
ABSTRACT
t

MATHEMATICS ARD COMPUTER SCIENCE
at k „

BENJAMIN KAI-HSIEN HSU B.S., CHUNG-YUAN UNIVERSITY, 1982
t

Data Structures for Set Manipulation - Hash Table Method

Advisor: Dr. Nazir A. Warsi

Thesis dated May 1986

The most important issue addressed in this thesis is the

efficient implementation of hash table methods. There are

credential trade-offs in a desired implemention. These are

discussed in issues such as hash addressing, handling

collision, hash table layout., and bucket overflow problems.

The criteria of good hash function is providing even

distribution.

Collision is the major problem in hash table methods.

Two major hashtable methods are discussed. Open Addressing

Method places the synonymous items somewhere within the

table. The Chaining Method, however, chains all synonymies

and stores them somewhere outside the table called overflow

area.

Hash table is widely used by system software as an

ideal data structure. Hash Table -applications canbe found

in compiler’s symbol table, database, directories of file

organizations, as well as in problem-solving application

programs.

DATA STRUCTURES FOR SET MANIPULATION

— HASH TABLE METHOD —

A THESIS .

SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCES

BY

BENJAMIN KAI-HSIEN HSU

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES

ATLANTA, GEORGIA

MAY 1986

support

b

S

i

To

my mother,

Fong-Eng Wang Hsu

whose unconditional]ove and

are the real motives in continuing

my study.

• •
il

ACKNOWLEDGEMENTS

The author, expresses his sincere appreciation and deep

gratitude to those people who have contributed their time and

energy to make this study possible.

Thanks are especially due Dr. Nazir A. Warsi, my thesis

advisor, for his instruction and suggestions, which were

essential to the completion of this study.

Special thanks are also due Dr. Negash Medhin,

Professor Hsu and Professor Kao, faculty members of the

Mathematical and Computer Sciences department, for their

advice and correction.

i ii

Benjamin Kai-Hsien Hsu

TABLE OF CONTENTS

Page

DEDICATION ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS * iv

TABLES AND FIGURES vi

CHAPTER

I INTRODUCTION 1

II INTRODUCTION TO SETS

Constituents of Set 4

Set Operations 4

Data Types 5

Data Structures 6

Definition of Abstract Data Type on Sets 8

III HASH FUNCTION 10

IV METHODS OF RESOLVING COLLISIONS

Open Addressing Methods

Random Probing 14

Linear Probing 16

Deletion of Open Addressing Method 17

Restructuring the table 17

Chaining Methods

Indirect Chaining 19

Direct Chaining 20

iv

V COMPARISON OF THE METHODS

General Considerations 30

Comparison of Hash Methods with the

Other Strategies 31

VI APPLICATIONS OF HASH TABLE METHODS IN COMPUTER SOFTWARE

File Directories 36

Demand Paging Memory Management 37

Symbol Table in Compiler 38

Database Management 40

VII SUMMARY OF STUDY 43

BIBLIOGRAPHY 45

v

TABLES AND FIGURES

Tables: Page

1. Number of Probes Required on Looking up a

random item 30

2. Comparison of Internal Table Methods 32

Figures :

1. Flow chart of Chained Scatter Table for

Search and Insert 23

2. A Hash Table 27

3. The Hash Table after Insertion and Deletion .. 27

4-1 Data Structure of the symbol table 39

4-2 The Hash Chains of symbol table 39

vi

CHAPTER I

Introduction

I®ÇÎ<EE2iîDd of the Problem , One of the most actively

pursued areas of computer science over the years has been the

development of new and better algorithms for the performance

of set manipulation problems.

A good way to approach the design of an efficient

algorithm for a given problem is to examine the fundamental

nature of the problem.

Sets, as the most concept in mathematics, have profound

problems associated with them. Often, certain type of set

manipulation problems can be formulated in terms of abstract

data types with a collection of operations on them. These

data types can be outlined in various data structures, they

will be discussed in the next chapter.

Among many data structures of set's manipulation

problems, the hash table will be the central issue of this

thesis. This thesis gives a detailed study of various hash

table methods; especially, it is intended for studies of the

better implementation of hash tables and the solution for the

difficulties in the implementation of hash table methods.

About the Hash Table Methods Hash table methods seek

to eliminate all search time of data retrival. The idea

behind hash table methods is quite simple: Even though the

keys may represent symbolic strings or some other set of

1

values, in reality, all keys are represented in a computer by

an integer value —by a sequence of bits.

All hashing methods involve a hash code or hashing

function or mapping function. If R is an arbitrary key, then

h(K) is an address. Specifically, h(K) is the address of

some position in a table known as a hash table or scatter

storage table, at which we intend to store the record whose

key is K. If we can do this, then if at some later time we

want to search for the record whose key is K, all we have to

do is to calculate h(K) again. This is what makes hashing

methods so popular. Most of the time, we can find the record

we want immediately, without any repeated comparison with

other items.

The phenomenon of two records having the same home

address is called collision, and the records involved are

often called synonyms. The possibility of collision,

although slight, is the chief problem with hash table

methods.

An overflow is said to occur when a new key is mapped or

hashed into a full bucket. For the sake of speed, we would

like to make bucket table rather large. However, when bucket

is large, many of the lists will be empty and much of the

space for the bucket list heads will be wasted.

Comparative studies of different hash table methods are

discussed in this thesis. The trade off of collision

resolution and retrieval time, and space consumption is also

2

studied in details

CHAPTER II

Introduction to Sets

The notion of a set is basic to all mathematics. In

algorithm design» sets are used as the basis of many

important abstract data types, and many techniques have been

developed for implementing set-based abstract data types.

2-1. Constituents of set

Sets, as the most concept in mathematics, have profound

problems associated with them. When considering operations

for which set members and sets are operands, it is desirable

to introduce the concept of type. In building up sets,

possible constituents are[l]:

* Atomic types, including integers, reals, characters,

strings, and Boolean value.

