
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2014-12-14

-ilities Tradespace and Affordability Project
Phase 3

Jacques, David; Columbi, John; Ryan, Erin; Ender,
Tommer; Peak, Russell; Sitterle, Valerie
Systems Engineering Research Center (SERC)

http://hdl.handle.net/10945/70125

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States

Downloaded from NPS Archive: Calhoun

-ilities Tradespace and Affordability Project – Phase 3
Technical Report SERC-2014-TR-039-3

December 31, 2014

Principal Investigator: Dr. Barry Boehm, University of Southern California

Research Team:

Air Force Institute of Technology

Georgia Institute of Technology

Massachusetts Institute of Technology

Naval Postgraduate School

Pennsylvania State University

University of Southern California

University of Virginia

Wayne State University

Contract Number: HQ0034-13-D-00041 TO 013, RT 113

2

Copyright © 2014 Stevens Institute of Technology, Systems Engineering Research Center

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense
through the Systems Engineering Research Center (SERC) under Contracts H98230-08-D-0171 (RT 31, RT
46) and HQ0034-13-D-0004 (Task Order 013, RT 113). SERC is a federally funded University Affiliated
Research Center managed by Stevens Institute of Technology.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense nor
ASD(R&E).

NO WARRANTY
THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

3

EXECUTIVE SUMMARY

One of the key elements of the SERC’s research strategy is transforming the practice of systems
engineering and associated management practices – “SE and Management Transformation
(SEMT).” The Grand Challenge goal for SEMT is to transform the DoD community’s current
systems engineering and management methods, processes, and tools (MPTs) and practices
away from sequential, single stovepipe system, hardware-first, document-driven, point-
solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-
oriented, hardware-software-human engineered, model-driven, set-based, full life cycle
approaches.

These will enable much more rapid, concurrent, flexible, scalable definition and analysis of the
increasingly complex, dynamic, multi-stakeholder, cyber-physical-human DoD systems of the
future. Four elements of the research strategy for SE Transformation are the following:

1. Make Smart Trades Quickly: Develop MPTs to enable stakeholders to be able to
understand and visualize the tradespace and make smart decisions quickly that take into
account how the many characteristics and functions of systems impact each other

2. Rapidly Conceive of Systems: Develop MPTs that allow multi-discipline stakeholders to
quickly develop alternative system concepts and evaluate them for their effectiveness
and practicality

3. Balance Agility, Assurance, and Affordability: Develop SE MPTs that work with high
assurance in the face of high uncertainty and rapid change in mission, requirements,
technology, and other factors to allow systems to be rapidly and cost-effectively
acquired and responsive to both anticipated and unanticipated changes in the field

4. Align with Engineered Resilient Systems (ERS): Align research to leverage DoD’s ERS
strategic research initiative and contribute to it; e.g., ERS efforts to define new
approaches to tradespace analysis.

 “Systems” covers the full range of DoD systems of interest from components such as sensors
and effectors to full systems that are part of net-centric systems of systems and enterprises.
“Effectiveness” covers the full range of needed system quality attributes or ilities, such as
reliability, availability, maintainability, safety, security, performance, usability, scalability,
interoperability, speed, versatility, flexibility, and adaptability, along with composite attributes
such as resilience, sustainability, and suitability or mission effectiveness. “Cost” covers the full
range of needed resources, including present and future dollars, calendar time, critical skills,
and critical material resources.

The primary focus of RT-113, ilities Tradespace and Affordability Project (iTAP) is on strategy 3,
although its capabilities also support strategies 1, 2, and 4. It particularly focuses on the
tradespace among a system’s Ilities, also called non-functional requirements or system quality
attributes. The ilities differ from functional requirements in that they are systemwide

4

properties that specify how well the system should perform, as compared to functions that
specify what the system should perform. Adding a functional requirement to a system’s
specification tends to have an incremental, additive effect on the system’s cost and schedule.
Adding an ility requirement to a system’s specification tends to have a systemwide,
multiplicative effect on the system’s cost and schedule. Also, ilities are harder to specify and
evaluate, as their values vary with variations in the system’s environment and operational
scenarios.

Further, the satisfaction of their specifications is much harder to verify than placing an X or a
URL address in a functional traceability matrix, as the verification involves up to the entire set
of system functions. It also requires considerable effort in analysis across a range of
environments and operational scenarios. As a result, it is not surprising that problems in
satisfying ility requirements are underaddressed in early phases and are the source of many
subsequent DoD acquisition program cost and schedule overruns. Also, with some exceptions
such as pure physical systems and pure software systems, there is little technology in the form
of scalable methods, processes, and tools (MPTs) for evaluating the satisfaction of multiple-ility
requirements and their associated tradespaces for complex cyber-physical-human systems.

The increasingly critical DoD need for such capabilities has been identified in several recent
studies and initiatives such as the AFRL “Technology Horizons” report (Dahm, 2010), the
National Research Council’s “Critical Code” Report (NRC, 2010), the SERC “Systems 2020”
Report (SERC, 2010), the “Manual for the Operation of the Joint Capabilities Integration and
Development System” (JROC, 2012), and the DoD “Engineered Resilient Systems (ERS)
Roadmap” (Holland, 2012). The particular need for Affordability has been emphasized in
several USD(AT&L) and DepSecDef “Better Buying Power” memoranda BBP 1.0 and 2.0 (Carter
et al., 2010-2013) and the recent BBP 3.0 White Paper (Kendall, 2014).

ITAP ONGOING CONTRIBUTIONS IN SUPPORT OF BETTER BUYING POWER 3.0

Here is a summary of the current and projected iTAP contributions in support of the objectives
of Better Buying Power 3.0, relative to BBP 3.0 White Paper citations in italics. Details of the
contributions are provided in the later section of the report.

Continue to set and enforce affordability constraints. Strengthen and expand “should cost” as
an important tool for cost management. Building on previous results in RT-6 (Air Force
Software Cost Modeling) and RT-18 (Valuing Flexibility), iTAP Phase 3 developed a framework
and initial quantitative results for tradespace analysis of acquisition and total ownership
should-costs vs. schedule, functionality, and reliablility, and an overall framework and initial
population of sources of synergy and conflict among cost, schedule, and other system quality
attributes. Future plans include upgrading the models to reflect emerging trends such as
flexibility to accommodate increasingly rapid change, adaptability to accommodate autonomy
and smart devices, usability to accommodate social networking and labor force evolution, and
interoperability to accommodate increasingly interconnected systems of systems.

5

Employ appropriate contract types, but increase the use of incentive-type contracts. “formulaic
incentives” show a high correlation with better cost and schedule performance. As above,
Phase 3 has been developing cost-schedule-performance tradespace models to provide
stronger formulas on which to define formulaic incentives.

Increase the use of performance-based logistics (PBL). As documented in Appendix A, Enclosure
A of the 19 Jan 2012 JCIDS Manual, a survey of combat commenders on critical logistics
attributes identified the key quality attributes for logistics performance as Responsiveness,
Sustainability, Attainability, Flexibility, Survivability, and Economy, along with several other
attributes. Phase 3 is developing an ontology of such attributes to provide a stronger basis for
defining logistics performance.

Use Modular Open Systems Architecture to stimulate innovation. SERC has been collaborating
with TARDEC and NAVSEA in Phase 3 to define sound properties for set-based design as a
stronger way to achieve mission-supportive open systems architectures, and to define related
set-based design processes.

Provide clear “best value” definitions so that industry can propose and DoD can choose wisely:
providing industry with information on the value, in monetary terms, of higher levels of
performance than minimally acceptable or threshold levels. As above, Phase 3 has been
developing cost-schedule-performance tradespace models to provide stronger formulas on
which to define the value of higher levels of performance.

Improve our leaders’ ability to understand and mitigate technical risk: to minimize the likelihood
of program disruption and to maximize the probability of fielding the desired product within
reasonable time and cost. Phase 3 research has been extending, applying, and refining an
iterative Epoch-Era approach to address sources of uncertainty and risk. A related SERC
project, Quantitative Risk, is developing improved methods for identifying and quantifying
leading risk indicators. The set-based design approach goes beyond design for acquisition, to
use areas of requirements uncertainty as foci for architecting sets of requirements likely to
needed post-acquisition.

PHASE 1 OBJECTIVES, APPROACH, AND RESULTS

The major objectives of the initial 5-month Phase 1 activity were to lay strong foundations for
ITAP Phase 2, including knowledge of Department of Defense (DoD) ility priorities; foundations
and frameworks for ITAP analysis; extension and tailoring of existing ITAP methods, processes,
and tools (MPTs); and exploration of candidate Phase 2 pilot organizations for ITAP MPTs.

Four activities were pursued in achieving these objectives:

6

1. Ility Definitions and Relationships. Phase 1 included a discovery activity to identify and
analyze DoD and other ility definitions and relationships, and to propose a draft set of
DoD-oriented working definitions and relationships for the project.

2. iTAP Foundations and Frameworks. This effort helped to build iTAP foundations by
elaborating key frameworks (architecture-based, change-based, process-based, means-
ends based, value-based), anticipating further subsequent elaboration via community
efforts.

3. Ility-Oriented tool demos and extension plans. This effort created initial demonstration
capabilities from strong existing ITA analysis toolsets and explored piloting by user
organizations in the DoD Services.

4. Program management and community building. This effort included coordinating
efforts with complementary initiatives in the DoD ERS, and counterpart working groups
in the International Council for Systems Engineering (INCOSE), the Military Operations
Research Society (MORS), and the National Defense industry Association (NDIA).

The Phase 1 results for activities 1 and 2 included initial top-level sets of views relevant to ilities
tradespace and affordability analysis that provided an initial common framework for reasoning
about ilities, similar in intent to the various views provided by SysML for product architectures
and DoDAF for operational and architectural views. The views included definitions, stakeholder
value-based and change-oriented views, views of ility synergies and conflicts resulting from ility
achievement strategies, and a representation scheme and support system for view construction
and analysis.

Phase 1 also determined that strong tradespace capabilities were being developed for the
tradespace analysis of physical systems. However, based on sources such as the JCIDS survey of
combat commanders’ tradespace needs, it found that major gaps existed between
commanders’ ility tradespace needs and available capabilities for current and future cyber-
physical-human systems. The SERC also characterized the benefits and limitations of using
existing tools to address ility tradespace issues, via collaboration with other leading
organizations in the DoD ERS tradespace area, such as the Army Engineer Research and
Development Center (ERDC) and TARDEC organizations, NAVSEA, the USAF Space and Missile
Systems Command; DoD FFRDCs such as Aerospace, Mitre, and the Software Engineering
Institute; and Air Force and Navy participants via the SERC Service academies AFIT and NPS.

PHASE 2 OBJECTIVES, APPROACH, AND RESULTS

As a result, the focus of Phase 2 was to strengthen the conceptual frameworks underlying ilities
tradespace and affordability analysis, and to apply the methods and tools identified and
extended in Phase 1 on problems relevant to DoD, using the information available from
development of a large weapon systems and large automated information systems. The SERC
worked with system developers directly and via participation and leadership in Government
and industry working groups in such organizations as INCOSE, NDIA, and the Army-led Practical

7

Systems and Software Measurement organization, to gain a deeper shared understanding of
the strengths and limitations of the tradespace tools and methods developed under Phase 1
and elsewhere.

Task 1: ITAP Foundations and Frameworks. Phase 2 activities expanded the set of ilities
represented in the tradespace, organized them into a more orthogonal value-based, means-
ends hierarchy, obtained initial results in identifying and quantifying the synergies and conflicts
resulting from strategies to optimize individual ilities, and developed prototype tools for
representing and applying the results.

Task 2. iTAP Methods and Tools Piloting and Refinement. The Ility-oriented tool demos
performed in Phase 1 also led to Phase 2 interactions with DoD organizations, particularly
TARDEC and NAVSEA, interested in their applicability in enhancing their systems engineering
capabilities. These interactions led to refinements of existing methods and tools to address set-
based vs. point design of ground vehicles and ships, and on extensions from physical systems to
cyber-physical-human systems and to affordability analysis. Further interactions leading to
piloting engagements included AFIT’s use of the CEVLCC life cycle cost model and related T-X
Training System Tradespace Analyses. The exploratory-use program involved advanced pilot
training aircraft, simulators and course instructional elements. Its user organizations are the Air
Force Life Cycle Management Center and the Air Education and Training Command.

Task 3. Next-Generation, Full-Coverage Cost Estimation Model Ensembles. A third area of
engagement starting from exploratory discussions in Phase 1 was a new task to develop Next-
Generation, Full-Coverage Cost Estimation Model Ensembles, initially for the space domain,
based on discussions and initial support from the USAF Space and Missile Systems Center
(SMC). Phase 2 work on this topic involved several meetings with SMC and the Aerospace
Corp. with USC and NPS to set context and initial priorities. These included addressal of future
cost estimation challenges identified in the SERC RT-6 Software Cost Estimation Metrics Manual
developed for the Air Force Cost Analysis Agency, and prioritization of research efforts based on
strength of DoD needs and availability of DoD-relevant data. Exploratory activities were
pursued with respect to a scoping of full-coverage of space system flight, ground, and launch
systems; hardware, software and labor costs; and system definition, development, operations,
and support costs

Phase 3 Objectives, Approach, and Results Overview

Details of each task’s past results, Phase 3 results, and future plans are in the detailed reports
of each organization participating in the task.

Task 1: ITAP Foundations and Frameworks. Phase 2 refined an ilities semantic basis for
change-related ilities. and developed prototype tools for formal analysis of the results. Phase 3
extended the ilities semantic basis for change-related ilities, resulting from continuing literature
review of ilities, collaborative work on formalization of the basis, and experience in applying the
basis in historical cases. Progress and adjustments to the basis have been made as a result of

8

feedback from other academic researchers, and specifically in MIT- UVa collaboration in their
efforts on formalization and development of a REST (representational state transfer) web-based
service implementation. This has resulted in an expanded and more explicit representation for
the semantic basis, as well as motivating the need to create a translation layer for practical use
of the basis. Phase 3 also refined the ility definitions, reviewed existing ility definition
standards, developed an initial ilities ontology to address the current shortfalls in existing ility-
related standard and guidelines. These generally do not address the reality that the ilities have
multiple definitions varying by domain, and multiple values varying by system state, processes,
and relations with other ility levels. Phase 3 also expanded the initial 4x4 synergies and
conflicts matrix into a full 7x7 inter-ility-class synergies and conflicts matrix, and 7 smaller intra-
ility-class synergies and conflicts matrices. Detailed results are in the USC, MIT, and UVa
sections.

Task 2: Ility-Oriented tool demos and extension plans. Phase 2 effort created initial
demonstration capabilities from strong existing ITA analysis toolsets and explored piloting by
user organizations, via collaboration with other leading organizations in the DoD ERS
tradespace area. Phase 3 broadened and deepened these initial contacts, including with such
organizations as the as the Army Engineer Research and Development Center (ERDC) and
TARDEC organizations, NAVSEA, the USAF Space and Missile Systems Command; DoD FFRDCs
such as Aerospace, Mitre, and the Software Engineering Institute; and Air Force and Navy
participants via the SERC Service academies AFIT and NPS. In particular, we have advanced our
coordination with the ERS NAVSEA group, working with them to define the specific tradespace
approaches and priorities for enhanced set-based design for ERS, that will complement and
extend the tool and procedures they have been using. We anticipate access to a public-release
copy of the ship design option datasets developed as part of their ERS set-based-design
experiment. We initiated discussions with NAVAIR and with the DARPA/TARDEC Ground
Experimental Vehicle – Technology (GXV-T) project regarding piloting iTAP MPT. We have
begun to develop a network model of the interdependencies within and between the TARDEC
Ground System Architecture Framework and Performance Specification Framework, and
coordination with TARDEC in this research. TARDEC is actively engaged as a partner for co-
development, piloting and transition into use. Detailed results are in the Wayne State, GTRI,
Penn State, AFIT, NPS, and USC sections.

Task 3: Next-Generation, Full-Coverage Cost Estimation Model Ensembles. Based on the
exploratory needs and data assessments in Phase 2, a Phase 3 workshop including Air Force,
Navy, aerospace industry, and SERC researchers concluded that there were strong needs for
better estimation of operations and support costs, but that the data available lacked adequate
cost driver information, except in in the software area. The workshop recommended that the
most promising initial areas to pursue would be for software development, systems
engineering, and the use of systems engineering cost drivers to improve estimation of system
development costs. Further research and workshops have identified further sources of data
and some shortfalls in current models in these areas, and have developed requirements and
draft frameworks for the next-generation models. These will be used in Phase 4 to develop and

9

calibrate prototype models for systems and software engineering cost estimation models, and
to pursue research in the use of the systems engineering cost model to better estimate system
development costs. Detailed results are in the USC, NPS, and AFIT sections.

Complementary Funding

During Phase 3, RT-113 contributed significantly to the SERC objective of obtaining
complementary funding to its SERC core support. The Army Engineer Research and
Development Center sponsored MIT research in SE knowledge capture, and provided over
$1million to GTRI for tradespace tools research. GTRI also obtained significant from the Navy
for tradespace tools research. USC and UVa obtained complementary funding from NSF to
extend the ilities tradespace theory and foundations. AFIT and NPS provided complementary
support of their SERC research via participation of their faulty and students in their SERC
research.

REFERENCES

1. (Carter et al., 2010-2013) Carter, A., et al., Better Buying Power Memoranda,

http://bbp.dau.mil/references.html.

2. Dahm, 2010) Dahm, W., Technology Horizons, AF/ST-TR 10-01-PR, 15 May 2010.

3. (Holland, 2012) Holland, J. “ERS Overview,” Proceedings, NDIA SE Conference, October 2012.

4. (JROC, 2011) Joint Requirements oversight Council, “Manual for the Operation of the Joint
Capabilities Integration and Development System,” Updated 31 January 2011.

5. (Kendall, 2014) Kendall, F., “Better Buying Power 3.0 White Paper,” OUSD(AT&L), 19
September 2014.

6. (NRC, 2010) Scherlis, W. et al., Critical Code: Software Producibility for Defense NAS Press,
2011.

7. (SERC, 2010) B. Boehm, J. Bayuk, A. Desmukh, R. Graybill, J. Lane, A. Levin, A. Madni, M.
McGrath, A. Pyster, S. Tarchalski, R. Turner, and J. Wade, Systems 2020 Strategic Initiative, Final
Technical Report SERC-2010-TR-009, August 29, 2010.

10

RESEARCH TEAM

Air Force Institute of Technology

Dr. David Jacques, Co-PI
Dr. John Columbi
Dr. Erin Ryan

Georgia Institute of Technology

Dr. Tommer Ender, Co-PI
Dr. Russell Peak
Dr. Valerie Sitterle
Dr. Michael Curry
Dr. Dane Freeman

Massachusetts Institute of Technology

Dr. Donna Rhodes
Dr. Adam Ross, Co-PI

Naval Postgraduate School Dr. Ray Madachy, Co-PI

Pennsylvania State University Dr. Michael Yukish, Co-PI

University of Southern California Dr. Barry Boehm, PI
Dr. JoAnn Lane, Co-PI
Dr. Bradford Clark
Mr. Nupul Kukreja
Mr. Jim Alstead

University of Virginia

Dr. Kevin Sullivan, Co-PI
Ms. Xi Wang

Wayne State University Dr. Walter Bryzik
Dr. Gary Witus, Co-PI

11

TABLE OF CONTENTS

Executive Summary ... 3
iTAP Ongoing Contributions in Support of Better Buying Power 3.0 4
Phase 1 Objectives, Approach, and Results .. 5
Phase 2 Objectives, Approach, and Results ... 6
References ... 9

Research Team .. 10

Table of Contents .. 11

Figures and Tables ... 13

iTAP Results by Organization: Past Results, Phase 3 Results, and Future Plans 16

1 University of Southern California ... 16
1.1 Past Results: Phases 1 and 2 Results ... 16
1.2 Phase 3 Results .. 16

1.2.1 Foundations: Initial ilities Ontology .. 16
1.2.2 The Need for a System ilities Ontology ... 18
1.2.3 Ontology Definitions and Choices ... 19
1.2.4 States, Processes and Relations .. 22
1.2.5 Multi-Stakeholder ility Value Proposition Reconciliation ... 29
1.2.6 Conclusions ... 31
1.2.7 Acknowledgements ... 31
1.2.8 References... 31

1.3 Task 2: Methods and Tools Piloting and Refinement .. 33
1.4 Task 3: Next-Generation, Full-Coverage Cost Models ... 33

1.4.1 Draft COSYSMO 3.0 Rating Scales: Problem and Solution Understanding 34
1.5 Future Plans .. 37

1.5.1 Task 1, Foundations ... 37
1.5.2 Task 2: Methods and Tools Piloting and Refinement .. 37
1.5.3 Task 3: Next-Generation, Full-Coverage Cost Models ... 37

2 Massachusetts Institute of Technology ... 39
2.1 Past Results: Phases 1 and 2 ... 39

2.1.1 Task 1. ility Foundations ... 39
2.2 Phase 3 Results ... 41

2.2.1 Task 1. ility Foundations ... 41
2.2.2 References... 51

2.3 Future Plans: Phases 4 and 5 ... 52
2.3.1 Task 1. ility Foundations... 52

3 University of Virginia .. 53
3.1 Past Results: Phases 1 and 2 ... 53
3.2 Phase 3 Results ... 53
3.3 Future Plans: Phases 4 and 5 ... 54

12

3.3.1 Task 1: Foundations ... 54
3.3.2 plans for 2015 .. 56
3.3.3 Overall Plans for 2016 ... 61

4 Wayne State University .. 62
4.1 Introduction .. 62
4.2 “Deep Dive” into Tradespace and Affordability Needs and Context in DoD System
Acquisition .. 62
4.3 Enhanced Set-Based Design ... 63
4.4 Report “Progress Toward a DoD Ground Vehicle Tradespace and Affordability Analysis
Framework.” ... 64

Nomenclature ... 64
4.4.1 Introduction ... 65
4.4.2 Context and Motivation .. 66
4.4.3 Ground System Tradespace and Affordability Analysis Framework 69
4.4.3.1 Performance specification Framework ... 69
4.4.4 Tradespace Analysis .. 74
4.4.5 Contribution, Significance, Limitations, and Extensions ... 74

