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 In this paper, a design of a chaos-based keystream generator (KSG) using a 

novel permutation technique with various two-dimensional patterns and a 

substitution technique with Z4 mapping is proposed. Initially, a chaotic 

function such as a logistic map is used to generate a pseudo-random number. 

Then these numbers are converted into binary sequences using binary 

mapping. In order to achieve statistical properties of the resultant binary 

sequences, a novel method of KSG is developed by considering parameters 

such as initial value “x0”, system parameter “r”, novel permutation techniques 

defined by 2-dimensional patterns, and substitution technique defined over Z4 

transformation. The binary sequences so obtained are subjected to randomness 

tests by applying the National Institute of Standards and Technology (NIST) 

SP-800-22 (Revision 1a) test suite for investigation of its randomness 

properties to obtain suitable sequences which can be used as a key for 

cryptographic applications. From the results obtained, it is found that the 

binary sequences exhibit better randomness properties as per the 

cryptographic requirements. 
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1. INTRODUCTION  

Multimedia data like audio, video, and image are widely used in present days due to their enormous 

usage in various applications such as entertainment, military, education, banking, communication, and medical. 

The data is highly susceptible to threats from different directions. Thus, the protection of such data is essential 

in order to achieve confidentiality, authenticity integrity, and overall security. Cryptography provides protection 

significantly to achieve secure communication of data [1], [2]. Traditional block encryption algorithms such as 

data encryption standard (DES) [3], advanced encryption standard (AES) [4], international data encryption 

algorithm (IDEA) [5], and Rivest-Shamir-Adleman (RSA) [6] are found to be expensive and slow, hence not 

suitable for multimedia data in real-time applications, as the size of multimedia data is very large [7], [8].  

Stream cipher systems are more suitable for real-time processing of large-sized or bulky multimedia 

data such as images, speech, and video. Generally, in a stream cipher system, a binary message is encrypted 

bit by bit modulo-2 in addition to a binary random sequence called a key sequence [9]. The security of a stream 

cipher system depends on the randomness properties of the key sequence. To meet the demands of the real-

time processing and security concerns of multimedia data, chaos-based functions have been in use to generate 

key streams having desirable randomness properties as required for cryptographic applications. Chaos-based 

functions are of high interest due to their potential benefits such as high non-linearity, low cost, and large 
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periodicity [9], [10]. The key sequence is a very important building block of the entire stream cipher system. 

The important properties of chaos functions such as non-linearity and sensitivity to minutely changed initial 

conditions have been exploited to obtain randomness characteristics as required for the key sequence for the 

stream cipher system. Hence the design of a “Chaos-based key stream generator” is a topic of interest. The 

National Institute of Standards and Technology (NIST) compliance binary sequences which possess the 

desirable randomness properties to be suitable for cryptographic applications are generated from the proposed 

generator. 

 

 

2. LITERATURE SURVEY 

Chaos-based cryptography is one of the interesting areas for real-time applications such as data, video, 

and speech encryption for secure communication. Chaotic functions have been finding a place in key generation 

algorithms due to their nature of exhibiting nonlinearity, which can be exploited to produce a large number of 

sequences having random properties needed for key sequences. A better chaos-based crypto-system will have 

some important requirements to meet the demands of cryptography as reported in [11]–[16] such as a well-

defined key generation process, large periodicity of key sequence, large key space with uniform distribution, 

high sensitivity to minute changes, high security, and good resistance to various attacks and threats. Apart from 

these, the feasibility of implementing in real time without compromising security, cost, and speed is also an 

appealing feature in applications such as mobile communication and online transactions.   

With the increasing level of complexity in the technology, the speed of operation and processing also 

increased. Hence, the need for a high level of security in the field of hardware technology was more in demand. 

Chaotic systems are very much sensitive to initial conditions. Various properties of the chaotic systems like 

ergodicity, mixing, stretching, and folding make them suitable for constructing cryptographic systems [13], 

[14], [17], [18]. Binary sequence having large linear complexity property is one of the important needs for 

cryptographic applications and is discussed in matrix recurrence relation over Z4 [17].  