* Sets constructed on atomic types.

* Tuples (ordered lists of atomic types).

* References to sets or tuples in the form of literals

(labels or addresses) and variables (identifiers and

pointers whose domains are atomic elements).

Most implementations of sets allow several of these constituents.

2-2. Set Operations

We consider here data structures subject to the following

operations :

4

member(x,A) Takes set A and object x,whose type is the type

of elements of A, and returns a boolean value,

true if x belongs to A (successful search). and

false if x does not belong to A (unsuccessful

search).

insert(x,A): Makes x a member of A. That is, the new value of

A is AU {x}. Note that if x is already a member

of A, then insert(x,A) does not change A.

delete(x,A): Removes x from A. A is replaced by A-{x). If

x is not in A originally, delete(x,A) does not

change A. Keys are accessed either by value or

by position,and additional constraints may be

imposed on the set of keys accessible at each

stage.

2-3. Data Types

A data type is a specification of the basic operations

allowed together with its set of possible restrictions. The

four data types to be studied here are:

Dictionary - Keys belonging to a totally ordered set are

accessed by value; all three operations are

allowed without any restriction.

Priority queue - Keys belonging to a totally ordered set are

accessed by value. The basic operations are

insertion and deletion. Deletion is performed

only on the key of minimal value (of "highest

5

priority").

linear list - Keys are accessed by position; operations are

insertion and deletion without access restrictions.

Stack Keys are accessed by position; operations are

insertion and deletion but are restricted to

operate on the key positioned first in the

structure (the "top" of the stack).

2-4. Data Structures

A data organization is a machine implementation of a data

type. It consists of a data structure, which specifies the

way objects are internally represented in the machine,

together with a collection of algorithms implementing the

operations of the data type.

In Flajolet and Francons’ paper [2], they discussed the

relative data structures for five major data type of sets :

Stacks: They are almost universally represented by

arrays, or linked lists.

Dictionaries: The most straightforward implementation is by

sorted or unsorted lists; binary search trees

have a faster execution time and several

balancing schemes have been proposed: AVL and

2-3 trees; bichromatic trees. Other

alternatives are h-tables and digital trees.

Priority queues: They can be represented by any of the search

trees used for dictionaries; more interesting

are heaps, P-tournaments, binomial tournaments,

6

binary tournaments and pagodas. One canalso use

sorted lists, and any of the balanced tree

structures for implementing priority queues.

Linear lists: The most straightforward implementation is by

linked lists and arrays. Position tournaments

are more efficient implementation to which

balancing schemes, can be applied.

Hash tables: These are special cases of dictionaries. All

the known implementations of dictionaries are

applicable here.

Of course there are other interesting data types: queues and
*

dequeues are closely related to stacks; partition structures

involve the operation of union, which is not considered here.

One could also allow for more operations: split and merge for

dictionaries; extract and union for priority queues; search,

cut, concatenate and reverse for linear lists.

Now we need to state precise definitions concerning

sequences of operations for each of our basic data types. A

data type can be formally described by the universe of keys,

the set of files, and the specification of the way operations

perform on files.

a. The universe U from which keys are drawn is the set

of real numbers (in practice U is more likely to

be some very large but finite set).

b. A file status, or simply file, for a given data type

is a-structured finite set of keys. For dictionaries

7

and priority queues, the set of files is the set

of all finite subsets of U (i.e.; a file can be

any finite set of keys). For linear lists, stacks

and symbol tables, the set of files is the set of

all sequences on U.

c. For each input k, operation 0, and file F, we need

to describe in each case the way F is transformed

when operation 0 belong to { deletion, insertion,

successful search, negative search.) is performed on

key k: (let I =: insertion, D =: deletion, S + =:

successful search, S- =: negative search.)

2-5. Definition of Abstract Data Type on Sets [2]

Stack —If F = <kl,k2,...,ks>, performing I(k) leads to

<kl,k2 ,....ks,k>; performing D(k) leads to

<kl,k2,....,ks-l> with output ks,provided s >= 1.

Dictionary —If F ={kl,k2,...,kd), performing 0(k) leads to a

new file F* with F’ = F, if 0 = S + and k belong to

F or 0 = S- and k not belong to F; F’ = F U {k} ,

if 0 = I and k not belong to F; and F’ = F - {k},

if 0 = D and k belong to F.

Priority queue —With F = {kl,k2 kp), I(k) with k not

belong to F leads to F'= F U {k}; suppression D

leads to F’= F - {a}, where a = min { kl,k2,.

,..,kp }, and is meaningless if p = 0.

linear list --With F a sequence of keys <kl,k2,...kl>, I(p;k)

is defined iff 1 <= p <= 1+1 and the resulting

8

file is F'= <k1kp-1,k,kpk1> ; on the other

hand D(p) leads to F’ = <kl,...kp-1,kp+1,...,kl>.

Hash tables —With F = <kl,k2,...km>, performing 0(k) leads

to a new file F* such that F’ = F, if 0 = S+ and k

belong to F; F* = <klkm,k>, if 0 = I and k

belong to F; and F’ = <kl km-l>, if 0 = D.

A sequence of operations is a sequence of the form

01(kl); 02(k2); On(kn), where for 1 <= i <= n, ki belong

to K is a key and Oi belong to 0 = { D,I,S+,S- } is an

operation.

9

CHAPTER III

Hash Function

Hashing schemes perform an identifier transformation

through the use of a hash function f. It is desirable to

choose a function f which is easily computed and also

minimizes the number of collisions.

3.1 Hashing Functions

A hashing function, f, transforms a key x into a bucket

address in the hash table. A good hash function should

satisfy two requirements:

a. Its computation should be very fast.

b. It should minimize collisions.