4.5 References .. 75
4.5 Report “Design Space Regions, Geography and Topology for Set-Based Design.” 76

4.5.1 Introduction ... 76
4.5.2 System Development Context .. 76
4.5.3 PBD and SBD.. 78
4.5.4 A Formalism for Regions of Design Space ... 80
4.5.5 Analysis of Design Space Region, Topology, and Sensitivity to Requirements in SBD 82

5 Georgia Institute of Technology ... 84
5.1 Activity 1. Past Results: Phases 1 and 2 .. 84

5.1.1 Phase 1 Results ... 84
5.1.2 Phase 2 Results ... 85
5.1.3 Phase 2 Insights ... 89

5.2 Activity 2. Summary of Phase 3 Results (Tradespace MPTs) .. 89
5.2.1 Phase 3 Insights on Tradespace Analysis .. 95

5.3 Activity 2. Summary of Phase 3 Results (SysML Based Cost Modeling) 96
5.3.1 Approach Toward SysML-Based Cost Modeling within MIM and FACT 97
5.3.2 Knowledge Capture via General-Purpose SysML Building Blocks 98
5.3.3 Overview and Comparison of Case Studies .. 101
5.3.4 Case Study 1 – Healthcare SoS (baseline complexity) .. 102
5.3.5 Case Study 2 – Healthcare SoS (increased complexity) .. 104
5.3.6 Summary: SysML Cost Modeling .. 109

5.4 Activity 3. Future Plans: Phase 4 and 5 .. 109
5.5 References ... 112

6 Pennsylvania State University .. 115
6.1 Past Results: Phases 1 and 2 Results ... 115

13

6.2 Phase 3 Results ... 116
6.2.1 Formal Model of the Sequential Process .. 118
6.2.2 Single stage modeling versus two stage modeling ... 119
6.2.3 Multi-stage process .. 120
6.2.4 Example: wing design for light civil aircraft .. 121
6.2.5 Connection between Concept & Detailed ... 122

6.3 Future Plans: Phases 4 and 5 plans .. 124
6.3.1 Phase 4 plans... 125
6.3.2 Phase 5 plans... 125

6.4 References .. 125

7 Air Force Institute of Technology .. 127
7.1 Past Results: Phases 1 and 2 .. 127
7.2 Phase 3 Results .. 127

7.2.1 Application Project – A Method for Evaluating Design Flexibility Early in Design
Applied to Air Force Advanced Trainer (T-X) Concept .. 127
7.2.2. METHODOLOGY Development With Application – Evaluating the Impact of
Requirements Changes on Design and Acquisition Effort .. 128
7.2.3 Theoretical Development – Energy and Information Impacts on System Functionality
and Effectiveness .. 129

7.3 Planned Phase 4 Work - Combined AFIT and NPS RT-113 Task for 2015 130

8 Naval Postgraduate School .. 133
8.1 Past Results: Phases 1 and 2 .. 133
8.2 - Phase 3 Results .. 135

8.2.1 Task 2: MPTs and Piloting .. 135
8.2.2 Task 3. Next-Generation, Full-Coverage Cost Estimation Model Ensembles 142
Ship Total Ownership Cost Example .. 143

8.3 Future Plans: Phases 4 and 5 ... 150
8.3.1 Task 2: MPTs and Piloting .. 150
8.3.2 Task 3. Next-Generation, Full-Coverage Cost Estimation Model Ensembles 153

8.4 References .. 154
8.5 Appendix - Product Line Modeling Background .. 155

FIGURES AND TABLES

Figure 1 Software Life Cycle Ownership Costs vs Required Reliability(RELY) 27

Figure 2. Change-type prescriptive semantic basis in 14 categories. (Ross, Beesemyer,
Rhodes2011) ... 40

Figure 3. The full revised semantic basis (gray row describes “name” label for that category). . 41

Figure 4. Basis began with 14 categories. ... 42

Figure 5. Change-type prescriptive semantic basis in 20 categories .. 43

Figure 6. Using the semantic basis to consistently identify ility term labels 43

14

Figure 7 (a) Functional versatility; (b) operational versatility; (c) substitutability as suggested by
the semantic basis .. 47

Figure 8: Partial Sample of the P-Spec System Attributes ... 70

Figure 9: Partial Sample of the Standard Product Classification Hierarchy 71

Figure 10: Example Subsystem Interface Diagram .. 73

Figure 11: Defining a Tradespace ... 87

Figure 12: Classical 2D vs. Needs Context 3D Utility .. 88

Figure 13: Graphical depiction of Needs Context Steps and Workflow 93

Figure 14: Implementation of COSYSMO-SoS cost/effort modeling concepts as general-purpose
SysML building blocks — selected SysML diagrams. .. 99

Figure 15: COSYSMO concepts as (i) traditional spreadsheet (on left) compared to (ii) SysML-
based DNA signature (on right). ... 100

Figure 16: DNA signature nomenclature and corresponding SysML elements (illustrated via a
Fuel Tank tutorial example). ... 101

Figure 17: Healthcare SoS Case Study1 and its main systems: original document and
spreadsheet views. [Lane, 2009] ... 102

Figure 18: Healthcare SoS Case Study1: execution of the SysML model and its calculations. ... 103

Figure 19: Healthcare SoS Case Study1: verification of SysML model results compared to original
results. ... 103

Figure 20: Healthcare SoS Case Study1: selected DNA signatures auto-generated from the
SysML model. .. 104

Figure 21: Healthcare SoS Case Study2: original document and spreadsheet views. [Lane, 2009]
... 105

Figure 22: Healthcare SoS Case Study2: verification of the SysML model results compared to
original results. .. 106

Figure 23: Healthcare SoS Case Study2: SoS-level DNA signature auto-generated from the SysML
model. ... 107

Figure 24: Candidate future case studies. .. 108

Figure 36. Model of decision making in marketing .. 115

Figure 37: Core Produce of Phase 2 Design Flow .. 116

Figure 38. Sequencing of models .. 120

Figure 39: Wing Segment ... 121

Figure 40. Model value space ... 123

Figure 41: MBSE Design Process ... 137

15

Figure 42: Representative Impact of FACE Architecture on Effort ... 139

Figure 43: Systems Engineering Inputs .. 146

Figure 44: Software Engineering Inputs .. 147

Figure 45: Hardware Inputs ... 148

Figure 46: Project Summary with Monte Carlo Analysis .. 149

Figure 47: Detailed Monte Carlo Results ... 149

Figure 48: Systems Product Line Flexibility Value Model ... 156

Figure 49: Product Line Flexibility TOC and ROI Results ... 157

Figure 50: Example Sensitivity Analysis (ROI Only)... 158

Figure 51: TOC Sensitivity by Ownership Duration Results .. 158

Figure 52: DoD Application Domain and Monte Carlo TOC-PL Results 160

Table 1. Upper Levels of IDIO Stakeholder Value-Based ilities Means-Ends Hierarcrchy 20

Table 2. COQUALMO Defect Detection and Removal Investment Rating Scales 24

Table 3. Example Second-Level System Ilities Synergies and Conflicts .. 26

Table 4. Major-Category ilities Synergies and Conflicts Matrix ... 28

Table 5. Intra-Dependability Synergies and Conflicts .. 29

Table 6. Problem and Solution Understanding Sub-Factor Rating Scales 35

Table 7. Bloom Taxonomy of Cognitive Understanding Domain ... 36

Table 8: Comparison of case study complexity (healthcare SoS Case Study1 versus healthcare
SoS Case Study2). .. 101

Table 10. Models of wing to form a sequence from .. 122

Table 11. FACE Product Line Model Scenario Inputs ... 140

Table 12. FACE Produce Line Model Ample Output (Portion) ... 141

Table 13. Systems Engineering Size ... 143

16

ITAP RESULTS BY ORGANIZATION: PAST RESULTS, PHASE 3 RESULTS, AND FUTURE PLANS

1 UNIVERSITY OF SOUTHERN CALIFORNIA

1.1 PAST RESULTS: PHASES 1 AND 2 RESULTS

Phase 1 focused primarily on building iTAP foundations by elaborating draft frameworks
(process-based, architecture-based, means-ends based, value-based), and socializing these via
team workshops anticipating further subsequent elaboration via community efforts. Phase 2
refined the draft frameworks and ility definitions, and prototyped an early version of an ilities
Synergies and Conflicts matrix for guidance to systems engineers on the side effects on other
ilities when increasing a given ility’s level. It began an effort to define a next-generation, full
coverage family of cost models, initially for the space community based on interest and support
from USF/SMC. Phase 2 activities also included cost modeling support of SERC initiatives with
NAVSEA and TARDEC.

1.2 PHASE 3 RESULTS

1.2.1 FOUNDATIONS: INITIAL ILITIES ONTOLOGY

Based on reviews in Phase 3 of existing ility standards such as ISO/IEC 25010, whose implicit
ontology definitions do not cover sources of variation in ility values, USC developed in Phase 3
an initial ilities ontology structure that enables specification and reasoning about these sources
of ility value variation. Its structure is based on the IDEF5 Kind-Individual-States-Processes-
Relations structure, but renames Kinds as Classes, and uses the means-ends relationship as the
basis for the class hierarchy.

This ontology structure also simplified the initial Phase 3 top-level System-Ends classes from 6
to 4 by making Composability/Interoperability a means to the end of Mission Effectiveness, and
by combining the overlapping Protection and Robustness end classes into a single
Dependability end class. The States, Processes, and Relations elements of the ontology capture
the primary sources of variation in ility values that are generally left undefined in traditional
ility definitions. States capture ility value variations via variations in the system’s internal state
and the state of the external environment. Processes capture ility value variations via
variations in the system’s operational concept and execution processes. Relations capture ility
value variations via variations in the system’s synergies and conflicts with other ilities.

1.2.1.1 Initial Ontology Description

Introduction
The nature of the ilities is best understood with respect to their synonym of non-functional

17

requirements. Functional requirements specify the functions that the system shall perform, or
basically what the system should do. Their effect on system cost is basically additive; adding a
function adds the cost to develop it, plus another fraction for its contribution to system
integration and test. A non-functional requirement specifies how well the system should
perform its functions. Unlike functional requirements, its effect on system cost is system wide
and multiplicative. In one example, changing the response time for a complex system with
2000 pages of functional requirements from 1 second to 4 seconds reduced the cost from $100
million to $30 million, in this case by avoiding the need for an expensive custom solution, and
by showing that a 4-second response time was acceptable for 90% of the transactions and
achievable via commercial technology1. However, functional requirements are much more
emphasized in system acquisitions, via such practices as initial system functional review
milestones, function-oriented system definition diagrams, functional work breakdown
structures and associated earned value milestones, and data item descriptions, in which
evidence of ility satisfaction is relegated to optional appendices, which are easiest to drop
under budget and schedule pressures.

Concern with the ilities has considerable historical precedent. The writings of Vitruvius in the
Roman era include considerations of soundness, utility, attractiveness, healthfulness, durability,
malleability, proportionality, symmetry, and defendability2. Subsequent landmarks in the
evolution of knowledge about the ilities include contributions to physical, economic, human,
software, and combined ilities.3.4.5.6.7.8.9.10

The software standards community, particularly ISO (the International Organization for
Standardization) and IEC (the International Electrotechnical Commission), has been active in
developing standards for quality attributes, initially for software with the 2001-2004 ISO/IEC
9126 series11 and the 2005-2008 ISO/IEC 25000-2503012 series, and subsequently for systems
and software quality models with the 2011 ISO/IEC 25010 standard13. Significant progress has
also been made in the definition and analysis of physical-system quality attributes such as
within the DoD Engineered Resilient Systems (ERS) initative14, the MIT series of change-oriented
quality attribute research results15,16, and the Georgia Tech contributions to ility tradespace
analysis17.

In July 2012, the DoD ERS program and the DoD Systems Engineering Research Center (SERC)
held a pair of workshops on systems tradespace exploration and analysis. Their key conclusions
were that improved ility tradespace exploration and analysis capabilities were needed to avoid
DoD system shortfalls and overruns; that affordability was an increasing concern for DoD
systems; and that ERS strengths in physical systems tradespace analysis could be
complemented by ongoing SERC research strengths in cyber-physical-human systems
tradespace and affordability exploration and analysis, as reflected in references 1,7, 15, 16, 17, and 18.
This led to the establishment of a multi-year, multi-university SERC ilities Tradespace and
Affordability Program (iTAP) initiative to provide, pilot, and evolve stronger foundations
methods, process, tools, and models for ilities tradespace and affordability exploration and
analysis. The SERC universities involved in iTAP are Air Force Institute of Technology, Georgia
Institute of Technology, Massachusetts Institute of Technology, Naval Postgraduate School,

18

Pennsylvania State University, University of Southern California, University of Virginia and
Wayne State University.

The remainder of the paper focuses on the need for an Initial Definition of an Ilities Ontology
(IDIO), as a component of the iTAP foundations research. It begins with an assessment of
current ility definitions and their shortfalls with respect to the nature of the ilities. It then
discusses the nature of ontologies and the choice of ontology structure for the IDIO. It then
elaborates on the content of the IDIO, with examples of its use; and concludes with an
assessment of outstanding issues and needs for further research.

1.2.2 THE NEED FOR A SYSTEM ILITIES ONTOLOGY

The primary need for a system ilities ontology is to enable more effective collaboration in
system definition, development, and evolution across system stakeholders from different
disciplines. A good example of the current Tower of Babel is in the diversity of definitions of
the ility Resilience in Wikipedia19. These include differing definitions between and within the
domains of Ecology, Energy Development, Engineering and Construction, Network,
Organizational, Psychological, and Soil. Within the Ecology and Society domain, an additional
set of definitions includes Original-ecological, Extended-ecological (several definitions),
Systemic-heuristic, Operational, Sociological, Ecological-economic, Social-ecological,
Metaphorical, and Sustainabilty-related20.

The differences in these definitions are non-trivial. For example, the variants in resilience
outcomes include Returning to original state; Restoring or improving original state; Maintaining
same relationships among state variables; Maintaining desired services; Maintaining an
acceptable level of service; Retaining essentially the same function, structure, and feedbacks;
Absorbing disturbances; Coping with disturbances; Self-organizing; Learning and adaptation;
and Creating lasting value. Trying to get interdisciplinary teams to create consistently resilient
systems across such a variety of implicit understandings presents a formidable challenge.

It does not help that most sources of ility definitions limit them to a single hopefully one-size-
fits-all definition of each ility. This is particularly the case for the ISO/IEC 25010 Systems and
Software Quality Requirements and Evaluation (SQuaRE) Standard13. As a representative
example, it defines Reliability as the, “degree to which a system, product, or component
performs specified functions under specified conditions for a specified period of time.” As a
standard, this is supposed to hold for any definition of “specified functions” and “specified
conditions.” However, for agile methods, in which “specified functions and conditions” are
sunny-day stories or use cases, a system will be judged to be reliable if it satisfies the specified
sunny-day conditions, but fails on the rainy-day conditions. Further, the definition only focuses
on performing functions and not on satisfying ility levels.

Another difficulty with one-size-fits-all definitions is that they do not accommodate multiple
stakeholders with multiple value propositions. For example, if a system specification defines
reliability as liveness to satisfy one stakeholder, it will be judged to be reliable if its liveness is

19

very high, even though it may deliver garbled and inaccurate output and not satisfy other
stakeholders whose value propositions emphasize intelligibility and accuracy. ISO/IEC does not
define Resilience, but if it also defined it in terms of “specified functions and conditions,” as it
does for other ilities such as Effectiveness and Usability, a system specified to be Resilient
under one of the over-15 domain-varying definitions of Resilience above, would be judged to be
resilient even though it did not satisfy the resilience definitions of success-critical stakeholders
in other domains. Such one-size-fits-all definitions (also employed in other quality attribute
guidance descriptions) thereby present hindrances to effective interdisciplinary collaboration.

ISO/IEC 25010 has other shortfalls as a candidate ontology for system quality attributes or
ilities. It is inconsistent in its implied coverage of physical systems, including aircraft in its
4.4.11 definition of “system,” but limiting its systems scope to software products and software-
intensive computer systems in its Introduction and elsewhere. Although one would assume
that any aspect of Quality in Use would be an aspect of Product Quality, these sections of the
standard are often incompatible. Some attempt toward compatibility of the Quality of Use and
Product Quality characteristics is provided at the beginning of Section 4.1, in which the Note
under Table 3 defines the Usability Product Quality attribute in terms of the Quality in Use
characteristics of Effectiveness, Efficiency, and Satisfaction. But this compatibility is
undermined by the different subcategories of particularly Satisfaction and Usability.
Satisfaction includes Trust, which overflows Usability and involves Reliability, Safety, and
Security. It also includes Comfort, which is nowhere to be found in Usability. Usability includes
Learnability and Operability, which are nowhere to be found in Satisfaction.

Other guidance descriptions for quality attributes have similar shortfalls as bases for a useful
ontology across multiple system domains. In particular, most do not explicitly recognize or
emphasize that the attribute values vary by environmental conditions, operational scenarios,
and stakeholder value propositions. The initial ontology described next attempts to do this.

1.2.3 ONTOLOGY DEFINITIONS AND CHOICES

For an ontology structure, this Initial Definition of an Ilities Ontology (IDIO) adopts the more
recent 1993 Gruber definition21 of ontology, and a variation of the often-used IDEF5 structure22,
which includes the elements Kind, Individual, Referent, Relation, State, and Process. IDIO
substitutes Class for Kind, to capitalize on the concepts of class hierarchies and inheritance in
object-oriented design and development. Class hierarchies in IDIO are organized in terms of
stakeholder value propositions as system-ility end objectives, and means-ends relationships in
terms of child-class ilities as means for achieving the parent-class ility end objectives.

The intent in IDIO is that the subclasses of each class are mutually exclusive and exhaustive, in
which the means do not overlap each other, and combine to completely satisfy the ends of the
parent class. For example, the three means for achieving the end parent class of Flexibility are
Modifiability, Tailorability, and Adaptability. Modifiability accomplishes Flexibility by facilitating
changes in the system’s structure or state, via such sub-ilities as system Understandability,

20

Analyzability, Modularity, and Testability. Tailorability accomplishes Flexibility without changes
in the system’s overall structure or state, via such mechanisms as generics, design patterns, and
plug-compatible receptors. Adaptability accomplishes Flexibility without human intervention
via trend or anomaly analysis and self-modifying the system’s structure or state to cope with
threats or opportunities.

These parent-child relationships are reasonably mutually exclusive and exhaustive, but the ideal
of such relationships is not always achievable. For example, such sub-elements as Modularity
and Testability are also important in achieving Tailorability and Adaptability. They are also
important to achieving other parent classes such as Dependability and Affordability. IDIO
recognizes the necessity of such many-to-many relationships among parent and child classes,
but unfortunately some standards such as ISO/IEC 25010 limit themselves to one-to-many
parent-child relationships. It defines Testability as only a contributor to Maintainability,
neglecting the importance of Testability in achieving other ility classes such as Functional
suitability, Performance efficiency, Usability, Reliability, Security, and Portability.

Overall, we have found that the two upper levels of the IDIO class hierarchy can be reasonably
represented by one-to-many means-ends relationships, but that there are numerous many-to-
many relationships among these and the lower-level ilities such as Modularity and Testability.
The current upper structure of the IDIO class hierarchy is shown in Table 1. As mentioned at
the beginning of this Section, the overall upper level of the hierarchy is based on a system’s
success-critical stakeholders’ value propositions. These of course vary by stakeholder, but at a
macro level, they also vary by stakeholder role, such as end-user, usage manager, acquirer,
investor, developer, supporter, maintainer, and interoperator. The rationale for this choice is
based on the INCOSE Handbook definition of systems engineering23 as “An interdisciplinary
approach and means to enable the realization of successful systems,” and the Theory W (Win-
Win) Fundamental System Success Theorem24, which states that: A system will succeed if and
only if it makes winners of its success-critical stakeholders.

Table 1. Upper Levels of IDIO Stakeholder Value-Based ilities Means-Ends Hierarcrchy

Stakeholder Value-
Based ility Ends

Contributing ility Means

Mission Effectiveness Stakeholders-satisfactory balance of Physical Capability, Cyber
Capability, Human Usability, Speed, Endurability, Maneuverability,
Accuracy, Impact, Scalability, Versatility, Interoperability

Resource Utilization Cost, Duration, Key Personnel, Other Scarce Resources;
Manufacturability, Sustainability

Dependability Security, Safety, Reliability, Maintainability, Availability,
Survivability

Flexibility Modifiability, Tailorability, Adaptability

 Composite ilities

Affordability Mission Effectiveness, Resource Utilization

Resilience Dependability, Flexibility

21

The key stakeholder role category in an operational system’s usage lifetime is its set of
operational stakeholders with respect to the system’s operational mission. These include its
end-users, usage managers, investors, supporters, maintainers, and interoperators. Their
primary ility value proposition is the system’s Mission Effectiveness with respect to their
mission. For service organizations, such as defense or fire protection, the operators of ground,
sea, or air vehicles will be concerned primarily with the vehicles’ mission effectiveness in terms
of range, payload, speed, maneuverability etc. Usage managers will be concerned with those
ilities as well, but also in the high priorities for interoperability, understanding, timeliness,
accessibility, and accuracy of their command, control, and situation understanding capabilities,
such as are summarized in the survey of combat commanders in the 2012 JCIDS Manual for the
Operation of the Joint Capabilities Integration and Development System25.

Another class of success-critical stakeholders are those who are investing key resources (funds,
property, materials, personnel, services, etc.) to define, develop, operate, and evolve a system.
They will have high priority value propositions not only on mission effectiveness but also the
relative returns on their investments. The combined ility is often called Cost-Effectiveness and
the resource expenditures often called Affordability, but IDIO follows INCOSE, NDIA, and MORS
in interpreting Affordability as a cost-effectiveness composite ility, and categorizes the
expenditures as Resource Utilization. Frequently, the resources utilized in developing the
system’s initial operational capability are dominated by the cost of manufacturing the full
production line of the system and of sustaining its operation across the system’s life cycle. The
stakeholders’ concern with these resources is represented in Table 1 by the ilities of
Manufacturability and Sustainability.

