Within the framework of linear vector Gaussian channels with arbitrary
signaling, closed-form expressions for the Jacobian of the minimum mean square
error and Fisher information matrices with respect to arbitrary parameters of
the system are calculated in this paper. Capitalizing on prior research where
the minimum mean square error and Fisher information matrices were linked to
information-theoretic quantities through differentiation, closed-form
expressions for the Hessian of the mutual information and the differential
entropy are derived. These expressions are then used to assess the concavity
properties of mutual information and differential entropy under different
channel conditions and also to derive a multivariate version of the entropy
power inequality due to Costa.Comment: 33 pages, 2 figures. A shorter version of this paper is to appear in
IEEE Transactions on Information Theor