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Abstract

Pseudonym systems allow users to interact with multiple organizations anonymously, using

pseudonyms. The pseudonyms cannot be linked, but are formed in such a way that a

user can prove to one organization a statement about his relationship with another. Such

statement is called a credential. Previous work in this area did not protect the system

against dishonest users who collectively use their pseudonyms and credentials, i.e. share an

identity. Previous practical schemes also relied very heavily on the involvement of a trusted

center. In the present paper we give a formal definition of pseudonym systems where users

are motivated not to share their identity, and in which the trusted center's involvement is

minimal. We give theoretical constructions for such systems based on any one-way function.

We also suggest an efficient and easy to implement practical scheme. This is joint work

with Ronald L. Rivest and Amit Sahai.
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Chapter 1

Introduction

One of the many advantages of living in the computerized world is the ease with which

we can find information we are looking for. In just a matter of seconds, computers search

through gigabytes of data and extract precisely the answer. But hand in hand with this

convenience, comes the side effect that information is becoming increasingly difficult to keep

private. Once a piece of one's private information is incorporated into someone else's data

bank, one has no control over who will be able to look at it. Fortunately, in many cases

such effects can be eliminated by applying appropriate cryptographic tools.

In the world without computers, it is possible to send someone an anonymous letter. In

some sense, we can call it one-way anonymity: a letter can be delivered without any trace

of who sent it, but how does one reply to it? This same service is available in the digital

world through mix-masters and such services.

Going one step further, we have two-way anonymity, or pseudonymity: not only can a

letter from Bob be delivered anonymously to Alice, but two of them can correspond with

each other, while Bob remains anonymous to Alice (and she knows him under pseudonym

Charlie). These kinds of services are also available through anonymous re-mailers[29].

But what if Bob wants to prove to someone else something about his relationship with

Alice?

In this thesis we discuss the cryptographic design of a system that achieves this abil-

ity. We call such systems pseudonym systems (they could also be called "pseudonym and

credential systems"). In a pseudonym system, there are two main features. First of all,

individuals interact with different organizations using different pseudonyms. As a result,

even if organizations record all their data, and several organizations compare records, they

will not be able to establish which pseudonyms come from which individuals, or even which

pseudonyms belong to the same individual. Secondly, an individual in a pseudonym system

can prove a statement to an organization about his relationship with another organization
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remaining anonoymous to both. By proving such a statement, no information other than

the statement itself is revealed to the receiving organization.

Anonymity and pseudonymity are fascinating and challenging, both technically-can we

achieve them?-and socially-do we want them? We focus on technical feasibility, referring

the reader in the social question to excellent recent treatments by Brin[5] and Dyson[17].

We illustrate the notion of a pseudonym system with examples.

1.1 Motivating example

Our main motivating example is a medical one. While medical records do constitute sensi-

tive information and the desire to restrict access to health data is understandable, we use

this example primarily to illustrate our technical points. Health systems have also served

as motivation for studies in other areas of cryptography, such as trust management[3].

Consider the components of a health care system. A person Alice receives health care

guarantee from her employer. The employer knows her name and social security number

and is able to withhold a certain amount from Alice's paycheck for her medical insurance. A

health care provider is an insurance company that is paid by the employer to process Alice's

medical insurance claims. Doctors (hospitals) diagnose and treat patients. Pharmacists

prepare medicine. Research labs study patients mostly for the benefit of science at large.

Suppose all these organizations know the patient's name and social security number, and

share all information they have about the patient with each other.

There are obvious problems with this scenario. For example, if the research lab discovers

that Alice has a high risk of getting cancer, her health care provider will raise the cost of

her insurance. Or, if the employer finds out that Alice wants to have a baby, the employer

might try to fire her before she applies for maternity leave. Thus one can see that this health

care system's main weakness is that it allows disclosure of information of extremely private

nature. The problem is that the patients' names are not secret and that two organizations

can establish which files refer to the same patient. To eliminate these weaknesses, three

goals must be simultaneously met: the anonymity of the patients, their ability to, for

example, get reimbursed for their medical expenses through the insurance company, and

the guarantee that only patients who do in fact have medical insurance should be able to

do so. Let us elaborate on these three goals.

On the one hand, we need to make patients pseudonymous to the organizations. A

patient approaches an organization and establishes a pseudonym with it. The organization

has no access to other information about the user, and only refers to him by this pseudonym.

On the other hand, this has to be done in such a way that a patient is still able to

convince one organization about the status of his relationship with another. A patient who
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has money withheld from his paycheck certainly wants to prove to his health care provider

that he has indeed paid for his health care. After visiting a doctor and paying his bill, the

patient will want to prove to his health care provider that he has done so, so that he will

be reimbursed appropriately. Also, the patient may choose to prove to his doctor that the

research lab has discovered that he is likely to get cancer. Therefore, it is important that

while the patient's transactions with different organizations in the system are unlinkable, he

should be able to prove to one organization a statement about his relationship with another.

Finally, the system will break down if there is no guarantee that several users cannot

share the same pseudonym: for example, for the cost of one medical insurance policy, a

whole group of friends will be covered. Thus patients have to be motivated to be honest

and not to enable their friends to use their identity.

A system like this may be useful in other settings as well, especially in settings which

only arise in the digital world, such as pseudonymous access to data and other electronic

services.

1.2 Discussion of previous work

Pseudonym systems were introduced by Chaum[9] in 1985, as a way of allowing a user

to work effectively, but anonymously, with multiple organizations. He suggests that each

organization may know a user by a different pseudonym, or nym. These nyms are unlink-

able: two organizations can not combine their databases to build up a dossier on the user.

Nonetheless, a user can obtain a credential from one organization using one of his nyms,

and demonstrate possession of the credential to another organization, without revealing his

first nym to the second organization. A certification authority (CA) plays the important

role of guaranteeing that the users in the system can be trusted to behave responsibly and

that the credentials are transferred properly.

Shortly after the notion of pseudonym systems was introduced, Chaum and Evertse[11]

developed a model for pseudonym systems, and presented an RSA-based implementation.

The scenario they propose models the one in our motivating example, with one important

difference. In their scenario, a trusted center conducts the operation of transferring a

user's credential from one organization to another. The pseudonyms in their model are

information-theoretically unlinkable. The heavy reliance on a trusted center is the main

weakness of this work.

Damgird[15] constructed a scheme that implements a pseudonym system that does not

rely on a trusted third party as much. His scheme is based on multi-party computations

and bit commitments. The advantages of his scheme is that it provably protects organiza-

tions from credential forgery by malicious users and the central authority, and protects the
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secrecy of users' identities information-theoretically. The central authority's role is limited

to ensuring that each pseudonym belongs to some valid user. The drawback, however, is

that Damgird's result is not meant to be implemented in practice: it is based on zero-

knowledge proof constructions, which are inefficient. We will describe Damgird's scheme

in more detail in the chapter dedicated for theoretical constructions.

Chen[13] presents a practical discrete-logarithm based scheme for Damgird's model. In

her scheme, a trusted center has to validate all the pseudonyms, but does not participate in

the credential transfer. One of this scheme's main disadvantages is that it requires honest

behavior of the CA: A malicious CA has all it needs to transfer credentials between users.

In the present thesis, we present a practical scheme that does not have this problem.

Aside from various disadvantages we have mentioned above, these schemes have a major

common weakness: there is little to motivate or prevent a user from sharing his pseudonyms

or credentials with other users. For example, a user may buy an on-line subscription,

obtaining a credential asserting his subscription's validity, and then share that credential

with all of his friends. In the setting from our medical motivating example, a patient may

share his medical insurance with all of his friends. Other serious examples (e.g. drivers'

licenses) are easy to imagine.

This happens because the notion of a user is not very well defined, the CA is still the

one responsible for making sure that users who enter the system can be trusted to behave

responsibly. It is important to conceptualize what constitutes a user's digital identity. In

existing schemes, this question is more or less avoided. The existing schemes assume that

a certification authority which interacts with all the players in the system, will grant to

someone the privileges of a user based on its own judgement. The fact that a certification

authority may be deceived in this judgement, and by doing so enable groups of individuals

to share an identity and all privileges that this identity brings, is overlooked.

This serious problem is solved in the present thesis.

1.3 Overview of our results

The contribution of this thesis is two-fold. On the one hand, we present a pseudonym system

model that corresponds to the settings we would like to obtain in real life. In our model, the

identity of a user is a well-defined concept, and users have a stake in behaving responsibly.

At the same time, their anonymity is protected at all times. We discuss variations and ex-

tensions of the model to make it suitable to many different real-life scenarios. We also show,
by our theoretical constructions, that our basic model, as well as its numerous extensions,

are realizable. On the other hand, we present a practical and easily implementable con-

struction of the basic model under reasonable number-theoretic assumptions. The results
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of this thesis have been obtained in joined unpublished work with Ronald Rivest and Amit

Sahai[28].

1.3.1 Discussion of the model

The main distinction of our model from its predecessors [11, 13, 15] is that the notion of a

user is well-defined. We base our proposed scheme on the presumption that each user has

a master public key whose corresponding master secret key the user is highly motivated to

keep secret. This master public key might be registered as his legal digital signature key, so

that disclosure of his master secret key would allow others to forge signatures on important

legal or financial documents in his name. Our proposed model requires that a user can not

share a credential with a friend without sharing his master secret key with the friend, that

is, without identity sharing. Thus in our model a user is an entity that possesses this master

secret key.

Basing security on the user's motivation to preserve a high-value secret key has been used

before, such as in Goldreich et al.'s study of controlled self-delegation[21]. In a recent unpub-

lished paper, Canetti et al.[7], incorporate this notion into anonymous credential-granting

schemes. However, their organizations only grant credentials to users whose identity they

know, as opposed to pseudonymous users.