3.2 Uniform Hash Functions

If x is a key chosen at random from the key space, then we

want the probability that f(x) = i to be 1/M for all buckets

i, Then a random x has an equal chance of hashing into any of

the M buckets. A hash function satisfying this property will

be termed a uniform hash function.

Several kinds of uniform hash functions are in use. We

describe four of these.[14]

1. Mid-Square .

It is one hash function that has found much use in symbol

table applications. This function, f, is computed by

squaring the identifier and then using an appropriate

10

number of bits from the middle of the square to obtain

the bucket address; the identifier is assumed to fit into

one computer word. Since the middle bits of the square

will usually depend on all of the characters in the

identifier, it is expected that different identifiers

would result in different hash addresses with

highprobability even when some of the characters are the

same.

2. Division

This simple choice for a hash function is obtained by

using the modulo (mod) operator. The key x is divided by

some number M and the remainder is used as the hash

address for x. That is, f(x) = x mod M. This gives bucket

addresses in the range 0 - (M-l) and so the hash table is

at least of size M.

3. Folding

In this method the identifier x is partitioned into

several parts, all but the last being of the same length.

There are two ways of carrying out this addition. Shift

folding and folding at the boundaries.

4. Digit Analysis

This method is particularly useful in the case of a

static file where all the identifiers in the table are

known in advance. Each identifier x is interpreted as a

number using some radix r. The same radix is used for

all the identifiers in the table. Using this radix, the

11

digits of each identifier are examined. Digits having

the most skewed distributions are deleted. Enough digits

are deleted so that the numbe of digits left is small

enough to have an address in the range of the hash table.

12

CHAPTER IV

Method of Resolving Collisions

In this chapter, all the analysis assume that a hash

function distributes elements uniformly over the buckets.

Many methods of resolving collisions will be suggested and

used. Among all, a particular method to be used in a

particular application should be chosen carefully since the

method of handling collisions profoundly affects the

efficiency of the technique and the difficulty of the

programming task.

4-1 Two Methods

There are two major foumulations of hash table storage and

retrieval algorithms, differing in the manner in which

collisions are resolved. The first method is to establish a

hash table for the storage of items, and to resolve

collisions by somehow finding an unoccupied space for those

itejns whose natural home locations is already full, in such a

way that the item can be later retrieved without the use of

auxilliary link fields. Algorithms which use such schemes are

called Open Addressing Algorithms. The second approach

finesses the. problem of collisions by using indirect

addressing to allow all items which collide to maintain a

claim to their home location. Such methods of handling

collisions are commonly called chaining methods.

13

4-2 Open Addressing

If we try to place k in bucket h(K) and find it already holds

an element, the rehash strategy chooses a sequence of

alternative locations, hl(K), h2(K), —within the bucket

table,in which we could place k. We try each of these

locations in order or random, until we find an empty one. If

none is empty then the table is full and we cannot insert k.

This method to handle collisions is as follows:

1. Calculate address x in the table by using some

transformation on the key as an index.

2. If the item is already at this address or if the place

is empty the job is done.

3. If some other key is there,call a rehash function for

an integer offset p. Make the next probe at i+p and

go to step 2.

4-2.1 Random Probing

Used by a pseudorandom number generator. The pseudorandom

number generator can be of the simplest sort and usually can

be written in less than six machine instructions, It must

generate every integer from 1 to n-1 (where n is the size of

the table) exactly once. When the generator run out of

integers, the table is full and the entry cannot be made.

The important property of the pseudorandom number

generator in this application is that for every value of i,

the numbers, pi+k - Pi for i <= i+k <= n-1, are all

different, where pj is the jth random number which is

14

generated.[11]

ANALYSIS:

The efficiency of this method is best expressed in terms

of the average number E of probes necessary to retrieve an

item in the table. We note that the number of probes required

to lookup an item is exactly the same as the number of probes

required to insert the item into the table in the first

place. So let us calculate how many probes are required to

insert a new item when there are already k items in the

table. This will give a result A(k), and to find E we will

the need to sum A(k) from 0 to k-1 and divide by k to find

the average.

With a hash table of k entries in bucket and consider

inserting the (k+l)th item into the table: [4]

A(k) : is the expected value of L = 21 J * Pr(L=j)

Now Pr(L=j) = Pr(L >= j) - Pr(L >= j+1)

and Pr(L>=l) = 1

Pr(L>=2) = probability that have collision on first

rehash.

= k/N.

Pr(L >= 3)

= probability that collision on first and second

= k/N * (k-l)/(N-l) by independence

Pr(L>=k+1) = (k(k-l)...1) / (N(n-1)...(n-k+1))

Pr(L>=k+2) = 0 because must have made it by this point.

15

Hence,

A(k) = XI j[Pr(L>=j)-Pr(L>=j+l)] XL Pr (L> = j)
2 sit

= 1 + k/N + k(k-l)/N(N-l) +

+ (k*(k-l)(k—2) 1) / (N*(N-l)*(N-2)...(N-k+1))

=1 + k / (N-k+1) by induction on k

= 1 / (l-(k/(N+l))).

Note that induction is a little tricky: write N=M+k, then fix

M, and then make induction on k. It then goes through quite

readily.

and using k/N+1 < x < 1

= - 1/CX loge (1- OC)

4-2.2 Linear Probing Method

Upon collision, search forward from the nominal position (the

initial calculated address), until either the desired entry

is found or an empty space is encountered —searching

circularly past the end of the table to the begining, if

necessary. If an empty space is encountered, that space

becomes the home for the new entry.

The disadvantage of this method is that after a few

collisions have been resolved in this way, the entries are

clumped in such a way that, given that a collision has just

occurred at location i, the probability of a collision at

Now E = 1/K XL A(k)

= 1/K % 1 / 1- (k/N+1)

d(k/N)

16

location i+1 is higher than the average probability over the

whole table.

