Abstract

Due to the isotropy dd-dimensional hyperbolic space, there exist a spherically symmetric fundamental solution for its corresponding Laplace-Beltrami operator. On the RR-radius hyperboloid model of dd-dimensional hyperbolic geometry with R>0R>0 and d2d\ge 2, we compute azimuthal Fourier expansions for a fundamental solution of Laplace's equation. For d2d\ge 2, we compute a Gegenbauer polynomial expansion in geodesic polar coordinates for a fundamental solution of Laplace's equation on this negative-constant sectional curvature Riemannian manifold. In three-dimensions, an addition theorem for the azimuthal Fourier coefficients of a fundamental solution for Laplace's equation is obtained through comparison with its corresponding Gegenbauer expansion.Comment: arXiv admin note: substantial text overlap with arXiv:1201.440

    Similar works

    Full text

    thumbnail-image

    Available Versions