In this work, we incorporate protection from identity-sharing into a pseudonym model

where not only can credentials be shown anonymously, they can be granted to parties based

on unlinkable pseudonyms. The user opens accounts with many different organizations

using different, unlinkable pseudonyms. However, all pseudonyms are related to each other:

a user can authenticate a valid pseudonym only if he possesses a master secret key that was

used to create this pseudonym.

An organization may issue a credential to a user known by a pseudonym. A creden-

tial may be single-use (such as a prescription) or multiple-use (such as a driver's license).

Single-use credentials are similar to electronic coins, since they can only be used once in an

anonymous transaction. Some electronic coin protocols protect against double-spending by

revealing the identity of double-spenders, but generally do not protect against transfer of

the coin. A credential should be usable only by the user to whom it was issued. This can be

used in such settings as voting, and also in situations such as drug prescriptions: a person

may be entitled to buy a drug for himself, but he cannot sell his prescription to someone

else.

In our model, a certification authority (CA) is just one of the organizations in the

system. It is needed only to enable a user to prove to an organization that his pseudonym

actually corresponds to a master public key of a real user with some stake in the secrecy
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of the corresponding master secret key. The system works in such a way that the user can

only share a credential issued to that pseudonym by sharing his master secret key. As long

as the CA does not refuse service, a cheating CA can do no harm other than introduce

invalid users into the system, i.e. users who have nothing to lose in the outside world.

For some systems, there is no such thing as an "invalid user." In those cases, a certifi-

cation authority is not needed. These cases are precisely the ones that are covered by the

Chaum-Evertse[11], Damgird[15}, and Chen[13] model: the pseudonyms are indeed formed

in the correct way, but whether several users are sharing identity, or a user has more than

one identity, remains up to the users. Thus, using our techniques, the already studied model

can be implemented without the need for the certification authority altogether.

We show that schemes that implement various flavors of our model exist if one-way

functions exist. This extends the result of Damgird.

1.3.2 The practical scheme

Our practical scheme meets the specifications of our model of single-use credentials and is

easy to implement. It is based on an assumption which is related to the decisional Diffie-

Hellman assumption[16, 4]. The secret key that motivates the user not to share his identity

is usable in many existing practical encryption and signature schemes[14, 16, 18, 33]. As a

result, our system integrates well with existing technology.

1.4 Organization of this thesis

In Chapter 2 we formally define our model of a pseudonym system. We also discuss varia-

tions of our model and various settings for which we consider them suitable. In Chapter 3

we outline Damgird's theoretical construction[15], and extend it to suit our pseudonym

system model. In Chapter 4 we give a practical construction of a pseudonym system with

single-use credentials. Finally, we close by discussing some open problems.

12



Chapter 2

The Pseudonym Model

2.1 Overview

2.1.1 Informal definitions

In a pseudonym system, users and organizations interact using procedures. We begin the

discussion of the model by introducing the procedures.

e Master key generation. This procedure generates master key pairs for users and or-

ganizations. A crucial assumption we make is that users are motivated to keep their

master secret key secret. This assumption is justified, because master public/secret

key pairs can correspond to those that the users form for signing legal documents or

receiving encrypted data. A user, then, is an entity (a person, a group of people, a

business, etc.) that holds a master secret key that corresponds to a master public key.

e Registration with the certification authority. The certification authority (CA) is a

special organization that knows each user's identity, i.e. the master public key of the

user. Its role is to guarantee that users have master public/secret key pairs that will

be compromised if they cheat. The user's nym with the CA is his master public key.

The CA issues a credential to him that states that he is a valid user.

e Registration with an organization. A user contacts the organization and together they

compute a nym for the user. There exists an identity extractor which, if a user can

authenticate himself as the nym holder, extracts this user's master public/secret key

pair. Then the user demonstrates to the organization that he possesses a credential

from the CA.

e Issue of credentials. The user and the organization engage in an interactive protocol

by which the user obtains a credential.
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* Transfer of credentials. A user who has a credential can prove this fact to any or-

ganization, without revealing any other information about himself. We can this op-

eration "transfer" of a credential, because a credential is transferred from the user's

pseudonym with one organization, to his pseudonym with the other.

We want to protect the system from two main types of attacks:

" Credential forgery: Malicious users, possibly in coalition with other organizations

including the CA, try to forge a credential for some user.

" User identity compromise or pseudonym linking: Malicious organizations form a coali-

tion to try to obtain information about a user's identity, either by getting information

about the user's master public/secret key pair, or by identifying a pair of pseudonyms

that belong to the same user.

The main difference between our model of a pseudonym system and the previous models is

that in our model the notion of a user is well-defined. In the treatment of Damgard, a user

is an entity who happens to be able to demonstrate the validity of a credential with the

certification authority. Whether this credential was originally issued to the same entity, or

to a different one who subsequently shared it, remains unclear and therefore such systems

are liable to a credential forgery attack, namely credential forgery by sharing.

2.2 The general definitions

2.2.1 Preliminaries

Let k be the security parameter, and let lk denote the unary string of length k.

We assume that the computational device that is being used by all the parties is a one-

tape Turing machine[34]. By an interactive Turing machine, we mean a machine which,

besides an input and computation tape, also has two more tapes: one tape for reading

intermediate input from, and one tape for writing intermediate output on. By a probabilistic

Turing machine we mean a machine which, besides its input and computation tape, also has

a tape which contains independent bits drawn uniformly at random from {0, 1} (this tape

is called the machine's "random tape" throughout). By a polynomial-time Turing machine

we mean a machine which runs in polynomial number of steps. By a non-uniform family

of Turing machines, {Mk}, we mean a device which contains a Turing machine M and a

collection of strings {ak}, such that the length of string ak is polynomial in k. On input w

of length k, the device will run M on (w, ak).

A negligible function is a function neg(k) such that neg(k) < 1/(p(k)) for all polynomials

p for sufficiently large k. A non-negligible function nonneg(k) satisfies nonneg(k) > 1/p(k)

14



for some polynomial p(k). A hard function is one not computable by a non-uniform family of

probabilistic polynomial-time Turing machines for all valid inputs but a negligible fraction

for sufficiently large k; an easy function is one computable in probabilistic polynomial-time

for all valid inputs.

A secure interactive procedure is a secure multi-party computation as defined by Oded

Goldreich [19]. We omit Goldreich's level of formalism, and state the definition less formally:

Definition 1 An interactive procedure with communication transcript T for common input

X between probabilistic polynomial-time Turing machine A with input a, random tape RA

and output a' and probabilistic polynomial-time Turing machine B with input b, random

tape RB and output b' is a secure two-party interactive procedure if the following conditions

hold:

" There exists a simulator SA such that, on input (X, A, a, a'), it produces a random

tape Rs and transcript Ts such that for any function f(X, A, a, a', B, b, b'), any non-

uniform family of probabilistic polynomial-size Turing machines C, if T is produced

with B following the protocol, and A behaving arbitrarily,

|Pr[C(X,A,a,a',RA,T) = f(XA,a,a',B,b,b')] -

Pr[C(X, A, a, a', Rs,Ts) = f(X, A, a, a', B, b, b')]I = neg(k)

" There exists a simulator SB such that, on input (X, B, b, b'), it produces a transcript

Ts and a random tape Rs such that for any function f (X, A, a, a', B, b, b'), any non-

uniform family of probabilistic polynomial-size Turing machines C, if T is produced

with A following the protocol, and B behaving arbitrarily

|Pr[C(X,B, b,b',RB,T) = f(X,A,a,a',B,b,b')] -

Pr[C(XB,b,b',RsTs) = f(XA,a,a',B,b,b')]I = neg(k)

Most importantly, the definition above captures the property that whatever the players

can efficiently compute as a result of their interaction, they could compute in the setting

with a trusted third party. In the trusted third party setting, the third party takes their

inputs and computes the outputs for them. Then they run a simulator that, upon inputing

the input and output of one of the players, comes up with a transcript and a random tape for

that player. Then from this simulated conversation, that player can compute the function

on the other player's inputs and outputs just as effectively as though he participated in the

interactive protocol.
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We now define the notion of rewindable access by Turing machine M to an interactive

Turing machine A.

Definition 2 A Turing machine M is said to have rewindable access to Turing machine A

if

1. A is provided with a special tape T which it may access only per M's orders; and

which M cannot access directly.

2. At any step s of A's computation, M can order A to save its state on the tape T.

3. At any step of A's computation, M can order A to return to any state previously saved

on T.

The intuition for the definition of rewindable access is that, if we have rewindable access

to an interactive machine, we can see how it will behave depending on the inputs we give

it, and will be able to infer some information we would otherwise not have access to.

2.2.2 Procedures

Master key generation:

Definition 3 Asymmetric key generation G is a probabilistic polynomial-time procedure

which, on input 1 k, generates master public/secret key pair (P, S) (notation (P, S) E G(1k)
means that (P, S) were generated by running G) such that

1. The public key P that is produced contains a description (possibly implicit) of a Turing

machine V which accepts input S.

2. For any non-uniform family of polynomial-time Turing machines {Mi}, for sufficiently

large k, for (P, S) E G(lk),

Pr[Mk(P) = s such that V(s) = ACCEPT] = neg(k)
P's

Each user U generates master key pair (Pu, Su) E G(1k) and each organization 0 gen-

erates a master public/secret key pair (Po, So) E Gu(1) using asymmetric key generation

procedure GU.

Organization's key generation: For each type C of credential issued by organization

0, 0 generates a public key/secret key pair (PO, Sc) E Go(1k) using asymmetric key

generation procedure Go. In this thesis, we assume that each organization only issues one

type of credential; our results generalize straightforwardly to handle multiple credential

types per organization.
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Nym generation: The user U generates a nym N for interacting with organization 0

by engaging in a secure interactive procedure NG between himself and the organization.