The efficiency of the linear probing method can be

analyzed by techniques similar to random probing method. The

result is that, to within suitable approximation, the average

number E of probes necessary to look up an item in the table

is [11] :

E = (1-0f/2)/(l~ 0O . ^=load factor

4-2.3 Deletion of Open Addresses Method

Deletion of entries made using this scheme is a troublesome

process. One cannot simply mark an entry as empty in order

to delete it because other entries may have collided at that

place and they would become unreachable. The hash addresses

for every entry in the table would have to be recomputed and

some of them moved in order to close up the gap caused by the

deleted entry. A much more convenient method of deletion is

to reserve a special signal for a deleted entry. On searching

for a key, the search continues if a deleted entry is

encountered. A new item can be installed in place of any

deleted entry encountered in searching for its proper place.

The disadvantage of this method is that the lookup time

is not reduced when entries are deleted —only the lost space

is reclaimed.

4-2.4 Restructuring the Table

One important basic property of hash table open addressing

method is that they start working very badly when the hash

17

table becomes almost full. W. D. Maurer and T. G. lewis {10]

studied in the extreme case in which the table is completely

full except for one space, and the linear method of

handling collisions is used, a search for this space takes,

on the average, N/2 steps, for a table of size N.

In practice, a hash table should never be allowed to get

that full. The ratio of the number of spaces for such

entries is the loading factor of the hash table; it ranges

between 0 and 1. When the load factor is about 0.7 or 0.8,

in other words, when the table is about 70% or 80% full, the

size of the hash table should be increased, and the records

in the table should be rehashed.Replacing table size M by

dM; suitable choices of these parameters and d can be make

by using the analyses above and characteristics of the data,

so that the critical point at which it becomes cheaper to

rehash can be determined.

Instead of rehashing to resolve collisions, we could

maintain an overflow area of storage, using chaining to keep

together all the items that hash to a particular position.

Thus we would use storage records with three fields, one for

the Key, one for the Entry, and one for a pointer to the next

record in the sequence. As always, chaining means extra

storage, but has some advantages concerning insertions and

deletions, as well as being somewhat faster than the rehash

methods, since the colliding items are kept separate. Note

that we do not require that K <= N for the chaining method.

18

4-3. Chaining Method

Chaining methods is to store all synonomous items which hash

to a common location on a linked list or chain. Chaining

method removes all the problems about the selection of rehash

functions» but we still require that the initial hash

function distributes the hashes uniformly throughout the

table.

When such chains have a separate table of list heads,

this method is called the indirect-chaining collision

resolution method.

Chaining methods can be regarded as two categories:

Indirect Chaining and Direct Chaining:

4-3.1 Indirect Chaining Method

This method of storage has advantages in both insertion and

deletion, especially where ordering of the chains is

required, but does have the disadvantage of requiring an

additional use of a pointer on searches, and an extra amount

of storage for the N pointers of the primary table.

It is desired that the buckets will be roughly equal in

size, so the list for each bucket will be short. If there

are N elements in the set, then the average bucket will have

N/B members. If we can estimate N and choose B to be roughly

as large, then the average bucket will have only one or two

members,and the dictionary operations take, on the average,

19

some small constant number of steps, independent of what N

(or equivalently B) is.

Algorithms of Operations on indirect Chaining Method:[16]

MEMBER — When a key is to be looked up, its hash address

is computed and then,

* -if that address is empty, the key has not been

entered.

* -if that address is occupied, search down the chain

hanging from that address (current := current"'. next) ;

if the key is not encountered, it is not in the table.

INSERT —

* -if not "member" then insert the new entry into the

bucket header and next points to oldheader.

DELETE —

* -if address x is header of bucket, then let header :=

header''. next {remove x from list}.

* -search the key = x down the chain hanging from that

address then delete; if the key is not encountered, it

is not in the table.

4-3.2 Direct Chaining

It is also possible to dispense with the list heads,and

merely originate the chain of items which hash to location i

at cell i itself, carefully using otherwise-empty cells as

the remaining nodes on the chain.This variation is called

direct-chaining.

Direct chaining is considerably more efficient in terms

20

of number of probes per entry than either of the preceding

methods. In this technique, part of one of the words in each

entry is reserved as a pointer to indicate where additional

entries with the same calculated address are to be found on a

linked list (or chain) starting at that address. The last

entry on each chain must be distinguished in some way (such

as having a zero pointer).

Knuth [15] analyzed two variants: one that allows chains

to coalesce, and one without coalescing but assuming that

"foreign" records are forced out whenever necessary.

Algorithm .(direct-chaining search and insertion}.

This algorithm searches an M-nodes hash table, looking for a

given key K. If the search is unsuccessful and the table is

not full, then k is inserted. The size of the address region

is M; the hash function hash returns a value between 1 and N,

for convenience, we make use of bucket 0, which is always

empty. The global variable R is used to find an empty space

whenever a collision must be stored in the table. Initially,

the table is empty, and we have R=M+1; when an empty space is

requested, R is decremented until one is found. We assume

that the following initialization have been make before any

searches or insertions are performed [13] :

empty[i] <== true, for all 0 <= i <= M;

and R <== M+l.

21

Then the algorithm can be as the following six steps:

1. HASH: Set i <- hash(K). (now 1 <= i <= M.)

2. IS THERE A CHAIN?

If empty[i], then goto step 6. (Otherwise, the ith bucket

is occupied, so we will look at the chain of records that

starts there.)

3. COMPARE:

if K = key[i],the algorithm terminates successfully.

4. ADVANCE TO NEXT RECORD:

If link[i] <> 0 then set i = link[i] and go back to step 3

5. FIND EMPTY BUCKET:

(The search for K in the chain was unsuccessful, so we

will try to find an empty table bucket to store K.)

Decrease R one or more times until empty[R] becomes

true.If R = O.then there are no more empty buckets, and

the algorithm terminates with overflow. Otherwise,

append the Rth cell to the chain by setting link[i] <- R;

then set i <= R.