A further class of success-critical stakeholders are people who are not involved in the system’s
definition, development, and evolution, but who are depending on the system to avoid their
loss of property and quality of life during its operational performance (driving a car, using a
chain saw, providing credit card and social security numbers, etc.). As shown on Table 1, the
means for achieving this Dependability end include protection from vulnerabilities from system
adversaries (Security); from natural causes, defects and human errors (Safety); from failure to
deliver needed capabilities (Reliability), and from persistence of such failure for long periods of
time (Availability, and its enabler Maintainability). It also includes fault tolerance and the ability
to gracefully degrade under stress, called Survivabilty in Table 1.

Finally, all of these stakeholders are concerned with the system’s ability to continue to provide
or improve the desired levels of Mission Effectiveness, Resource Utilization, and Dependability
as the world around it continues to provide increasing sources of change in technology,
competition, market demands, organizations, and leadership. As discussed at the beginning of
this section, this end value proposition of Flexibility includes the mutually-exclusive and
exhaustive means of Modifiability, Tailorability, and Adaptability.

However, Flexibility and the Maintainability component of Dependability are not mutually
exclusive. Initially, the Dependability component was being called Repairability, which more

22

precisely is the component of Maintainability that links Reliability and Availability in terms of
Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) in the equation
Availability = MTBF / (MTBF+MTTR). Repair of defects is only a part of the scope of
responsiveness to change that could be called either Maintainability, Flexibility, or Evolvability,
but as with Affordability, preserving compatibility with the common use of the triad Reliability,
Availability, and Maintainability (RAM) looked preferable to introducing a new Repairability
term. The choice of Flexibility over Evolvability was based on its implication of more timely and
natural response to change made it a better counterpart with Dependability in defining the
composite attribute of Resilience in Table 1.

In summary, Table 1 summarizes the class hierarchy of the primary stakeholder ility end value
classes of Mission Effectiveness, Resource Utilization, Dependability, and Flexibility, along with
their primary means-ends subclasses, and the primary composite ilities of Affordability and
Resilience. In terms the IDIO ontology’s Individuals, each of the ility subclasses can be
considered as Individuals with respect to their variation by states, processes, and relations, as
will be described next. Where there are commonalities across the subclasses, the end value
classes can also be considered as Individuals.

1.2.4 STATES, PROCESSES AND RELATIONS

All too often, ilities are specified as single numbers, when in general they vary by state (the
system’s internal state and its external environment state), process (operational scenario), and
relations with other ilities. An example is provided below for Reliability, followed by more
detailed discussions of the sources of variation.

Frequently in system acquisitions, a Reliability requirement will be specified as a single number,
such as “The system shall have a Mean Time Between Failures (MBTF) of 10,000 hours.” There
are several things wrong with this ility requirement. Two of them are that it does not define
what it means to fail, and that it does not recognize that different stakeholders rely on the
system for different definitions of failure. Often the definition is interpreted as 10,000 hours of
system liveness, and for example a system may be delivered with 10,000 hours of liveness, but
which fails to deliver several messages per hour and delivers several garbled messages per
hour: clearly a failure for some success-critical stakeholders.

4.1 States: Thus, liveness, message-delivery, and message-accuracy would be components of
the example system’s state that are success-critical for its stakeholders, along with any other
success-critical ilities such as system response time. The system can undergo state transitions
from being live to not-live and back, or being live and full-delivery to live and partial-delivery
and back, etc. These would be aspects of the system’s internal state, along with additional
aspects such as its current capacity for handling additional transactions. The system’s degree of
Reliability would also depend on aspects of its external state, such as its operation in a desert,
jungle, swamp, or ice field. Other external-state examples involve the nature of the workload
the system needs to process. A good counterexample to such a consideration was the ility
requirement for a large command-control system to have a 5-second response time in

23

peacetime and a 2-second response time in a crisis – when the number of active users,
transactions per user, and complexity of transactions would be significantly higher.

Another serious concern with one-size-fits-all ility definitions is that not all ility shortfalls are
equally important. Some examples from the reliability literature are that roughly 20% of the
defects account for roughly 80% of the business value26; roughly 10% of the defects account for
90% of the downtime, roughly 20% of the defects account for 80% of the rework, and roughly
20% of the modules account for 80% of the defects27. Subsequent empirical data on
stakeholder value-based prioritization of design and code inspections28 increased the business
value gained per person hour by a factor of 2, and that business value-based testing29 increased
business value gained from 58% to 93%. In general, just having the stakeholders prioritize the
system ilities and use cases is sufficient for project activity prioritization purposes30, although
more quantitative methods are also available31. A similar approach to prioritizing command
and control transactions would provide a way to improve crisis performance in the example
above.

4.2 Processes: ility values will also vary by the nature of the processes or operational scenarios
that the system needs to be involved in. A common Reliability-related example is the sawtooth
curve of predicted remaining defects as the system goes through integration test, acceptance
test, field test, and actual operations, approaching zero at the end of each phase, and then
jumping back up as a new class of users and usage scenarios are encountered.

Process definitions are also useful in identifying additional enablers of reliability and availability.
A good example is the problem report closure means-ends process summarized in the book
Maintainablity32. It identifies the process steps Detection, Preparation for Maintenance,
Localization and Isolation, Disassembly (Access), Repair or Removal and Replacement,
Reassembly, Alignment and Adjustment, and Condition Verification (Checkout). These process
steps lead to the definition of enabling ilities such as Diagnosability, Defect Localizability,
Accessibility, and Repairability. In some cases, enabling ilities need to be disambiguated across
different parts of the ility hierarchy. For example, Defect Localizability is an enabler of
Maintainability, while Product Localizability is an enabler of Flexibility, in terms of means to
facilitate and localize product specialization across different countries, languages, power
supplies, identifier formats, etc.

Another example of process support for aspects of Dependability is the means-ends summary
of process choices for software defect detection and removal used in the Constructive Quality
Model (COQUALMO)33,34. In concert with the COCOMO II software cost model34, it identifies
different levels of investment in software defect detection and removal via automated analysis,
peer reviews, and execution testing and tools, and produces resulting estimates of delivered
defect density in terms of number of defects per thousand lines of code, along with associated
costs and returns on investment via the Information Dependability and Value Estimation
(iDAVE) model35.

24

Table 2. COQUALMO Defect Detection and Removal Investment Rating Scales

Rating Automated Analysis Peer Reviews Execution Testing and Tools

Very Low
Simple compiler syntax

checking.
No peer review. No testing.

Low Basic compiler capabilities Ad-hoc informal walkthroughs Ad-hoc testing and debugging.

Nominal

Compiler extension

Basic requirements and design

consistency

Well-defined sequence of

preparation, review, minimal follow-

up.

Basic test, test data management,

problem tracking support.

Test criteria based on checklists.

High

Intermediate-level module and

inter-module;

Simple requirements/design

Formal review roles with well-trained

participants and using basic

checklists, follow up.

Well-defined test sequence tailored to

organization.

Basic test coverage tools, test support

system.

Basic test process management.

Very High

More elaborate

requirements/design

Basic distributed-processing and

temporal analysis, model

checking, symbolic execution.

Basic review checklists, root cause

analysis.

Formal follow-up using historical data

on inspection rate, preparation rate,

fault density.

More advanced test tools, test data

preparation, basic test oracle support,

distributed monitoring and analysis,

assertion checking.

Metrics-based test process

management.

Extra High

Formalized specification and

verification.

Advanced distributed processing

Formal review roles and procedures.

Extensive review checklists, root

cause analysis.

Continuous review process

 improvement..

Statistical Process Control.

Highly advanced tools for test oracles,

distributed monitoring and analysis,

assertion checking

Integration of automated analysis and

test tools.

Model-based test process management.

4.3 Relations: The combination of Dependability and Resource Utilization in the iDAVE model is
an example of the relations among the ilities, in that the choices of investments in defect
detection and removal in Table 2 produce estimates of both delivered defect density and cost,
enabling a tradespace analysis of how much defect removal is enough for different stakeholder
value propositions for Dependability and Resource Utilization.

A common project practice for addressing a high-priority ility such as Security is to set up an
Integrated Process Team (IPT) to ensure that the system is highly secure. Often, the IPT will be
so focused on Security that it will propose strategies that have adverse effects on other ilities.
As some examples from project practice, a Security IPT proposed a single-agent key distribution
system to minimize probability of compromise, only to have a Reliability engineer identify this
as a system-level single point of failure. It also proposed an elaborate multilayer defense that
would have caused a 50% Speed reduction and some potential real-time deadline problems.
Further, it proposed an elaborate authentication scheme that would have caused some
Usability problems such as startup delays, delegation problems, and GUI complexity On the
other hand, the Security emphases on integrity enhanced aspects of Reliability, and the
proposed Security defenses against denial-of-service attacks enhanced Speed. In general, this
implies that individual ility IPTs should be completed by a ilities IPT that addresses the synergies
and conflicts implied by the individual IPT strategies. Ideally, such an ilities IPT, or systems

25

engineers in general, would have a knowledge base and some tools that would help them
diagnose potential inter-ility conflicts and potential additional inter-ility synergies that could be
pursued. Creating such a knowledge base and set of tools is a major objective of the SERC iTAP
initiative.

Table 3 below provides an example of the kind of capability that the SERC project is working on.
It shows above the main diagonal the synergies between improvements in one of the ilities
Dependability, Flexibility, Interoperability, and Resource Utilization and improvements in the
others. It shows below the main diagonal the conflicts between improvements in one of those
four ilities and impacts on the others. It is currently in a Word table; current experiments at U.
of Virginia and USC are focusing on tools to enable users to obtain detailed explanations, and
ideally quantitative relationships, for the synergies and conflicts.

An example is provided in the two entries in Table 3 in a larger font. In the envisioned tool,
clicking on the conflict “Increased reliability increases acquisition costs” in the lower left cell
would bring up the green curve shown Figure 1 below and its explanation. On the other hand,
clicking on the synergy “Increased reliability decreases total ownership costs” in the upper right
cell would bring up the full Figure 1 and its explanation. The dotted red curve shows that very
Low RELY software is 23% more expensive to maintain. The blue curve shows that for long-
lived projects with 70% of their life-cycle costs in maintenance, low-RELY software will be more
expensive over the life cycle. The black curve shows that if total ownership costs include a
comparable amount of business losses due to low-RELY software, that Very High RELY
investments are cost-effective. The quantitative relationships are based on the calibrated
values of the Required Reliability cost driver in the COCOMO II cost estimation model34.

26

Table 3. Example Second-Level System Ilities Synergies and Conflicts

Dependability Flexibility Interoperability Resource Utilization

Domain architecting (using

domain knowledge in

defining interfaces)

improves reliability and

modifiability

Common, multi-layered

services and architecture

improve interoperability

and reliability

Automated input, output validation

Modularity (high module

cohesion, low module

coupling) improves

modifiability and reliability

Domain architecting

improves reliability,

interoperability within the

domain

Cost, increase reliability

Cycle ownership costs

Increased reliability reduces life

Product line architectures reduce

Reduces human costs

Domain architecting assumptions complicate

multi-domain system modifiability

High-cohesion, low-

coupling modules improve

modifiability and

interoperability

Modularization around sources of

change

Modularization around

sources of change

improves modifiability and

interoperability

Domain architecting enables domain

High-cohesion, low-coupling

modules

Modifiability and decreases lifecycle

cost

Product lines, reducing costs

Providing excess capacity improves

Reduce life cycle costs

Reduces life cycle costs

Data redundancy improves reliability, but

updates may complicate distributed real-time

systems interoperability

Common, multi-layered services and

Architecture reduce life cycle costs

Interoperability, reduces cost of later

systems

Product line architecture improves

Formal verification adds cost

Domain architecting

increases multi-domain

system costs

Neglecting or deferring

interfaces to co-dependent

systems will reduce initial

costs, but degrade

interoperability

Hardware redundancy adds cost

Fixed-requirements, fixed-

cost contracts generally

produce brittle, hard-to-

modify systems

Increased reliability increases acquisition

costs

Making easiest-first initial commitments

reduces early costs but degrades later

reliability, adds later costs

Resource

Utilization

Nanosensor-based smart

monitoring improves

reliability, makes mods more

effective

High-cohesion, low-

coupling modules improve

interoperability and

reliability

Reliability-optimized designs may complicate

fault diagnosis, system disassembly

Open standards, service-

oriented architectures

improve both modifiability

and interoperability

Domain architecting

assumptions complicate

multi-domain system

interoperabilityOptimizing on reliability as liveness may

degrade message delivery, accuracy

Product line architecture

increases cost of initial

system

Dependability

Flexibility

Interoperability

Providing excess capacity

improves modifiability but

increases acquisition cost

27

Figure 1 Software Life Cycle Ownership Costs vs Required Reliability(RELY)

The ultimate goal of the research in this area would be to provide such guidance on ility
synergies and conflicts among all of the 26 second-level ilities in Table 3. Initial explorations of
this goal concluded that the resulting 26x26 matrix would be too unwieldy, and too redundant,
as there are many synergies among the second-level entries in each first-level category. For
example under the Robustness first-level ility, every strategy to improve Reliability would also
improve Availability, as would every strategy to improve Maintainability. Section 4.4 will show
and discuss a less-redundant 7x7 matrix consisting of the four first-level ilities plus separate
subsets of the complex second-level Mission Effectiveness ility to cover Physical Capability,
Cyber Capability, and Interoperability ilities.

4.4 The 7x7 ility Synergies and Conflicts Matrix: The 7x7 matrix in Table 4 includes the three
first-level ilities of Flexibility, Dependability, and Resource Utilization. plus expansions of the
complex second-level Mission Effectiveness ility into separate Physical Capability, Cyber
Capability, and Interoperability ilities along with a Mission Effectiveness category comprising
the remainder of the Mission Effectiveness components.

Some additional synergy and conflict examples from the Flexibility and Dependability classes
indicted in bold in Table 4 are:

Synergy: Domain Architecting. Special domain knowledge or domain ontologies enable
simplification of domain artifacts and concepts. For example, specifying the Dependability
aspects for a fixed wing aircraft can benefit from concepts common to fixed-wing aircraft
aerodynamics, propulsion, controls, energy management, etc., These enable greater ease and
consistency of definition, development, and modification of the desired aircraft, improving

70%

Maint.

COCOMO II RELY Rating

0.8

Very

Low

Low Nominal High
Very

High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

0.92

1.26

0.82

Relative

Cost to

Develop,
Maintain,

Own and

Operate

1.23

1.10

0.99

1.07

1.11

1.05 1.02

1.13

0.76

0.69

VL = 2.55

L = 1.52

Operational-defect cost at Nominal dependability

= Software life cycle cost

Operational -

defect cost = 0

70%

Maint.

COCOMO II RELY Rating

0.8

Very

Low

Low Nominal High
Very

High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

0.92

1.26

0.82

Relative

Cost to

Develop,
Maintain,

Own and

Operate

1.23

1.10

0.99

1.07

1.11

1.05 1.02

1.13

0.76

0.69

VL = 2.55

L = 1.52

Operational-defect cost at Nominal dependability

= Software life cycle cost

Operational -

defect cost = 0

COCOMO II RELY Rating

0.8

Very

Low

Low Nominal High
Very

High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

0.92

1.26

0.82

Relative

Cost to

Develop,
Maintain,

Own and

Operate

1.23

1.10

0.99

1.07

1.11

1.05 1.02

1.13

0.76

0.69

VL = 2.55

L = 1.52

Operational-defect cost at Nominal dependability

= Software life cycle cost

Operational -

defect cost = 0

28

both Dependability and Flexibility.

Conflict: Multi-Domain Architecting. Committing to several domain ontologies within a system
of systems will complicate both Flexibility and Dependability, as the special domain

Table 4. Major-Category ilities Synergies and Conflicts Matrix

Fl
e

xi
b

il
it

y
D

ep
en

d
ab

ili
ty

M
is

si
o

n
 E

ff
e

ct
iv

e
n

ss
R

es
o

u
rc

e
U

ti
liz

at
io

n
P

h
ys

ic
al

 C
ap

ab
il

it
y

C
yb

e
r

C
ap

ab
il

it
y

In
te

ro
p

e
ra

b
il

it
y

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n
A

d
ap

ta
b

il
it

y
A

d
ap

ta
b

il
it

y
A

d
ap

ta
b

il
it

y
A

d
ap

ta
b

il
it

y
A

d
ap

ta
b

il
it

y

M
o

d
u

la
ri

ty
M

an
y

o
p

ti
o

n
s

A
gi

le
 m

e
th

o
d

s
Sp

ar
e

 c
ap

ac
it

y
Sp

ar
e

 c
ap

ac
it

y
Lo

o
se

 c
o

u
p

li
n

g

Se
lf

 A
d

ap
ti

ve
Se

rv
ic

e
 o

ri
e

n
te

d
A

u
to

m
at

e
d

 I/
O

 v
al

id
at

io
n

M
o

d
u

la
ri

ty

Sm
ar

t
m

o
n

it
o

ri
n

g
Sp

ar
e

 c
ap

ac
it

y
Lo

o
se

 c
o

u
p

li
n

g
fo

r

su
st

ai
n

ab
il

it
y

P
ro

d
u

ct
 li

n
e

 a
rc

h
it

e
ct

u
re

s

Sp
ar

e
 C

ap
ac

it
y

U
se

r
p

ro
gr

am
m

ab
il

it
y

P
ro

d
u

ct
 li

n
e

 a
rc

h
it

e
ct

u
re

s
Se

rv
ic

e
-o

ri
e

n
te

d

co
n

n
e

ct
o

rs

U
se

 s
o

ft
w

ar
e

 v
s.

 h
ar

d
w

ar
e

V
e

rs
at

il
it

y
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
U

se
 s

o
ft

w
ar

e
 v

s.
 H

ar
d

w
ar

e

U
se

r
p

ro
gr

am
m

ab
il

it
y

A
cc

re
d

it
at

io
n

A
cc

re
d

it
at

io
n

A
u

to
m

at
e

d
 a

id
s

Fa
ll

b
ac

ks
Fa

ll
b

ac
ks

A
ss

e
rt

io
n

 C
h

e
ck

in
g

A
gi

le
 m

e
th

o
d

s
as

su
ra

n
ce

FM
EA

St
af

fi
n

g,
 E

m
p

o
w

e
ri

n
g

Li
gh

tw
e

ig
h

t
ag

il
it

y
V

al
u

e
 p

ri
o

ri
ti

zi
n

g
D

o
m

ai
n

 a
rc

h
it

e
ct

in
g

w
it

h
in

d
o

m
ai

n

En
cr

yp
ti

o
n

M
u

lt
i-

le
ve

l s
e

cu
ri

ty
V

al
u

e
 p

ri
o

ri
ti

zi
n

g
V

al
u

e
 p

ri
o

ri
ti

zi
n

g
R

e
d

u
n

d
an

cy
Se

rv
ic

e
 o

ri
e

n
te

d

M
an

y
o

p
ti

o
n

s
Su

rv
iv

ab
il

it
y

A
u

to
m

at
e

d
 I/

O
 v

al
id

at
io

n
R

e
d

u
n

d
an

cy

M
u

lt
i-

le
ve

l s
e

cu
ri

ty
Sp

ar
e

 c
ap

ac
it

y
D

o
m

ai
n

 a
rc

h
it

e
ct

in
g

w
it

h
in

d
o

m
ai

n
Sp

ar
e

 c
ap

ac
it

y

Se
lf

 A
d

ap
ti

ve
 d

e
fe

ct
s

P
ro

d
u

ct
 li

n
e

 a
rc

h
it

e
ct

u
re

s

U
se

r
p

ro
gr

am
m

ab
il

it
y

M
u

lt
i-

d
o

m
ai

n
 m

o
d

if
ia

b
il

it
y

A
u

to
n

o
m

y
vs

. U
sa

b
il

it
y

A
n

ti
-t

am
p

e
r

A
u

to
m

at
e

d
 a

id
s

A
u

to
m

at
e

d
 a

id
s

A
u

to
m

at
e

d
 a

id
s

A
u

to
m

at
e

d
 a

id
s

M
o

d
u

la
ri

ty
 s

lo
w

d
o

w
n

s
A

rm
o

r
vs

. W
e

ig
h

t
D

o
m

ai
n

 a
rc

h
it

e
ct

in
g

w
it

h
in

d
o

m
ai

n

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
Ea

si
e

st
-f

ir
st

 d
e

ve
lo

p
m

e
n

t
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g

V
e

rs
at

il
it

y
vs

. U
sa

b
il

it
y

R
e

d
u

n
d

an
cy

V

al
u

e
 p

ri
o

ri
ti

zi
n

g
V

al
u

e
 p

ri
o

ri
ti

zi
n

g
V

al
u

e
 p

ri
o

ri
ti

zi
n

g

Sc
al

ab
il

it
y

Sp
ar

e
 C

ap
ac

it
y

U
sa

b
il

it
y

vs
. S

e
cu

ri
ty

A
gi

le
 M

e
th

o
d

s
sc

al
ab

il
it

y
A

cc
re

d
it

at
io

n
A

gi
le

 m
e

th
o

d
s

sc
al

ab
il

it
y

A
u

to
m

at
e

d
 a

id
s

A
u

to
m

at
e

d
 a

id
s

A
u

to
m

at
e

d
 a

id
s

A
ss

e
rt

io
n

 c
h

e
ck

in
g

o
ve

rh
e

ad
A

n
ti

-t
am

p
e

r
C

o
st

 o
f

au
to

m
at

e
d

 a
id

s
D

o
m

ai
n

 a
rc

h
it

e
ct

in
g

w
it

h
in

d
o

m
ai

n

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n

Fi
xe

d
 c

o
st

 c
o

n
tr

ac
ts

C
e

rt
if

ic
at

io
n

M
an

y
o

p
ti

o
n

s
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
R

e
w

o
rk

 c
o

st
 s

av
in

gs

M
o

d
u

la
ri

ty
Ea

si
e

st
-f

ir
st

 d
e

ve
lo

p
m

e
n

t

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
V

al
u

e
 p

ri
o

ri
ti

zi
n

g
V

al
u

e
 p

ri
o

ri
ti

zi
n

g
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
Fa

ll
b

ac
ks

Sp
ar

e
 c

ap
ac

it
y

Sp
ar

e
 c

ap
ac

it
y

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
U

sa
b

il
it

y
vs

. C
o

st
 s

av
in

gs

Ti
gh

t
co

u
p

li
n

g
R

e
d

u
n

d
an

cy
V

e
rs

at
il

it
y

U
se

 s
o

ft
w

ar
e

 v
s.

