2,710 research outputs found

    From Resilience-Building to Resilience-Scaling Technologies: Directions -- ReSIST NoE Deliverable D13

    Get PDF
    This document is the second product of workpackage WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellence. The problem that ReSIST addresses is achieving sufficient resilience in the immense systems of ever evolving networks of computers and mobile devices, tightly integrated with human organisations and other technology, that are increasingly becoming a critical part of the information infrastructure of our society. This second deliverable D13 provides a detailed list of research gaps identified by experts from the four working groups related to assessability, evolvability, usability and diversit

    -ilities Tradespace and Affordability Project – Phase 3

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering and associated management practices – “SE and Management Transformation (SEMT).” The Grand Challenge goal for SEMT is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise- oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Cloud technology options towards Free Flow of Data

    Get PDF
    This whitepaper collects the technology solutions that the projects in the Data Protection, Security and Privacy Cluster propose to address the challenges raised by the working areas of the Free Flow of Data initiative. The document describes the technologies, methodologies, models, and tools researched and developed by the clustered projects mapped to the ten areas of work of the Free Flow of Data initiative. The aim is to facilitate the identification of the state-of-the-art of technology options towards solving the data security and privacy challenges posed by the Free Flow of Data initiative in Europe. The document gives reference to the Cluster, the individual projects and the technologies produced by them

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    Designing a Conversation Mining System for Customer Service Chatbots

    Get PDF
    As chatbots are gaining popularity in customer service, it becomes increasingly important for companies to continuously analyze and improve their chatbots’ performance. However, current analysis ap-proaches are often limited to the level of question-answer pairs or produce highly aggregated metrics (e.g., average intent scores, conversations per day) rather than leveraging the full potential of the large volume of conversation data to extract actionable insights for chatbot developers and chatbot operators (e.g., customer service managers). To address this challenge, we developed a novel chatbot analytics approach — conversation mining — based on concepts and methods from process mining. We instanti-ated our approach in a conversation mining system that can be used to visually analyze customer-chatbot conversations at the process level. The findings of four focus group evaluations show that our system can help chatbot developers and operators identify starting points for chatbot improvement. Our re-search contributes novel design knowledge for conversation mining systems

    Designing a Conversation Mining System for Customer Service Chatbots

    Get PDF
    As chatbots are gaining popularity in customer service, it is critically important for companies to continuously analyze and improve their chatbots’ performance. However, current analysis approaches are often limited to the question-answer level or produce highly aggregated metrics (e.g., conversations per day) instead of leveraging the full potential of the large volume of conversation data to provide actionable insights for chatbot developers and chatbot managers. To address this challenge, we developed a novel chatbot analytics approach — conversation mining — based on concepts and methods from process mining. We instantiated our approach in a conversation mining system that can be used to visually analyze customer-chatbot conversations at the process level. The results of four focus group evaluations suggest that conversation mining can help chatbot developers and chatbot managers to extract useful insights for improving customer service chatbots. Our research contributes to research and practice with novel design knowledge for conversation mining systems
    • 

    corecore