6. INSERT NEW RECORD:

Set empty[i] <- false, key[i] <- K,link[i] <- 0, and

initialize thé other f-ields in the record.

Figure 1. shows the folw chart of chained scatter table

search and insertion:

22

1.

2.

> 1

hash

' f

Is there a list?
no

yes

3.
1

Compare
<

4. Advance N Find 6. Insert
: ? to next empty node J new key

end
of list

k=key[i]

R=C

\k

(success) (overflow)

Figure 1. Flow chart for SEARCH and INSERTION

23

Deletions of Direct Chaning Methods

Many searching applications require that certain records be

inserted and than later deleted.the paper below addresses the

problem of constructing efficient deletion algorithms.The

coalesced hashing method offers a particularly interesting

setting for this study.

Correct deletion algorithms can be tricky to write,

because changing the contents of a table bucket affects the

successors in the chain. we cannot delete the record from

location simply by setting EMPTY; otherwise, subsequent

searches for records which hanging from deleted record would

report failure when they encounter the empty bucket in

location which was deleted.

One alternative is to include a special deleted field in

each record,which says whether or not the record has been

deleted.The search algorithm must be modified to treat each

"deleted” table bucket as if it were occupied by a null

record, even though the entire record is still there.

Unfortunately, a certain percentage of the "deleted"

bucket will probably remain unused, thus preventing full

storage utilization. Also, regardless of the number of

undeleted records, the expected search times would

approximate those for a full table, because

the "deleted" records make the searches longer. If we are

willing to spend a little extra time per deletion, we can do

without the deleted field by relocating some of the records

24

•that follow in the chain, and that will be good for the

"search” time latter.

The Deletion Algorithm

Jeffrey Scott Vitter [13] provides a deletion algorithms

quite interesting. The basic idea is this: First, we find

the record we want to delete, mark its table bucket empty,

and set the link field of its predecessor (if any) to the

null value 0. Then we use Algorithm -insert to reinsert each

record that is in the remainder of the chain, but whenever an

empty bucket is needed in step 5, we use the position that

the record already occupies. We can simplify this somewhat by

observing that each record rehashes either to an occupied

bucket or else to an empty bucket (called a hole) that had

been occupied before the deletion.

Figure 2-1 shows an example of deleting AL from location

10 The end result is pictured in Fig.2-2. The first step is

to create a hole in position 10 where AL was, and then to set

AUDREY'S link field to 0. Now we process the rest of the

chain. The next record TOOTIE rehashes to the hole in

location 10, so TOOTIE moves up to plug the hole, leaving a

new hole in position 9. Next, DONNA collides with AUDREY.

Then MARK also collides with AUDREY; we leave MARK in

position 7 and link it to DONNA, which was formerly at the

end of AUDREY’S chain. The record JEFF rehashes to the hole

in bucket 9, so we move it up to plug the hole, and a new

hole appears in position 6. Finally, DAVE rehashes to

25

position 9 and joins JEFF's chain.

The problem is: location 6 is the current hole position

when the deletion algorithm terminates, so we set empty[6] to

true and return it to the pool of empty buckets However, the

value of R in Algorithm insert is already 5, so step 5 will

never try to reuse location 6 when an empty bucket is needed.

We can get around this by using an available-space list in

step 5 rather than the variable R; the list must be doubly-

linked so that a bucket can be removed quickly from the list

in step 6. The available-space list does not require any

extra space per table slot, since we can use the KEY and LINK

fields of the empty buckets for the two pointer fields. For

clarity, we rename the two pointer fields NEXT and PREV. The

variable AVAIL points to the start of the list. Before any

records are inserted into the table, the following extra

initializations must be make:

assign: AVAIL = M* ; NEXT[0] = M’ ; PREV(M]’ = 0 ; and

NEXT[i] = i-1 and PREV[i-l] = i, for 1 <= i <= M’

We replace steps 5 and 6 by:

5. FIND EMPTY BUCKET:

(The search for K in the chain was nsuccessful,so we will

try to find an empty table bucket to store K.)

If the table is already full(AVAIL = 0), the algorithm

terminates with overflow. Otherwise, set LINK[i] =

AVAIL and i = AVAIL.

6. INSERT NEW RECORD:

26

Remove the ith bucket from the available- space list by

setting PREV[NEXT[i]] = PREV[i], NEXT[PREV[i]] = NEXT[i];

if i = AVAIL,set AVAIL = NEXT[AVAIL]. Then set EMPTY[i] =

false, KEY[i] = K, LINK[i] = 0, and initialize the other

fields in the record.

Keys :
Addresses :

A.L. AUDREY AL TOOTIE DONNA MARK FEFF DAVE
11 10

l : AUDREY ! 10 1
l l : AUDREY : 8

2 : 1
1

1
1 2 : l

3 : 1
i

1
i 3 : i

i

4 ! 1
1

1
1 4 : »

i

5 : DAVE : 0 »
i 5 : DAVE ! 0

6 : JEFF ! 5 i
1 6 : 1

t

7 : MARK i 6 1
t 7 : MARK : o

8 : DONNA ! 7 i
1 8 : DONNA : 7

9 ; TOOTIE : 8 1
1 9 : JEFF ! 5

io : AL : 9 1
1 io : TOOTIE : o

li : A.L. : 0 1
1 li ; A. L. : o

Fig .2-1 and Fig. 2-2 Inserting the eight record

We are now ready to specify the deletion algorithm:

Algorithm of Deletion with Coalesced Hashing

This algorithm preserves the important invariant that K is

stored at its hash address if and only if it is at the start

of its chain. This makes searching for K’s predecessor in

the chain easy: if it exists, then it must come at or after

27

position hash (K) in the chain.

1. [Search for K.]

i = Hash (K) ;

if empty [i] then goto end

otherwise, if K = Key [i] then K is at the start of the

chain, so go to step 3.