 h
ar

d
w

ar
e

Sp
ar

e
 C

ap
ac

it
y,

 t
o

o
ls

 c
o

st
s

U
sa

b
il

it
y

vs
. C

o
st

 s
av

in
gs

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
Li

gh
tw

e
ig

h
t

ag
il

it
y

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
C

o
st

 o
f

au
to

m
at

e
d

 a
id

s
A

u
to

m
at

e
d

 a
id

s
A

u
to

m
at

e
d

 a
id

s

O
ve

r-
o

p
ti

m
iz

in
g

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
O

ve
r-

o
p

ti
m

iz
in

g
M

u
lt

i-
d

o
m

ai
n

 a
rc

h
it

e
ct

u
re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
St

af
fi

n
g,

 E
m

p
o

w
e

ri
n

g
D

o
m

ai
n

 a
rc

h
it

e
ct

in
g

w
it

h
in

d
o

m
ai

n

Ti
gh

t
co

u
p

li
n

g
O

ve
r-

o
p

ti
m

iz
in

g
O

ve
r-

o
p

ti
m

iz
in

g
V

al
u

e
 p

ri
o

ri
ti

zi
n

g

U
se

 s
o

ft
w

ar
e

 v
s.

 h
ar

d
w

ar
e

A
gi

le
 M

e
th

o
d

s
sc

al
ab

il
it

y
M

u
lt

i-
d

o
m

ai
n

 a
rc

h
it

e
ct

u
re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
C

o
st

 o
f

au
to

m
at

e
d

 a
id

s
O

ve
r-

o
p

ti
m

iz
in

g
A

u
to

m
at

e
d

 a
id

s

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
O

ve
r-

o
p

ti
m

iz
in

g
O

ve
r-

o
p

ti
m

iz
in

g
M

u
lt

i-
d

o
m

ai
n

 a
rc

h
it

e
ct

u
re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts

P
h

ys
ic

al
 a

rc
h

it
e

ct
u

re
 o

r

cy
b

e
r

ar
ch

it
e

ct
u

re

D
o

m
ai

n
 a

rc
h

it
e

ct
in

g
w

it
h

in

d
o

m
ai

n

O
ve

r-
o

p
ti

m
iz

in
g

O
ve

r-
o

p
ti

m
iz

in
g

Ti
gh

t
co

u
p

li
n

g

U
se

 s
o

ft
w

ar
e

 v
s.

 h
ar

d
w

ar
e

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
En

cr
yp

ti
o

n
 in

te
ro

p
e

ra
b

il
it

y
M

u
lt

i-
d

o
m

ai
n

 a
rc

h
it

e
ct

u
re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts
A

ss
e

rt
io

n
 c

h
e

ck
in

g
O

ve
r-

o
p

ti
m

iz
in

g
R

e
d

u
ce

d
 s

p
e

e
d

 o
f

A
ss

e
rt

io
n

ch
e

ck
in

g

U
se

r-
p

ro
gr

am
m

e
d

in
te

ro
p

e
ra

b
il

it
y

M
u

lt
i-

d
o

m
ai

n
 a

rc
h

it
e

ct
u

re

in
te

ro
p

e
ra

b
il

it
y

co
n

fl
ic

ts

C
o

st
, d

u
ra

ti
o

n
 o

f
ad

d
e

d

co
n

n
e

ct
o

rs
Ti

gh
t

vs
. L

o
o

se
 c

o
u

p
li

n
g

R
e

d
u

ce
d

 s
p

e
e

d
 o

f

co
n

n
e

ct
o

rs
, s

ta
n

d
ar

d
s

co
m

p
li

an
ce

Ti
gh

t
vs

. L
o

o
se

 c
o

u
p

li
n

g

In
te

ro
p

e
ra

b
il

it
y

Fl
e

xi
b

il
it

y

D
ep

en
d

ab
ili

ty

M
is

si
o

n
 E

ff
e

ct
iv

e
n

ss

R
es

o
u

rc
e

U
ti

liz
at

io
n

P
h

ys
ic

al
 C

ap
ab

il
it

y

C
yb

e
r

C
ap

ab
il

it
y

29

assumptions may have incompatibilities causing both ease-of change and dependability-of-
change problems. For example, an aircraft domain ontology may assume a spherical Earth,
while a ground vehicle ontology may assume a flat Earth, and a satellite vehicle ontology an
oblate Earth. And it may be unclear whether the ground vehicle or satellite vehicle ontologies
do or don’t include aerodynamic effects. Again, the 7x7 matrix and its entries represent a
necessarily incomplete and imperfect starting point. The intent will be to provide a Wikipedia
or Systems Engineering Body of Knowledge (SEBoK)-like framework for the systems engineering
community to discuss and improve the content.

4.5 Synergies and Conflicts Within the Major Categories: Another shortfall with respect to the
synergies and conflicts among the major ility classes is that they are not perfectly uniform. If
Dependability includes Reliability, Availability, and Maintainability, it is clear that many
contributions to Flexibility will be synergetic with Maintainability, but may be conflicting with
Reliability, as with user-programmable scripts. Thus it is important to complement the 7x7
cross-major-classes matrix with seven matrices addressing within-major-classes synergies and
conflicts. This may seem like excess complexity, but it is the best compromise we have found
between capturing important synergies and conflicts, and keeping things simple. It is certainly
more practical to hat a 7x7 matrix with 42 entries plus 7 matrices averaging 4x4 elements and
12 entries, or 126 total entries; than it is to have a 26x26 matrix with 650 entries.

An example 3x3 matrix for intra-Dependability synergies and conflicts is shown in Table 5. At
some cost in precision, it excludes Safety and Survivability as important but mostly duplicative
in their relations with Security, Reliability, and Maintainability (another example of an ility
tradeoff between exhaustiveness and simplicity).

Table 5. Intra-Dependability Synergies and Conflicts

1.2.5 MULTI-STAKEHOLDER ILITY VALUE PROPOSITION RECONCILIATION

An ontology based strongly on stakeholder value propositions needs to recognize and deal with
the fact that stakeholders’ ility priorities will vary by their roles, responsibilities, and levels of
need satisfaction in the Maslow need hierarchy36. As discussed under Table 1 in Section 3,

Security Reliability Maintainability

Confidentiality, Integrity, Avalability Certification

Assurance Cases Diagnosability

Certification Integrity, Avalability

Failure Modes and Effects Analysis Repairability

Fault Tree Analysis Smart Monitoring

Recertification Spare Capacity

Non-redundancy (For Security) Accessibility

Redundancy (For Reliability) Certification

Diagnosability

Repairability

Smart Monitoring

Spare Capacity

Accessibility Armor

Compartmentalization Recertification

Encryption

Recertification

Security

Reliability

Maintainability

30

system end users, support operators, and administrators strongly need Mission Effectiveness.
System sponsors and owners strongly need Affordability in terms of Mission Effectiveness and
Resource Utilization. System maintainers strongly need Flexibility. External stakeholders
affected by the system’s operation strongly need Dependability as aircraft passengers and
credit card holders.

The Synergies and Conflicts matrices presented above provide some of the support needed to
understand the challenges of reconciling these value proposition conflicts, as does Multi-
Attribute Utility Theory37. But further support is needed in terms of methods, processes, and
tools to enable multi-discipline stakeholders to perform such reconciliations.

Current acquisition practices such as competitive bidding based on least-cost, technically
acceptable selection criteria, followed by a fixed-price, fixed specification contract usually do
the opposite. They generally force acquirers and bidders into a Conspiracy of Optimism set of
commitments that lock them into unfulfillable contracts and subsequent adversarial
relationships that often neglect the value propositions of other success-critical stakeholders.

Over the past 25 years, we have been addressing this challenge, beginning with the stakeholder
win-win Theory W38. It states that “A system will be successful if and only if it makes winners of
all of its success-critical stakeholders.” (The INCOSE definition of Systems Engineering is, “an
interdisciplinary method and approach for enabling the development of successful systems.”)39
The Theory W counterpart Successful System Realization Theorem includes four key process
goals: (1) Identifying the system’s success-critical stakeholders; (2) Determining their key value
propositions; (3) Reconciling the value propositions into a mutually satisfactory (win-win) plans
and specifications, and (4) Controlling the project to keep it in a win-win state40. Support of
these goals also rests on major contributions to (1) dependency theory,41 (2) utility theory,42 (3)
decision theory,43 and (4) control theory,44 and contributions to achieving the goals such as
Getting to Yes45 and a win-win approach to outsourcing called Vested Outsourcing.46

Also over the past 20 years, we have been developing and evolving collaboration tools that
enable stakeholders from different disciplines to identify their value propositions or win
conditions, and to negotiate mutually satisfactory or win-win agreements on the nature of a
proposed system and its life cycle approach. There have been major challenges in doing this,
such as providing supportive user interfaces for stakeholders having different knowledge or skill
levels, and in determining criteria for prioritizing the agreed-upon capabilities. We have found
that widely-used applications such as Facebook provide much better collaboration bases for
diversified stakeholders, and have developed a Facebook-style tool called Winbook, which has
significantly improved the speed, depth, and breadth of reaching concurrence across widely
diversified stakeholders.47 We have also been able to develop a capabilities prioritization
approach based on the Minimum Marketable Features method,31 and have led a successful
activity to develop and apply 17 evaluation criteria to evaluate and select the most composite
multi-stakeholder desirable of 17 alternative prioritization methods for a major information
technology company.48 The approach appears to have promise for addressing complex multi-
criteria selection problems in general. We continue to experimentally apply it in an annual set

31

of 15-20 multi-stakeholder web services application projects as part of our Incremental
Commitment Spiral Model approach to successful projects in the USC neighborhood area.49

1.2.6 CONCLUSIONS

Ilities or non-functional requirements are success-critical for many projects. They represent
major stakeholder needs, but are a major source of project overruns and failures. They are a
significant source of stakeholder value conflicts. They are poorly defined and understood, even
in standards documents. Compared to functional requirements, they are seriously
underemphasized in project management.

The initial ilities ontology presented here helps address these problems by clarifying the nature
of system ilities. It uses a modified IDEF5 ontology framework, with ility classes represented in
a stakeholder value-based, means-ends hierarchy. It identifies sources of ility value variation in
terms of a system’s states, processes, and inter-ility relations. The relations enable ility
synergies and conflicts identification, providing the beginnings of satisfying a major need for
systems engineers. Continuing SERC research at USC, MIT, and the University of Virginia is
creating further tools and formal definitions that will strengthen the ontology and provide
further support for systems engineers. Again, the ultimate intent will be to provide a Wikipedia
or Systems Engineering Body of Knowledge (SEBoK)-like framework for the systems engineering
community to discuss and improve the ilities knowledge base.

1.2.7 ACKNOWLEDGEMENTS

This material is based upon work supported in part by the U.S. Department of Defense through
the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a
federally funded University Affiliated Research Center managed by Stevens Institute of
Technology. It is also supported by the National Science Foundation grant CMMI-1408909,
Developing a Constructive Logic-Based Theory of Value-Based Systems Engineering.

1.2.8 REFERENCES

1. Boehm B, Unifying software and systems engineering, IEEE Computer 2000; 3: 114-6.
2. Vitruvius, (Rowland I, Howe T trans), Ten books on architecture, Cambridge University Press;

2001.
3. Ruskin J, The seven lamps of architecture, Dover Publications; 1989.
4. Wellington A, The economic theory of the location of railroads, New York, NY, USA: John

Wiley and Sons; 1887.
5. Pirsig R, Zen and the art of motorcycle maintenance, New York, NY, USA, William Morrow &

CO., 1974.
6. Rubey R, Hartwick D, Quantitative measurement of program quality, Proc ACM National

Conference, ACM; 1968: 671-7.

32

7. Boehm B, Brown J, Kaspar H, Lipow M, MacLeod G, Merritt M, Characteristics of Software
Quality, NBS Technical Report,1973; Amsterdam: North Holland, 1978.

8. Gilb T, Principles of software engineering management, Reading MA: Addison-Wesley; 1988.
9. Barbacci M, Klein M, Longstaff T, Weinstock C, Quality Attributes, Technical Report

CMU/SEI-95-TR-021: 1995
10. Clements P, Kazman R, Klein M, Evaluating Software Architectures, Reading MA: Addison

Wesley; 2002.
11. ISO/IEC, Software engineering – product quality standard 9126, ISO/IEC; 2001-2004.
12. ISO/IEC, Software engineering – software product quality requirements and evaluation

(SQuaRE) standards 25000-25030, ISO/IEC; 2005-2008.
13. ISO/IEC, Systems and software engineering – SQuaRE system and software quality models

standard 25010, ISO/IEC; 2011.
14. Holland J, Engineered resilient systems (ERS) roadmap, Proc. NDIA Sys Engr Conf; 2012.
15. Ross A, Hastings D, The tradespace exploration paradigm, Proc. INCOSE Intl Symp; 2005.
16. Ross A, Stein D, Hastings, D, Multi-attribute tradespace exploration for survivability, AIAA J

Spacecraft Rockets; 2014.
17. Sitterle V, Curry M, Freeman D, Ender T, Integrated toolset and workflow for tradespace

analytics in systems engineering, Proc INCOSE Intl Symp; 2014.
18. Boehm B, Lane J, Koolmanojwong S, An orthogonal framework for improving life cycle

affordability, Proc. Conf Sys Engr Rsch; 2013.
19. Wikipedia, Resilience(disambiguation)

http://en.wikipedia.org/wiki/Resilience_(disambiguation), accessed 09/29/2014
20. Brand F, Jax K, Focusing the meaning(s) of resilience: resilience as a descriptive concept and

a boundary object. Ecology and Society 12(1): 23.; 2007
21. Gruber T, A translation approach to portable ontologies. Knowledge Acquisition 1993;

5(2):199-220.
22. Benjamin P et al., IDEF5 Method Report. Knowledge Based Systems, Inc.; 1994.
23. INCOSE. INCOSE Systems Engineering Handbook, INCOSE-TP-2003-002-03.2; 2012.
24. Boehm B, Jain A, A Value-Based Theory of Systems Engineering. Proceedings, INCOSE Intl.

Symp.; 2006.
25. JCIDS, Manual for the Operation of the Joint Capabilities Integration and Development

System, JCIDS; 2012: A-A-1-4.
26. Bullock J, Calculating the Value of Testing, Software Testing and Quality Engineering, 2000;

3: 56-62.
27. Boehm B, Basili V, Software Defect Reduction Top 10 List, Computer, 2001; 1: 135-137.
28. Lee K, Boehm B, Empirical Results from an Experiment on Value-Based Review (VBR)

Processes, Proc. International Symposium on Empirical Software Engineering; 2005.
29. Li Q, Yang Y, Li M, Wang Q, Boehm B, Hu C, Improving Software Testing Process: Feature

Prioritization to Make Winners of Success-Critical Stakeholders, Journal of Software
Maintenance and Evolution; 2012

30. Thelin T, Runeson P, Wohlin C, Prioritized use cases as a vehicle for software inspections,
IEEE Software, 2003; 4: 30-33.

31. Denne M, Cleland-Huang J, Software by Numbers, Prentice Hall; 2003.
32. Blanchard B, Verma D, Peterson E, Maintainability, John Wiley and Sons, 1995.

http://en.wikipedia.org/wiki/Resilience_(disambiguation
http://www.idef.com/pdf/Idef5.pdf

33

33. Chulani S, Bayesian Analysis of Software Costs and Quality Models, PhD Dissertation,
Department of Computer Science, University of Southern California, 1999.

34. Boehm B, Abts C, Brown AW, Chulani S, Clark B, Horowitz E, Madachy R, Reifer D, Steece B,
Software Cost Estimation with COCOMO II, Prentice Hall, 2000.

35. Huang L, Boehm B, How Much Software Quality Investment is Enough: A Value-Based
Approach, IEEE Software 2006; 3, 23 (5): 88-95.

36. Maslow A, Motivation and Personality, Harper 1954.
37. Keeney R, Raiffa H, Decisions with Multiple Objectives: Preferences and Value Tradeoffs,

Cambridge University Press 1976.
38. Boehm B, Ross R, "Theory-W Software Project Management Principles and Examples," IEEE

Transactions on Software Engineering, 1989;15, (7): 902-916.
39. Boehm B., Jain, A., "A Value-Based Theory of Systems Engineering," Proceedings, INCOSE IS,

2006
40. INCOSE, INCOSE Systems Engineering Handbook, Version 3.2, 2012.
41. Burton R, Obel B, Strategic Organizational Diagnostics and Design: The Dynamics of Fit,

Kluwer, 2004.
42. Debreu G, Theory of Value, Wiley, 1959.
43. Blackwell D, Girshick M, Theory of Games and Statistical Decisions, Wiley, 1954.
44. Brogan W, Modern Control Theory, Prentice Hall, 1974 (3rd ed., 1991).
45. Fisher, R., Ury, W., Getting To Yes: Negotiating Agreement Without Giving In, Houghton

Mifflin, 1981.
46. Vitasek, K, Ledyard M, Manrodt K, Vested Outsourcing, Palgrave Macmillan, 2010 (2nd ed,

2013)
47. Kukreja N, Boehm B, “Social Networking-Based System Requirements Engineering,”

Proceedings, Conference on Systems Engineering Research, Elsevier: 2013
48. Kukreja N, Payyavula S, Boehm B, and Padmanabhuni S, “Value-Based Requirements

Prioritization: Usage Experiences,” Proceedings, Conference on Systems Engineering
Research, Elsevier: 2013

49. Boehm B, Lane J, Kooolmanojwong S, Turner R, The Incremental Commitment Spiral Model:
Principles and Practices for Sysccessful Systems and Software, Addison Wesley, 2014

1.3 TASK 2: METHODS AND TOOLS PILOTING AND REFINEMENT

USC participated in activities with WSU, NPS, TARDEC, and NAVSEA to apply SERC cost
estimation capabilities to Army and Navy systems engineering analyses.

1.4 TASK 3: NEXT-GENERATION, FULL-COVERAGE COST MODELS

Based on the exploratory needs and data assessments in Phase 2, a Phase 3 workshop including
Air Force, Navy, aerospace industry, and SERC researchers concluded that there were strong
needs for better estimation of operations and support costs, but that the data available lacked
adequate cost driver information, except in in the software area. The workshop recommended
that the most promising initial areas to pursue would be for software development, systems

34

engineering, and the use of systems engineering cost drivers to improve estimation of system
development costs. Further research and workshops have identified further sources of data
and some shortfalls in current models in these areas, and have developed requirements and
draft frameworks for the next-generation models. An example of the cost driver elements and
rating scales is provided next.

1.4.1 DRAFT COSYSMO 3.0 RATING SCALES: PROBLEM AND SOLUTION UNDERSTANDING

Problem Understanding and Solution Understanding are the first two macro cost drivers
proposed for the COSYSMO 3.0 model. Each is broken down into several sub-aspects to be
rated and weighted-averaged into a composite rating level to be used to determine a
composite macro cost driver value across a 7-level Likert scale. Their productivity ranges will
be determined by a combination of Expert-Delphi determined values and of multiple regression
of project data.

The use of composite cost driver parameters rather than individual parameters is to reduce the
number of parameters in the model for both ease of use and ease of calibration of the
parameters. Further, determining weighted averages provides a rational basis for creating
interpolated rating levels such as 3.56, as compared to the big swings between integer-rated
multipliers for the individual parameters in the earlier COSYSMO models. It also will generally
provide a central tendency in the composite rating level as extreme ratings are averaged with
more central or opposite ratings.

Problem Understanding includes understanding of the system’s concept of operation, of
functional requirements, and of non-functional requirements or ilities. Solution Understanding
includes understanding of the most appropriate system architecture, of the most appropriate
choices of non-developmental items (COTS products, cloud services, reused components), of
the degree of understanding of the system-critical technologies, and of the degree of the
system-critical technologies’ maturity with respect to the system’s scale and needed
performance.

We considered combining Problem Understanding and Solution Understanding, as it is
generally good systems engineering practice to work on these concurrently. But we decided to
make them separate for two main reasons. One is to avoid complex macro cost drivers with
numerous sub-aspects. The other is that often the estimators (and data contributors) are
strong in problem understanding but not strong in solution understanding, or vice versa, and it
was valuable to capture such knowledge and use it in developing and using COCOMO 3.0.

When we began developing 7-level rating scales for each of the sub-aspects of Problem
Understanding and Solution Understanding, we found that the levels of understanding were
essentially the same across the sub-aspects. For each, it was the case that understanding
involved the levels of knowledge about the system’s key factors: the system’s domain (e.g.,

35

government/commercial, market sector, cyber/physical/human), its stakeholder values, its
environment, its organizational relationships, or other system-influential factors.

The rating level scales then follow progressions along three major axes:

1. The highest level of understanding of each key factor held by at least one of the
systems engineering team members.

2. The average level of understanding of the factors across the entire team.

3. The number of team members able to bridge multiple key factors.

Table 6 summarizes the rating level scales proposed to be used for all of the Problem and
Solution Understanding sub-factors. The Bloom taxonomy from Wikipedia shown in Table 7 is
used to define the rating scale levels: Knowledge, Comprehension, Application, Analysis,
Evaluation, and Synthesis. I have taken the liberty of replacing the weak Evaluation question in
Wikipedia beginning with “Questions like: Do you feel that” by a more pragmatic “Questions
like: Evaluate sources of evidence that.”

