7,550 research outputs found

    Hessian and concavity of mutual information, differential entropy, and entropy power in linear vector Gaussian channels

    Full text link
    Within the framework of linear vector Gaussian channels with arbitrary signaling, closed-form expressions for the Jacobian of the minimum mean square error and Fisher information matrices with respect to arbitrary parameters of the system are calculated in this paper. Capitalizing on prior research where the minimum mean square error and Fisher information matrices were linked to information-theoretic quantities through differentiation, closed-form expressions for the Hessian of the mutual information and the differential entropy are derived. These expressions are then used to assess the concavity properties of mutual information and differential entropy under different channel conditions and also to derive a multivariate version of the entropy power inequality due to Costa.Comment: 33 pages, 2 figures. A shorter version of this paper is to appear in IEEE Transactions on Information Theor

    Pseudo-Exponential-Type Solutions of Wave Equations Depending on Several Variables

    Full text link
    Using matrix identities, we construct explicit pseudo-exponential-type solutions of linear Dirac, Loewner and Schr\"odinger equations depending on two variables and of nonlinear wave equations depending on three variables

    Towards the n-point one-loop superstring amplitude III: One-loop correlators and their double-copy structure

    Full text link
    In this final part of a series of three papers, we will assemble supersymmetric expressions for one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single valued. A key driving force in this construction is the generalization of a so far unnoticed property at tree level; the correlators have the symmetry structure akin to Lie polynomials. One-loop correlators up to seven points are presented in a variety of representations manifesting different subsets of their defining properties. These expressions are related via identities obeyed by the kinematic superfields and worldsheet functions spelled out in the first two parts of this series and reflecting a duality between the two kinds of ingredients. Interestingly, the expression for the eight-point correlator following from our method seems to capture correctly all the dependence on the worldsheet punctures but leaves undetermined the coefficient of the holomorphic Eisenstein series G4{\rm G}_4. By virtue of chiral splitting, closed-string correlators follow from the double copy of the open-string results.Comment: 77 pages, v2: published versio

    Double-Copy Structure of One-Loop Open-String Amplitudes

    Full text link
    In this Letter, we provide evidence for a new double-copy structure in one-loop amplitudes of the open superstring. Their integrands with respect to the moduli space of genus-one surfaces are cast into a form where gauge-invariant kinematic factors and certain functions of the punctures -- so-called generalized elliptic integrands -- enter on completely symmetric footing. In particular, replacing the generalized elliptic integrands by a second copy of kinematic factors maps one-loop open-string correlators to gravitational matrix elements of the higher-curvature operator R^4.Comment: 5 pages, v2: modifications in the structure to match published versio

    Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry

    Full text link
    Due to the isotropy dd-dimensional hyperbolic space, there exist a spherically symmetric fundamental solution for its corresponding Laplace-Beltrami operator. On the RR-radius hyperboloid model of dd-dimensional hyperbolic geometry with R>0R>0 and d2d\ge 2, we compute azimuthal Fourier expansions for a fundamental solution of Laplace's equation. For d2d\ge 2, we compute a Gegenbauer polynomial expansion in geodesic polar coordinates for a fundamental solution of Laplace's equation on this negative-constant sectional curvature Riemannian manifold. In three-dimensions, an addition theorem for the azimuthal Fourier coefficients of a fundamental solution for Laplace's equation is obtained through comparison with its corresponding Gegenbauer expansion.Comment: arXiv admin note: substantial text overlap with arXiv:1201.440
    corecore