Definition 4 Nym generation NG is a secure interactive procedure between two parties,

a user with master key pair (Pa, Su), and an organization with master key pair (Po, So).

The common input to NG is (Po), U has private input (Pu, Su), and 0 has private input

(So). We assume that nym generation is done through a secure anonymous communication

channel that conceals all information about the user. The common output of the protocol is

a nym N for user U with the organization. The private output for the user is some secret

information SIU", and for the organization some secret information SI 0

We let N(U, 0) denote the set of nyms that user U has established with organization 0.

In this thesis we assume that there is at most one such nym, although our results can be

easily generalized. Similarly, we let N(U) denote the set of nyms the user U has established

with any organization, and let N(O) denote the set of nyms that the organization 0 has

established for any user.

Communication between a User and an Organization: After a nym is established,

the user can use it to communicate with the organization, using secure nym authentication

defined as follows:

Definition 5 Secure nym authentication is a secure interactive procedure between user U

and organization 0. Their common input to the procedure is N E N(U, 0). The organiza-

tion accepts with probability 1 - neg(k) if the user can prove that he knows (Pu, Su, SIUO)

such that Su corresponds to Pu and N was formed by running NG with user's private in-

put (Pa, SU) and private output SI, Otherwise, the organization rejects with probability

1 - neg(k).

Credentials: There are two kinds of credentials.

Single-use credentials: A single-use credential is a credential that a user may use

safely once, but if used more than once may allow organizations to link different nyms

of the user. A user who wishes to use such a credential more than once should request

instead multiple copies of the credential from the organization.

Multiple-use credentials: A multiple-use credential may be safely transferred to as

many organizations as the user wishes without having to interact further with the

issuing organization.

Credential issue: To issue a credential to nym N E N(U, 0), the organization first

requires that the user proves that he is the owner of N by running nym authentication, and

then the organization 0 and the user U run interactive procedure CI.
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Definition 6 Credential issue procedure CI is a secure interactive procedure between the

user with master public/secret key pair (Pu, SU) and secret nym generation information

S4JQ0, and the organization with master public/secret key pair (Po, So) and secret nym

generation information SI?,, with the following properties:

1. The common input to CI is (N,Po).

2. The user's private input to CI is (Pa, Su, SIU,O)

3. The organization's private input to CI is (So, SINO).

4. The user's private output is the credential, CU,0 .

5. The organization's private output is credential secret information, CSI 0
N,0

Note that the output of CI, namely Cuo, is not necessarily known to the organization.

Credential transfer: To verify that a user with nym N E N(U, 0') has a credential

from organization 0, organization 0' runs a secure interactive procedure CT with the user

U.

Definition 7 Credential transfer procedure CT is a secure interactive procedure between

user U with master public/secret key pair (Pu, SU), nyms N E N(U, 0) and N' E N(U, 0'),

corresponding secret nym generation information SIUUO and Slj,,), and credential Cu,o;

and organization 0' that has master public/secret key pair (Po,, So,) and secret nym gen-

eration information SI ,, . Their common input to CT is (N', Po). U's private input to

CT is (Pu, Su, Cu,0 , N, SI01o, SIj,,) (where N is U's pseudonym with 0). 0' has private
input to CT SIX,,0,. If the inputs to CT are valid, i.e. formed by running the appropriate

protocols above, then 0' accepts, otherwise 0' rejects with probability 1 - neg(k).

Note that if the credential is single-use, CT does not need to be an interactive procedure.

The user needs only reveal CUo to 0', and then 0' will perform the necessary computation.

If the credential is multiple-use, this procedure need not be interactive either. The user

might only need to compute a function on Cu,o, Py and Su and hand the result over to 0'

to convince 0' that he is a credential holder.

2.2.3 Requirements

All the procedures described above constitute a secure pseudonym system if and only if

they satisfy the requirements below. Throughout we assume that there is an interactive

probabilistic polynomial-time Turing machine A that may serve as the adversary in our

definitions.
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Each authenticated pseudonym corresponds to a unique user: Even though

the identity of a user who owns a nym must remain unknown, we require that there exists

a canonical Turing machine called the identity extractor ID, such that for any valid nym

N, given rewindable access to a Turing machine M that can successfully authenticate itself

as the holder of N with non-negligible probability, ID(N, M) outputs valid master public

key/secret key pair with high probability. Moreover, we require that for each nym, this pair

be unique.

We now formalize the requirement that the identity underlying a nym must not be

alterable. We let A specify the number of users and organizations, and let A corrupt all

the users and all except one of organizations. We build an interactive probabilistic Turing

machine M to simulate the uncorrupted organization 0. Adversary A and simulator M

initialize the parties they control. Each user (controlled by A) registers with 0 using as

many different nyms as A specifies. Every time A registers a new nym, we use the identity

extractor to extract a corresponding master public key/secret key pair. Let {(Ni, P, Sj)} be

the set of nyms A successfully registers for with 0 along with the master public key/secret

key pairs that ID extracts from A for each one. Organization 0 issues as many credentials

to each nym as A specifies. Now A attempts to authenticate one of the nyms N, to 0. We

use ID to extract a master public key/secret key pair P', S' from A as it authenticates Nj

to 0. We say that A succeeds if he has a non-negligible probability of authenticating N

and yet (P', S') 4 (P, Si). The system satisfies the unique user for every nym requirement

if for all interactive probabilistic polynomial-time Turing machines A, the probability that

A succeeds in the attack described above is at most neg(k), where the probability is taken

over the coin tosses of A and M.

Security of the user's master secret key: We want to make sure that user U's

master secret key Su is not revealed by his public key Pu or by the user's interaction with

the pseudonym system.

We require that whatever can be computed about the user's secret key as a result of the

user's interaction with the system, can be computed from his public key alone. Let machine

A be the adversary that wants to compute a function of a user's master secret key. Let

user U's public key PU be known. We let A specify the number of users and organizations

in the system, and let A control all users but user U, and all organizations. We then build

an interactive probabilistic Turing machine M that will control U and that will simulate

the life of the system together with A. A initializes all the players it controls by running

the master key generation procedure for each user and for each organization. M initializes

U by generating a master public/secret key pair for U, (Pa, Su). The user U establishes

a nym with each organization. Then each organization issues U a corresponding credential

which he transfers to organizations as specified by A. This last step can be repeated as
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many times as A specifies. Then in the end A outputs its guess for the value of the function

it wants to compute. A succeeds if the value it outputs is correct. The system satisfies

the security of master key requirement if for all interactive probabilistic polynomial-time

Turing machines A, there exists a simulator probabilistic polynomial-time Turing machine

S such that Pr[A succeeds after the experiment] <; Pr[S succeeds on input Pu] + neg(k).

Credential sharing implies master secret sharing: User Alice who has a valid

credential might want to help her friend Bob to improperly obtain whatever privileges the

credential brings. She could do so by revealing her master secret key to Bob, so that Bob

could successfully impersonate her in all regards. We cannot prevent this attack, but we do

require of a scheme, that, whenever Alice discloses some information that allows Bob to use

her credentials or nyms, she thereby is effectively disclosing her master secret key to him.

Let user Alice be interactive probabilistic polynomial-time Turing machine A, user Bob

be interactive probabilistic polynomial time Turing machine B, and the rest of the system

be simulated by interactive probabilistic Turing machine M. First, M initializes the system

and A initializes user Alice with master public key/secret key pair (PA, SA). Then A and

B have a conversation, and together make requests to M to set up Alice's nyms with

various organizations and to issue credentials to those nyms. Recall that every time a

credential is issued, the user to whom it is issued must authenticate that he or she is the

holder of the nym. That way, the identity extractor can verify that for all Alice's nyms Ni,
ID(Ni) = (PA, SA). Then A halts. B chooses an organization 0 from the ones that Alice

has set up an account with and has a credential from. Then B chooses organization 0'

from the ones that Alice has an account with. At this point, we consider B running from its

current state as BT. BT runs the CT protocol with 0' to transfer O's credential for Alice

to Alice's nym with 0'. A and B have succeeded if 0' accepts. The system satisfies the

"credential sharing implies master secret sharing" property if for all interactive probabilistic

polynomial-time Turing machines A and B such that the probability of success is nonneg(k),

there exists a probabilistic polynomial-time Turing machine S such that, S(BT) outputs

SA with probability nonneg(k).

Unlinkability of pseudonyms: We don't want the nyms of a user to be linkable at any

time better than by random guessing. We let the adversary A specify the number of users

u > 2 in the system, the number of organizations o> 2, and corrupt oc 5 o organizations

and uc < u - 2 users. Then we construct another interactive probabilistic Turing machine

M that will control all the players that are not controlled by A and cooperate with A

to simulate the life of a system. The machines A and M each initialize all the players

they control by running the master key generation procedure for each user and the key

generation procedure for each organization. For each user U a nym is established with

each organization 0, and each user authenticates himself as the valid holder of that nym.
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For each nym established we use ID to extract a public key/private key pair (P, S). We

thus (mentally) define a function id which maps each established nym to the corresponding

master public key/private key pair extracted by ID. Then each organization issues a

credential to each user, and each user transfers his credentials to his nyms with all other

organizations. (If it is a single-use credential, the users first get a corresponding number

of copies of each credential.) This last step may be repeated a number of times specified

by A. Finally, A outputs a pair of nyms (Ni, N 2 ) that are nyms of user(s) controlled by

M with organizations controlled by A. In addition, a simulator S chooses uniformly at

random a pair of distinct nyms (Nj', N2) that are also nyms of user(s) controlled by M with

different organizations controlled by A. The system satisfies the unlinkability requirement

if for all interactive probabilistic polynomial-time Turing machines A and sufficiently large

security parameter k, Pr[id(Ni) = id(N2)] - Pr[id(Nj) = id(N2)] <; neg(k). (Note that the

simulator may do much better than the adversary, because the simulator never outputs a

pair of nyms with the same organization. The point of this definition is that an adversary

can only do negligibly better than such a simulator.)