Table 6. Problem and Solution Understanding Sub-Factor Rating Scales

Rating
Level \ Axis

1. Best Und’g Level 2. Avg. Team Und’g Level 3. Factor Bridging

Extra Low
1.0

Basic Knowledge of each
factor covered

Minimal Knowledge of
most factors

Some factor pairs at
Knowledge level

Very Low
2.0

Comprehension, some
Application of most
factors covered

Knowledge of most
factors, some
Comprehension and
Application of some
factors

Some pairs at
Comprehension level

Low
3.0

Application, some
Analysis of most factors
covered

Comprehension and
Application of most
factors, some Analysis of
some factors

Some multi-factor
bridging at
Comprehension,
Application levels

Nominal
4.0

Analysis, some Evaluation
and Synthesis of some
factors covered

Comprehension and
Application of each factor,
some Analysis of most
factors

Some multi-factor
bridging at Analysis
level

High
5.0

Analysis, some Evaluation
and Synthesis of most
factors covered

Analysis of most factors,
some Evaluation and
Synthesis of some factors

Most factors bridged at
Analysis level. Some at
Evaluation level

Very High
6.0

Analysis, most Evaluation
and Synthesis of most
factors covered

Analysis of each factor,
some Evaluation and
Synthesis of most factors

Most factors bridged at
Evaluation and
Synthesis levels

Extra High
7.0

Evaluation and Synthesis
of each factor covered

Most Evaluation and
Synthesis of most factors

All factors bridged at
Evaluation and
Synthesis levels

36

Table 7. Bloom Taxonomy of Cognitive Understanding Domain

There are six levels in the Bloom taxonomy, moving through the lowest order processes to the
highest:

Knowledge

Exhibit memory of learned materials by recalling facts, terms, basic concepts and answers

 Knowledge of specifics - terminology, specific facts

 Knowledge of ways and means of dealing with specifics - conventions, trends and
sequences, classifications and categories, criteria, methodology

 Knowledge of the universals and abstractions in a field - principles and generalizations,
theories and structures

Questions like: What are the health benefits of eating apples?

Comprehension

Demonstrate understanding of facts and ideas by organizing, comparing, translating,
interpreting, giving descriptions, and stating the main ideas

 Translation

 Interpretation

 Extrapolation

Questions like: Compare the health benefits of eating apples vs. oranges.

Application

Using acquired knowledge. Solve problems in new situations by applying acquired
knowledge, facts, techniques and rules in a different way

Questions like: Which kinds of apples are best for baking a pie, and why?

Analysis

Examine and break information into parts by identifying motives or causes. Make inferences
and find evidence to support generalizations

 Analysis of elements

 Analysis of relationships

 Analysis of organizational principles

Questions like: List four ways of serving foods made with apples and explain which ones
have the highest health benefits. Provide references to support your statements.

Evaluation

Present and defend opinions by making judgments about information, validity of ideas or
quality of work based on a set of criteria

37

 Judgments in terms of internal evidence

 Judgments in terms of external criteria

Questions like: Evaluate sources of evidence that serving apple pie for an after school snack
for children is healthy.

Synthesis

Builds a structure or pattern from diverse elements; it also refers the act of putting parts
together to form a whole (Omari, 2006). Compile information together in a different way by
combining elements in a new pattern or proposing alternative solutions

 Production of a unique communication

 Production of a plan, or proposed set of operations

 Derivation of a set of abstract relations

Questions like: Convert an "unhealthy" recipe for apple pie to a "healthy" recipe by
replacing your choice of ingredients. Explain the health benefits of using the ingredients you
chose vs. the original ones.

1.5 FUTURE PLANS

1.5.1 TASK 1, FOUNDATIONS

Based on the initial ontology developed in Phase 3, USC will converge the ility definitions and
ontology content, including variations by domain for key DoD domains, and work with UVa and
MIT to formalize the ontology definitions and structure and harmonize them with the MIT
change-oriented ilities structure in Phase 4. In Phase 5, these will be extended to further
domains, and guidance documents developed for their use.

1.5.2 TASK 2: METHODS AND TOOLS PILOTING AND REFINEMENT

Based on initial participation in Service piloting of cost estimation models and tools in Phase 3,
USC will participate in further Service piloting in Phase 4 of further cost estimation models and
tools being developed in Task 3, and refine the models and tools based on usage experience.
Such improvements, piloting and refinement will continue in Phase 5. Complementary
collaboration with Georgia Tech will extend the integration of the cost modeling tools with the
Georgia Tech SysML architecting tools.

1.5.3 TASK 3: NEXT-GENERATION, FULL-COVERAGE COST MODELS

Based on initial research on cost drivers for next-generation systems engineering and software
cost models in Phase 3, Phase 4 will develop prototype systems engineering and software cost

38

models and tools for piloting and refinement, and extend the estimation capabilities toward
full-coverage. This will primarily involve the following efforts to:

 Continue to involve groups of domain experts to review and iterate the definitions and
develop first-order expert-judgment Delphi estimates of the CER cost driver ranges.
Three Government-industry workshops in October 2013, February 2014, and April 2014,
evolved a baseline identification and prioritization of candidate cost drivers, and an
initial Delphi workshop is scheduled for October 2014.

 Evolve baseline detailed definitions of the cost driver parameters and rating scales for
use in data collection.

 Gather initial data and determine areas needing further research to account for wide
differences between estimated and actual costs.

39

2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.1 PAST RESULTS: PHASES 1 AND 2

2.1.1 TASK 1. ILITY FOUNDATIONS

MIT Semantic Basis.

In Phase 1, MIT built on prior research that aimed to develop a radical new approach for
defining ilities, rather than simply proposing yet another set of definitions. MIT has proposed
the use of a semantic basis that can serve as a framework for formulating ility “definitions.”
Such a basis would provide a common language that would inherently demonstrate how
various ilities relate to one another and provide an opportunity for discovering new ilities as
well as provide a new representation for meaning of various ilities beyond English definitions.
Phase 1 matured the earlier work, resulting in a proposed semantic basis, made up of fourteen
categories. This basis is believed to span the change-type ility semantic field and excludes the
architecture-type semantic field that includes “bottom” ilities such as modularity (de Weck,
Ross, and Rhodes 2012) and “architecture principles” (Fricke and Schulz 2005) such as
simplicity. Beginning with the change agent and change effect as two categories for defining a
change and the resulting applicable ilities, a larger set of categories are proposed for defining a
larger set of possible changes for a system. The fourteen categories, which together form the
semantic basis, are intended to collectively define a change in a system, thereby creating a
consistent basis for specifying change-type ilities in formal statements. A system can be verified
to display the quality described in the statement and therefore be traceable to a desired higher
order system property. (An earlier version of this basis is described in Beesemyer 2012). The
fourteen categories are: cause, context, phase, agent, impetus, impetus nature, impetus
parameter, impetus destination state size, impetus aspect, outcome effect, outcome
parameter, outcome destination state size, outcome aspect, level of abstraction, and value
qualities of the change. Unique choices for each of these categories, when applied to a
particular system parameter will formulate the change-type ility statement. The fourteen
categories are illustrated in Figure 2.

The semantic basis aims to capture the essential differences among change-type ilities through
specification of the following general change statement with regard to a particular system
parameter:

In response to “cause” in “context”, desire “agent” to make some “impetus
parameter change” in “system” resulting in “outcome parameter change” that
is “valuable.”

40

Figure 2. Change-type prescriptive semantic basis in 14 categories. (Ross, Beesemyer,

Rhodes2011)

Application of the semantic basis begins with a user generating a change statement. The
change statement is refined and assigned categorical choices within the basis, with the
intention that the applicable ilities will emerge from the specified change statement. In this
way, a user does not need to use a particular ility label a priori, thereby avoiding the semantic
ambiguity in the terms. If the basis accurately and completely describes the underlying
categories for change-type changes, then a user should be able to describe any change-type
ility through the basis. Further description of the semantic basis can be found in the RT-46
Phase 1 Technical Report. The version of the semantic basis above served as the version for
undertaking further research investigation in collaboration with UVA during Phase 2.

In Phase 2, based on a critique of the semantic basis provided by UVA, MIT convened an
internal working group and provided further clarifications and reformulations to address the
feedback. This working version has addressed a number of critiques from UVA on the MIT 14-
dimension semantic basis, as well as accumulated MIT-internal critiques. Refined
understanding of the semantic basis through use cases has also led to enhancements.

MIT provided UVA with the current working version, and gained feedback from UVA in regard
to encoding the basis into a formal language as was done of the initial version of the 14-
dimension semantic basis provided by MIT. In order to carefully consider the points in the UVA
critique, MIT convened special working sessions with a number of students and researchers
with prior experience with both ilities and the semantic basis specifically, to review UVA’s
interpretation and formulation. As a result, MIT recommended clarifications and some changes
to the basis to fill gaps and provide clarification. The revised basis has 20 categories as
developed during Phase 2; it is shown in the figure below.

41

Figure 3. The full revised semantic basis (gray row describes “name” label for that category).

MIT believes the semantic basis would be used differently in different use cases. During Phase 2
the team began working on defining various use cases, with a subset of the full category set.
For example, the full basis might be used when trying to write a very specific requirement
statement. But that use should not occur until AFTER analysis to determine what should be
done. Early in the design phase, one would likely leave out the “valuable” categories (as these
are subjective and depend on outside factors). Additionally, if one is trying to avoid fixating on a
solution-centric approach, one might want to consider leaving out change mechanism (in order
to allow engineers to propose their own alternatives). Several use cases are described in the
Phase 2 Technical Report.

2.2 PHASE 3 RESULTS

2.2.1 TASK 1. ILITY FOUNDATIONS

In Phase 3, MIT continued efforts on the collaborative research and development of iTAP
scientific foundations, in the development of more rigorous definitions and quantification of
ilities and their relationships. Specifically, MIT focused on the continuing development of the
semantic basis, usability testing of the basis, and collaboration with UVA researchers in
formalism.

MIT Semantic Basis.

In Phase 3, MIT built upon the prior phase efforts on the prescriptive semantic basis for
consistently representing ilities within a particular semantic field. The semantic basis, evolved
and tested in Phases 1 and 2, was further developed and tested in Phase 3. Through successive
refinement, the categories in the basis were derived from an earlier effort to define a 10, and
later 14, dimensional basis for describing change-type ilities (Figure 4.

42

Figure 4. Basis began with 14 categories.

Subsequently this was extended to 20 categories based on feedback from collaborators, as well
as internal review and testing. Beginning with change agent and change effect as two
categories for defining a change, a larger set of categories in the full basis is proposed for
defining a larger set of possible changes for a system. The twenty categories, which together
form the semantic basis, are intended to collectively define a change in a system, thereby
creating a consistent basis for specifying change-type ilities in formal statements. A system that
can be verified to display the quality described in the statement can then have a traceable and
consistent means for displaying a verifiable desired ility.

The twenty categories are: perturbation, context, phase, agent, impetus (nature, parameter,
origin states, destination states, aspect), mechanism, outcome (effect, parameter, origin states,
destination states, aspect), level of abstraction, and value qualities of the change (reaction,
span, cost, benefit).

Unique choices for each of these categories will formulate the change-type ility statement. The
twenty categories along with their associated choices are illustrated in Figure 5. The semantic
basis aims to capture the essential differences among change-type ilities through specification
of the following general change statement with regard to a particular system parameter:

In response to “perturbation” in “context” during “phase”, desire “agent” to
make some “nature” impetus to the system “parameter” from “origin(s)” to
“destinations” in the “aspect” using “mechanism” in order to have an “effect”
to the outcome “parameter” from “origin(s)” to “destination(s)” in the
“aspect” of the “abstraction” that are valuable with respect to thresholds in
“reaction”, “span”, “cost” and “benefit.”

43

Application of the semantic basis begins with a user generating a change statement. The
change statement is refined and assigned categorical choices within the basis, with the
intention that the applicable ilities will emerge from the specified change statement. For this
use to work, particular combinations of choices in the basis must be assigned an ility term label.
Such an exercise is similar to assigning definitions for ilities, albeit with an imposed closed form
“little language” supplied by the basis. For example, if “agent” is set to “external” then the
“flexible” label will apply. In this way, a user does not need to use, or know, a particular ility
label a priori, thereby avoiding semantic ambiguity in the terms. If the basis accurately and
completely describes the underlying categories for change-type changes, then a user should be
able to describe any change-type ility through the basis consistently.

Figure 5. Change-type prescriptive semantic basis in 20 categories

In order to validate the proposed use of the basis, two activities need to be accomplished: (1)
refinement of the basis itself, both in terms of complete categories and in terms of choices
within those categories; and (2) if the use of particular ility terms is ultimately desired, a
mapping between patterns in the basis and ility terms needs to be generated. If the latter is
accomplished, then any usage of the basis for specifying particular change statements will
result in consistently derived ility term labels. It is hypothesized that particular change-type
ilities will correspond to particular choice(s) in this basis. In this way, a consistent method for
specifying ilities can be pursued. An example of using the semantic basis for mapping ility
terms is illustrated in Figure 6. The results in the figure are presently a work in progress and are
meant for illustration purposes only.

Figure 6. Using the semantic basis to consistently identify ility term labels

Using the basis. The twenty categories can be a bit overwhelming at first; alternative versions
where the “optional” categories are left out, can be used at different stages of the design

44

lifecycle. For example, leaving out the “mechanism” column means that the statement leaves
the mechanism ambiguous, allowing engineers to evaluate alternative mechanisms for meeting
the statement. Likewise, leaving out the “impetus” categories results in an outcome-oriented
change statement. In Phase 3, the team continued work on alternative use cases; these are
being further defined and will help to generate specific examples.

Beginning with a desired system parameter change statement, the user makes choices across
the categories, signified by the double quotation marks (“ ”) in the general form of the
statement. It is important that this statement be specific to a chosen system parameter, as
currently the change-type ilities are conceived as being defined only in relation to particular
system parameters (i.e. there is no such thing as “generalized flexibility” as one can always find
exceptions). Choices in the categories for the particular considered change result in a
categorized change description. Optional categories do not have to be used if not of interest
for the statement use.

As an example, a simple (optional categories excluded) statement could be: “in response to
loud noises at night,” desire “owner” to be able to “change the level of volume” of “his stereo”
“in less than one second.” This statement requests “flexible” (i.e., external agent is owner)
“scalability” in “volume” and specifies the value proposition (i.e., what is deemed “valuable” is
that it take less than one second to execute this change). Alternative stereos can be evaluated
on this basis, with those stereos able to change more quickly as being more valuably scalable in
this regard. If ility labels have been previously mapped to the basis, then one can automatically
derive the applicable ility terms implied by the categorized change statement (i.e., flexibly
scalable in this case). The distinction here is important since one could have generated an
alternative statement that did not specify an external agent (i.e., resulting in “flexible” label),
rather leaving the agent open or even internal (e.g., the stereo changes its own volume with
associated design implications, and is labeled “adaptable” instead of “flexible”).

Each item in double quotes (“ “) corresponds to categories that differentiate the change-type
ilities. As a prerequisite to specifying a change statement, one must have in mind the
“parameter” of the “system” that is being affected. The “perturbation” refers to whether the
change is in response to a perturbation of finite duration (disturbance), or one likely to last
(shift), or no perturbation at all (none), or if it doesn’t matter (<empty>). The “context” refers
to whether the response is desired in a particular case (circumstantial) or many cases (general),
or it doesn’t matter (<empty>). The “phase” of the lifecycle when the response occurs has
choices of pre-ops (before operations), ops (during operations), inter-LC (between lifecycles), or
doesn’t matter (<empty>). The “agent” is the force that instigates the response through an
impetus to the system; active response requires a change agent, which can be internal or
external to the “system” boundary, while passive response doesn’t require an agent (none), or
it may not matter (<empty>).

Changes within the statement are framed as “impetus” and “outcome” to capture how one
might want to specify a range of changes in inputs (impetus), and the resulting range of
changes in outputs (outcome). Both the impetus and outcome sections of the statement are

45

described by five categories: 1) the “nature” (impetus) or “effect” (outcome) of the change
(decrease, remain same, increase, not-same, or doesn’t matter=<empty>); 2) what type of
“parameter” change (in level, set or <empty>); whether there is a target number of 3) “origin”
states and 4) “destination” states (each ranging from one, to few, to many to <empty>); and 5)
the “aspect” referring to whether the change is in the form, function, operations, or doesn’t
matter (<empty>). The “mechanism” specifies how the outcome is achieved.

The “abstraction” refers to the level of abstraction of the system, which can be at the
architecture level (e.g., Boeing 737 aircraft), design level (e.g., 737-800), system level (e.g., 737-
800, tail #: C-FTCZ), or doesn’t matter (<empty>). Lastly, a grouped set of categories describe
how the change can be evaluated as valuable. This set of “valuable” categories relates aspects
of value to thresholds in “reaction” (timing) and “span” (duration), “cost” (resources), and
“benefit” (utility). “Value” is separated from the rest since it represents a coupled set of
tradeoffs that can be used to judge the goodness described in a change statement. For
example, one might be willing to accept later, slower, and more expensive if it provides greater
utility, but if it provides less utility, then maybe it should be sooner, faster, and cheaper. Many
combinations of these can result in ility statements representing valuable change.

A more complete version of the earlier change statement example could then be: In response
to a loud noise (perturbation) late at night (context), during operations (phase) of system,
desire owner (agent) to be able to impetus {increase (nature) the knob angle level (parameter)
from one state (origin) to many states (destination) in the system form (aspect)} through
turning the knob (mechanism) that results in the outcome {increasing (effect) the volume level
(parameter) from one state (origin) to many states (destination) in the system function
(aspect)}in the owner’s stereo system (abstraction) that takes less than 1 second (valuable).
As research progresses on the prescriptive semantic basis, several open questions remain:
What types of ilities can be represented in the basis? Can or should the basis be expanded or
modified? What are the appropriate basis categories? What are appropriate choices within
each category?

With regard to mapping specifications within the basis to particular ility term labels, are there
consensus patterns in matching ilities to the basis given particular definitions for each ility? Are
there consensus patterns for given ility terms without provided definitions (i.e. is there some
inherent, general meaning within an ility term that can be more consistently expressed using
the basis than through traditional English phrase-based definitions)?

More generally, this research begins to structure the question regarding what semantic fields
span the general set of ilities. Preliminary results (Ross et al., 2011) indicate that at least three
semantic fields may exist in the general set of “ilities” including change-type, architecture-type,
and new ability-type (the last kind includes such ilities as “auditability,” “learnability,” and
“drinkability”). Identifying and classifying the current existing ility terms into appropriate
semantic fields will serve to eliminate ambiguity in meaning, usage, and application, as well as
allow for the explicit consideration of trade-offs within the semantic field. A consistent basis
within a field can allow for direct comparison of its members; for example kinship terms clearly

46

distinguish between the meaning of uncle and cousin, even though a single person could serve
in both roles. Using the prescriptive semantic basis approach also allows one to consider
whether each semantic field can be represented with an internally consistent basis.

Revisiting the concept of relationships amongst the ilities, the basis can provide a first order
approximation to clarify semantic differences amongst ilities within a particular semantic field.
For example the difference between “flexibility” and “adaptability” is whether the change agent
is external to or internal to the system’s boundary, respectively. The basis will also point out
how a given change statement can display multiple ilities simultaneously. For example, agility is
with regard to how quickly the change can be executed, so one could desire an agile, scalable
change to describe a quick and level-increasing system parameter change. In this way, the
difficulty in placing “agility” within the means-ends hierarchy study, described above, can be
clarified, as any change could get labeled as agile, depending on its application and desires of
the change statement writer. An additional investigation will be needed in order to clarify the
relationships between different semantic fields. For example, how are members of the
“architecture-type” semantic field related to the “change-type” semantic field? Preliminary
work investigating design/architecture principles have begun to describe relationships between
particular ilities and principles, but a unifying understanding of the relationship between
semantic fields is not yet mature. Our working hypothesis is that “architecture-type” ilities are
enablers for “change-type” ilities.

Given a stable, validated basis, can practitioners or academics use the basis to generate change
statements, which will automatically label with the appropriate ilities? Do the ility term labels
resonate with the users? The purpose of the research is not to generate more definitions, but
rather, unambiguous, verifiable, standardized representations of desired system properties.
One of the possible emergent results of this work may be the discovery of “new” ilities that do
not yet have ility term labels, and yet may represent important desired system lifecycle
properties, such as the distinction between functional versatility and operational versatility
seen in Figure 7. Inverting the concept shown (i.e., achieving similar function with similar
operations using multiple forms) results in a “new” ility we can label with “substitutability” and
is a property displayed in computers, for example, where multiple different disk drives or
monitors can be substituted for one another.

47

Figure 7 (a) Functional versatility; (b) operational versatility; (c) substitutability as suggested by

the semantic basis

The ultimate goal of this research is to develop the basis or bases to be prescriptive
instrument(s) for spanning the semantic fields whose union encompasses all “ilities.” With such
an instrument, practitioners can have a consistent and (potentially) complete list of possible
ilities to consider for their systems, as well as a means to create verifiable requirements and
system specifications. Academics can have a consistent basis for enhancing ility-related
research and a means to advance the quantification of and clarification of relationships
amongst ilities in general, as well as a means to educate future generations of engineering
students so that one day ilities can become part of the lexicon of successful project managers.

To realize this goal, usability testing is an important activity. During Phase 3, MIT performed
continued usability testing of the basis including the conception of a translation to assist in
communicating the statement into more understandable language. As a first pass, color-coding
was used to help parse the full basis change statement, as shown here:

The full basis is used when trying to write a very specific requirement statement, and should
not occur until after analysis to determine what should be done. In different use cases of the
basis, variations on the full statement are useful.

A subset of the basis with 11 categories can be used if there is a constraint to make use of an
existing/inherited mechanism, for example. This leaves open the “valuable” specification, but
leaves in the “mechanism” category to constrain how the change should occur.

48

A subset of the basis with 10 categories is used early in the design phase, in order to not over
specify the change mechanism. This allows engineers to propose/evaluate alternatives, or
impetus. Leaving out the “valuable” part of the statement supports exploration. Later, when
implications of ility statements are better understood, one can specify subjective thresholds on
what makes the change “valuable”.

