1,834 research outputs found

    Single-Carrier Modulation versus OFDM for Millimeter-Wave Wireless MIMO

    Full text link
    This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90-100 meters and the transmit power falls below 0 dBW.Comment: accepted for publication on IEEE Transactions on Communication

    Performance evaluation of channel estimation techniques for MIMO-OFDM systems with adaptive sub-carrier allocation

    Get PDF

    Analysis and Performance Comparison of DVB-T and DTMB Systems for Terrestrial Digital TV

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is the most popular transmission technology in digital terrestrial broadcasting (DTTB), adopted by many DTTB standards. In this paper, the bit error rate (BER) performance of two DTTB systems, namely cyclic prefix OFDM (CP-OFDM) based DVB-T and time domain synchronous OFDM (TDS-OFDM) based DTMB, is evaluated in different channel conditions. Spectrum utilization and power efficiency are also discussed to demonstrate the transmission overhead of both systems. Simulation results show that the performances of the two systems are much close. Given the same ratio of guard interval (GI), the DVB-T outperforms DTMB in terms of signal to noise ratio (SNR) in Gaussian and Ricean channels, while DTMB behaves better performance in Rayleigh channel in higher code rates and higher orders of constellation thanks to its efficient channel coding and interleaving scheme

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    Alamouti OFDM/OQAM systems with time reversal technique

    Full text link
    Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation (OFDM/OQAM) is a multicarrier modulation scheme that can be considered as an alternative to the conventional Orthogonal Frequency Division Multiplexing (OFDM) with Cyclic Prefix (CP) for transmission over multipath fading channels. In this paper, we investigate the combination of the OFDM/OQAM with Alamouti system with Time Reversal (TR) technique. TR can be viewed as a precoding scheme which can be combined with OFDM/OQAM and easily carried out in a Multiple Input Single Output (MISO) context such as Alamouti system. We present the simulation results of the performance of OFDM/OQAM system in SISO case compared with the conventional CP-OFDM system and the performance of the combination Alamouti OFDM/OQAM with TR compared to Alamouti CP-OFDM. The performance is derived by computing the Bit Error Rate (BER) as a function of the transmit signal-to-noise ratio (SNR)

    Non-Binary Coded CCSK and Frequency-Domain Equalization with Simplified LLR Generation

    No full text
    International audienceIn this paper, we investigate the performance of Single-Carrier (SC) transmission with Non-Binary Low- Density Parity-Check (NB-LDPC) coded Cyclic Code-Shift Keying (CCSK) signaling in a multipath environment and we show that the combination of CCSK signaling and non-binary codes results in two key advantages, namely, improved Log-Likelihood Ratio (LLR) generation via correlations and reduced implementation complexity. We demonstrate that Maximum Likelihood (ML) demodulation can be expressed by two circular convolution operations and thus it can be processed in the frequency domain. Then, we propose a joint Frequency-Domain Equalization (FDE) and LLR generation scheme that aims at reducing the complexity of the receiver. Finally, we demonstrate through Monte-Carlo simulations and histogram analysis that this proposed CCSK signaling scheme gives more robustness to SC-FDE systems than commonly employed Hadamard signaling schemes (a gap of 1.5dB in favor of CCSK signaling is observed at BER = 10−5, assuming perfect Channel State Information)

    On the Performance of LDPC-Coded MIMO Schemes for Underwater Communications Using 5G-like Processing

    Get PDF
    UIDB/EEA/50008/2020This article studies the underwater acoustic (UWA) communications associated with multiple input–multiple output (MIMO), single carrier with frequency-domain equalization (SC-FDE), and with low-density parity-check (LDPC) codes. Low-complexity receivers such as equal gain combining (EGC), maximum ratio combining (MRC), and iterative block—decision feedback equalization (IB-DFE) are studied in the above-described scenarios. Furthermore, due to the low carrier frequencies utilized in UWA communications, the performance of the proposed MIMO scenarios is studied at different levels of channel correlation between antennas. This article shows that the combined schemes tend to achieve good performances while presenting low complexity, even in scenarios with channel correlation between antennas.publishersversionpublishe
    • 

    corecore