Chaos-based algorithms [19]–[23] uses chaotic maps such as logistic maps, Lorenz maps, Baker maps, 

and Chen maps to generate random numbers to be suitable for cryptographic needs. Some of the one and  

two-dimensional chaotic cryptosystems found in [14], [15], [23] are promising generators for their suitability 

for cryptographic applications. The better the randomness properties of the key sequence, the better the security 

for the stream cipher system. Maximum-length sequences called m-sequences generated by n-stage linear 

feedback shift registers (LFSRs) have very good randomness properties. However, m-sequences have low 

linear complexity and hence are not suitable for cryptographic applications [24]–[26]. In practical stream cipher  

designs, a large linear complexity of the key stream is obtained by a nonlinear transformation of the LFSR 

sequences [27], [28].  

Some of the examples of cryptographically secure pseudorandom bit generators that present a quarter-

rate pseudo-random binary sequence generator (PRBSG) are RSA pseudorandom bit generator [29], Micali-

Schnorr pseudorandom bit generator [30], [31], Blum-Blum-Shub generator (x2 mod N generator) [27], [28], 

[32]. For cryptographic applications, random number sequences having desirable statistical properties may be 

used as a key. There are many standard test suites like NIST [33], DIEHARD, and Crypt-XS. are recommended 

to determine the randomness properties of sequences and their suitability for cryptographic applications [2]. 

 

 

3. PROPOSED METHOD OF CHAOS BASED KEY STREAM GENERATOR 

In this work, a novel method for generating cryptographically secure random binary sequences is 

proposed. The process of binary sequence generation in the proposed model chaos based key stream generator 

(CBKSG) is as shown in Figure 1. Initially, a chaotic function namely a logistic map is used to generate pseudo-

random numbers (PRNs) and which are then converted into binary sequences. This does not possess the 

randomness properties as required to be suitable for cryptographic key sequences. Thus, the proposed work 

aims at generating binary sequences which possess randomness properties as suitable for cryptographic key 

sequences. The overall process involves applying permutation and substitution techniques to the resultant 

sequences of logistic maps to ensure they possess good randomness properties as suitable for the key sequences 

for cryptographic applications. 

In this work, a design of a novel permutation technique by defining various two-dimensional patterns 

and a substitution technique by defining Z4 mapping is proposed. In the permutation technique, the defined 

patterns are made to visit randomly on the resultant binary sequence of the logistic map which is arranged in 

two-dimensional space. The random visit made by the 2-dimensional pattern is considered to construct new 

binary sequences and they are tested for their randomness properties. In the substitution technique, binary 

sequences obtained after the permutation are subjected to nonlinear mapping Z4 transformation to obtain new 

binary sequences and they are tested for their randomness properties. 
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The standard statistical test suite NIST SP 800-22 (Rev-1a) is used to test the randomness properties 

of the sequences generated from the proposed keystream generator. The permutation and substitution 

techniques are explained in the following section, it is also shown that the sequences so obtained exhibit 

randomness properties suitable as keys for cryptographic applications. The design process involves three 

stages. They are explained in the following section. 

 

 

 
 

Figure 1. Proposed CBKSG 

 

 

3.1.  Stage-1: logistic map 

The model is designed as a three-step process during the first stage. In step 1, the floating-point PRNs 

are generated using a logistic map with predefined initial conditions. In step 2, the floating values are converted 

into integer values by the decimal conversion method. In step 3, the integer values will be converted into binary 

values. The steps are explained in detail as follows. 

a. Generation of the floating-point sequence using a logistic map  

A pseudo-random sequence (floating in nature) is generated using a logistic map as defined in (1), 

 

 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛)     (1) 

 

where 0 ≤ 𝑥0 < 1 and 0 ≤ r < 4; 𝑥0 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 ,  𝑥𝑛+1, the next value. The bifurcation diagram of the 

logistic map is shown in Figure 2. It exhibits chaotic behavior in the range 3.99 ≤ 𝑟 < 4 The output of the 

logistic map is a floating-point sequence that is considered in the range of 0.000000 to 0.999999 and mapped 

to an integer of six digits. Then it is converted into a binary stream of length N=106.  

b. Conversion of floating values into integer values 

The floating numbers are converted into integer values by multiplying each value by N=106 and stored 

in column vector ‘A’ of size N×1 as defined in (2), 
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𝐴𝑇 =  [𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑁]            (2) 

 

where In is an integer value with 1 ≤ n ≤ N and 0 ≤ In ≤ N-1 

c. Conversion of integer values into Binary stream (B) 

The integer values 𝐼𝑛 are then converted into a binary stream of length N by using the simple rule as 

defined in (3). 