A short example is shown below

Longer variations of this example include:

49

Full use of the semantic basis-derived change statement is clearly a more verbose version of the
same change. But the illustration points out the consequences of varying the level of
specificity. For example, one could have removed the “owner” as the change agent and left that
category blank, allowing designers to develop a system that as other potential change agents
(e.g. a software agent, allowing for adaptive volume control by the system itself). Similarly,
alternative definitions and thresholds for “valuable” could have been used, and always reflect
tradeoffs (e.g. maybe willing to wait 20 seconds for volume change effects if the dollar
acquisition cost of the system is substantially less).

Examples collection
During this phase of research the team continued capturing descriptive change statements
from historical systems, mapping them to the semantic basis-derived change statement. This
also resulted in inferring related “ility labels” (i.e. the ility terms that we currently map to a
subset of choices within the semantic basis). An example subset of these changes is shown
here:

50

For existing changeable systems, this is a descriptive capture of a change statement. Based on
data availability, these statements are captured at various levels of specificity. In reality, the
most detailed version of the change statement could theoretically be populated given sufficient
data.

Collaboration

During this phase the MIT team interacted with UVa in spiraling on a web service
implementation of the basis. The interaction resulted in clarifications needed for the
categories, including “naming” and optional fields. Challenges in basis usage highlighted the
need for illustrative examples as well as motivating the need for the translation layer. A
screenshot of the “Ross Model” (i.e. a slightly earlier version of the semantic basis) is shown
below. More details on this effort are described in the UVa section of this report.

51

Active collaboration with UVA has continued in the effort to refine the semantic basis, as UVA
worked formalization. It is recognized that the full verbose statement of the 20-category basis
is unwieldy when viewed in “English”, and that construction of “plain English” phrasing is partly
customized based on particular statement. The research team believes a “translator” would be
valuable in converting the basis category choices into English. We see this translation layer and
underlying “little language” as key contributions of this work. Next phase research will develop
the translation layer and seek collaboration with team for feedback and testing. Initial efforts
were made on developing a concept for a translation layer, with examples of statements from
basis.

Submitted Publications during this Phase
1. Ross, A.M., and Rhodes, D.H., “Towards a Prescriptive Semantic Basis for Change-type

Ilities,” 13th Conference on Systems Engineering Research, Hoboken, NJ, Mar. 2015.
2. Dou, K., Wang, X., Tang, C., Sullivan, K., and Ross, A.M., “Computational Foundations for a

Science of Ilities, Tradeoffs, and Affordability,” 13th Conference on Systems Engineering
Research, Hoboken, NJ, Mar. 2015.

2.2.2 REFERENCES

1. Beesemyer J.C., Fulcoly D.O., Ross A.M., Rhodes D.H. Developing methods to design for
evolvability: research approach and preliminary design principles. 9th Conf on Sys Eng
Research. Los Angeles, CA, April 2011

2. Beesemyer, J.C. (2012), Empirically Characterizing Evolvability and Changeability in
Engineering Systems, Master of Science Thesis, Aeronautics and Astronautics, MIT, June
2012

3. de Weck, O.L., Ross, A.M., and Rhodes, D.H. (2012), “Investigating Relationships and
Semantic Sets amongst System Lifecycle Properties (Ilities)”, 3rd International Engineering
Systems Symposium, CESUN 2012, TU Delft, 18-20 June 2012

4. Fricke, E. and Schulz, A.P. (2005), “Design for Changeability (DfC): Principles to Enable
Changes in Systems Throughout their Entire Lifecycle,” Systems Engineering, Vol. 8, No. 4,
pp. 342-359

5. Ross, A.M., Beesemeyer, J.C., and Rhodes, D.H., (2011) "A Prescriptive Semantic Basis for
System Lifecycle Properties", SEAri Working Paper WP-2011-2-1, MIT, Cambridge, MA,
http://seari.mit.edu/papers.php.

6. Ross, A.M., Rhodes, D.H., and Hastings, D.E. (2008), “Defining Changeability: Reconciling
Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining Lifecycle
Value,” Systems Engineering, Vol. 11, No. 3, pp. 246-262

52

2.3 FUTURE PLANS: PHASES 4 AND 5

2.3.1 TASK 1. ILITY FOUNDATIONS

In FY2015, the MIT team will further refine the ilities semantic basis for change-related ilities,
building on the work and using feedback from the UVA team. The team will continue working
with UVA in their effort to develop a REST (representational state transfer) web-based service
implementation as a means for formalization and testing of the basis. This will inform potential
use cases and architecture needs for semantic basis evolution. The evolved semantic basis will
be validated using historical examples as well as through user feedback. The historical
examples will also be used to help illustrate usage of the basis.

The team will design and develop an interpreter layer for translating the semantic basis into a
user-friendly interface. The developed interface will be tested with users in order to validate
the usefulness of the semantic basis. The evolved semantic basis is intended to generate
repeatable, rigorous change-related ilities statements, along with possible accompanying
metrics that can be used for verification.

The team will continue working with UVA both for collaboration on development of the
translation layer, as well as formalization of the underlying basis. A joint paper is intended as an
outcome of this work. The team will also work with GaTech to find opportunities for using the
basis to inform their work. The team will also collaborate with the broader foundations iTAP
team members for opportunities to inform their ilities research.

In FY2016, MIT will develop a software-based implementation of the evolved semantic basis for
potential deployment to government organizations. As the software is developed, further
refinements to the translation layer will be implemented as necessary. Documentation with
case examples will be created. Demonstrations and early adopter training will be conducted.
Trial use will inform the development of next steps toward a broader transfer and
implementation strategy. In FY2016, in support of the overall research on the foundations, the
team will provide critical feedback and review of other iTAP team member research.

53

3 UNIVERSITY OF VIRGINIA

3.1 PAST RESULTS: PHASES 1 AND 2

UVa's Phase 1 efforts produced a web-based tool, called doc-ility, to maintain an evolving
knowledge base of models of ilities and tradeoffs among them. Recognizing that the knowledge
that would be disseminated by such a tool remained informal and unvalidated, UVa's Phase 2
efforts demonstrated the feasibility of formalizing of ility and tradeoff models and early results
in synthesizing software services that expose in useful form the abstractions formalized in such
artifacts. UVa also initiated a case study with MIT focusing on formalization and automation of
the MIT group’s work on a semantic basis for change-related ility definitions. The Phase 2 work
produced an initial formalization of MIT’s informal semantic basis for change-related ilities, and
synthesized code implementing an abstract syntax tree data type and a semantic classifier for
ility statements in MIT’s language. UVa produced a trustworthy “compiler” for this language by
hand-crafting Haskell code “around” the synthesized code for core data representations and
functions. This work yielded a command line tool that can be run on desktop computers. UVa
shared this work with the MIT group and hopes that the combination of MIT’s original work
with UVa’s formal work will lead to a joint paper in the months ahead.

3.2 PHASE 3 RESULTS

A key UVa aim for Phase 3 was to develop a method for efficiently and reliably incorporating
synthesized ility modeling and analysis code into web-based tools (like Doc-Ility). The overall
goal was to make otherwise inaccessible work based on formal methods available on the Web
to the SERC research team, and to prototype a method for making such work visible and useful
to the broader systems engineering community. UVa viewed and views further development of
a more precise and formal approach to understanding "ilities" as a key foundation for further
development of a science of tradeoffs among ilities.

In Phase 3, UVa expanded its intentions to include not mere formalization but dissemination of
formal models for purposes of evolving and eventual community-based validation of such ility
models. UVa therefore sought to develop, and developed, infrastructure to support exposure of
formal ility models not through a web site but through RESTful web services. In Phase 3, UVa
thus developed, demonstrated, and partly validated the idea that one can not only formalize
ility models in Coq but can then synthesize REST web services from such models of ilities, in
order to enable community engagement around such models, driving model evolution and, we
hope, eventual validation and adoption. A key is to enable rapid evolution of such web services
as underlying mathematical-logical (Coq constructive logic) models evolve. UVa thus developed
a method and tools to wrap Haskell code extracted from Coq ility specifications in Yesod-based
REST web services.

54

The promise of this approach is to elevate the development of novel ility models from informal
English-language statements to mathematically and logically precise, formal, and computable
models, such that the key abstractions in such models can be disseminated to the community in
a form (web services) that will support community engagement with and use of such models.
UVa tested the validity of this vision by running an experiment with MIT. UVa formalized and
then synthesized web services for an evolving sequence of formal models of MIT's semantic
theory of change-related ilities. UVa collaborated with the MIT group over the year to evolve
multiple versions of an initial formal model of MIT's theory. UVa deems the demonstration of
its formal-model-driven approach to ility theory development and validation a success. The MIT
theory of change-related ilities is still evolving and is not obviously yet ready for production use,
but the path toward validity and utility that UVa established seems very promising.

UVa also collaborated loosely with USC to ensure that UVa work was on track to be relevant to
USC's ongoing efforts to formalize an ontology of system ilities and tradeoffs among ilities. In
this period, UVa also continued its related efforts to formalize and automate frameworks for
carrying out computational ility tradeoff analyses. This work included an initial demonstration
of the instantiation of a generic functional programming approach to design space synthesis
from relational logic specifications, the applications of design-space-specific ility estimation and
measurement functions, and an early demonstration of the use of big data software (Hadoop
and Spark) to carry out tradeoff analyses at increasing scale.

3.3 FUTURE PLANS: PHASES 4 AND 5

3.3.1 TASK 1: FOUNDATIONS

Based on initial experiments in Phases 2 and 3, Phase 4 will research and develop an initial
formal basis for DoD-value-based ility definitions, including sources of variation (e.g., by
domain, operational scenario, or stakeholder value proposition). Phase 4 will also apply the
formal methods to strengthen the USC and MIT ility definitions, and extend the evolving
DocIlity tool to address ility synergy and conflict relationships. Phase 5 will continue to apply,
evaluate, strengthen, and extend the formal basis and tools developed in Phase 4. Additional
details follow.

In work to date funded by the SERC iTAP project, UVa has developed and evaluated several
innovative and synergistic approaches to developing foundations for both a science and an
engineering practice of stakeholder-value-driven, ility definition, specification, tradeoff, and
stakeholder impact and reconciliation analysis.

55

 Value-Driven Evolution of Ility Science and Technology

Our overall goal is to achieve value-driven evolution of scientific theories and engineering
technologies for understanding and managing ilities, tradeoffs, and stakeholder impacts in
complex systems engineering projects and systems.

By value-driven we mean that theories should target and solve real problems, as evidenced by
engagement of research and practitioner communities in the development, evolution, and
eventual, value-producing application of such science and technologies.

The expected result of a successful application of our method to an ility, tradeoff, or value
concept, C, is a 3-tuple, (CScience, CTechnology, CEvidence), where CScience is a mathematically, logically,
and computationally precise and clear expression of the concept: a theory; (2) CTechnology is an
accessible and interoperable reference implementation of the theory in the form of a so-called
REST web service, mechanically derived from the theory, both to avoid faulty implementations
and to reduce the cost of theory evolution driven by user engagement with CTechnology; and (3)
CEvidence is data that supports the proposition that the concept and theory have value in systems
engineering research and/or practice, e.g., an active history of dialog about leading to the
evolution and application of the concept over time,

Technical Approach

Our approach to fostering value-driven theory and technology evolution combines several
elements in an attempt to achieve four key ilities in the resulting iTAP foundations: precision,
accessibility, evolvability, and validity.

We aim for scientific precision in the expression of ility-related theories. To achieve it, we
express our ideas in logically, mathematically, and computationally expressive, precise,
mechanically checkable notations.

We aim for our theories to be accessible to researchers and practitioners who are far from
familiar with such notations. To achieve accessibility, we implement our formal theories as
interoperable, open REST web services.

We aim for rapid evolvability of theories and their corresponding implementations. Evolvability
requires that we avoid costly reimplementation tasks each time a theory is found wanting and
incrementally improved. We thus derive implementations automatically from formal models.

Most importantly, we mean to build validated foundations that are demonstrably useful to
other researchers and eventually to practitioners. Our approaches to theory validation include
both in-lab analysis as well as collaborative and experimental evaluation of theories with other
researchers and eventually practitioners. Validity is in general expected to be an emergent

56

outcome of an incremental and evolutionary process of theory improvement catalyzed by the
approach to theory expression, dissemination, and engagement that we have described here.

First, to overcome the tendency of discussions of ilities to remain rather vague and non-
converging, we emphasize precision: that concepts and methods are eventually formulated
with carefully checked mathematical, computational, and logical rigor.

The rest of this document summarizes results and emerging results to date and outlines how
UVa proposes to build on them in 2015.

Activity #1: Making Formal Ility Theories Accessible

The goal of this work is to greatly accelerate both in-lab and collaborative external evaluation
and evolution of scientifically formulated “ility theories,” evolving them from initial concepts to
the point that they have demonstrated utility for research and development. This work will be
described in a paper to be submitted to CSER 2015.

We have developed the capacity to automatically derive the core computational components of
REST web services from formal ility theory expressions in the language of the Coq proof
assistant. The result of applying this approach to a given theory is a REST web service and
demonstration clients that allow one to engage with the theory by creating and analyzing new
artifacts with respect to the ilities being modeled.

Our technical approach to this task includes synthesis of Haskell or Scala code directly from Coq
specifications of ility theories, and embedding of this “extracted” code into web service
frameworks, following by the writing of web-based client “apps” through which users can
interact with and use the underlying theory. The web clients we have produced to date to
demonstrate the approach provide (simple) model building capabilities (in web clients) and
analysis capabilities (in web services), along with direct access to the underlying formal ility
models. The theory is thus linked to useful tools making the theory broadly accessible.

3.3.2 PLANS FOR 2015

We have now demonstrated the use of this approach to formalize and evolve the semantic
theory of change-related ilities of Ross et al. We plan to continue to develop and evaluate this
approach: to support theories more complex than that of Ross-and-Rhodes models. We plan to
extend their theory to include explicit system models (see next section) in terms of which
change-related requirements can be expressed, and to leverage concepts of state change from
computer science to bring computational rigor to the underlying theory. We plan to generalize
our approach beyond their particular model. We also plan to develop sufficient software
infrastructure to provide users of our web services with user accounts and functions to store

57

models and to provide compelling interactions with users. Our goal isn’t merely -- or even
mainly -- to build tools, but to use rapid synthesis of such tools from computational logic
formulations of theories to close the theory-application-validation-evolution loop as previously
discussed.

Plans for 2016 are summarized at the end of this section.

Activity #2: An Evolving Formal Theory of Change-Related Ilities

The goals of this task are (1) to evolve our current version of Ross’s model to the point that it
becomes demonstrable useful for articulating and classifying change-related ilities, and (2) by
using our evolving version of Ross’s model, to make fundamental advances in our approach to
formalizing, automating, disseminating, testing, evolving, and ultimately validating scientific ility
theories.

To drive initial development and testing of our approach, we took the early proposal by Ross et
al. as a case study, as described above. Their goal, was to develop successful approaches to
defining ility terms, particularly those relating to systems changeability -- terms such as
flexibility, evolvability, resilience, and adaptability. The problem is that there are no precise and
shared definitions of these terms, nor any evidence of convergence on agreement; and lack of
agreement causes major problems in projects with requirements for such properties.

Ross et al. studied the long history of efforts to properly define such terms, and concluded that
trying to impose definitions (typically carefully crafted natural language definitions) in a top-
down manner, in hopes that diverse communities will rally around shared definitions, has
proven unsuccessful and is unlikely to succeed in the future. They proposed as an alternative to
develop a semantic approach to giving meaning to such terms.

Instead of making ex cathedra pronouncements about preferred definitions that shall be used
(but aren’t), they proposed a new idea. They started by studying change-related requirements
statements that arise in practice. They created a template that to capture common structures
and dimensions of variability in such statements. Finally, they defined rules for classifying how
statements using this template map to ility labels. The language of changeability requirements
is thus partitioned into (not necessarily disjoint) sublanguages under the various ility labels. It
can also be said that they formulated syntax-based rules for classifying change requirements.

As an example, a requirement calling for an agent external to a system to be able to effect a
given change would have a different set of ility labels than one calling for an agent inside the
system boundary to be able to make a change: perhaps including flexibility as opposed to
adaptability. Ility names are thus given meaning not in the form of top-down definitions but
rather as syntactically and semantically partitioned classes of requirements statements.

58

The template of Ross and Rhodes was presented as a spreadsheet. Columns correspond to
dimensions of variation in change requirements statements (e.g., whether a change agent is
inside or outside the system boundary). The sequence of columns encode the structure of a
requirements statement. In each row, columns are marked with one of several possible values
(such as inside or outside in the column for where the change agent is situated relative to the
system boundary). Some columns can be left blank. There are also free text fields in which the
domain-specific contents of change requirement statements are expressed. The overall set of
selection in a row form a pattern with an associated output column containing an ility term,
such as flexibility or adaptability. The spreadsheet thus encodes, albeit imprecisely, a set of
rules for classifying change-related requirements statements (cast using the template) as
having one or more ility labels.

We observed that this informal and incomplete idea could be recast in formal computational
terms. Instead of a template presented in a spreadsheet, we could defined a context-free
grammar as a set of inductive data types and constructors. Given this formal language, we
could then define semantic mapping functions associating any sentence in the language with
associated ility labels (a syntax to semantics mapping, or interpretation).

Benefits include the ability to precisely reason about, evaluate, and improve the language
grammar; fully mechanical checking of the completeness of the semantic rules; ending up with
a mathematically precise theory rather than just prose and diagrams; having a basis for
automated synthesis of a software implementation and globally accessible web service that
exposes the theory to easy use and evaluation (rather than a model on paper); and having a
theory that could be evolved easily as experience using it accumulates.

An experimental test of the adequacy of the expressiveness of the proposed language, we
tested its ability to state change-related requirements in a seminal early paper in software
engineering that focused on software evolvability as a critical property (the famous 1972 paper
of David Parnas on information hiding modularity). We found the proposed language not yet
adequate to satisfactorily capture such requirements. One of the key missing elements of the
language is an approach to expressing systems models against which change-related
requirements are being stated.

This work, to date, will be described in a paper that is to be submitted to CSER 2015.

Plans for 2015. Our plans for 2015 depart from the insight that it’s really not possible to reason
generally about ilities absent some kind of system modeling framework -- and that frameworks
will vary from domain to domain and from ility to ility. We plan to develop new approaches to
incorporating domain-specific systems modeling frameworks into both our domain-specific and
general system ility modeling methods. We will drive this work from Ross’s model as a starting
point.

Such a system modeling framework is missing In Ross’s current proposal. The model of the
system about which change-related requirements are being stated is just implicit in the

59

requirements statements. More meaningful statements of requirements as well as any serious
validation of systems as satisfying such requirements demands some approach to making
system models explicit. Classical reliability is modeled in terms of fault trees, for example.
Change-related ilities require their own system modeling approach(es). Design Structure
Matrices, and our own Design Impact Graphs, are possible frameworks for modeling certain
change-related ilities.

This work will extend Ross’s language to make the language parameterized by a type of system
models. Change-related requirements will be expressed in terms of (time-sensitive) state
changes in such system models. We will explore this idea in a concrete way using what we call
design impact graphs (DIGs), closely related to design structure matrices (DSMs) as a system
model. Our synthesized web services will then support the expression of both system models of
a kind appropriate in a given domain, as well as change-related requirements in terms of such
models. We will then generalize from this particular case study to test the broader feasibility
and utility of the approach.

We believe that these ideas can help to resolve a significant tension in the RT-113 project: it’s
hard to imagine a deep, useful theory of ilities and tradeoffs divorced from underlying system
models. Such models need not be highly specific, but there must be some model. As another
example, tradeoffs between fault-tolerant data availability, latency, and reliability in the face of
possible network partitions requires something like a quorum model, in which one states the
number of replicas that need to be written and the number of replicas that need to be read to
get a value from a replicated store.

We plan to develop and evaluate a generic approach leveraging both parametric and ad hoc
polymorphism (using e.g., typeclasses in Coq) to provide a common framework for modeling
ilities against unrelated types of system models.

Activity #3: A Formal Framework for Value-Driven Tradeoff Analysis

The goal of this task is to expand a formal framework for automated design space synthesis and
ility tradeoff analysis to link these technical issues to stakeholder value and stakeholder value
reconciliation functions. This work is based in part on a paper published in ICSE 2014 on design
space synthesis, ility measurement, and tradeoff analysis, but that did not include stakeholder
value as a concern. The expected benefits of this task include the provision of both a
mathematically precise framework and corresponding web-based technology, as per our earlier
efforts. We will eventually produce a theory and technology to support modeling and analysis
of multi-stakeholder value scenarios in which requirements and designs must be negotiated to
produce satisficing outcomes for all success-critical stakeholders, as mediated by the suites of
ilities that particular decisions are projected to produce.

Plans for 2015. We propose to develop a general but precise and easily specialized formal
theory of linkages between incomplete specifications, design spaces whose elements vary in

60

terms of under-specified ilities, ility estimation functions on these spaces (domain-specific),
tradeoff analysis functions, multi-stakeholder ility-to-value analysis, and stakeholder value
reconciliation functions.

The core of this work will be a polymorphic, typeclass hierarchy expressed in Coq, flexible in
terms of specification types, implementation types and design spaces, ility measurement
functions, tradeoffs, and stakeholder value. The theory mean to (1) define the necessary
constructs for scientific ility tradeoff and stakeholder value impact and reconciliation analysis;
(2) provide a basis for synthesizing executable software frameworks specialized to specific
domains, on top of which a broad range of domain-specific ility, tradeoff, and stakeholder
impact analysis could be built; (3) support the provisioning of evolving web services to drive
researcher and practitioner engagement with and evolution of the theory and technology.

The approach is partially validated based on a special-case proof of concept in one particular
area of software engineering. This validation shows that an executable form of the framework
can be instantiated to support specifications expressed in relational logic, design synthesis using
relational logic model finders, ility estimation/measurement using a variety of published static
and custom dynamic evaluation functions, and tradeoff analysis.