2. [Split chain in two] (K is not at the start of its chain.)

Repeate

PREV = i ;

i = LINK[i]

Until (i = 0) or (K= kEY[i];

If i = 0 then go to end, else LINK[PREV] = 0 ;

3. [Process remainder of chain] (Variavle i will walk through

the successors of K in the chain.)

hole = i; i = LINK[i]; LINK[H0LE] = 0 ;

Do step 4. zero or more times until i = 0.

Then go to step 5

4. [Rehash record in ith bucket]

while (i <> 0) do
{ .

j <= hash (KEY(I))
if j = hole then

{
KEY [HOLE] = KEY [i]
HOLE = i

}
else

link the record to the end of chain it collides with
{
while (LINK [j] <> 0) do j = LINK [j]
LINK [j] = i
temp = LINK [i]
LINK [i] = 0

28

i = temp
}

5. [Nark bucket HOLE empty.]
{

EMPTY [HOLE] =true
NEXT [HOLE] = AVAIL
PREV [HOLE] = 0
NEXT [0] =HOLE
AVAIL = HOLE
i *

29

CHAPTER V

Comparison of the Methods

5-1. General Considerations and Over-all Assessment

It is difficult to summarize in a few words all the relevant

details of the "trade-offs" involved in the choice of a

method, but the following things seem to be of primary

importance whith respect to the speed of searching and the

requisite storage space.

Table 1. Number of probes required on looking
up a random item. [4]

1
1

1
1

: packing
! density
! k/n = 0(
1
1

Expected
Chaining.
1+ K/2

number of probes
Linear prob.
(l-*/2)/(l-*)

Random
-1 /c{

prob. !
log(l-*)i

1
i

: o.i 1.05 1.06 1.05
: 0.5 1.25 1.50 1.39
! 0.75 1.38 2.50 1.83
: 0.9 1.45 5.50 2.56
: 0.99 1.50 50.5 4.65
! 1.5 1.75 - -
: 2.0 2.00 - -
: 5.0
1
1

3.5 “

This , table showing ^that the various methods for collision
i

resolution lead to different numbers of probes. But this does
*r

not tell the whole story, since the time per probe varies in

different methods, and the latter variation has a noticeable

< 4

¥

30

effect on the running time.

Table 1. shows that the chaining methods are quite

economical with respect to the number of probes, but the

extra memory space needed for link fields sometimes makes

open addressing more attractive for small records. For

example, if we have to choose between a chained scatter table

of capacity 500 and an open scatter table of capacity 1000,

the latter is clearly preferable, since it allows efficient

searching when 500 records are present and it is capable of

absorbing twice as much data. On the other hand, sometimes

the record size and format will allow space for link fields

at virtually no extra cost.

5-2. Hash Methods Compare with the Other Search Strategies

From the standpoint of speed, we can argue that they are

better, when the number of records is large, because the

average search time for a hash method stays bounded as N

tends to infinity if we stipulate that the table never gets

too full.
¥>

Table 2. shows comparison of internal table methods. In

the table the number of key accesses is shown for various

sizes of tablé., 1 Only the, operations of ^insertion and lookup
. * . ' * ‘ i • i

are given. Deletion, is similar to insertion: in both cases

with chaining there is a significant overhead in pointer
4

manipulations,. The hash table figures disguise the possible
’ a *

significant cost of hashing.* With these qualifications in

mind we see from the table that all methods are comparable

31

L i «

for small tables while for large tables hashing is best.

However, hashing relies on assumptions about key distribution
U , *

' > * .1

and where these.are inappropriate, l',*one of the tree methods
*

could be preferable.

Table 2. Comparison of internal table methods

Table size
Method Operation 50 100 500 1000 Formula

Sequential
vector

Insert. 52 102 502 1002 K+l+K/(K+l)

sorted Lookup. 25.5 55.5 251 501 (K+U/2

Comparison Insert. 31.7 57.7 264 511 log(K+l)+K/2+l
tree
logsearch' Lookup. 4.8 5.7 8.0 9. (K+l)/Klog(K+l)

Comparison Insert. 8.9 10.3 13.6 15.0 1.41og(K+l)+l
tree
Chained Lookup. 7.1 8.4 11.6 13 1.4(K+l)/K*

log (K+l)-l

Hash.
(X = .5

Insert. 2.25 2.25 2.25 2.25 2 + tX/2

chained
overflow

Lookup. 1.25 1.25 1.25 1.25 1 +(X/2

A rough guide to the best buy is given in the table:

which method one chooses depends upon ease of programming,as

well as speed and storage requirements.[4]

In complex table methods, not only must we bear in mind the

32

mix of operations, lookups versus changes, but also

considerations of the relative sizes of keys, entries, and

pointers.

Keys can be quite complicated, and accessing and

comparing them can be a comparatively lengthy process. .. This

then makes other operations, notably pointer manipulations,

considerable more attractive in terms of speed. In general

pointers will occupy less storage than keys, which will

occupy less storage than entries. This makes the extra

storage used for pointers a comparatively small overhead.

The comparative cheapness of pointers not only makes

chaining methods more attractive than one might otherwise

have thought, but also suggests that we use more pointers.

Let us store a table of pointers to items, rather than the

items themselves, storing the items themselves(or perhaps

just the entries) in order of arrival in a simple sequential

unsorted vector table. The table of pointers could be

structured for efficiency, with the advantage that any

movement of items (if the method demands this) in the

efficient table becomes simply the movement of pointers.

There are three important respects in which scatter

table searching is inferior to other methods we have

discussed: [1]

1. After an unsuccessful search in a scatter table, we know

only that the desired key is not present. Search methods

based on comparisons always yield more information,

33

making it possible to find the largest key < = K and/or

the smallest key > = K; this is important in many

applications. It is also possible to use comparison-

based algorithms to locate all keys which lie between

two given values K and K*. Furthermore the tree search

algorithms is make it easy to traverse the contents of a

table in ascending order, without sorting it separately,

and this is occasionally desirable.