 

𝐵 = {
1, 𝐼𝑛 = 𝐸𝑣𝑒𝑛
0, 𝐼𝑛 = 𝑂𝑑𝑑

  (3) 

 

Thus, 106 bits are generated and saved into a square matrix ‘C’ of size103 × 103. 

In this way, a set of about 1,000 binary sequences are generated each of length 106 bits. These 

sequences need to be scrambled in order to kill their periodicity and linearity to obtain randomness properties. 

Hence permutation techniques are developed and applied. The model is developed to the next stage called 

stage-2 by designing and applying permutation techniques. 

 

 

 
 

Figure 2. Bifurcation diagram of logistic map 

 

 

3.2.  Stage-2: permutation techniques 

In the second stage, two-dimensional permutation patterns called ‘Window Pattern’ denoted by ‘Pw’ 

and ‘Spiral Pattern’ denoted by ‘Ps’ are designed. They are used as moving windows on the binary sequences 

obtained from the previous stage which are arranged in a two-dimensional space. These patterns are explained 

in detail in the following section. 

 

3.2.1. Window pattern: Pw 

Pw is a combination of two sub patterns namely P1 and P1
′. Thus, Pw = (P1 ∪ P1

’). The sub patterns P1, 

P1
′ and main pattern ‘Pw’ are shown in Figures 3(a) to (c), respectively. The sub pattern P1 is defined for the 

square matrix of size 3×3 as shown in Figure 3(a). The trace of the nodes o(1), o(2), o(3), and o(4) depicts the path 

to visit by the pattern P1. The binary values stored at these points are read in the said order. 

For example, if o(1), o(2), o(3), and o(4) are 1, 0, 1, and 1, then the read value along the trace forms binary 

string 1011. The sub pattern P1
′ is defined for the square matrix of size 3×3 is shown in Figure 3(b). The trace 

of the nodes *(1), *(2), *(3), *(4), and *(5) depicts the path to visit by the pattern P1
′. The binary values stored at 

these points are read in the said order. For example, if *(1), *(2), *(3), *(4), and *(5) are 1,0,0,1, and 1 then the read 

value along the trace forms a binary string 10011. 

The window pattern is denoted by Pw. The window pattern Pw is defined for the square matrix of size 

3×3 is shown in Figure 3(c), which is the union of patterns P1
 and P1

′. The trace of the nodes o(1) , o(2) , o(3), o(4) 

followed by *(5), *(6), *(7), *(8), *(9) depicts the path to visit by the pattern Pw. For example, if the 3×3 matrix has 

9 binary values along the nodes o(1) , o(2) , o(3) , o(4) are 1, 0, 1, 1 respectively and *(5), *(6), *(7), *(8), *(9) are 1, 0, 

0, 1, 1 respectively, then the read value along the trace of the window pattern is 101110011 in the order of their 

positions. 

This way the window pattern will be moved from left to right along the binary values stored in the 

square matrix ‘C’ from the top left position to the bottom right position without overlapping. The random visit 

made by the window pattern on the binary values of matrix C is considered to construct a new binary sequence. 

In this manner, a permuted binary sequence is generated. The uncovered values are considered row-wise and 
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appended at the end of the generated sequence. With this technique, the original binary sequence of matrix C 

is scrambled and thus loses its originality and periodicity. 

The illustration of the application of the window pattern is shown for the 6×6 square matrix in 

Figure 4. The matrix has 36 binary values obtained from the logistic map arranged row-wise. These binary 

values have to be permuted using the window pattern. Thus, the window pattern will be moved from left to 

right along the binary values stored in the 6×6 square matrix from the top left position to the bottom right 

position without overlapping. The random visit made by the window pattern on the binary values of the matrix 

is considered to construct a new binary sequence. The values are read along the trace of the window pattern in 

the order from 1 to 36. Let the permuted binary sequence after applying the window pattern be denoted by Bw 

as shown in (4). 

In this way, the window pattern is applied to the sequences of matrix C which is of size 1000×1000 

in the manner as illustrated in Figure 4. After the application of the window pattern to matrix C, we obtain the 

first permuted binary sequence of length 106. In this manner, a set of about 10,000 sequences are generated 

each of length 106 for various initial values ‘𝑥0’ and system parameter ‘r’. These sequences have to be tested 

for randomness properties.  