Activity #4: The Docility Index of Ilities, Tradeoffs, and Technologies

In work to date we have prototyped a database-backed, web site for cataloguing definitions of
ilities, and underlying models of ilities and tradeoffs among them. It is intended to serve as a
knowledge base providing researchers and practitioners easy access into the growing body of
formal theory and theory-based technology for understanding, specifying and reasoning about
ilities, tradeoffs, and stakeholder value. As a proof of concept, we populated the knowledge
based initially with high-level tradeoff information taken directly from Boehm’s proposed 8x8
grid showing synergies and conflicts between pairs of ilities.

Plans for 2015. Our most important goals for 2015 are to further develop the foundations of a
science and engineering technology base to empower systems engineering to communicate
and reason unambiguously, rigorously, affordably, and effectively about design spaces, ilities,
tradeoffs, and stakeholder value. We will continue to work closely with our project member
colleagues at MIT to develop far more precise methods for developing, communicating,
disseminating, and validating theoretical work, through a combination of formal methods and
software synthesis. We will also continue to work with our project colleagues at USC to bring
the benefits of work prototyped with MIT to the task of formalizing a far more comprehensive
range of ilities and tradeoffs.

The Docility tool was initially envisioned as a repository of definitions, propositions about
generalized tradeoffs among ilities, and supporting evidence. While that aspiration remains
easily feasible, we now see that it will be possible to populate it not only with English language
definitions and tradeoff information, but with mathematically, computationally, and logically

61

precise models linked to reference implementations that make these theories accessible for
community-based critique, evolution, validation, and eventual use. We plan to modify the tool
to demonstrate this idea, for theories including our evolving theories of change-related ilities
and ility-driven stakeholder value tradeoffs.

3.3.3 OVERALL PLANS FOR 2016

Our plans for 2016 are focused on consolidating, disseminating, and validating gains made in
preceding phases. We will produce versions of Docility populated with formally defined ility
models and alternatively with informally defined ility definitions and tradeoffs based on USC
research. We will demonstrate a suite of formally-defined ility terms, models (theories), and
reference implementations, including validation of these models against realistic needs of
industry and government.

This work is leading to an improved understanding of some specific ilities, particularly related to
change-related requirements, but also to general approaches to building both a science and
collection of interoperable, reference modeling and analysis services by which the science can
be transitioned to the broader research community and to practitioners. As a side benefit, this
work is providing one possible foundation for tool and method interoperability going forward.

62

4 WAYNE STATE UNIVERSITY

4.1 INTRODUCTION

Wayne State University research in 2014 was focused in two areas. One area was a “deep dive”
into the needs and context of tradespace and affordability analysis in DoD system acquisition, in
collaboration with the US Army, TARDEC. The second area was enhanced Set-Based Design
(SBD) methods and applications with rigorous formulation and analytics, addressing challenges
identified by NAVSEA in their trial applications of SBD methods. The SBD research is being
coordinated with NAVSEA.

We coordinated with the TARDEC and NAVSEA end-users to articulate the key research issues
and research objectives. We developed the technical approaches addressing the solution
concept, research approach and the sequence of incremental steps. We reviewed the technical
approaches with the end-users. We identified data needs and sources for practical
demonstration and/or piloting the methods in end-user relevant application context, and began
collecting the data. We began detailed research and development of the theoretical
foundations, and practical methods, tools and procedures (MPT).

In 2015, we plan to continue research in both of these areas, and continue collaboration with
the TARDEC and NAVSEA end users. By the end of 2015 we plan to have completed an initial
demonstration of key MPT components in both of the research areas.

4.2 “DEEP DIVE” INTO TRADESPACE AND AFFORDABILITY NEEDS AND CONTEXT IN DOD SYSTEM ACQUISITION

During ground system conceptual design and engineering development, tradeoff decisions are
made to balance functional performance, cost, risk, robustness, reliability, interoperability,
growth margin, and other life-cycle characteristics. Tradespace analysis tools are needed to
reveal and quantify the compound and ripple effects and interactions among performance
requirements and system design options. The objective tradespace analysis tool is an
executable model that represents the logical and causal relationships between and among
subsystems and system performance characteristics. Logical relationships define compatibility
requirements between interacting subsystems. Causal relationships quantify higher level
system attributes as functions of lower level subsystem attributes.

Research at the US Army, TARDEC, has been developing a generic ground system performance
specification framework, and a ground system standard product classification hierarchy. The
current research seeks to integrate these two frameworks with a unifying framework of the
logical and causal relationships. The tradespace framework identifies the relevant subsystem
attributes and how they interact to govern product performance and life-cycle characteristics,
and identifies the subsystem interfaces and compatibility characteristics that constrain and
enable practical ground vehicles. The objective is a qualitative and quantitative framework

63

integrating system architecture and technology options with functional and life cycle
performance to support design and performance requirement decisions. The goal is to
integrate the ground system architecture and performance specification frameworks for
interactive tradespace analysis and exploration. The research is motivated by, and grounded in,
an understanding of the performance and affordability tradespace decisions and supporting
analysis in ground vehicle development programs. Details of this research are contained in the
attached report “Progress Toward a DoD Ground Vehicle Tradespace and Affordability Analysis
Framework.”

4.3 ENHANCED SET-BASED DESIGN

The research on enhanced SBD is organized into two areas.

The first area is to enhance SBD as a design and development process by developing a rigorous,
principled and practical formalism, by developing a formalization of the notion “regions of
design space” with useful properties for design enabling new, practical and relevant tradeoff
analysis questions to be addressed, and by incorporating decision timing, change cost and
uncertainty into the formalization. At the present time, SBD is a conceptual methodology
without rigorous analytic formulation. This research attempts to develop this foundation.
Computational design methods enable developers to automatically generate millions of
possible combinations of design options and evaluate them on multiple performance and life
cycle dimensions. This creates a conceptual challenge to the developers – to organize the
millions of point designs into a simplified and useful view of design space supporting the SBD
process. This research is developing a rigorous and useful approach to organize design space
into regions, and that provide new analysis methods providing insight into the effects of system
requirements on the topology of the design space regions. The research is also developing a
structured approach addressing the sequence of design decisions and the interplay with the
maturation and integration timelines of subsystem options. Details of this research are
contained in the attached report “Design Space Regions, Geography and Topology for Set-Based
Design.”

The second area is to adapt the concept of SBD for long-lived DoD systems. In the traditional
view, SBD leads to production point design. Long-lived DoD systems are expected and planned
to undergo multiple upgrades and spawn variants over their lifespan. In this situation, the
objective of system design is not simply the production design but is the production design with
the set of affordable potential future upgrades and variants to meet changing operational
needs and to exploit technology opportunities. Applying the concept of SBD to the continued
development after the initial production design provides a methodology for tradespace and
affordability decision making to explicitly consider affordability and tradespace not just of the
initial design, but also of the potential family of future upgrades and variants. This provides a
methodology and conceptual framework to address real issues in developing the product
specification and making tradeoff decisions during development: How much reserve capacity

64

(aka “design margin”) should be engineered into the system to increase the range of affordable
future upgrade capabilities? How can tradeoffs between modular and integral design be made,
to balance current known and uncertain future needs and opportunities? When should specific
capabilities or technologies be deferred to future upgrades? Details of this research will be
contained in a future report “Set-Based Design for Long-lived Systems, Upgrades and Variants.”

4.4 REPORT “PROGRESS TOWARD A DOD GROUND VEHICLE TRADESPACE AND AFFORDABILITY ANALYSIS

FRAMEWORK.”

Paper accepted for the 2015 Conference on Systems Engineering Research written By Gary
Witus, Walter Bryzik

During ground system conceptual design and engineering development many tradeoff decisions
are made to balance functional performance, cost, risk, robustness, reliability, interoperability,
growth margin, and other life-cycle characteristics. Tradespace analysis reveals and quantifies
the compound and ripple effects and interactions among performance requirements and
system design options. An analytic tradespace framework is an executable model that
represents the logical and causal relationships among vehicle subsystems and system
performance characteristics. Logical relationships define compatibility requirements between
interacting subsystems. Causal relationships quantify higher level system attributes as
functions of lower level subsystem attributes. Research at the US Army, TARDEC, has been
developing a generic ground system performance specification framework, and a ground
system standard product classification hierarchy. The current research seeks to integrate these
two frameworks with a unifying framework of the logical and causal relationships. The
tradespace framework identifies the relevant subsystem attributes and how they interact to
govern product performance and life-cycle characteristics, and identifies the subsystem
interfaces and compatibility characteristics that constrain and enable practical ground vehicles.
The objective is a qualitative and quantitative framework integrating system architecture and
technology options with functional and life cycle performance to support design and
performance requirement decisions. The goal is to integrate the ground system architecture
and performance specification frameworks for interactive tradespace analysis and exploration.
The research is motivated by, and grounded in, an understanding of the performance and
affordability tradespace decisions and supporting analysis in ground vehicle development
programs.

NOMENCLATURE

 side slope rollover threshold
w lateral wheelbase
h height of the Center of Gravity
m unsprung mass
k suspension stiffness
T suspension travel

65

4.4.1 INTRODUCTION

Different decisions and tradeoffs are made at the different stages of the DoD system acquisition
life-cycle1. The tradespace evolves through the development life-cycle. Prior to the Material
Development Decision, decisions and analysis are concerned with whether or not material
development is needed, if so, the type of system, the missions, general capabilities, high priority
characteristics, and variant configurations. Material Solution Analysis considers alternative
acquisition strategies, e.g., upgrading an existing system, modifying a commercial system, or a
new start. Material Solution Analysis assesses cost and feasibility of meeting the needs with
alternative high-level system concepts leading to selection of a high-level design concept and a
preliminary set of high-level performance specifications. These are the basis for the Technology
Development (TD) stage. The purpose of the TD stage is to refine the requirements and design
concept to ensure balanced, affordable, effective and low risk performance specifications and
design concept for subsequent Engineering and Manufacturing Development (EMD). The
specifications define constraints – the range of operating conditions, states and modes – and
performance requirements for mission functions and life-cycle characteristics.

The TD stage develops a preliminary design. The TD stage also adjusts the performance
specifications to balance time, cost, risk and capability. The specifications are refined and
detailed in parallel with developing the design concept. As the design concept is developed,
engineers are better able to assess the feasibility, cost and risk of meeting the specifications. It
may not be possible to meet all the initial performance specifications with the evolving design
concept. TD then needs to consider relaxing the specifications or changing the concept. Ideally,
concept development decisions are informed by a thorough understanding of the effects on
performance, and implications for the remaining design tradespace. The goal of the TD phase is
to develop a balanced set of performance specifications matched to a conceptual design. The
TD tradespace is the combination of the performance specifications and the conceptual design.

The focus of this research is on tradespace analysis during TD. Tradespace analysis requires an
understanding of the elements of the performance specifications, the elements of the
conceptual design, their properties, and the relationships among them.

The tradespace framework is an executable knowledge structure that identifies the elements,
their properties, the logical and quantitative relationships among them. An executable model
of the logical tradespace relationships identifies the path of ripple effects of decisions, and
interdependencies among subsystem elements and system performance attributes. An
executable quantitative tradespace model provides further capability to assess performance
margins, sensitivities to preliminary design choices, and interactions among system elements –
including ripple effects across the network of relationships. It can also help identify where
relative valuation or prioritization among performance specifications can resolve ambiguities in
subsystem valuation and performance choices.

This paper illustrates the practical context and motivation with a real-world cost and tradespace
analysis from a current tactical vehicle program. It describes and illustrates the emerging

66

framework, addressing the performance specification framework, the ground system
architecture model, the system and subsystem attributes, and the logical and quantitative
relationships among them. It describes how the tradespace and affordability framework
supports conceptual design and requirements balancing during the TD phase.

4.4.2 CONTEXT AND MOTIVATION

This section summarizes tradespace and affordability analysis conducted during the last year of
the TD stage of the Joint Light Tactical Vehicle (JLTV)2. The tradespace and affordability analysis
took place at a critical juncture in the development program, and was instrumental in successful
Milestone B decision review to proceed to the EMD stage of acquisition. The tradespace and
affordability assessment was conducted to provide the information and options needed to
support program development, at the level of design granularity and modeling accuracy needed
to support program justification. It was a pragmatic activity, not a theoretical exercise, and as
such it both informed and motivated the ground vehicle tradespace framework.

The analysis was conducted under time pressure, and therefore required the analysts to use
their best engineering judgment regarding what subsystem alternatives to consider, which
performance characteristics to include in the analysis, which to address quantitatively and
which to address qualitatively, and which causal chains and “ripple effects” to consider in the
analysis. Quantitative analysis was conducted using parametric models of ground vehicle
performance developed by the US Army and automotive engineers to predict ground vehicle
mobility performance as functions of vehicle configuration and design attributes3,4,5. The
parametric models are compatible with the assumptions of the NATO Reference Mobility Model
standard for operational mobility effectiveness analysis, but are higher resolution as
appropriate for design and configuration performance assessment. The parametric models
identify the design attributes relevant to performance, and the analytic equations.

This example illustrates the types of considerations in practical tradespace and affordability
analysis, and motivates the development of the ground vehicle tradespace and affordability
analysis framework. The review of the JLTV cost-versus-performance tradeoff assessment
elucidates the capacities and characteristics needed in a practical and relevant generic grounds
vehicle tradespace analysis framework by addressing several questions:

1. What were the basic questions that frame tradespace and affordability analysis in the TD

phase?
2. What types of quantitative tradeoff analyses were performed and what level of detail?
3. What types of factors were addressed qualitatively, and why?
4. What tradeoffs and impacts were not considered, but could be addressed in the

tradespace model?

In the period from 2011 to 2012 the JLTV program was concluding its TD phase. The
assumptions entering TD phase were that the performance requirements were firm, testing on
competitive prototypes would show that performance requirements were achievable, and that

67

the production units would be affordable. As the program entered the final year of TD,
operational testing on prototypes from different development teams showed that meeting all
the requirements was challenging. Furthermore, the cost-tolerance had changed, lowering
acceptable average unit production cost. In response, the JLTV program began a disciplined and
systematic “cost-informed trades assessment” to reduce cost and rebalance the performance
requirements to reflect affordability and relative priority. The basic questions were:

 What are the subsystem alternatives that could result in significant production cost
reduction and by how much?

 What are the major performance characteristics that would be impacted?

 How much would the performance requirements need to be reduced to admit the
alternatives?

 What are the other, unquantified, implications of the subsystem alternatives?

 What are the adjustments to the design concept needed to accommodate alternatives?

 What are the combined cost savings and performance compromises for packages of
subsystem options?

The high cost subsystems were believed to offer the greatest potential for cost reduction.
There was an initial hope that reduced cost could be achieved by trading off a single
performance requirement, but that did not prove feasible since all of the high-cost subsystems
impacted multiple performance characteristics. They affected mobility, occupant protection,
payload capacity, system survivability, reliability, transportability, and net-readiness.

The high cost subsystems were propulsion/power-pack, hull/frame, auxiliary automotive
electrical power, integration & assembly, and suspension/steering. Integration & assembly was
removed from consideration because this would be required in any design, and was not a
design decision parameter. Two of the subsystem trade studies are described below.

4.4.2.1 Engine Tradeoff Analysis

The engine is the high cost item within the propulsion/power-pack. Three engine alternatives
were considered. All engines were mature and available.

The mobility characteristics chosen for quantitative analysis were top speed, speed-on-grade,
and soft-soil mobility. Speed-on-grade was considered only at 5-percent grade, not across the
full range of grades in the performance specification. Soft-soil mobility was addressed in terms
of the minimum rating cone index (RCI) soil that the vehicle could traverse. The vertical step
climb requirement was addressed qualitatively. Operation and sustainment (life-cycle)
characteristics fuel consumption and reliability were assessed qualitatively.

The quantitative tradeoff analysis considered only the cost and horsepower attributes of the
engine alternatives. The assessment did not address the impact on of engine size on cooling
requirements or the cooling system. The effects of differences in engine size and weight were

68

not addressed. Relative to the mass of the rest of the vehicle, the effect of differences in engine
weight on total mass and Center of Gravity (CG) location were deemed negligible from a
mobility perspective. CG location is a key factor in vehicle stability. Engine size impacts open
space in the engine compartment, affecting cooling and maintainability. The assessment did
not address the impact engine size and weight on maintainability.

The quantitative tradeoff analysis results were summarized in a table showing cost and
expected mobility performance for the three engine alternatives. The qualitative tradeoff
analysis findings were included as side notes.
Qualitative assessment noted that lower power engines could not meet the original vertical
step climb requirement, but did not estimate the vertical step climb ability at reduced power.
Qualitative assessments noted that smaller engines consumed less fuel, and are less reliable
because they run hotter for comparable load.

4.4.2.2 Suspension Tradeoff Analysis

The tradeoff options were between an active pneumatic suspension and traditional passive
suspensions. The mobility characteristics chosen for quantitative analysis were ride quality and
transportability. Ride quality is a limit on speed as a function of terrain – the maximum speed at
which crew station absorbed power (vibration) and acceleration (shock) would be within human
tolerance limits, as a function terrain roughness and obstacle height across the weight range
from curb weight to gross vehicle weight. The analysis qualitatively assessed growth capacity
for increased vehicle weight with future mission equipment and “margin” for emergency
overloading. The impact of suspension choice on reliability of other subsystems was
qualitatively addressed, but the reliability, availability, and maintainability of the suspension
itself was not addressed. The analysis did not consider the impact of suspension choice on
cornering stability, side-slope stability and hill-climb grade, under the range of CG locations for
different variants, payload configurations, and applique “B” armor kits.

Active pneumatic suspension provides the ability to adjust the suspension stiffness to
accommodate different vehicle weight and terrain conditions. Passive suspension is point-
designed for a nominal weight and ride quality degrades away from the design point. Passive
suspension could not meet the ride quality requirements (speed on terrain) across the full range
from curb weight to gross vehicle weight. The quantitative analysis did not address how much
the speed-on-terrain requirement would have to be reduced for passive suspension to meet
ride quality requirements over the full range from curb weight to gross vehicle weight. The
analysis did not address suspension travel. Suspension travel interacts with suspension stiffness
to affect ride quality when the suspension displacement hitting the hard stops.

Transportability requirements included that the vehicle fit within the entry/exit space of the
transport craft, and can traverse the transition from ramp to flat-bed without bottoming-out.
Active suspension provides the ability to squat and to adjust fore-aft ground clearance, which
are needed for transport on Maritime Prepositioning Force (MPF) ships. Passive suspension
would fail to meet MPF transport requirements. The ability to squat also improves survivability
by enhancing defilade posture, but this benefit was not addressed in the trade study.

69

Passive suspension is current technology. Active pneumatic suspension is not currently in the
fleet and the logistics for maintenance would be a new burden. Passive suspension has lower
cost, but higher weight. Active suspension has lower reliability. Active suspension can,
potentially, reduce the shock and vibration on other components and interfaces, thereby
increasing their reliability.

Passive suspension requires a decision regarding stiffness, which involves tradeoffs between on-
road and off-road mobility. A softer suspension provides better ride quality and better handling
on rough terrain, but a stiffer suspension provides better stability, handling and agility on road.
An active suspension allows the stiffness to be adjusted to suit the vehicle weight and
maneuver conditions. An active suspension also can improve side-slope stability and hill climb
stability by stiffening the suspension on the downhill side and softening the suspension on the
uphill side, although this benefit was not addressed.

Qualitative assessment noted that passive suspensions were heavier than the active
suspension. But the implications of increased unsprung mass and total mass on other
performance characteristics were not examined, e.g., increasing the unsprung mass increases
fuel consumption on rough terrain, and increased shock to the unsprung components.

4.4.3 GROUND SYSTEM TRADESPACE AND AFFORDABILITY ANALYSIS FRAMEWORK

The major elements of the ground system tradespace and affordability analysis framework are
(1) the performance specification framework, (2) the ground system decomposition, (3) the
interface relationships among the subsystems, and (4) the dependency relationships of the
higher-level system attributes on the lower-level subsystem attributes. The performance
specifications are the top system-level attributes. The lower-level attributes from the logical
and quantitative relationships.

4.4.3.1 PERFORMANCE SPECIFICATION FRAMEWORK

The performance specification (P-Spec) expresses the requirements for the system as a whole;
it defines the performance characteristics of interest, and the specific levels required in the
objective systems6. The P-Spec is a hierarchical organization of system characteristics that
includes key performance parameters, key system attributes, and additional performance
attributes. These are further decomposed into derived system requirements. The P-Spec
specifies what the system does, at what level it has to perform, what constraints and conditions
it must perform under, and what its life-cycle support properties are required.

The ground vehicle P-Spec framework being developed at TARDEC defines the performance
attributes of the ground vehicle system but does not contain program-specific levels. The
ground vehicle P-Spec framework is being developed by generalizing from specific P-Specs for a
spectrum or vehicles. The activity is part of a knowledge-based systems engineering initiative
to capture domain knowledge for future re-use. For any particular system, some of the generic
P-Spec framework fields may be “not applicable”.

70

Figure 8 shows a portion of the organization of the ground vehicle P-Spec hierarchy. The
performance specification framework defines data that quantifies the specifications, e.g.:

 Ride quality absorbed power requirements are expressed as a table of speed versus root-
mean-square (RMS) terrain roughness at which the crew/passenger absorbed power must
be to be less than or equal to 6 watts over the range from curb weight to gross vehicle
weight

 Ride quality transferred shock requirements are expressed as a table of speed versus radius
of “half-round obstacles” at which the crew/passenger acceleration must be less than or
equal to 25 m/s/s over the range from curb weight to gross vehicle weight

 Cornering stability requirements are specified as a table of speed versus turning radius at
which the vehicle will not roll over on hard, flat, level terrain

 Side-slope and hill-climb stability requirements are specified as a slope at which a stationary
vehicle will not roll over or pitch backward, and can start with 10-percent fuel supply and can
initiate motion



Figure 8: Partial Sample of the P-Spec System Attributes

The generic P-Spec is substantially mature, but is still evolving. Additional performance
characteristics may still be added, and the particulars of performance specifications may be
refined reflecting improved understanding of the relationship between vehicle design
parameters and operational effectiveness.

