1,059 research outputs found

    Multi‑Agent Foraging: state‑of‑the‑art and research challenges

    Get PDF
    International audienceThe foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of robots has to search and transport objects to specific storage point(s). In this paper, we investigate the Multi-Agent Foraging (MAF) problem from several perspectives that we analyze in depth. First, we define the Foraging Problem according to literature definitions. Then we analyze previously proposed taxonomies, and propose a new foraging taxonomy characterized by four principal axes: Environment, Collective, Strategy and Simulation, summarize related foraging works and classify them through our new foraging taxonomy. Then, we discuss the real implementation of MAF and present a comparison between some related foraging works considering important features that show extensibility, reliability and scalability of MAF systems. Finally we present and discuss recent trends in this field, emphasizing the various challenges that could enhance the existing MAF solutions and make them realistic

    Make robots Be Bats: Specializing robotic swarms to the Bat algorithm

    Get PDF
    Bat algorithm is a powerful nature-inspired swarm intelligence method proposed by Prof. Xin-She Yang in 2010, with remarkable applications in industrial and scientific domains. However, to the best of authors' knowledge, this algorithm has never been applied so far in the context of swarm robotics. With the aim to fill this gap, this paper introduces the first practical implementation of the bat algorithm in swarm robotics. Our implementation is performed at two levels: a physical level, where we design and build a real robotic prototype; and a computational level, where we develop a robotic simulation framework. A very important feature of our implementation is its high specialization: all (physical and logical) components are fully optimized to replicate the most relevant features of the real microbats and the bat algorithm as faithfully as possible. Our implementation has been tested by its application to the problem of finding a target location within unknown static indoor 3D environments. Our experimental results show that the behavioral patterns observed in the real and the simulated robotic swarms are very similar. This makes our robotic swarm implementation an ideal tool to explore the potential and limitations of the bat algorithm for real-world practical applications and their computer simulations.This research has been kindly supported by the Computer Science National Program of the Spanish Research Agency (Agencia Estatal de InvestigaciĂłn) and European Funds, Project #TIN2017-89275-R (AEI/FEDER, UE), the project EVOLFORMAS Ref. #JU12, jointly supported by public body SODERCAN of the Regional Government of Cantabria and the European funds FEDER, the project PDE-GIR of the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions grant agreement #778035, Toho University (Funabashi, Japan), and the University of Cantabria (Santander, Spain). The authors are particularly grateful to the Department of Information Science of Toho University for all the facilities given to carry out this work. Special thanks are also due to the Editors and the three anonymous reviewers for their encouraging and constructive comments and very helpful feedback that allowed us to improve our paper signi cantly

    Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments

    Full text link
    Recent advances in computing and robotics offer significant potential for improved autonomy in the operation and utilization of today’s buildings. Examples of such building environment functions that could be improved through automation include: a) building performance monitoring for real-time system control and long-term asset management; and b) assisted indoor navigation for improved accessibility and wayfinding. To enable such autonomy, algorithms related to task allocation, path planning, and navigation are required as fundamental technical capabilities. Existing algorithms in these domains have primarily been developed for outdoor environments. However, key technical challenges that prevent the adoption of such algorithms to indoor environments include: a) the inability of the widely adopted outdoor positioning method (Global Positioning System - GPS) to work indoors; and b) the incompleteness of graph networks formed based on indoor environments due to physical access constraints not encountered outdoors. The objective of this dissertation is to develop general and scalable task allocation, path planning, and navigation algorithms for indoor mobile co-robots that are immune to the aforementioned challenges. The primary contributions of this research are: a) route planning and task allocation algorithms for centrally-located mobile co-robots charged with spatiotemporal tasks in arbitrary built environments; b) path planning algorithms that take preferential and pragmatic constraints (e.g., wheelchair ramps) into consideration to determine optimal accessible paths in building environments; and c) navigation and drift correction algorithms for autonomous mobile robotic data collection in buildings. The developed methods and the resulting computational framework have been validated through several simulated experiments and physical deployments in real building environments. Specifically, a scenario analysis is conducted to compare the performance of existing outdoor methods with the developed approach for indoor multi-robotic task allocation and route planning. A simulated case study is performed along with a pilot experiment in an indoor built environment to test the efficiency of the path planning algorithm and the performance of the assisted navigation interface developed considering people with physical disabilities (i.e., wheelchair users) as building occupants and visitors. Furthermore, a case study is performed to demonstrate the informed retrofit decision-making process with the help of data collected by an intelligent multi-sensor fused robot that is subsequently used in an EnergyPlus simulation. The results demonstrate the feasibility of the proposed methods in a range of applications involving constraints on both the environment (e.g., path obstructions) and robot capabilities (e.g., maximum travel distance on a single charge). By focusing on the technical capabilities required for safe and efficient indoor robot operation, this dissertation contributes to the fundamental science that will make mobile co-robots ubiquitous in building environments in the near future.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143969/1/baddu_1.pd

    Computational aspects of cellular intelligence and their role in artificial intelligence.

    Get PDF
    The work presented in this thesis is concerned with an exploration of the computational aspects of the primitive intelligence associated with single-celled organisms. The main aim is to explore this Cellular Intelligence and its role within Artificial Intelligence. The findings of an extensive literature search into the biological characteristics, properties and mechanisms associated with Cellular Intelligence, its underlying machinery - Cell Signalling Networks and the existing computational methods used to capture it are reported. The results of this search are then used to fashion the development of a versatile new connectionist representation, termed the Artificial Reaction Network (ARN). The ARN belongs to the branch of Artificial Life known as Artificial Chemistry and has properties in common with both Artificial Intelligence and Systems Biology techniques, including: Artificial Neural Networks, Artificial Biochemical Networks, Gene Regulatory Networks, Random Boolean Networks, Petri Nets, and S-Systems. The thesis outlines the following original work: The ARN is used to model the chemotaxis pathway of Escherichia coli and is shown to capture emergent characteristics associated with this organism and Cellular Intelligence more generally. The computational properties of the ARN and its applications in robotic control are explored by combining functional motifs found in biochemical network to create temporal changing waveforms which control the gaits of limbed robots. This system is then extended into a complete control system by combining pattern recognition with limb control in a single ARN. The results show that the ARN can offer increased flexibility over existing methods. Multiple distributed cell-like ARN based agents termed Cytobots are created. These are first used to simulate aggregating cells based on the slime mould Dictyostelium discoideum. The Cytobots are shown to capture emergent behaviour arising from multiple stigmergic interactions. Applications of Cytobots within swarm robotics are investigated by applying them to benchmark search problems and to the task of cleaning up a simulated oil spill. The results are compared to those of established optimization algorithms using similar cell inspired strategies, and to other robotic agent strategies. Consideration is given to the advantages and disadvantages of the technique and suggestions are made for future work in the area. The report concludes that the Artificial Reaction Network is a versatile and powerful technique which has application in both simulation of chemical systems, and in robotic control, where it can offer a higher degree of flexibility and computational efficiency than benchmark alternatives. Furthermore, it provides a tool which may possibly throw further light on the origins and limitations of the primitive intelligence associated with cells

    Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Full text link
    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in urban environments and to detect chemical species concentrations in migrating plumes. Given is our research in these areas and a status report of our progress

    Bio-Inspired Search Strategies for Robot Swarms

    Get PDF
    • …
    corecore