 

𝐵𝑤 = {𝑂1, 𝑂2, 𝑂3, 𝑂4,∗5,∗6,∗7,∗8,∗9, 𝑂10, 𝑂11, … … … ∗14,∗15, … … . , 𝑂31, … . . , 𝑂36 }  (4) 

 

 

   
(a) (b) (c) 

 

Figure 3. Sub patterns and window pattern; (a) P1, (b) P1, and (c) Pw 
 

 

 
 

Figure 4. Illustration of the use of window pattern for 6×6 matrix 
 

 

3.2.2. Bw sequences to NIST test 

The output binary sequences (Bw) obtained from the use of window patterns are subjected to the 

statistical test suite NIST-SP 800-22 (Revision 1a) for testing randomness properties. The permutation process 

using the window pattern is repeated for several iterations 1, 2, 3, 4, 5, 10, and 20 considering the output 

sequences of the previous iteration as input for the next iteration. After the completion of every iteration, the 

resultant sequences will undergo statistical tests for randomness properties. As the observations made from 

their randomness tests at every iteration, it is found that the sequences are not satisfying the required properties 

for the cryptographic key. To improve their statistical properties further, a permutation pattern called spiral 

pattern ‘Ps’ is designed and used. 

 

3.2.3. Spiral pattern: Ps  

Two-dimensional permutation pattern ‘Ps’ is defined as shown in Figure 5. Spiral pattern can be used 

for any square matrix of size N×N (for N is even). The generation of spiral pattern for square matrix of size 

N×N (N is even) is explained in the following steps.  
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a. Choosing the initial position of the spiral. Initial position of row and column is chosen as N/2, N/2. 

b. Trace of a spiral with spiral movement index (n). The trace of the spiral for the first round begins at initial 

position (N/2, N/2). The movement of the spiral for one round is defined as the function {Trace (Ps)} which 

is defined as follows. 

{Trace(Ps)} for one round of spiral: shift right by n position, shift down by n position, shift left by 

(n+1) position, shift up by (n+1) position where, one round of a spiral is traced with initial value of n=1, after 

completion of one round of spiral, for the second round ‘n’ is incremented twice as n+2 and the trace will be 

continued from the same position, the process will continue by incrementing n value for every round until 

covering all the values in the matrix. The trace of the spiral can be stopped when the last value is covered in 

the matrix. 

For example, if a 4×4 matrix has 16 binary values arranged row-wise as 1011001101001100, then the 

initial row and column position is (2,2), and the trace of the spiral pattern is as depicted in Figure 6. The random 

visit made by the spiral pattern on the binary values of the matrix is considered to construct a new binary 

sequence. The permuted binary sequence obtained along the trace of the spiral is denoted as Bs are read as 

0101001011100011. 

In this way, the spiral pattern is applied to the resultant sequences of stage-1 which are stored in the 

square matrix ‘D’ which is of size 1000×1000 in the manner as illustrated in Figure 6. After the application of 

the spiral pattern to matrix D, we obtain the permuted binary sequence of length 106. In this manner, a set of 

about 10,000 sequences are generated each of length 106 for various initial values ‘𝑥0’ and system parameter 

‘r’. These sequences will be tested again for randomness properties. 

 

 

  
 

Figure 5. Spiral pattern 

 

Figure 6. Illustration of the spiral pattern 

 

 

3.2.4. Bs sequences to NIST test 

The output binary sequences (Bs) obtained from the use of window patterns are subjected to the 

statistical test suite NIST-SP 800-22 (Revision 1a) for testing randomness properties. The permutation process 

using a spiral pattern is repeated for several iterations 1, 2, 3, 4, 5, 10, and 20 considering the output sequences 

of the previous iteration as input for the next iteration. After the completion of every iteration, the resultant 

sequences will undergo statistical tests for randomness properties. From the observations made of their 

randomness tests from every iteration, they are improved, however, the percentage of sequences passing the 

NIST tests is not sufficient to satisfy the required properties for the cryptographic key. To improve their 

statistical properties further the model is developed to the next stage.   

 

3.3.  Stage-3: substitution technique 

In the third stage, a substitution process called Z4 mapping is designed. This technique is used in 

addition to the permutation techniques performed in the previous stages in order to increase non-linearity. As 

per the requirements for a cryptographic key, the randomness of the sequence can be improved by using the 

permutation and substitution processes together. The Z4 mapping is explained as follows. 

 

3.3.1. Z4 mapping process 

Z4 mapping is a substitution technique, which is applied to the output sequences of stage 2. This results 

in final binary sequences denoted as B of length 106. The steps involved in Z4 substitution technique are 

explained as follows. 