2. The storage allocation for scatter tables is often

somewhat difficult; we have to dedicate a certain area

of the memory for use as the hash table, and it may not

be obvious how much space should be allotted. If we

provide too" much memory, we may be wasting storage at
*

the expense of other lists or other computer users; but
*

if we don’t provide enough room, the table will

overflow. When a scatter table overflows, it is probably
* . I**

best to "rehash" it, means to allocate a larger space

and to change the hash function, reinserting every

record into the larger table. By contrast, the tree

search and insertion algorithms require no such painful

rehashing;the tree grow no larger than necessary.In a

virtual memory environment we probably ought to use tree

search or digital tree search, instead of creating a

large scatter table that requires bringing in a new page

nearly every time we hash a key.

3. Finally, we notice that hashing methods are

34

probabilistic. These methods are efficient only on

average. In the worst case they are terrible! As in the.

case of random number generators, we are never

completely sure that a hash function will perform

properly when it is applied to a new set of data.

Therefore scatter storage would be inappropriate for

certain real-time applications such as air traffic

control, where people’s lives are at stake; the balanced
1

tree algorithms are much safer, since they provide
t- p

guaranteed upper bounds on the search time.

35

CHAPTER VI

Applications of Hash Table Methods

6-1 H§§h Table Methods for File Directories

In computer file system, files are organized into directory;

a file’s information such as'file name, file type, location,

size, current ^position, protection, etc are kept in the
(r 1 .

direcotry for operating system to use.^ Depending different

operating systems, it mayitake from 16 to over 1000 bytes to

record this information for each file in the direcotry.
P*

In a system with a large number of files, the size of
k

’ * * u *

the directory itself may be handreds of thousands of bytes.
, *

*

The directory itself can be organized in many ways. Hash

table is regraded as the most ideal data structure for file

directory.

To create a new file, we must first search the directory

to be sure that no existing file has the same name. Then we

can add a new entry at the end of the directory. To delete a

file, we search the direcoty for the named file, then

releases the space allocated to it. To reused the directory

entry, we may do one of several things. we can mark it

unused or attach it to a list of free directory entries.

All of these operations can be carried in the hash table

methods discussed in previous chapters. Although other data

structures such as linear list, sorted list, linked binary

36

tree may be sufficient for the operations on file

directories,- hash table is regarded as the best one of all. .

The hash table data structure requires less searching time

than that of the linear list; it consumes less memory space

then that of the linked binary tree; it require less

maintenance overhead than that of the sorted list.

6-2 Hash Table Methods for Demand Paging Memory Management

Virtual memory uses a set of techniques that allow program

to be executed when the entire program is not in memory.

Demand Paging with swapping is the most common virtual memory

system.

In Demand Paging, a program is given a small slot of

memory address space, only one or two pages of this program

is in there. When an item is referenced by the program and

it is not already in memory,which is called "page fault",

the page which contains ‘the item must be brought into memory

from secondary storage, one of the existing pages must give
4 . '

room to the new page —this is called swapping.
i*

On such* a ^machine, * a' hash table can be defined whose

size exceeds the given memory address space of the program,
i .

so that every access to the hash ' table might cause a
* f

»

swapping to *.occur. 'Swapping slows down the execution of

program. Therefore, it is most important to choose means of

accessing entries which- ensure that consecutive

references to memory are as often a possible in pages that

have recently been referenced and thus arelikely to be

37

already in memory. ¥ * •*
t>*

Usually» page sizes are in the range from 2 to 2

words. If the entries themselves .are kept in the hash table,
- . *i , i *

1

then the linear probing of the hash table method becomes very
* * f*

attractive because consecutive probes are highly likely to

be on the same page.
4. .

“T „

For a really large hash table, where it is impossible
r

\ t

that the whole table can be held ,in memory, it would almost

certainly be most efficient to use a hash index table and

keep extra hash bits along with the pointer in the index

table.[11] Also, collisions should be resolved within the

index and not by chaining through free storage. Since the

index table consists of single-word items, many more of a

program's pages can be kept in the memory. Then the program

stands the chance of needing a new page becomes considerable

small.

6-3 Hash Table Methods for Symbol Table in Compiler

A symbol table contains all identifiers of a program.

It is a production of lexical analyser durig the compilation

process. The symbol table is then constantly looked up by

other processes during compilation.

If we use hash table as the data structure for the

symbol table, a hash function is defined on the class of

identifiers; this function maps every identifier into an

integer between 1 and h, where h is a fixed hash table size.

We should provide a reasonably random and uniform mapping.

38

We can call the hashing value for some identifier its hash

code. Given the hash code of an identifier, we enter the

hash table directly through the hash code as an index and

search for the identifier along a chain. The following

figures show the data structure of the symbol table:

.*
f 4

l

Hash Chain Pointer Indentifier $cof>e

1

2 X

3

4 M, A

5

6 Y, U

Figure 4-1 Data Structure of the Symbol table [18]

1

2 • > X

3

A M • A ;—/

5

e \ u \ v D * / X

Figure 4-2 The hash chains of symbol table.

Note that a declaration search need go down a chain only

39

until the present scope is left. For a reference search, a

chain must be followed to its end, if necessary, since an

identifier may be in any csope.

There are many other data structures used by compiler

construction, no matter which data structure we adopt, the

accès time for each identifier is critical for the efficiency

of compilation. In regard to this, John D. Couch [13] has a

detailed discussion on four different methods to access

entries of the symbol table: linear access, binary access,

tree access, and hash access. He seems to be very happy with

the hash . access method. In the comparison of the above

methods, he concludes:

 The most efficient access method, by time
comparison, is the hash method. It requires a
function that maps an identifier into a finite
range of integers 1 to h in a uniform manner....
Althoug the binary tree search methods result in a
sorted table, convenient for a symbol table listing,
this apparent advantage is outweighed by the larger
overhead in declaration and reference times.