Unforgeability of credentials: We require that a credential may not be issued to

a user without the organization's cooperation. We let adversary A specify the number

of users, the number of organizations, and let A corrupt all the users and all except two

organizations. We build an interactive probabilistic Turing machine M to simulate the

uncorrupted organizations 0 and 0'. The machines A and M initialize the parties they

control. Each user (controlled by A) registers with 0 and 0' using as many different nyms

as A specifies. For each nym established we require that the user authenticates that he is the

valid holder of that nym and we use ID to extract a corresponding master public key/private

key pair (P, S). We thus (mentally) define a function id which maps each established nym

to the corresponding public key/private key pair extracted by ID. Organization 0 issues as

many credentials to each nym as A specifies. Let {Ni} be the set of nyms A registers with

o and obtains credentials for. Now A transfers the credentials to users' nyms with 0' by

running the CT procedure. A succeeds if 0' accepts a credential of a user known by NU such

that id(Nu) V {id(Ni)}. The system satisfies the unforgeability of credentials requirement

if for all interactive probabilistic polynomial-time Turing machines A, for sufficiently large

k, the probability that A succeeds is at most neg(k), where the probability is taken over

the coin tosses of A and M.

Pseudonym as a public key for signatures and encryption: Additionally, there

is an optional but desirable feature of a nym system: the ability to sign with one's nym, as

well as encrypt and decrypt messages.
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2.3 Building a pseudonym system from these procedures

If we are given procedures with the properties as above, we can use them as building blocks

for nym systems with various specifications. To ensure that each user uses only one master

public/secret key pair, and one that is indeed external to the pseudonym system, we need

the certification authority. The certification authority is just an organization that gives

out the credential of validity. The user establishes a nym N with the CA, reveals his true

identity and then authenticates himself as the valid holder of N. He then proves that

ID(N) = (Pu, Su), where Py is U's master public key, as the CA may verify. Then the

CA issues a credential of validity for N, which the user may subsequently transfer to other

organizations, to prove to them that he is a valid user.

In some systems there is no need for a certification authority, because there is no need

for a digital identity to correspond to a physical identity. For example, in a banking system

it is not a problem if users have more than one account or if groups of individuals open

accounts with banks and merchants.

2.4 Other possible features

2.4.1 Distributed CA and other organizations

Since in real life we cannot assume that there is an organization that is trusted by all other

organization, it is a reasonable goal that the duties of the CA should be distributed in some

way. The most obvious one would be to have a group of organizations all participate in

being the CA and issuing the CA credential, and verifying the identity of a user. This step

requires two extensions to the model:

1. The organization's master key generation becomes distributed and robust, i.e. pro-

tected from incorrect behavior of a minority.

2. Procedure CI becomes distributed and robust.

Two new parameters are introduced: n is the number of organizations that represent the

certification authority, t is the number of organizations that need to get together in order

to issue a credential (t for "threshold"), and, as usual, no coalition of t - 1 players should

be able to make any progress towards issuing a credential or discovering the master secret

key of the organization they are distributively representing.

2.4.2 Expiration date

In some systems there may be need to incorporate an expiration date into a credential. This

feature can be easily added to our construction of a pseudonym system from any one-way
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function below; incorporating it into a practical system with a method that is more clever

than updating the public key of the issuing organization, remains an open question.

Credential issue with expiration date: To issue a credential to nym N E N(U, 0),

the organization first requires that the user proves that he is the owner of N, and then the

organization 0 and the user U run interactive procedure CI. The common input to CI is

(N, PC, date). The user's private input to CI is (Pa, SU, SIUO) The organization's private

input to CI is (SOC, SI 0 ). The user's private output is the credential, Cuo. Note that 0

does not see this output.

Credential transfer: To verify that a user with nym N' E N(U, 0') has a credential

from organization 0 that has not expired at time date, organization 0' runs a secure

interactive procedure CT with the user U. Their common input to CT is (N', Po, date).

U's private input to CT is (Pa, SU, CU,o, N, SIU SIU,o,) (where N is U's pseudonym

with 0). 0' has private input to CT SIO,,O,. If the inputs to CT are valid, i.e. formed

by running the appropriate protocols above, then 0' accepts, otherwise 0' rejects with

probability 1 - neg(k).

To accommodate the expiration date option, the unforgeability requirement has an

obvious addition.

2.4.3 No-more-than-once credentials

Another variation on the setting is when an organization issuing a credential only wants

the user to use it once, while an organization verifying the credential does not care that it

is a one-time credential and is satisfied even if it has already been used (and the user does

not care about linking). Our model can accommodate this setting if we have the credential

issuing procedure take the public key of the receiving organization as an extra input, and

employ the techniques introduced by Jakobsson et al. in their work on designated verifier

signatures[25].

2.4.4 Use-i-times credentials

A clear extension on the single-use credential is a credential that is used a certain number

of times. This can be achieved trivially by generating l copies of the credential. It would

be interesting to have the length of the credential itself be the same whether this is a use l

times credential or a use once credential.

We have to modify the credential issue procedure such that it takes l as input. We also

need to add the obvious spending limit requirement: if a credential is used more than 1

times, then two or more instances of credential transfer can be linked.
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2.4.5 Identity escrow

Another optional feature of the system is anonymity-revocation ability by a very trusted

passive third party. This is a topic discussed by Kilian and Petrank[27]. Such a party may

be distributed over a large number of organization, so the user will be assured of anonymity

if he trusts a big number of them.

To make sure that the trusted third party will actually be able to revoke anonymity, the

main procedures will now have the public key of the trusted third party as an extra input.

We will also have an extra procedure that discovers the identity of a pseudonym holder

taking the secret key of the trusted third party as input. This procedure will coincide with

the identity extractor.

In Chapter 3 we will present some theoretical constructions on how this can be imple-

mented.

2.4.6 Credential revocation

Another nice feature, and a challenging question from the point of view of implementa-

tion, is the one of credential revocation. Considering that the credentials, as well as the

pseudonyms, are unlinkable, is it even possible to revoke a credential, other than by chang-

ing the public key and reissuing all credentials that have been issued so far? It is clear that

if the issuing organizations could create a database of revoked credentials and a receiving

organization could check an unspent credential against that database, this would violate the

unlinkability requirement of the basic model. However, in the presence of a trusted third

party, this functionality may be achievable. We discuss constructions for it in Chapter 3.

2.4.7 Credentials from a group of organizations

A number of organizations may be issuing a credential that is of the same type. For

example, if one possesses a Massachusetts driver's license, it does not matter in which town

it was issued. However, the fact that a person has a driver's license from a specific town

may disclose too much information about that person. Therefore, the notion of credentials

from a group may be a useful one. This notion is similar to that of group signatures. If

an organization is a member of a group, it can issue a credential from the whole group.

Computationally, this credential does not reveal any information about which organization

in the group issued it. However, there is a group manager who has a secret key that would

allow him to determine the identity of the issuing organization, if needed. In Chapter 3, we

will demonstrate a theoretical construction that implements this feature.
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Chapter 3

Constructions of pseudonym

systems based on any one-way

function

This chapter focuses on demonstrating that the model that we presented in Chapter 2 is

feasible under the assumption that one-way functions exist. Our theoretical constructions

use zero-knowledge proofs very heavily, and therefore they do not suggest a practical way of

implementing a pseudonym system. Rather, their significance is mostly in demonstrating

the feasibility of pseudonym systems of various flavors. It is also in demonstrating that the

existence of one-way functions is a necessary and sufficient condition for the existence of

pseudonym systems as we define them. Whether one-way functions exist is still an open

problem in cryptography and complexity theory, and the present work is yet another reason

why we want them to exist and why we need research in complexity theory.

We will begin by introducing basic cryptographic notions, such as one-way functions,

bit commitments, signature schemes and zero-knowledge proofs. Then we will show how,

using bit commitments, digital signatures and zero-knowledge proofs, Damgird constructs

a credential mechanism which is different from our model. Then we show how to extend

his result to suit the model for a pseudonym system we defined in the preceding chapter,

as well as its extensions.

3.1 Preliminaries

All of the preliminary definitions below can be found in standard treatments[22].

Definition 8 A function f : {0, 1}* -+ {0, 11* is one-way if

9 There exists a probabilistic polynomial-time algorithm M such that M(x) = f(x).
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* For any non-uniform family of probabilistic polynomial-time Turing machines { Ak},

for sufficiently large |yl,

Pr[Alyl(y) = x such that f(x) = y] = neg(|y|)

where the probability is taken over the random bits of A.

From the way we defined our master key generation protocol, it follows that the existence

of pseudonym systems implies the existence of one-way functions. Therefore, the existence

of one-way functions is a necessary condition for building pseudonym systems. We prove

this fact in the following theorem:

Theorem 1 Existence of one-way functions is a necessary condition for the existence of

pseudonym systems.

Proof: Suppose we are given a pseudonym system as defined in Chapter 2. We show how

to construct a one-way function from the asymmetric key generation procedure G which is

required for the construction of our pseudonym system.

Recall that G is a probabilistic polynomial-time procedure that takes as input the unary

string 1k, and has some random bits on its random tape. Denote these bits by R E {0, 1}P(k),
where p(k) is a polynomial that is the maximum length of a random string that G can

possibly require (since G runs in polynomial time, R cannot possibly have a longer than

polynomial length). By GR(1k) we denote the output of G when the contents of its random

tape is R. By P(GR(1k)), we denote the first, public, part of GR(1k). By P(G(lk)) we

denote the set of all possible values of P(GR(1k)).