− Sequence over {Z4} is defined as {Z4}= {0,1,2,3}  

− Binary sequences (Bs) obtained from the stage-2 are mapped to Z4 elements using the following mapping 

‘00’ is mapped to 0 

‘01’ is mapped to 1 

‘10’ is mapped to 2 

‘11’ is mapped to 3 
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− Binary mapping sequence {B} is defined as {B}= {0,1} 

− Final binary sequence is obtained by mapping the Z4 sequence using the binary mapping as defined in (5). 

 

𝐵 = {
1, 𝐹𝑜𝑟 0, 3 Є 𝑍4
0, 𝐹𝑜𝑟 1, 2 Є 𝑍4 

  (5) 

 

3.3.2. Illustration of Z4 substitution technique 

Consider a binary sequence {Bs} ={001011101000…}, Corresponding {Z4} sequence = {023220….}. 

Mapped binary sequence is given by (6). 

 

𝐵 = {101001 … … … … … … }    (6) 

 

The use of the Z4 substitution technique alters the length of the original sequence such that the length of the 

final binary sequence is half of the original length. Hence 2×106 bits will be generated from previous stages 

which act as the input to Z4 mapping, in order to maintain the length of the final binary sequence {B} to 106 as 

defined in (6). In this manner, a set of about 10,000 such binary sequences each of length 106 are generated 

for various initial values ‘x0’ and system parameter ‘r’. These sequences are further tested for randomness 

properties. 

 

3.3.3. Final binary sequences {B} to NIST test 

The output binary sequences (B) obtained from the use of the Z4 substitution technique are subjected 

to the statistical test suite NIST-SP 800-22 (Revision 1a) for testing randomness properties. The observations 

show that the sequences so obtained from this stage meet the required statistical properties for cryptographic 

key sequence. A large number of sequences are passing the NIST tests in this stage. The overall NIST test 

results obtained for the binary sequences from various stages are discussed in the following section. 

 

 

4. RESULTS AND OBSERVATION 

4.1.  NIST results of intermediate binary sequences 

The intermediate results of NIST for 10,000 sequences each of length 106 are discussed. The sequences 

are generated for various initial values ‘𝑥0’ and system parameter ‘r’ in the specified chaotic range of 3.9000 

to 3.9999 as per logistic map in (1), using the proposed permutation patterns and substitution technique. To 

generate 10,000 sequences the value of ‘r’ is varied in steps of 0.0001. The percentage of sequences which 

passes NIST for various initial values are listed in Tables 1 to 4. 
 

 

Table 1. Percentage of sequences {Bw} which pass NIST tests 
No of sequence considered = 10,000 

System parameter (r): 3.9000 to 3.9999, varied in steps of .0001 
Initial value (x0) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

NIST Test result in percentage (%) [Iteration (n=0)] 25 24 26 25 24 27 28 29 27 

 
 

Table 2. Percentage of sequences {Bw} which pass NIST tests for various iterations 
No of sequence considered = 10,000 

System parameter (r): 3.9000 to 3.9999, varied in steps of .0001 

Iteration # (n) 1 2 3 4 5 10 20 

NIST Test result in average percentage (%) 32 43 49 48 51 53 51 

 
 

Table 3. Percentage of sequences {Bs} which pass NIST tests 
No of sequence considered = 10,000 
System parameter (r): 3.9000 to 3.9999, varied in steps of .0001 

Initial value (x0) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

NIST Test result in percentage (%) [Iteration (n=0)] 47 52 57 58 63 62 62 63 64 

 
 

Table 4. Percentage of sequences {Bs} which pass NIST tests for various iterations  
No of sequence considered = 10,000 

System parameter (r): 3.9000 to 3.9999, varied in steps of .0001 

Iteration # (n) 1 2 3 4 5 10 20 

NIST Test result in average percentage (%) 64 67 71 72 74 75 76 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 4, August 2023: 4369-4378 

4376 

It is observed from the results of intermediate sequences {Bw} from Tables 1 and 2 that, the average 

percentage of sequences passing the NIST tests is 25 (without iteration) and 51 (with iteration). It is also 

observed from the results of intermediate sequences {Bs} from Tables 3 and 4 that, the average percentage of 

sequences passing the NIST tests is 61 (without iteration) and 72 (with iteration). The implication of the NIST 

results of intermediate sequences is that the average percentage of sequences passing NIST is improved to 72 

by using the permutation techniques. Further improving the results, the substitution technique is used. 