6-4 Hash Table Method with Data Base Management

In a Data Base, records in a logical file are

identified by means of the unique number of group of

characters, called a key. The key is usually a fixed-length
■I

field which is in an identical position in each record. It

may be an account number in a bank or a part number in a

factory. It may be necessary to join two or more fields

together in order to produce a unique key. The key of a

40

piece of records must .be unique because that is used for

determining where the record should be located on the file

unit and for retrieving the record from the file.

Many applications of data base need to identify records

on the basis of keys. The basic application is this: Given

a key, such as an account number, how does the computer

locate the record for that key? Hashing Table Methods are

used extensively in data base applications.

Hashing is regarded as ingenious and useful way of

address calculation technique for data base management in two

respects: access efficiency and storage efficiency.

6-4.1 Access Efficiency

The access efficiency of the hashing method depends on two

factors :

1. Original Key Distribution. The more the designer of

a data base knows about the distribution, the better

position he/she is in to select the number of blocks

and the number of home address per block. The

optimum selection of these factors will enable the

designer to reduce the average length of the synonym

chain.

2. Space Allocated.4 The major issue for access

efficiency , is EVEN distribution of the actual keys
* t

i

over the numbér of blocks, i.e., the space allocated.
A

*

If the hash function assigns many keys in one area,

the result is a larger number of synonyms. In this:

41

h(k)=i, (1 <= i <= n)

the larger value of n, the better randomness can be

achieved.

6-4.2 Storage Effiçiençt

The storage efficiency depends on the space allocated

and the hash function. When using hash table methods, it is

advisable not to specify any free space within the blocks.

The reason is that the hashing-function may randomize to the

free blocks and to the free space within a block; this will

result in putting the corresponding record into the overflow

area.

»

42

CHAPTER VII

Summary of the Study

Hash Table Methods are conceptually elegant and

extremely fast methods for information storage and retrieval.

This thesis has examined in detail several practical issues

concerning the implementation of these methods.

The most important issue addressed in this thesis is the

efficient implementation of hash table methods. The author

finds that there are critential trade-offs in a desired

implemention. These are discussed in issues such as hash

addressing, handling collision, hash table layout, and bucket

overflow problems.

The comparisons of various hash functions in chapter III
* , .

shows that the criteria of good hash function is providing

even distribution, and at the same time, it must be easily

computed.
*

1 r

Collision is the major problem in hash table methods.

Differing in the manner in, resolving collisions, two major
4

hash table methods are discussed in chapter IV. Open
r*> * «

Addressing Method places the synonymous items (items with the
à

same hashed address) somewhere within the table. The

Chaining Method, however, chains all synonymies and store

them somewhere outside the table called overflow area.

43

In applications where inserting, deleting, or searching

are necessary, the auther has illustrated several

applilcation examples found in the computer’s system

software. Hash Table is widly used by system software as an

ideal data structure such as compiler's symbol table, data

base, directories of file organizations, not to mention the

protential popularity in problem-solving application

programs.

44

‘^BIBLIOGRAPHY
1

F.R.Hopgood ' 4

COMPUTER BULLETIN 11 (1908), 297-300
•» * > .

P.Flajolet, J.Francon, and J,Vuillemin.

"Sequence of Operations Analysis for Dynamic Data

Structures", JOURNAL OF ALGORITHMS 1, 111-141 (1980)

Dennis G. Severance

"Identifier Search Mechanisms: A Survey and General-
«

-ized Model", COMPUTING SURVEYS. Vol.6, no.3,

September 1974.

P.Quittner, S.Cso'ka, S.Hala’sz, D.Kotsis, and K.Va'rnai.

"Comparison of synonym Handling and Bucket Organi¬

zation Methods", COMMUNICATIONS OF THE ACM

Vol.24, number 9, p.579-583.

Per-Ake Larson

"Analysis of Hashing with Chaining in the Prime

Area", JOURNAL OF ALGORITHMS 5,36-47 (1984)

Richard P.Brent

"Scatter storage techniques", COMMUNICATIONS OF THE

ACM February 1973 VO1,16 no.2 105-109

Gary D.Knott

"Direct-Chaining with Coalescing Lists"

JOURNAL OF ALGORITHMS 5, 7-21 (1984).

S.L.Graham, R.L.Rivest,

45

"Pseudochaining in Hash Tables" COMMUNICATIONS OF THE

ACM July 1978, Vol.21 Number 7, 554-557.

W.D. Maurer and T.G. Lewis.

"Hash table methods" p.6-19.

Robert Morris.

"Scatter Storage Techniques" COMMUNICATIONS OF THE

ACM Vol.11,number 1 January 1968, 38-44.

Jeffrey Scott Vitter.

"Coalesced Hashing" COMMUNICATIONS OF THE ACM December

1982 Vol.25,number 12, 915-926.

Jefrey Scott Vitter.

"Deletion Algorithms for Hashing that Preserve Ran-

-domness", JOURNAL OF ALGORITHMS *3. 261-275 (1982)
■ *

Ellis Horowitz, Sartaj sahni.
»

FUNDAMENTALS OF DATA STRUCTURES’p.456-471.
J* *

Donald E. Knuth.

THE-ART OF COMPUTER PROGRAMMING Vol.3 p.508-471.

Alfred V.Aho, John E. Hopcroft, and Jeffrey D. Ullman.

DATA STRUCTURES AND ALGORITHMS p.122-135.

Aho, Hopcroft, Ullman.

THE DESIGN AND ANALYSIS OF COMPUTER ALGORITHMS

p.108-112.

William A. Barrett, John D. Couch.

COMPILER CONSTRUCTION: THEORY AND PRACTICE p.368-371

46

