83,598 research outputs found

    Pseudonym systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 50-52).by Anna Lysyanskaya.S.M

    Evaluating On-demand Pseudonym Acquisition Policies in Vehicular Communication Systems

    Full text link
    Standardization and harmonization efforts have reached a consensus towards using a special-purpose Vehicular Public-Key Infrastructure (VPKI) in upcoming Vehicular Communication (VC) systems. However, there are still several technical challenges with no conclusive answers; one such an important yet open challenge is the acquisition of shortterm credentials, pseudonym: how should each vehicle interact with the VPKI, e.g., how frequently and for how long? Should each vehicle itself determine the pseudonym lifetime? Answering these questions is far from trivial. Each choice can affect both the user privacy and the system performance and possibly, as a result, its security. In this paper, we make a novel systematic effort to address this multifaceted question. We craft three generally applicable policies and experimentally evaluate the VPKI system performance, leveraging two large-scale mobility datasets. We consider the most promising, in terms of efficiency, pseudonym acquisition policies; we find that within this class of policies, the most promising policy in terms of privacy protection can be supported with moderate overhead. Moreover, in all cases, this work is the first to provide tangible evidence that the state-of-the-art VPKI can serve sizable areas or domain with modest computing resources.Comment: 6 pages, 7 figures, IoV-VoI'1

    Privacy through Pseudonymity in Mobile Telephony Systems

    Get PDF
    Abstract—To protect mobile phone from tracking by third parties, mobile telephony systems rely on periodically changing pseudonyms. We experimentally and formally analyse the mechanism adopted to update these pseudonyms and point out design and implementation weaknesses that defeat its purpose by allowing the identification and/or tracking of mobile telephony users. In particular, the experiments show that the pseudonym changing mechanism as implemented by real networks does not achieve the intended privacy goals. Moreover, we found out that the standard is flawed and that it is possible to exploit the procedure used to assign a new pseudonym, the TMSI reallocation procedure, in order to track users. We propose countermeasures to tackle the exposed vulnerabilities and formally prove that the 3GPP standard should require the establishment of a fresh ciphering key before each execution of the TMSI reallocation procedure to provide unlinkability. I

    Flexible fair and collusion resistant pseudonym providing system

    Get PDF
    In service providing systems, user authentication is required for different purposes such as billing, restricting unauthorized access, etc., to protect the privacy of users, their real identities should not be linked to the services that they use during authentication. A good solution is to use pseudonyms as temporary identities. On the other hand, it may also be required to have a backdoor in pseudonym systems for identity revealing that can be used by law enforcement agencies for legal reasons. Existing systems that retain a backdoor are either punitive (full user anonymity is revealed), or they are restrictive by revealing only current pseudonym identity of. In addition to that, existing systems are designed for a particular service and may not fit into others. In this paper, we address this gap and we propose a novel pseudonym providing and management system. Our system is flexible and can be tuned to fit into services for different service providers. The system is privacy-preserving and guarantees a level of anonymity for a particular number of users. Trust in our system is distributed among all system entities instead of centralizing it into a single trusted third party. More importantly, our system is highly resistant to collusions among the trusted entities. Our system also has the ability to reveal user identity fairly in case of a request by law enforcement. Analytical and simulation based performance evaluation showed that Collusion Resistant Pseudonym Providing System (CoRPPS) provides high level of anonymity with strong resistance against collusion attacks

    SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems

    Full text link
    Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a special-purpose identity and credential management infrastructure, i.e., a Vehicular Public-Key Infrastructure (VPKI), enabling pseudonymous authentication, with standardization efforts towards that direction. In spite of the progress made by standardization bodies (IEEE 1609.2 and ETSI) and harmonization efforts (Car2Car Communication Consortium (C2C-CC)), significant questions remain unanswered towards deploying a VPKI. Deep understanding of the VPKI, a central building block of secure and privacy-preserving VC systems, is still lacking. This paper contributes to the closing of this gap. We present SECMACE, a VPKI system, which is compatible with the IEEE 1609.2 and ETSI standards specifications. We provide a detailed description of our state-of-the-art VPKI that improves upon existing proposals in terms of security and privacy protection, and efficiency. SECMACE facilitates multi-domain operations in the VC systems and enhances user privacy, notably preventing linking pseudonyms based on timing information and offering increased protection even against honest-but-curious VPKI entities. We propose multiple policies for the vehicle-VPKI interactions, based on which and two large-scale mobility trace datasets, we evaluate the full-blown implementation of SECMACE. With very little attention on the VPKI performance thus far, our results reveal that modest computing resources can support a large area of vehicles with very low delays and the most promising policy in terms of privacy protection can be supported with moderate overhead.Comment: 14 pages, 9 figures, 10 tables, IEEE Transactions on Intelligent Transportation System

    A survey on pseudonym changing strategies for Vehicular Ad-Hoc Networks

    Full text link
    The initial phase of the deployment of Vehicular Ad-Hoc Networks (VANETs) has begun and many research challenges still need to be addressed. Location privacy continues to be in the top of these challenges. Indeed, both of academia and industry agreed to apply the pseudonym changing approach as a solution to protect the location privacy of VANETs'users. However, due to the pseudonyms linking attack, a simple changing of pseudonym shown to be inefficient to provide the required protection. For this reason, many pseudonym changing strategies have been suggested to provide an effective pseudonym changing. Unfortunately, the development of an effective pseudonym changing strategy for VANETs is still an open issue. In this paper, we present a comprehensive survey and classification of pseudonym changing strategies. We then discuss and compare them with respect to some relevant criteria. Finally, we highlight some current researches, and open issues and give some future directions

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure

    Privacy Attacks and Defenses for Digital Twin Migrations in Vehicular Metaverses

    Full text link
    The gradual fusion of intelligent transportation systems with metaverse technologies is giving rise to vehicular metaverses, which blend virtual spaces with physical space. As indispensable components for vehicular metaverses, Vehicular Twins (VTs) are digital replicas of Vehicular Metaverse Users (VMUs) and facilitate customized metaverse services to VMUs. VTs are established and maintained in RoadSide Units (RSUs) with sufficient computing and storage resources. Due to the limited communication coverage of RSUs and the high mobility of VMUs, VTs need to be migrated among RSUs to ensure real-time and seamless services for VMUs. However, during VT migrations, physical-virtual synchronization and massive communications among VTs may cause identity and location privacy disclosures of VMUs and VTs. In this article, we study privacy issues and the corresponding defenses for VT migrations in vehicular metaverses. We first present four kinds of specific privacy attacks during VT migrations. Then, we propose a VMU-VT dual pseudonym scheme and a synchronous pseudonym change framework to defend against these attacks. Additionally, we evaluate average privacy entropy for pseudonym changes and optimize the number of pseudonym distribution based on inventory theory. Numerical results show that the average utility of VMUs under our proposed schemes is 33.8% higher than that under the equal distribution scheme, demonstrating the superiority of our schemes.Comment: 8 pages, 6 figure
    corecore