The one-way function we propose is

f : {, 1}p(k) -+ {P(G(lk))}

f(R) = P(GR (k))

We need to show that this function is one-way. First of all, there exists an efficient

algorithm that computes it. Second, suppose there existed a (non-uniform) polynomial-

time adversary that, on input P, could with non-negligible probability produce a string R

such that P = P(GR(1k)). Then, by running G(1k) on the random string R, we obtain

S such that the verifier V encoded in P accepts. This contradicts the security of the

asymmetric key generation G. Therefore, a (non-uniform) polynomial-time adversary is

unable invert this function. Therefore, this is a one-way function. 0
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It turns out that using one-way functions, we can construct a bit commitment scheme[30]

and a signature scheme that is existentially unforgeable under adaptive chosen plaintext

attacks[24, 32]. (Actually, just as for the existence of our pseudonym system, the existence

of one-way function is a necessary condition for the existence of these constructions.) Both

are defined below.

A bit commitment scheme is a scheme that allows a user to demonstrate that he is

committed to a value without disclosing it right away. The analogy in the real world

is writing a commitment on a piece of paper, and depositing it into a safe in the bank.

Obviously, once it's there, its contents cannot be changed, however no one except the

person who deposited it has access to it.

Definition 9 A bit commitment scheme is a polynomial-time algorithm that computes func-

tion Commit, with the following properties:

1. Commit takes two inputs: R and b, such that R is a random string of length p(k),

where p is a polynomial, and b is a string of length 1.

2. Hard to invert: For all non-uniform families of probabilistic polynomial-time Turing

machines {Mk}, PrR[MI(b,R)l(Commit(b, R)) = b] < 2- + neg(k).

3. Information hiding: For all functions f : {0, 1}* -+ {0, 1}*, for all non-uniform

families of probabilistic polynomial-time Turing machines {Mk}, there exists a simu-

lator probabilistic polynomial-time Turing machine S such that

Pr[A(Commit(b, R)) = f(b)] < Pr[S(lk, 1) = f(b)] + neg(k)
R

4. Commitment: Let XM(x) be the event that on input x machine M found two pairs,

(b1 ,R 1 ) and (b2 ,R 2 ) such that b1 # b2 and Commit(b1 ,R 1 ) = Commit(b2 ,R 2 ).

For all non-uniform families of probabilistic polynomial-time Turing machines {Mk },

Pr[XM(lk)] = neg(k), where the probability is taken over the random bits of Mk.

To commit to a string, one has to compute the function Commit. To open a commitment

and prove that the value to which one was committed is b, it is sufficient to provide (b, R).

A bit commitment scheme can be constructed from a one-way function[30].

We now give a definition of a signature scheme that is existentially secure against adap-

tive chosen message attack. That is to say that even after an adversary obtains signatures

on some messages it adaptively picked, it still cannot produce a single valid signature on its

own. It has been shown that such a signature scheme can be constructed from a one-way

function[32].
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Definition 10 A signature scheme consists of three algorithms:

Key generation G: G is a probabilistic polynomial-time algorithm that on input 1 k pro-

duces pairs (P, S), where P is the public key of a signature scheme and S is its secret

key. The notation (P, S) E G(lk) denotes that (P, S) was obtained by running G on

input 1 k*. The notation P E G(1k) denotes that P is a public key obtained by running

G(lk).

Sign o-: a- is a probabilistic polynomial-time algorithm that, on input message m E {0, }P(k),

(P, S) E G(1k), produces a string s. The notation s E c-p(m) denotes that s was ob-

tained in this way.

Verify V: V is a probabilistic polynomial-time algorithm such that on input message m,
public key P and string s accepts if and only ifs E up(m).

Of course, one doesn't want to use a signature scheme just with this definition, because

there is nothing said about its security. The following definition incorporates this notion:

Definition 11 A signature scheme is existentially secure if for all non-uniform families of

probabilistic polynomial Turing machines {Mk}, for sufficiently large k,

Pr[Mk(P E G(lk )) outputs (m, s) s.t. V(m, s, P) = ACCEPT] = neg(k)

where the probability is taken over the random bits of G and Mk.

This is still not enough, because this definition tells us only that when the adversary

has access to a public key, it cannot forge a signature. But what if it has access to other

information? The definition below captures the strongest kind of security for digital signa-

tures: the property that an attacker, even if he has obtained signatures on messages of his

own choice, cannot come up with a valid signature on a single other message.

Definition 12 Consider a of probabilistic polynomial-time interactive algorithm A. Let A

have the property that, on input P E G(1k), A sets i = 1 does the following for 1 < i < q(k)

(q is a polynomial):

" Produce ith query mi based on all the input available so far.

e Receive s 1 E ap(mi) from the signing oracle.

* Increment i.
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Then, A produces some output T, denoted as T E A(P).

Consider a probabilistic polynomial-time algorithm B, which on input (P E G(lk), T E

A(P)), outputs a pair (m,s). Let X(A,B) be the event that B outputs (m,s) such that

V1 < i < q(k),m 4 mi and V(m,s,P) = ACCEPT.

A signature scheme is existentially secure against adaptive chosen message attack if

for all families of probabilistic polynomial-time interactive Turing machines {Ak}, and for

all families of probabilistic polynomial-time Turing machines {Bk}, for sufficiently large k,

Pr[X(Ak, Bk)] = neg(k), where the probability is taken over the random bits of G, Ak, Bk.

Recall the definition of a secure interactive procedure in Chapter 2. If we assume that

one-way functions exist, we can talk about efficient zero-knowledge proofs that a string s

belongs to language L in NP. By witness(L, s) we denote the set of strings such that

a non-deterministic Turing machine M that decides L accepts s if it makes the guesses

encoded by a E witness(L, s).

Definition 13 A zero-knowledge proof is a secure interactive procedure such that

1. Common input is string s and the description of a non-deterministic Turing machine

that decides language L.

2. Player A has no input. (A is the Prover.)

3. Player B has no input. (B is the Verifier.)

4. Player A produces no output.

5. Player B's output is the bit b' such that:

" s E L = Pr[b' = 1] = 1

e s ( L => Pr[b' = 0] > 1 - neg(k)

We now define the notion of a knowledge extractor E. E is an interactive polynomial-

time machine, which is given rewindable access to prover P that can prove the statement

s E L.

Definition 14 Suppose we are given a pair of interactive probabilistic polynomial-time ma-

chines (P, V) which correctly perform a zero-knowledge proof that s E L. A knowledge ex-

tractor E for a prover P is a probabilistic polynomial-time machine which, if it is given

rewindable access to P, outputs a E witness(L, s).

We state the following well-known theorem without proof[19].
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Theorem 2 If one-way functions exist, then for any language L E NP, there exists a

polynomial-time verifier V and probabilistic polynomial-time knowledge extractor E such

that for all strings s, s C L if and only if there exists a probabilistic polynomial-time prover

P such that P and V correctly perform the zero-knowledge proof that s E L and, given

rewindable access to P, E outputs a E witness(L, s) with high probability.

A zero-knowledge proof system (P, V) for which a knowledge extractor exists, is called

a strong zero-knowledge proof system. From this point on, when we refer to any zero-

knowledge proof, we mean "strong zero-knowledge."

We are now ready to present Damgird's construction for a credential system based on

any one-way function.

3.2 Damgaird's construction

Since Damgard's model is different from our own and is not the focus of this paper, we will

not present his model, but will just sketch the construction.

In Damgi'rd's model there is no notion of a user's master secret key and master public

key, but each user has an ID string. For example, a user's ID string is his social security

number. Each organization, including the CA, has a public key/secret key pair obtained by

running G(1k), where G is the key generation procedure for signatures, as defined above.

To register with the CA, the user U reveals his IDU to the CA, and obtains CUCA E

OCA (IDu).

To establish a pseudonym with an organization 0, the user U computes

NUo = Commit(IDu, Ryo)

where Ryo is the random string that the user generates in order to establish this pseudonym.

To prove that it is valid and that he has registered with the CA, the user proves knowledge

of IDU, Ryo and CUCA such that

1. Nuo = Commit(IDu, Ryo)

2. Verif ycA(IDu, CUCA) = ACCEPT

A credential from organization 0 is just a signature Cuo E oo(Nuo). To transfer a

credential from NUo to Nu,o', the user proves in zero knowledge that he knows IDu, Ry,o,

Nyo, Ru,o, and CU,o such that:

1. No = Commit(IDu, Ryo)

2. NUo, = Commit(IDu, Ry,o,)
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3. Cuo E ao(Nu,o)

The security of this construction follows from the security of the bit commitment scheme

and the security of the signature scheme.

3.3 Construction of a system with multiple-use credentials

Our theoretical construction of a system with multiple-use credentials is a straightforward

extension of the construction presented in the previous section.

A user U runs G(1k) to create his master public key/secret key pair (Pa, Su); an orga-

nization 0 creates its master public key pair (Po, So) similarly.

To register with the CA, the user reveals his public key Py to the CA. The CA outputs

CU,CA G OICA(PU).

To establish a pseudonym with an organization 0, the user U computes

NUo = Commit((Pu, SU), Ryo)

where RUo is a random string that the user has generated for the purposes of computing

this pseudonym and which corresponds to his private output SI,O.

To prove that his pseudonym NUo is valid and that he has registered with the CA, the

user proves knowledge of PU, SU, RyP and CUCA such that

1. Su corresponds to PU.

2. NUo = Commit((Pu, SU), RU,o),

3. Verif ycA(Pu, CUCA) = ACCEPT.

The identity-extractor ID is the knowledge extractor for the above zero-knowledge proof

of knowledge that outputs Pu and Su components.

To issue a credential to a user known to the organization 0 as N, the organization 0

outputs a signature Cuo E uo(N).

Let the user's nym with organization 0' be N'. To prove to 0' that he has a credential

from 0, the user executes a zero-knowledge proof of knowledge of Py, SU, R, R', N and

Cu,o E uo(N) such that

1. Su corresponds to PU.

2. N = Commit((Pu, Su), R),

3. N' = Commit((Pu, SU), R'),
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4. Verif yo(N, CUo) = ACCEPT.

Theorem 3 The system described above is a pseudonym system.

