e-008 3.1848e-008 3.8943e-008 3.0538e-007
P = 20 1.0491e-007 4.6799e-008 4.5888e-008 3.3325e-007
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Fig. 4.6 Error for Example 4.3 at different values of t

Example 4: In this example, we consider the GKS equation, with α = γ = 1 and β = 4.

ut +uux +uxx +4uxxx +uxxxx = 0, t > 0 (4.22)

The exact solution is [45]

u(x, t) = 9+2c+15tanh(θ)−15tanh2(θ)−15tanh3(θ)

with θ = −1
2x+ ct. Similar to the previous examples, we extract the required boundary

functions from the exact solution on the interval [−10,10].

Table 4.4 Results the MD-BSQLM for Example 4.3.

Time t = 1 t = 5 t = 10 t=20
P = 1 3.658e-007 1.971e-006 2.936e-006 1.341e+001

P = 10 1.6078e-007 6.6995e-007 7.3393e-007 2.9149e-006
P = 20 1.3819e-007 4.7150e-007 2.7603e-006 4.7322e-007

Again for Example 4.3 the results are similar to the previous results, as shown by Table
4.4 and Figures 4.7 and 4.8. The error at each time level is displayed in Figure 4.8.
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Fig. 4.7 The physical behaviour of Example 4.3 in (a) two-dimensions and (b) three-
dimensions for t ≤ 10
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Example 5: In this example, we consider the KS equation

ut +uux +uxx +uxxxx = 0, (4.23)

where is the simplest nonlinear partial differential exhibiting the chaotic behavior over a
finite spatial domain. To find the approximate solution of Eq.(4.23) we use the Gaussian
initial condition

u(x,0) = e−x2

with the boundary conditions

u(a, t) = 0, u(b, t) = 0, ux(a, t) = 0, ux(b, t) = 0.
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Fig. 4.9 The solitary wave propagation of the Kuramoto-Sivashinsky equation at t = 0, t = 10,
and t = 20
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Fig. 4.10 The physical behaviour of Example 4.3 in (a) two-dimensions and (b) three-
dimensions for t ≤ 10
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Figure 4.9 shows the chaotic nature of the solution of Example 4.3. It can be seen that as
the value of t is increased the chaotic behaviour becomes extreme, which is consistent with
the results of [78]. Figure 4.10 shows the 3 dimensional plot.

4.4 Conclusion

In this work, we have successfully used the multi-domain bivariate spectral quasi-linearization
method to solve a chaotic partial differential equation called the Kuramoto-Sivashinsky
equation. The method is based on a domain decomposition in time, a bivariate Lagrange
interpolation and a quasi-linearization technique. The results show that the multi-domain
approach is effective in handling chaotic PDEs with large time domains.



Chapter 5

Conclusion

5.1 Summary of the work

In this dissertation, we proposed a new numerical technique for solving nonlinear differential
equations. The new numerical technique is called A multi-domain compact finite difference
relaxation method (MD-CFDRM). We then implemented the multi-domain technique into
the sixth-order compact finite difference quasi-linearization method by extending the work
done by Dlamini [25] and we call the method the Multi-domain compact finite difference
quasi-linearization method (MD-CFDQLM). We also extend the application pseudospectral
methods that use spectral collocation independently in space and time to solve the famous
nonlinear evolution partial differential equations that exhibit chaotic behaviour under certain
conditions and the method is referred to as Multi-domain bivariate spectral quasi-linearization
method (MD-BSQLM). We tested the applicability of these methods to different nonlinear
differential equations and compared their results to results to those found in literature.

In Chapter 2, the multi-domain compact finite difference relaxation method was then
applied to nonlinear systems of initial value problems that exhibit chaotic behaviour (chaotic
and hyperchaotic systems). Chaotic and hyperchaotic systems are characterized by high
sensitivity to small perturbation on initial data and rapidly changing solutions. Such rapid
variations in the solution pose tremendous problems to a number of numerical approxi-
mations. This often requires using a large number of grid points. It was shown that the
MD-CFDRM is more accurate than some traditional numerical methods and reliable method
for solving complex dynamical systems with chaotic and hyperchaotic behavior, computa-
tionally efficient and robust.
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In Chapter 3, we have extended and implemented for the first time a new approach named
the multi-domain compact finite difference quasi-linearization method (MD-CDFQLM) for
solving nonlinear parabolic PDEs. The objective was to extend the application of higher
order finite difference schemes and improve accuracy of the schemes when solving nonlinear
evolution partial differential equations over large time interval. This idea was tested on
Fisher’s, Burgers-Fisher, Burgers-Huxley, and Burgers systems. It was shown that the MD-
CFDQLM is more accurate and reliable when solving nonlinear partial differential equations
over large time interval.

In Chapter 4, the multi-domain bivariate spectral quasi-linearization method (MD-
BSQLM) was used to solve a chaotic partial differential equation called the Kuramoto-
Sivashinsky equation. The MD-BSQLM proves to be effective in handling chaotic PDEs
with large time domains.

5.2 Future work

In this work, we have opened up many new ideas and solve various nonlinear differential
equations. We have solved differential equations mainly used to model differential equations
arising from fluid dynamics, and parabolic nonlinear evolution equations. We could possibly
extend the use of multi-domain technique to solve differential equations arising from financial
mathematics and other fields. And also extend the work to solve hyperbolic and elliptic
differential equations presented in general forms.
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