4 research outputs found

    Data structures for set manipulation- hash table, 1986

    Get PDF
    The most important issue addressed in this thesis is the efficient implementation of hash table methods. There are credential trade-offs in a desired implement ion. These are discussed in issues such as hash addressing, handling collision, hash table layout., and bucket overflow problems. The criteria of good hash function is providing even distribution. Collision is the major problem in hash table methods. Two major hashtable methods are discussed. Open Addressing Method places the synonymous items somewhere within the table. The Chaining Method, however, chains all synonymies and stores them somewhere outside the table called overflow area. Hash table is widely used by system software as an ideal data structure. Hash Table -applications canbe found in compiler's symbol table, database, directories of file organizations, as well as in problem-solving application programs

    A Blockchain Definition to Clarify its Role for the Internet of Things

    Get PDF
    The term blockchain is used for disparate projects, ranging from cryptocurrencies to applications for the Internet of Things (IoT). The concept of blockchain appears therefore blurred, as the same technology cannot empower applications with extremely different requirements, levels of security and performance. This position paper elaborates on the theory of distributed systems to advance a clear definition of blockchain allowing us to clarify its possible role in the IoT. The definition binds together three elements that, as a whole, delineate those unique features that distinguish the blockchain from other distributed ledger technologies: immutability, transparency and anonymity. We note that immutability - which is imperative for securing blockchains - imposes remarkable resource consumption. Moreover, while transparency demands no confidentiality, anonymity enhances privacy but prevents user identification. As such, we raise the concern that these blockchain features clash with the requirements of most IoT applications where devices are power-constrained, data needs to be kept confidential, and users to be clearly identifiable. We consequently downplay the role of the blockchain for the IoT: this can act as a ledger external to the IoT architecture, invoked as seldom as possible and only to record the aggregate results of myriads of local (IoT) transactions that are most of the time performed off-chain to meet performance and scalability requirements

    What is a Blockchain? A Definition to Clarify the Role of the Blockchain in the Internet of Things

    Get PDF
    The use of the term blockchain is documented for disparate projects, from cryptocurrencies to applications for the Internet of Things (IoT), and many more. The concept of blockchain appears therefore blurred, as it is hard to believe that the same technology can empower applications that have extremely different requirements and exhibit dissimilar performance and security. This position paper elaborates on the theory of distributed systems to advance a clear definition of blockchain that allows us to clarify its role in the IoT. This definition inextricably binds together three elements that, as a whole, provide the blockchain with those unique features that distinguish it from other distributed ledger technologies: immutability, transparency and anonimity. We note however that immutability comes at the expense of remarkable resource consumption, transparency demands no confidentiality and anonymity prevents user identification and registration. This is in stark contrast to the requirements of most IoT applications that are made up of resource constrained devices, whose data need to be kept confidential and users to be clearly known. Building on the proposed definition, we derive new guidelines for selecting the proper distributed ledger technology depending on application requirements and trust models, identifying common pitfalls leading to improper applications of the blockchain. We finally indicate a feasible role of the blockchain for the IoT: myriads of local, IoT transactions can be aggregated off-chain and then be successfully recorded on an external blockchain as a means of public accountability when required
    corecore