 

4.2.  NIST results of final binary sequences 

The final binary sequences obtained from stage-3 by the process of substitution seem to exhibit good 

randomness properties. NIST test results of final binary sequences {B} are shown in Table 5. Some typical 

cases with results for all tests of NIST are shown in Table 6. It is observed from the results of final binary 

sequences {B}, that the average percentage of sequences passing the NIST tests is 97. The results are improved 

further from the previous stage by an additional substitution technique. 

 

 

Table 5. Percentage of sequences {B} which pass NIST tests 
No of sequence considered = 10.000 

System parameter (r): 3.9000 to 3.9999, varied in steps of .0001 

Initial value (x0) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

NIST Test result in percentage (%) [Iteration (n=0)] 97 98 97 98 98 98 96 97 98 

 

 

Table 6. NIST test results for typical cases 

Statistical test 
Case 1: r=3.9865, x0=0.1  Case 2: r=3.9865, x0=0.5  Case 3: r=3.9865, x0=0.9 

P-value Result  P-value Result  P-value Result 

Frequency 0.9662 Success  0.9775 Success  0.9775 Success 

Block frequency 0.9887 Success  0.9887 Success  0.9662 Success 

Cumulative sums 0.9662 Success  0.9775 Success  0.9887 Success 
Runs 0.9887 Success  0.9775 Success  0.9887 Success 

Longest run 0.9887 Success  0.9662 Success  0.9887 Success 

Rank 0.9775 Success  0.9662 Success  0.9887 Success 

FFT 0.9887 Success  0.9775 Success  0.9775 Success 

Non overlapping templates 0.9775 Success  0.9775 Success  0.9775 Success 

Overlapping templates 0.9887 Success  0.9775 Success  0.9550 Success 
Universal 0.9887 Success  0.9550 Success  0.9887 Success 

Approximate entropy 0.9775 Success  0.9775 Success  0.9887 Success 

Random excursions 0.9811 Success  0.9887 Success  0.9800 Success 
Random excursions variant 0.9811 Success  0.9791 Success  0.9800 Success 

Serial 0.9775 Success  0.9662 Success  0.9662 Success 

Linear complexity 0.9887 Success  0.9887 Success  0.9887 Success 

 

 

Overall, comparing the NIST results of the sequences obtained from all stages as shown in Tables 1 

to 5, it is evident that the percentage of sequences which passes NIST tests have been improved stage-wise. 

Hence, the proposed model has the process of permutation with window pattern, spiral pattern and, substitution 

with Z4 technique with satisfactory results in terms of efficiency, speed, simplicity, and novelty. Also, the final 

stage binary sequence of length 106 may be generated in less than a second. Hence, the proposed model is an 

efficient design for binary key stream generation for cryptographic applications. 

 

 

5. CONCLUSION 
With an extensive survey of cryptographic requirements and chaos-based encryption algorithms, it is 

found that binary sequences with good randomness properties are suitable as the key sequences for 

cryptographic applications. Hence a novel model namely ‘chaos-based key stream generator’ is developed to 

generate NIST compliance pseudo-random binary sequences. In this work Logistic map is used to generate 

PRNs initially by considering various parameters like initial value (𝑥0) and system parameter function (r). 

Novel permutation and substitution techniques have been developed and used to improve the statistical 

properties of the sequences obtained from the logistic map. Using the proposed model, large-length (106) binary 

sequences are generated in large volumes (10,000) and are subjected to NIST statistical tests. NIST SP-800-22 

(Revision 1a) statistical tests suite is used to determine the randomness properties of these sequences. From 

the NIST test results, it is evident that the sequences obtained from the model exhibit good randomness 

properties and meet the requirements of the cryptographic key. Hence, the binary sequences generated from 

the proposed model ‘chaos-based key stream generator’ using a novel permutation technique with various two-
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dimensional patterns and substitution technique with Z4 mapping prove to be an efficient ‘cryptographically 

secure random binary sequence generator’.   

 

 

6. FUTURE SCOPE 

The variants of the proposed model may be designed further considering changes in any one or all the 

parameters. The variants can be obtained from initial values, permutation patterns, substitution patterns, and 

iterations. With each different parameter, there is a scope for developing a new model for pseudo-random 

number generation. 
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