Proof: It is straightforward to verify that the input-output specifications for all the

procedures described above satisfy the definition of a pseudonym system. Therefore, the

only things that remain to be shown are the following:

1. Show that the nym generation, credential generation, and credential transfer proce-

dures are secure.

2. Show that the system satisfies all of the additional requirements.

Security of the nym generation procedure: Since the nym generation is a one-

round procedure (i.e. the user generates a nym and hands it over to the organization), its

security follows trivially.

Security of the credential issue procedure: Since the credential generation is also

a one-round procedure, its security follows trivially.

Security of the credential transfer procedure: The user has a credential CUo

issued to him by organization 0 to his pseudonym N. He transfers it to organization 0

which knows him by N'. Since zero-knowledge proofs are used to prove knowledge of Pu, SU,
R, R', N and Cuo E ao(N), nothing except the following is revealed to the organization:

1. Su corresponds to Pu.

2. N = Commit((PU, SU), R),

3. N' = Commit((Pu, Su), R'),

4. Verif yo(N, Cu,o) = ACCEPT.

The above statements can be true if and only if the user known to 0' by N' possesses a cre-

dential from 0. Therefore, the simulator for the zero-knowledge proof of these statements,

is a simulator for the zero-knowledge proof of the fact that U possesses Cu,o, and we have

satisfied the definition of a secure interactive procedure.

Each authenticated pseudonym corresponds to a unique user: It follows from

the definition of a bit commitment scheme that a polynomial-time user can only know one

way to open a commitment. For authentication, we use proofs of knowledge of how to open

a commitment. A knowledge extractor for this proof will output the (P, S) used in the

commitment. Therefore the identity is unique.

Security of the user master secret key: This follows from the security of the bit

commitment to the secret key, and the zero-knowledge properties of the proofs used in the

protocols.
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Credential sharing implies master secret key sharing: The proof used in creden-

tial transfer is a proof of knowledge, and therefore, given rewindable access to the prover,

one can recover the secret key corresponding to the nym on which the credential was issued.

Hence, if a user U is able to use a credential belonging to user U', then the secret key of U'

can be extracted from U.

Unlinkability of pseudonyms: It follows from the zero-knowledge properties of the

proofs used in the protocols that no organization learns more than what the nym itself

reveals. A nym is a bit commitment to a user's secret key, and so by the security properties

of the bit commitment, a nym of one user cannot be distinguished from a nym of another

user.

Unforgeability of credentials: In order to forge a credential, a user must succeed in

transferring a credential he does not possess. By the existential unforgeability under chosen

message attack of the signature scheme used, no user can forge a signature on his nym.

If a user were able to give a proof of knowledge of such a signature with non-negligible

probability, which he must in order to transfer it, one could extract the forged signature

from the user in polynomial time. This is a contradiction, and hence credentials cannot be

forged. 0

3.4 Construction of a system with single-use credentials

This is essentially the same construction. The master key and pseudonym generation pro-

cedures are identical. The differences are in the credential issue and transfer procedures.

Before requesting a credential, the user generated a random serial number for his cre-

dential, w, and a random string Rw and computes W = Commit(w, R,). He then hands S

over to the issuing organization.

To issue a one time credential to a user known to the organization 0 as N, the organi-

zation 0 obtains input W from the user and outputs a signature C W E uo(W, N).

Let the user's nym with organization 0' be N'. To prove to 0' that he has a credential

from 0, the user discloses w and executes a zero-knowledge proof of knowledge of PU, SU,

R, R', Rw, W, N and Cwo E o o(W, N) such that

1. W = Commit(w, Rw)

2. Su corresponds to PU.

3. N = Commit((Pu, SU), R),

4. N' = Commit((Pu, Su), R'),

5. Verifyo((W, N), CW) = ACCEPT.
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The security of this system follows from the security of the multiple-use credential system

described above, as well as from the security of the bit commitment scheme.

3.5 Other variations

The ability to prove a statement in zero-knowledge is a very powerful tool for constructing

pseudonym systems of various flavors. It is therefore not surprising that, in addition to the

basic pseudonym system construction, we could also come up with theoretical constructions

that implement some other possibly desirable features of a pseudonym system.

3.5.1 Distributed CA and other organization

Given the system we have constructed, and the results in multi-party computation[19], we

know that if trapdoor permutations exist, each party in the scheme we constructed can be

replaced by a group of parties, such that the functionality of the system is preserved.

3.5.2 Expiration date

To incorporate an expiration date into a credential, we have the following modification to

the credential issue and transfer protocol:

To issue a credential with expiration date D to a user known to the organization 0 as

N, the organization 0 outputs a signature C5o E ao-(D, N).

Let the user's nym with organization 0' be N'. To prove to 0' that he has a credential

from 0, the user discloses s and executes a zero-knowledge proof of knowledge of Py, SU,
R, R', D, N and CUP E Uo(N) such that

1. Current time is not D yet.

2. SU corresponds to Py.

3. N = Commit((PU, Se), R),

4. N' = Commit((Pu, Su), R'),

5. Verif yo((D, N, )Co) = ACCEPT.

The security of this extension follows from everything else we have seen.

3.5.3 No more than once credentials

Here we replace the signature scheme we are using for credential issue with designated

verifier signature scheme[25]. This will require the existence of trapdoor permutations,

which is a stronger assumption than that of the existence of one-way functions.
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3.5.4 Identity escrow

We can construct pseudonym systems with identity escrow if public-key cryptosystems

semantically secure against adaptive chosen ciphertext attacks exist[1, 14].

To generate a nym, instead of the Commit function, the user U encrypts (Pa, SU)

under the public key E of the trusted third party. The security of the resulting pseudonym

system follows from the security of the original pseudonym system and the security of the

cryptosystem. To revoke anonymity of a pseudonym, the trusted third party decrypts the

pseudonym in question.

Alternatively, the user can just append E(Py) to N E Commit(Pu, Su), and prove that

the public key P underlying them is the same. That way the trusted third party cannot

obtain the user's secret key just by revoking his anonymity. This additional step will not

compromise the security of the pseudonym system because the encryption scheme that will

be used is secure against adaptive chosen ciphertext attack.

However, the assumption we are using here about the existence of such a cryptosystem

is rather strong. There are no general-assumption-based constructions of cryptosystems

that are semantically secure against adaptive chosen ciphertext attack.

3.5.5 Credential revocation

As we have previously mentioned, credential revocation can only work if there is a trusted

third party. If we allowed it without a trusted third party, user's pseudonyms could become

linkable as a result of credential transfer.

Since we do not want to involve the trusted third party in confirming that a credential

has not been revoked, credential revocation is a procedure that may cause some identity

compromise. In case of single-use credentials, this identity compromise is not very threat-

ening: a credential can only be revoked before it is used, and the user holding it is notified,

and therefore this user can prevent his identity from being compromised. However, revok-

ing a multiple-use credential will compromise the identity of its holder to a larger extent,

because all organizations to which this credential has been transferred in the past will now

be able to link the user by this credential.

If we assume that there is a trusted third party, and there exists a cryptosystem semanti-

cally secure against adaptive chosen ciphertext attack, we can construct pseudonym systems

with credential revocation. We do this differently for single- and multiple-use credentials.

For single-use credentials, just as before, the user generated a random serial number for

his credential, w. He then encrypts it under trusted third party encryption algorithm E

using randomness R, to get W E E(w, R,). (We index the randomness by w to denote

that this randomness is secret information pertaining to credential with serial number w).
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As before, W is handed over to the issuing organization.

The credential transfer protocol remains essentially the same.

To revoke a credential with encrypted serial number W, the issuing organization hands

it over to the trusted third party. The trusted third party decrypts and gets w. It checks

that w has not been spent yet. It then appends w to a list of revoked credentials.

For multiple-use credentials, this will be done in a completely different fashion. The

trusted third party publishes its public encryption algorithm, ETTp.

The user U picks a random serial number w and a random public-key encryption and

decryption functions (Em, Dw) (we index them by w to denote that they are associated

with the credential with serial number w). He then computes W = (W 1 , W2) where Wi E

ETTP(Ew, Dw) and W2 E Ew(w) and hands W over to the issuing organization.

The credential issue protocol is essentially the same.

To transfer a credential, the user produces a string W' E Ew(w), and hands it over to

the receiving organization 0'. He then performs all the necessary zero-knowledge proofs of

correctness, as before.

To revoke a credential, the issuing organization contacts the trusted third party and

produces W. The trusted third party decrypts Wi ETTP (Ew, Dw) and obtains the cre-

dential decryption algorithm Dw. This allows it to decrypt W2 E Ew(w) and recover w.

Now the trusted third party publishes w, Dw in the database for revoked credentials. Any

organization receiving a credential from a user can now run Dw on the string W' that it

receives from a user and check if it decrypts to w, and, if so, reject the credential.

The problem with this is that if a user's credential is revoked, his pseudonyms can be

linked. There are other constructions that prevent that, but their drawback is that they

take as input to a zero-knowledge proof the entire database of revoked credentials.

3.5.6 Credentials from a group of organizations

Let us assume the existence of a public-key cryptosystem secure against adaptive chosen

ciphertext attack. If we allow the public key of each group of organizations to be linear

in the size of the number of the organizations in the group, this extension is trivial. The

group public key is just a list of public keys of organizations in the group {Poi } and the

encryption algorithm of the group manager EGM. Everything remains the same as in the

main construction, except that in the credential transfer procedure, instead of proving that

Verifyo(N, Cu,o) = ACCEPT, the user proves that there exists Po E {Poi } such that

Verifyo(N, Cuo) = ACCEPT and discloses EGM(s), proving that s = Po.

