138 research outputs found

    Pseudo-random bit generator based on multi-modal maps

    Get PDF
    "In this work we present a pseudo-random Bit Generator via unidimensional multi-modal discrete dynamical systems calledk-modal maps. These multi-modal maps are based on the logistic map and are useful to yield pseudo-random sequences with longer period, i.e., in order to attend the problem of periodicity. In addition the pseudo-random sequences generated via multi-modal maps are evaluated with the statistical suite of test from NIST and satisfactory results are obtained when they are used as key stream. Furthermore, we show the impact of using these sequences in a stream cipher resulting in a better encryption quality correlated with the number of modals of the chaotic map. Finally, a statistical security analysis applied to cipher images is given. The proposed algorithm to encrypt is able to resist the chosen-plaintext attack and differential attack because the same set of encryption keys generates a different cipher image every time it is used.

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Randomness properties of sequence generated using logistic map with novel permutation and substitution techniques

    Get PDF
    In this paper, a design of a chaos-based keystream generator (KSG) using a novel permutation technique with various two-dimensional patterns and a substitution technique with Z4 mapping is proposed. Initially, a chaotic function such as a logistic map is used to generate a pseudo-random number. Then these numbers are converted into binary sequences using binary mapping. In order to achieve statistical properties of the resultant binary sequences, a novel method of KSG is developed by considering parameters such as initial value “x0”, system parameter “r”, novel permutation techniques defined by 2-dimensional patterns, and substitution technique defined over Z4 transformation. The binary sequences so obtained are subjected to randomness tests by applying the National Institute of Standards and Technology (NIST) SP-800-22 (Revision 1a) test suite for investigation of its randomness properties to obtain suitable sequences which can be used as a key for cryptographic applications. From the results obtained, it is found that the binary sequences exhibit better randomness properties as per the cryptographic requirements

    Pseudo Random Binary Sequences Obtained Using Novel Chaos Based Key Stream Generator and their Auto-correlation Properties

    Get PDF
    In this paper, psuedo random binary sequences are generated from the “Chaos Based Key Stream Generator- using novel Permutation technique with two dimensional patterns and substitution technique with Z4 mapping” and investigation of auto correlation property for the generated seuwnces is presented. Initially a chaotic function, considering Logistic map is used to generate a Pseudo Random Numbers (PRNs). Then these numbers are converted into binary sequences using binary mapping. These sequences are further modified by novel permutation techniques defined using 2-Dimensional patterns, and substitution technique defined over Z4 transformation in order to improve their statistical properties. The resulting sequences are investigated for auto correlation properties using Normalized Hamming Auto Correlation function. The purpose of this work is to assessing the quality of sequences of uniformly distributed pseudorandom numbers from the proposed generator. It is found that, generated sequences exhibit good auto-correlation property which is suitable for key sequence or secret key for cryptographic applications

    Analysis and Design Security Primitives Based on Chaotic Systems for eCommerce

    Get PDF
    Security is considered the most important requirement for the success of electronic commerce, which is built based on the security of hash functions, encryption algorithms and pseudorandom number generators. Chaotic systems and security algorithms have similar properties including sensitivity to any change or changes in the initial parameters, unpredictability, deterministic nature and random-like behaviour. Several security algorithms based on chaotic systems have been proposed; unfortunately some of them were found to be insecure and/or slow. In view of this, designing new secure and fast security algorithms based on chaotic systems which guarantee integrity, authentication and confidentiality is essential for electronic commerce development. In this thesis, we comprehensively explore the analysis and design of security primitives based on chaotic systems for electronic commerce: hash functions, encryption algorithms and pseudorandom number generators. Novel hash functions, encryption algorithms and pseudorandom number generators based on chaotic systems for electronic commerce are proposed. The securities of the proposed algorithms are analyzed based on some well-know statistical tests in this filed. In addition, a new one-dimensional triangle-chaotic map (TCM) with perfect chaotic behaviour is presented. We have compared the proposed chaos-based hash functions, block cipher and pseudorandom number generator with well-know algorithms. The comparison results show that the proposed algorithms are better than some other existing algorithms. Several analyses and computer simulations are performed on the proposed algorithms to verify their characteristics, confirming that these proposed algorithms satisfy the characteristics and conditions of security algorithms. The proposed algorithms in this thesis are high-potential for adoption in e-commerce applications and protocols

    Joint block and stream cipher based on a modified skew tent map

    Get PDF
    Image encryption is very different from that of texts due to the bulk data capacity and the high redundancy of images. Thus, traditional methods are difficult to use for image encryption as their pseudo-random sequences have small space. Chaotic cryptography use chaos theory in specific systems working such as computing algorithms to accomplish dissimilar cryptographic tasks in a cryptosystem with a fast throughput. For higher security, encryption is the approach to guard information and prevent its leakage. In this paper, a hybrid encryption scheme that combines both stream and block ciphering algorithms is proposed in order to achieve the required level of security with the minimum encryption time. This scheme is based on an improved mathematical model to cover the defects in the previous discredited model proposed by Masuda. The proposed chaos-based cryptosystem uses the improved Skew Tent Map (STM) RQ-FSTM as a substitution layer. This map is based on a lookup table to overcome various problems, such as the fixed point, the key space restrictions, and the limitation of mapping between plain text and cipher text. It uses the same map as a generator to change the byte position to achieve the required confusion and diffusion effects. This modification improves the security level of the original STM. The robustness of the proposed cryptosystem is proven by the performance and the security analysis, as well as the high encryption speed. Depending on the results of the security analysis the proposed system has a better dynamic key space than previous ones using STM, a double encryption quality and a better security analysis than others in the literature with speed convenience to real-time applications

    AN EFFICIENT CHAOS-BASED OPTIMIZATION ALGORITHM APPROACH FOR CRYPTOGRAPHY

    Get PDF
    The utmost negative impact of advancement of technology is an exponential increase in security threats, due to which tremendous demand for effective electronic security is increasing importantly. The principles of any security mechanism are confidentiality, authentication, integrity, non-repudiation, access control and availability. Cryptography is an essential aspect for secure communications. Many chaotic cryptosystem has been developed, as a result of the interesting relationship between the two field chaos and cryptography phenomenological behavior. In this paper, an overview of cryptography, optimization algorithm and chaos theory is provided and a novel approach for encryption and decryption based on chaos and optimization algorithms is discussed. In this article, the basic idea is to encrypt and decrypt the information using the concept of genetic algorithm with the pseudorandom sequence further used as a key in genetic algorithm operation for encryption: which is generated by application of chaotic map. This attempt result in good desirable cryptographic properties as a change in key will produce undesired result in receiver side. The suggested approach complements standard, algorithmic procedures, providing security solutions with novel features
    • …
    corecore