It remains an open question how to do this in a more efficient way, i.e. without the

increase in the size of the public key of the issuing group of organizations[6].
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Chapter 4

Practical constructions

We will begin this chapter by describing some well-known constructions based on the discrete

logarithm problem. We then show how, using these constructions, to build a scheme that

implements our model of a pseudonym system with one-time credentials.

4.1 Preliminaries

Our construction is based on number-theoretic assumptions that certain functions are hard.

4.1.1 The discrete logarithm problem

The hardness of computing discrete logarithms (DL for short) in a group of prime order, is

a widely believed conjecture. Suppose we are given an k-bit prime number q and a prime

number p such that q|(p - 1). By Z* we denote the multiplicative group modulo p. Let

g E Z* be of order q. Then g is a generator of a group of order q, let's call it Gq.
p

Conjecture 1 Given g,h E Gq, such that h was selected from Gq uniformly at random, it

is hard to compute an integer x such that

gX = h modp

For the ease of notation, we will sometimes drop the " mod p" part of the arithmetic

expressions in Gq.

4.1.2 The Diffie-Hellman problem

The setting for the computational Diffie-Hellman problem[16, 4] is the same as for the

discrete logarithm problem: we have a group Gq with a generator g just as before.
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Conjecture 2 Given g,h1,h 2 E Gq, where h1 = g' mod p and h2 = gy mod p are selected

uniformly at random, it is hard to compute h3 such that h3 = gX9Y mod p.

Besides the standard, computational, Diffie-Hellman conjecture, there is also a conjec-

ture that it is hard to distinguish the distribution D of the form (g, g', gY, gXy) from the

distribution R of the form (g, gx, gY, gZ), where x, y, z are chosen independently.

Conjecture 3 For any sequence of primes {qi}, where |qiJ = i, for all non-uniform fami-

lies of oracle Turing machines {Mj}, for sufficiently large k, if the a-priori probability of

selecting D, as opposed to R as the oracle is 1/2, then

Pr[Mk guesses the oracle correctly] < 1/2 + neg(k)

4.1.3 The random oracle model

The random oracle model[2] is a widespread way of arguing about the security of a cryp-

tographic scheme. Suppose there existed a universally trusted and always available trusted

third party. Then most of cryptographic problems would go away. The random oracle is

a way of relaxing this desire for a trusted third party, by the desire that there is a trusted

source of random function: bits that everyone trusts not to be precomputed, but to have

been obtained through a query to an oracle that outputs random bits.

If a scheme is secure in the random oracle model, it follows that breaking it implies

solving a computationally hard problem if a truly random oracle existed. But since a

random oracle does not exist, and is replaced by a collision-resistant hash function, a proof

of security in the random oracle model is a weaker proof of security than a traditional one[8].

However, it is still considered good enough in practice if it is used with a scheme that is

sensibly designed (i.e. with a scheme that does not output its secret key upon receiving

some low probability input).

4.2 Building blocks

The protocols that follow are the main building blocks of our construction.

4.2.1 Proving equality of discrete logarithms

First, we review protocol H, the protocol of Chaum and Pedersen[12] that is assumed, to

be a zero knowledge proof of equality of discrete logarithms.
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This protocol proves both knowledge of the discrete logarithm x, and the fact that it is

the same for (g, h) and (§, h).

Theorem 4 If, as a result of executing protocol H, the verifier accepts, then with probability

1 - neg(k), the prover knows x such that gx = h mod p.

Proof: Suppose we are given rewindable access to the prover, and have him respond to

different challenges cl and c2, we obtain x by solving a system of linear equations y1 = r+cix

and Y2 = r + c2X. Then the prover who can respond to more than one challenge for a fixed

commitment r must know x.

Suppose the prover can respond to only one challenge. The probability that the veri-

fier picks that challenge is negligible. Therefore, in this case, the verifier will reject with

probability 1 - neg(k). 0

Theorem 5 If, as a result of executing protocol H, the verifier accepts, then with probability

1--neg(k), x1 = x 2 , where x1 is such that gxl = h mod p and x 2 is such that §x1 = h mod p.

Proof: Suppose the verifier accepts and xi 5 X2. Then we have: y = ri + cxi = r2 + cX2-

It follows that for any choice of ri, r 2 , there is a unique challenge c such that this equation

is satisfied. The probability that the verifier will pick this challenge is negligible. M

Finally, we conjecture that this protocol does not reveal anything about the value of the

secret x:

Conjecture 4 Protocol H is a secure interactive procedure[12, 33].

We note that the knowledge extractor E for protocol H just needs to ask the prover two

different challenges on the same commitment, and then solve the corresponding system of

linear equations y1 = r + cix and Y2 = r + c2X to compute the secret x.
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Protocol H for Proving Equality of Discrete Logarithms:

Common inputs: g, h, j, h E Gq

Prover knows: x E Z* such that h = gx and h =

P - V : Choose r ER Z*; Send (A = gr, B = r).

V -+P: Choose c ER Zq*; Send c.

P -+V: Sendy=r+cxmodq.

V: Check that gY = Ahc and §Y = Bhc

Note that to obtain UNI, the non-interactive version of H,

set c = W(A, B), where 'R is the hash function.



4.2.2 Non-interactive proof of equality of DL

We note that H can be made non-interactive (we denote it by HNI) by using a sufficiently

strong hash function '7 (for example a random oracle[2]) to select the verifier's challenge

based on the prover's first message.

4.2.3 Blind non-interactive proof of equality of DL

Clearly, we can obtain a transcript of this non-interactive protocol by executing the inter-

active protocol. In addition, we can execute the interactive protocol in such a way that

the prover's view of it cannot be linked with the resulting transcript. In protocol F, if y is

selected at random, the transcript produced by F is equally likely to have come from any #

and any choice of r and c.

The above protocol is blind, that is, if the verifier runs it with the prover several times

and then shows one of the outputs to the prover, the prover will not be able to guess

correctly which conversation the output refers to, any better than by random guessing.

Theorem 6 The verifier's output in protocol r is independent of the prover's view of the

conversation.

Proof: Suppose that -y and r are fixed, as they are in the beginning of a conversation

between the prover and the verifier.
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Protocol r: Producing a Blinded Transcript of Protocol HINI:

Common inputs and prover knowledge: same as in protocol 17

Verifier input: 7 E Z*.

Verifier wants: use prover of II to produce valid transcript of protocol

1 1 NI on input g, h, G = §7, H = h7.

Note: Prover behavior is identical to protocol H.

P-+V: Chooser ER Z*; Send (A=gr,B = r).

V -+ P : Choose a, #, ER Z*- Let A' = AgahO , B' = (Bja h13

Send c = 71(A', B') + # mod q.

P--+V: Sendy=r+cxmodq.

V: Check that gY = Ah and §Y = Bhc.

Note: g(y+a) = A'h(c-p) and 5(y+a) = B'H(c-).

V : Output transcript: ((A', B'), -(A', B'), y + a).



Then observe that for any choice of a, 3, there is a unique choice for the verifier's output.

And, for each choice of verifier's output, there is a unique choice of a,3.

It follows that, if a and 3 are always picked uniformly at random, this will induce

the uniform distribution on the output of the verifier. Therefore, the prover will get no

information as to which conversation a given output corresponds to. U

4.3 The construction

We are now ready to present our construction based on the building blocks introduced

above. We will not present the construction due to Lidong Chen[13] but we would like to

acknowledge our construction uses these same building blocks and, as a consequence, many

of the same ideas.

4.3.1 High-level description

A user's master public key is g', and the corresponding master secret key is x. A user's

nym is formed by taking a random base a, such that the user does not know logg a, and

raising it to the power x. As a result, all of the user's nyms are tied to his secret x. When

a credential is issued, we want to make sure that it will not be valid for any secret other

than x.

A credential in our construction is a non-interactive proof of knowledge of the organi-

zation's secret. If the user uses it twice, it can be linked, since he cannot produce another

such credential on his own.

4.3.2 Detailed description

The pseudonym system protocols are implemented as follows:

User master key generation: The user picks his master secret x E Z* and publishes

gX mod p.

Organization credential key generation: The organization picks two secret expo-

nents, si E Z* and s2 E Z*, and publishes g 1 mod p and gs2 mod p.

Nym generation: We describe this protocol in the figure below.
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Pseudonym Generation:

User U's master public key: gX

User U's master secret key: x

U: Choose y ER Z*. Set =gY and b = &x.

U -+0: Send (a, b).

0: Choose r ER Z*. Set a = r.

0- U: Send a.

U: Compute b = ax.

U +-+ 0: Execute protocol II to show loga b = logg b

U, O: Remember U's nym N = (a, b).

Note that in the special case that 0 is the CA, the user should

send (g, gx) instead of (i, b).

Communication between a user and an organization: To authenticate nym (a, b),
the user and the organization execute a standard secure protocol that proves user's knowl-

edge of loga b. (E.g. they can run II to prove that loga b = loga b.)

Credential issue and transfer: These protocols are described in the figure below.

Issuing a Credential:

User's nym with organization 0: (a, b) where b = aX

Organization O's public credential key: (g, h1 , h2 ) where h1 = gl, h2 = gs2

Organization O's secret credential key: (S1, S2)

0 -+ U: Send (A = bs2 ,B = (abs2)s1).

U: Choose y En Z.

0 +-+ U: Run F to show log A = logg h2 with Verifier input -y.

Obtain transcript T 1 .

0 <-+ U: Run F to show log(aA) B = log9 hi with Verifier input 7.

Obtain transcript T 2 .

U: Remember credential Cu,0 = (a7, b7 , A^, B7, T1, T 2 ).
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Transferring a Credential to Another Organization:

Organization O's public credential key: (g, h1 , h2 ) where h1 = g", h2 = gs2

User's nym with organization 0': (a, b) where b = ii

User's credential from organization 0: Cu,o = (a', b', A', B', T1 , T 2 )

o': Verify correctness of T and T2 as transcripts for UNI

for showing logyb A' = logg h2 and log(a'A') B' = log9 hi.

U 0O' : Execute Protocol H to show loga b = loga, b'.

The nym as public key for signatures and encryption: There are many encryption

and signature schemes based on the discrete logarithm problem that can be used, such as

the ElGamal[18] or Schnorr[33] schemes.

4.3.3 The assumptions used

We use the random oracle model. In addition, the hardness assumptions below are necessary

to prove security of our scheme for pseudonym systems. Recall the setting - publicly known

are: p, a large prime number; q, a large prime divisor of p - 1; and g a generator of a

multiplicative subgroup of Z* of order q. We denote this group by Gq.

1. We rely on the Decisional Diffie-Hellman assumption.

2. We assume that Protocol H for proving equality of discrete logarithms is secure.

3. We introduce a new assumption. Given are:

(a) g, 91l, gs2 E Gq

(b) oracle access to a machine M that does the following: on input x, M produces

(a, aXs2, asl+xsis2), where a ER Gq

The assumption is that it is hard, after querying M on inputs {xi}, to produce a

3-tuple of the form (a, aYs 2 , asl+Ysls2) such that a = 1 and y V {x}. While this last

assumption appears to be new, and not implied by other standard number-theoretic

assumptions, we believe that it is reasonable.

4.3.4 Proof of security granted the assumptions

Under the assumptions above, the proposed practical scheme satisfies the definition of a

pseudonym system given in Chapter 2.

It is clear that all the procedures satisfy the input/output specifications.
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Key generation: the security of the key generation procedure follows from the as-

sumption about the hardness of computing discrete logarithms.

Nym generation: nym generation is a secure procedure because, if we assume that

procedure H is simulatable, the nym generation is also simulatable, for both parties.

Credential issue: in the random oracle model, credential issue is a secure procedure.

This follows because, in the random oracle model, from the security of F, we get that there

is a simulator that can simulate either party's view of the protocol given this party's input

and output.

Credential transfer: credential transfer is secure if H is secure.

Each pseudonym corresponds to a unique user: The nyms in our system are of

the form (a, ax). The master public/secret key pairs are of the form (g', x). Thus, the ID

function is the knowledge-extractor for protocol 11 that produces x, and thus gx, x can be

formed. Thus, for every nym there is exactly one public key/secret key pair that can be

extracted.

Security of the user master secret key: We assume that the equality of discrete

logarithms proof is secure. From that, and the hardness of the discrete logarithm problem,

we get that pseudonym generation, credential issue and credential transfer are also secure

procedures. Therefore, there exists a simulator for any interaction in the system. Therefore

everything that can be inferred about the user master secret key throughout the lifetime

of the system, can be extracted by simulating the lifetime of the system without the user's

participation. That is, x can be extracted from g'. This contradicts the hardness of discrete

logarithm assumption.

Credential sharing implies master secret key sharing: If a party in our scheme

can prove knowledge of the secret key through protocol H, then this party knows x since

we could extract x from it by running the knowledge extractor E with it.

Unlinkability of pseudonyms: We show that the pseudonyms are unlinkable by

induction. We will show that if two nyms can be linked at moment t, then they could be

linked at moment t - 1. Thus, they can be linked at the time when they were just created.

This violates the decisional Diffie-Hellman assumption.

Suppose we are at time t and two nyms are linked for the first time in the lifetime of

the system. By "linked" we mean that there exists a function that can now be computed

on these pseudonyms that could not be computed before, and could not be computed if a

trusted third party were carrying out all credential transfers.

Suppose at time t we just finished an operation not involving the owner of these

pseudonyms. Then whatever can be known about them at time t must have been known

at time t - 1.

Suppose at time t we just finished an operation involving the nym holder, but not
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involving any other of his pseudonyms. If, as a result of this operation, we can link the two

pseudonyms, then we have also linked some other of his pseudonyms, and so we consider

these other nyms as being linked for the first time. So without loss of generality assume

that at time t we just performed an operation that involved one of the pseudonyms.

Suppose we just finished credential transfer between these two pseudonyms. But cre-

dential transfer is a secure interactive procedure. Therefore, whatever can be computed as

a result of credential transfer, can be computed just from its output. But if we could link

nyms as a result of the output of credential transfer, then we violate the decisional Diffie-

Hellman assumption. Therefore, if our last operation at time t was credential transfer, then

two nyms must already have been linked at time t - 1.

Suppose at time t we just finished credential issue on one of these pseudonyms. But

credential issue is a secure procedure as a result of which the organization does not receive

any output. Therefore, if two nyms can be linked now, they could already be linked at time

t - 1.

Finally, can two pseudonyms be linked at the time when one of them is just generated?

No, because nym generation is a secure procedure, and inferring information from its output

would violate the decisional Diffie-Hellman assumption. Then the nyms can be linked before

one of them is even generated, which is a contradiction.

Unforgeability of credentials: This follows from the new assumption and the zero-

knowledge nature of protocol 1'. In particular, the process of establishing a nym with an

organization, and then obtaining a credential from that organization, corresponds precisely

to the behavior of the oracle from the new assumption.

4.4 Multiple-use credentials

We have not been able to construct a system with multiple-use credentials which would

completely conform to the specifications of our model. However, with a slight variation on

the model and a straightforward modification of the scheme described above, we can get a

scheme with multiple-use credentials.

The modification of the model will have the issuing organization participate in the

credential transfer procedure. Suppose the user has a credential C. He computes a function

on it, f (C), and hands f (C) over to the receiving organization. He is able to prove that f (C)

corresponds to a nym that he owns, but he is unable to prove that f(C) is a credential.

However, if the receiving organization can ask the issuing organization's help with the

verification that f(C) corresponds to a credential, that would confirm that the user indeed

has a credential.

To implement this, our pseudonym generation and credential issue procedure will remain

45



the same. As a result, the user will possess Cu,o = (a, b, A, B), where A = bs2, B = (abs2)sl,
and (a, b) = (a, ax) is the user's nym with the issuing organization. The user can therefore

sample, for any -y, the 4-tuples fy(Cu,o) = (a7 , b7 , A7, B7). For any 4-tuple formed that

way, for any correctly formed pseudonym (a', b'), the user will be able to prove that loga b =

loga, b'. If the issuing organization cooperates with the receiving organization, it can confirm

that f7 (Cu,o) is a valid credential that corresponds to nym (a7 , b7). This is as secure as

the scheme with one-time credentials.
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Chapter 5

Conclusions and open questions

The present thesis poses a number of open problems which fall into three main categories.

The first category of open problems is definitional: what are the desirable features of a

pseudonym system not already captured by our model?

The second category is coming up with theoretical constructions for our model and its

extensions that would not rely as heavily on zero-knowledge proofs.

Finally, the third category of open problems has to do with practical constructions for

pseudonym systems in our model. Here, we have open problems of two flavors: a number-

theoretic question of whether our assumption is equivalent to the known assumptions such

as the decisional Diffie-Hellman assumption; and the problem of a practical construction of

a pseudonym system scheme with multiple-use credentials.

5.1 Extensions to the model

We have considered some extensions to the model that would allow to incorporate such

features as expiration dates, use 1 times credentials, distributed duties of each organization,

credentials from a group of organizations, anonymity and credential revocation mechanisms,

and credentials that cannot be used more than once.

However, the list of possibilities is by no means exhausted. Depending on the application

of a pseudonym system, there may arise extensions of the model we have not considered.

In general, we believe that the model we have presented captures the essential ingredients

of a pseudonym system: the notions of users and organizations are well defined, and from

these we derive the unforgeability and unlinkability properties of a pseudonym system. As

a result of the unforgeability property, the organizations rest assured that a user cannot

forge a credential; as a result of the unlinkability property, a user can rest assured that

whatever an organization can learn about him, it can only learn through him.
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5.2 Theoretical constructions

The basic theoretical constructions we have given, although impractical due to the heavy

use of zero-knowledge proofs, are optimal in the sense that the complexity of all operations

depends on the security parameter only.

However, there are many ways to improve our theoretical constructions. The main open

question here is the construction of a non-interactive theoretical pseudonym system, i.e. a

pseudonym system where instead of having an interactive zero-knowledge proof of correct-

ness for each credential, we can have non-interactive zero-knowledge proofs. It would be

better still to be able to eliminate zero-knowledge proofs altogether and base the pseudonym

system on general assumptions such as one-way functions and trapdoor permutations.

In addition, nice theoretical constructions are wanted for the extensions of the basic

model. For example, our construction of credentials from a group of organization is imprac-

tical: the public key of the group is linear in the size of the group.

5.3 New practical constructions

We have presented a construction which is an improvement over the previous best practical

construction due to Chen[13}: the notion of a user is well-defined, and the organizations in

the system are protected against a cheating CA. We have also made it possible to eliminate

the CA in some cases while Chen's scheme requires the presence of a CA.

On the other hand, although a significant improvement over the existing practical con-

struction, our construction is still far from giving us the main mechanism we are looking

for: a practical pseudonym system with multiple-use credentials.

In addition, our practical scheme is based on a new assumption. It is an open problem

to come up with a practical scheme for a pseudonym system that would not be utilizing

this assumption.

5.4 Conclusions

The present work's contributions are in defining a model for pseudonym systems and proving

it feasible, as well as proposing a practical scheme which is a significant improvement over

its predecessors.

We do not live in a world where everyone has a public key and a secret key they use

to sign documents every day. However, it seems that we are moving towards it. As we

are shifting into the computerized world, encryption and digital signatures are becoming

increasingly important, and, hand in hand with them, the desire to protect one's keys.
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Therefore, although not immediately practical, we believe that the model in which we are

working will become so in its due time.
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