Ride quality specifications do not currently address motion-induced sickness. Motion sickness
is induced by low-frequency disturbance. Low frequency disturbance occurs at low-speed in
vehicles with soft suspension and high moments of inertial, and is amplified by rough terrain.
Motion-induced sickness is especially a concern for troop transport vehicles such as the Marine
Personnel Carrier and the Armored Multi-Purpose Vehicle, and can result in significant
degradation of troop ability upon dismount.

1.1 States and Modes

1.2 Operating Conditions

1.3 Variants and Configurations

1.4 Physical Characteristics

1.5 Functional Capabilities

1.5.1 Mobility

1.5.2 Lethality

1.5.3 Survivability

1.5.4 Mission Reliability

1.6 Life Cycle Characteristics

1.6.1 Transportability

1.6.2 Reliability, Availability, Maintainability

1.6.3 Manpower, Training, Human Factors,

Health Hazard, & Safety

1.6.4 Affordability

1.5.1.1Traverse Terrain

1.5.1.1.1 Range

1.5.1.1.2 Fuel Consumption

1.5.1.1.3 Speed on Grade

1.5.1.1.4 Speed on Terrain

1.5.1.1.5 Side Slope Stability

1.5.1.1.6 TurningRadius and Cornering Stability

1.5.1.1.7 Dash

1.5.1.1.8 Acceleration

1.5.1.1.9 Braking

1.5.1.1.10 Ride Quality

1.5.1.1.10.1 Absorbed Power

1.5.1.1.10.2 Transferred Shock

1.5.1.1.10.3 Noise, Vibration and Harshness

1.5.1 Mobility

1.5.1.2Traverse Obstacles

71

Stability requirements have traditionally been specified for idealized conditions, but not for
realistic operational or limiting conditions. Off-road rollover events are caused by a
combination of terrain (intermittent bumps and potholes, soft soil patches, slippery patches,
etc.) on slopes, with steering, acceleration and braking. Future stability specifications might
combine speed, turning radius, slope and terrain characteristics into a dynamic stability
requirement, similar to the ride quality requirement tables.

4.4.3.2 Ground System Architecture
The ground system architecture framework7 is being developed at TARDEC by generalizing from
specific architectures of a wide variety of vehicles and following systems and software
engineering architecture description guidelines8. The activity is part of a knowledge-based
systems engineering initiative to capture domain knowledge for future re-use. The ground
system architecture includes a hierarchical decomposition of the system into subsystem
segments, referred to as the “Standard Product Classification Hierarchy” (SPCH). The SPCH
maps onto the generic ground vehicle work breakdown structure in MIL-STD-881(C), but with
more detail. The SPCH decomposition stops at the level at which components are purchased as
integral items, and not designed as part of the ground vehicle development. Figure 9 shows a
portion of the SPCH. The architecture is generic, and any given system may not have all of the
elements.

Figure 9: Partial Sample of the Standard Product Classification Hierarchy

The SPCH includes both the subsystem decomposition elements and technology alternatives.
It is not a simple hierarchy. It has both “AND” and “OR” nodes. At an “AND” node, all of the
child nodes are elements of the parent node. For example, a power package consists of an

01

01.01

01.01.01

01.01.01.01

01.01.01.02

01.01.01.03

01.01.01.04

01.01.02

01.01.02.01

01.01.02.02

01.01.02.03

01.01.02.04

01.01.02.05

01.01.03

01.01.03.01

01.01.03.02

01.01.03.03

01.01.03.04

01.01.04

01.01.04.01

01.01.04.02

01.01.04.03

01.01.04.04

01.01.04.05

01.01.05

01.01.06

01.01.07

01.01.08

Suspension System

Power Generation Systems

Turret Assembly

Tires / Wheel Systems

Fuel Systems

Heating, Ventilation, & Air Conditioning (HVAC)

Vehicle Controls

Automated Fire Extinguishing Systems (AFES)

Vehicle Diagnostic Systems & Software

Body / Cab

Transmission / Transfer Case / Differential system

Auxiliary Automotive

Brake System

Central Tire Inflation System (CTIS)

Fire Control

Armament

Power Package/Drive Train

Steering System

Engine

Cooling System

Family of Vehicles

General Purpose (GP) Base Vehicle Platform

Hull / Frame

Frame or Clips (front &/or rear) Systems

Suspension / Steering

Primary Structure and Base Armor

Bumpers & Fascias Systems

Transparent Armor

01.01.03.01 Engine

Engine Assembly-internal combustion

Crankcase-Block-Cylinder Head Assembly

Crankshaft

Flywheel Assembly

Piston and Connecting Rod

Valves Camshafts and Timing System Assembly

Engine Lubrication System

Engine Starting System-Other than electric

Manifold

Diesel Starting Control and Conversion Unit

Bearing or Shaft

Engine Brake

Engine Assembly-Gas or Steam Turbine

Compressor Assembly

Combustion Assembly

Turbine Assembly

Regenerator Assembly

Accessory Drive Assembly

Fuel or Steam Control

Lubricating System

01.01.03.01.01

01.01.03.01.01.01

01.01.03.01.01.02

01.01.03.01.01.03

01.01.03.01.01.04

01.01.03.01.01.05

01.01.03.01.01.06

01.01.03.01.01.07

01.01.03.01.01.08

01.01.03.01.01.09
01.01.03.01.01.10

01.01.03.01.01.11

01.01.03.01.02

01.01.03.01.02.01

01.01.03.01.02.02

01.01.03.01.02.03

01.01.03.01.02.04

01.01.03.01.02.05

01.01.03.01.02.06

01.01.03.01.03

72

engine AND a cooling system AND a transmission AND an electrical power generation system.
At an “OR” node, a subsystem branches into alternative technology options. For example, an
engine could be diesel OR turbine OR hybrid-electric. Only one of the OR options is included in
the final design.

The current version of the SPCH identifies some of the components’ relevant attributes. The
relevant attributes are those attributes that affect system performance and life-cycle
characteristics, and those attributes that determine compatibility with other components. For
example attributes of an engine include cost, rated horsepower, weight, size, low-end torque,
and reliability. The attribute portion of the framework is still under development.

The values of the attributes cannot be chosen arbitrarily, but are constrained by technology to
be within a practical range and relative values. Sometimes, there are a specific set of options,
e.g., engine alternatives A, B and C. Sometimes there are a range of possible attribute values.
The values of attributes may be correlated, and the correlation may be different for different
technology alternatives. For example, for diesel engines in the power range suitable for a
tactical truck, cost, horsepower, volume, and weight are close to linearly related. For turbine
engines, cost, horsepower, volume, and weight are also close to linearly related, but with
different slopes and intercepts than diesel engines.

4.4.3.3 Relationships and Attributes

There are two types of relationships: logical relationships between system architecture
elements and quantitative relationships among the attributes of system architecture elements.
The subsystem attributes are those characteristics involved in the logical and quantitative
relationships.

Logical relationships address subsystem interfaces and compatibility. When there is an
interface between two subsystems, a change to one may require a change to the other to
maintain compatibility, or may open up options for lower cost alternatives, or may require a
change to the interface. The logical relationships identify the design implication ripple effect
pathways to consider in tradespace analysis.

The logical relationships describe the “topology” of the system. Logical relationships identify
which subsystems interface with which other subsystems, and the type of interface, e.g.,
structural, thermal, electrical, hydraulic, data, etc. The logical relationships are developed by
generalizing from the subsystem and component interfaces identified in maintenance manuals
and design diagrams for representative systems. Figure 10 illustrates a portion of the vehicle
topology surrounding the engine, noting the different types of interfaces. Different types of
interfaces have different characteristics. For example, mechanical interfaces have attributes of
yield strength, elasticity, damping, deadband, losses, excursion limits, in each degree of
freedom. Other types of interfaces have analogous properties.

73

Figure 10: Example Subsystem Interface Diagram

Quantitative relationships express how the values of the attributes of lower-level system
elements determine the performance attributes of higher-level system architecture elements.
The network of quantitative relationships is necessary to estimate the impact on the system
level performance of changes in the values of components’ attributes. Subsystem attributes
affect multiple system performance attributes, e.g., active suspension provides better ride
quality and stability than a fixed passive suspension, but costs more and is less reliable.

The quantitative relationships are engineering approximations that have been developed over
many years for different types of vehicles and vehicle technologies to support conceptual
design and assessment3,4,5. They are parametric relationships suitable for representation with
SysML parametric diagrams or similar tools. For example, with a passive suspension, static side
slope stability, is a function of unsprung mass, height of the CG, lateral wheelbase, suspension
stiffness, suspension travel (1). The static side slope limit is the angle at which the CG is directly
above the down-slope wheel contact line due to slope and suspension compliance as the load
of the unsprung mass shifts to the down-slope side. With an active suspension, the same
physics is in effect, but the system stiffens the down-slope suspension and softens the upslope
suspension to counteract the slope effects.

(1)

The logical and quantitative relationships determine the relevant attributes of the system
architecture elements. The relevant attributes of a system architecture element are the ones
that are used in the equations describing the higher level performance parameters, and
compatibility among subsystems. The attributes and quantitative relationships are developed
by working top-down from the system-level attributes identified in the P-Spec framework.

Frame

Suspension Drive Train

Engine

Fuel Sys

Exhaust Sys

Cooling Sys

Engine Control Unit

Battery Sys

Elect Gen Sys

Starter Sys
Interface Types

M – Mechanical
E – Electrical
D – Data
F – Fluid
G – Gas
T - Thermal

Running Gear

M M

MM

M

T

F

E E

E

E

D

D

D

G

E

( = atan
w/2

h) (- atan
w

min(T, m/k))

74

4.4.4 TRADESPACE ANALYSIS

The fundamental tradespace consideration is the performance margin. The performance
margin is the difference between the performance expected from a given conceptual design
and the performance requirement. Where the margin is negative, expected performance does
not meet the requirements. Where it is positive, there is “margin for error,” a buffer against
unforeseen operational needs, subsystem shortfalls and interaction effects.

During TD, the Program Management Office (PMO) can adjust the performance requirements in
the P-Spec to balance acquisition and operation cost, reliability/availability/maintainability,
interoperability, transportability/deployability and mission function capability subject to
confidence in technical feasibility. The preliminary design is an “existence proof” that the P-
Spec can be met. The P-Spec is the entry specification for the EMD phase. Tradeoffs and
tradespace analysis continues during early EMD up to the Critical Design Review. The
tradespace analysis framework is a tool to explore these interactions.

The ground system tradespace and affordability analysis framework as described in this paper
enables developers, designers and other stakeholders to consider the following types of
questions, supported by logical, qualitative and quantitative analysis with the confidence that
indirect and ripple effects have been included:

 Within the range of feasible, practical technologies and design concepts, what are the
tradeoffs among functional performance and life-cycle management characteristics?

 How do different conceptual design alternatives influence functional performance and life-
cycle management characteristics?

 How resilient is the design - does the concept design have sufficient positive performance
margins in key dimensions to provide growth potential for future modifications, to provide
safety margin in the event that future operating conditions are more severe than planned
for, and to provide design margin for error in the event that subsystem and interface
performance is less than expected?

 Which elements of the performance margin vector are negative? How much do the
requirements have to be reduced to be achievable with the preliminary design? What are
the implications on other requirements of design changes to reduce the negative margins?

 Are the performance margins near zero for critical requirements, i.e., is the concept at risk
of failing to meet critical requirements?

 What is the sensitivity of the performance margin vector to individual and combined
changes to different options if immature technologies at are considered as potential future
upgrades?

4.4.5 CONTRIBUTION, SIGNIFICANCE, LIMITATIONS, AND EXTENSIONS

The research described in this paper represents an approach to formalize knowledge regarding
system requirements, system components, their attributes, and interactions. The framework
supports practical relevant trade-off analysis between cost and capability in ground vehicle
development programs. It is informed by and tightly linked with tradespace and affordability

75

analysis issues and assessments in current ground vehicle development programs, and with
knowledge capture initiatives to learn and generalize from past experience.

The ground system tradespace framework extends and unifies the P-Spec and ground system
architecture frameworks currently in use. It supports the types of analyses used in the JLTV
cost-informed trades assessment process. It makes future similar analyses easier and more
complete by having the knowledge structures and parametric models in place. It enables a
more complete tracing of “ripple effects.” It represents the ground vehicle topology
compatibility of subsystems that interface with each other, and to trace potential repercussions
of design changes. It traces the network of interactions with quantitative estimates of system
performance.

As structured, the tradespace framework is set up to support traditional point-based design
methods. It presumes that credible data on the component attributes is available. Extension to
the framework would be needed to address uncertainty in the levels of the component
attributes. Extensions to the framework would also be needed to support incremental design
methodologies such as set-based design (SBD). In SBD, high level and major component
decisions are made without specifying lower level choices. SBD enhancements are needed to
provide proof-of-feasibility of development options. In SBD there is uncertainty regarding
conceptual design choices that have not yet been made. SBD is still evolving, and effective
application to ground vehicle development programs is only theoretical at this time.

4.5 REFERENCES

1. Under Secretary of Defence for Acquisition, Technology and Logistics, Operation of the Defence
Acquisition System – Interim Instruction 5000.02. Office of the Secretary of Defence.
November, 2013.

2. Schultz S, Johnson BR. Cost Informed Trades Assessment and Requirements Management
Process. Proceedings of the 6th NDIA GVSETS Symposium, August 12-14, 2014.

3. Baylot EA, Burhman QG, Green JG, Richmond PW, Goerger NC, Mason GL, Cummins CL, Bunch
LS. Standard for Ground Vehicle Mobility – ERDC/GSL-05-6. US Army Corps of Engineers
Engineering Research and Development Center. February 2005.

4. Gillespie TD. Fundamentals of Vehicle Dynamics. Society of Automotive Engineers. 1992.
5. Wong JY. Theory of Ground Vehicles 4th Edition. Wiley. 2008.
6. Defense Standardization Program. Guide for Performance Specifications SD-15. Department of

Defense. August, 2009.
7. Fett D, Prichett W, Richardson J. The JCGV Ground System Architecture Framework (GSAF).

Proceedings of the 5th NDIA GVSETS Symposium, August 20-22, 2013.
8. International Standard 42010 - Systems and software engineering – Architecture description.

ISO/IEC/IEEE. December, 2011.

76

4.5 REPORT “DESIGN SPACE REGIONS, GEOGRAPHY AND TOPOLOGY FOR SET-BASED DESIGN.”

Authors: Gary Witus, Steve Horton Rapp

The goal of this research is to enhance SBD as a design and development process by developing
a rigorous, principled and practical formalism, by developing a formalization of the notion
“regions of design space” with useful properties for design enabling new, practical and relevant
tradeoff analysis questions to be addressed, and by incorporating decision timing, change cost
and uncertainty into the formalization. At the present time, SBD is a conceptual methodology
without rigorous analytic formulation. This research attempts to develop this foundation.
Computational design methods enable developers to automatically generate millions of
possible combinations of design options and evaluate them on multiple performance and life
cycle dimensions. This creates a conceptual challenge to the developers – to organize the
millions of point designs into a simplified and useful view of design space supporting the SBD
process. This research is developing a rigorous and useful approach to organize design space
into regions, and that provide new analysis methods providing insight into the effects of system
requirements on the topology of the design space regions. The research is also developing a
structured approach addressing the sequence of design decisions and the interplay with the
maturation and integration timelines of subsystem options.

4.5.1 INTRODUCTION

This is a preliminary, interim draft report on extensions and refinements to Set-Based Design.
Section 2 describes the system development process context and issues, including
requirements uncertainty, technology uncertainty, decision sequences, decision timing, cost
and change-cost dependencies. Section 3 compares and contrasts Set-Based Design (SBD) and
Point-Based Design (PBD) methods. Section 4 introduces a formalism for regions of design
space, including computational methods. Section 5 describes how analysis of the geography
and topology of regions of design space can be used to enhance SBD.

4.5.2 SYSTEM DEVELOPMENT CONTEXT

DoD system development nominally proceeds through the stages of Materiel Solution Analysis
(MSA), Technology Development (TD), and Engineering and Manufacturing Development
(EMD). These initial development stages are followed by Production & Deployment, Operation
& Sustainment, and Retirement & Disposal. In the MSA, TD, and EMD phases the functional
performance and life-cycle requirements for the system are developed and refined in parallel
with developing and refining the system concept. The two are co-developed in order to assure
that the requirements are feasible, mutually compatible, and cost-effective. Each stage
increases resolution and completeness. At the beginning of the EMD stage, the requirements
and system concept are expressed as a product specification (P-Spec) and associated generic
system architecture. These are the basis for the Request for Proposal for EMD bidders. During
EMD the P-Spec and system architecture continue to be detailed and refined to balance

77

requirements, affordability, technology and integration reality. In principle, the requirements
and architecture become increasingly “sticky” along the way with refinements and adjustments
taking place at the in the details more than the higher structure. In theory, they are “frozen” at
the Critical Design Review.

In practice, the process is less smooth than in theory. Requirements are changed in response to
external factors – changes in military strategy, perceived threats and theaters, changes in the
opinions of senior DoD planners and decision makers, changes in the cost-vs-capability balance,
changes in risk tolerance and risk tolerance as development and test information is developed,
failure of component technologies to perform up to expectation, unexpected performance
deficiencies or interference during integration, etc. Requirements are rebalanced and
sometimes deferred.

DoD system development takes longer than anyone wants. Faster design and development
processes can produce faster results, but do not necessarily do so. If slower processes can
more quickly adjust to external changes, they can produce shorter development times in the
presence of external changes. Processes that are faster when external changes are negligible,
can have “long tails” if they involved extensive rework. There is a tradeoff of the likely
development time absent external events, with the mean time and variance given external
impacts.

The EMD program has a schedule of events leading up to Operational Testing, and has to
proceed regardless of potential external events. Design decisions have to be made, designs
developed tested and integrated. The design decisions are a partially ordered set, i.e., some
decisions have to be made before others. For example, the choice of wheels versus tracks on a
ground vehicle has to be made before the decision about the wheel configuration and
suspension. Sometimes the timing of decisions is forced by the lead time to design and
integrate particular technologies. For example, an active hydra-pneumatic suspension could
have an 18 month lead time, whereas a passive mechanical suspension could have 4 month
lead time. In this case, at 18 months from initial testing, program management has to decide
whether or not to pursue the hydra-pneumatic suspension. The order of decisions can also
have an effect on EMD time and cost. Consider a ship with ducting running from one zone to
another. If the bulkheads are completed before the ducting, the ducting options may be
limited and require cutting the bulkhead during manufacturing. If the ducting is solved first,
then the bulkheads are designed and built around the ducting. The time and cost are different
in the two cases.

When changes are made to the system concept, whether due to external events or discoveries
during EMD, the design rework has an impact on time and cost. In general, the more complete
a design is, the greater the time and cost impact will be – more subsystems and interfaces have
to be adjusted, recalibrated, and retested.

78

4.5.3 PBD AND SBD

PBD is a design approach that tries to arrive at complete, specific design as quickly as possible.
Once there is a concept or design, “customers” in the Service command, DoD, and Congress will
think they know what they will be getting, and will be more confident that the Program Office
knows what they are doing. Once there is a specific concept or design, cost estimates will
have less uncertainty than before.

PBD is generally conducted by making design choices that limit the options that have to be
considered, restricting the remaining design space. PBD generally tries to home in on a specific
concept or design, confirm that it is technically feasible, affordable and meets or comes close to
meeting the performance and lifecycle requirements. The requirements can often be relaxed
or deferred as part of the tradeoffs of time and cost. During the process of homing in on a
point solution, local tradeoffs and decisions are made to improve outcome on one or other
dimensions.

PBD may make design decisions before they are required, to advance the process. PBD may
make design decisions based on the expectation of future availability and performance of a
technology, in order to advance the processes. This potentially exposes PBD to the risk of
rework if the technology is not available on time or does not perform to expectations. There
might have been information to make a more cost-effective decision, had the process waited
until the last minute to make the selection.

SBD is a design approach that attempts to keep options open as long as possible, only making
design decisions when they are required due to lead times and decision precedence. SBD
attempts to minimize rework in response to external events and information by deferring
commitment. The less rework there is, the faster and more economically the design can be
adjusted in reaction to the external changes.

SBD operates on the principle of relaxing and restricting constraints (requirements) and making
the minimal design decision, i.e. eliminating subsystem options from consideration. When a
decision has to be made, the SBD process tightens constraints (allowing different stakeholders
to have their input), until there is only one decision outcome that meets the constraints.

Both SBD and PBD apply at all stages of development, from high level requirements and
concepts, to preliminary design, to critical design, to engineering and manufacturing design.
Both SBD and PBD seek to find a feasible solution, meeting all current constraints. At any point
during development, there are decisions that have not yet been made – the design at any point
in time implies a set of alternative outcomes.

PDB and SBD differ in terms of the principles used to time decisions and make decisions. PBD
potentially leads to faster design and design concepts in the absence of surprises, with tighter
cost estimates, and increased confidence on the part of high-level decision makers. In the
presence of possible surprises, SBD potentially leads to lower time and cost, and lower time and

79

cost variance. PBD is appropriate when the requirements can be assumed to be fixed. SBD is
appropriate when the requirements are assumed to be more fluid than not.

SBD is seen as a potential methodology to quickly and economically adapt to changes in
stakeholders constraints and the P-Spec with minimal disruption to the design process. SBD is
also seen as a potential methodology to lead to better design solutions than traditional point-
based design (PBD), since PBD might make choices before they needed to be made and close of
design branches offering superior performance.

The philosophy of SBD is to hold off making decisions as long as possible, thus keeping as wide a
range of options open as long as possible. The philosophy of PBD is to come to solution as
quickly as possible. PBD “prefers” to make design decisions that minimize the remaining
alternatives and options. SBD “prefers” to make design decisions that maximize the remaining
alternatives and options. Whether using PBD or SBD, at any point during design, there are
decisions yet-to-be-made, and so, in some sense there is a set of future options. PBD seeks to
restrict the set of options as quickly as possible, to arrive at a concept or design, whose cost,
reliability and other life-cycle characteristics can be estimated, whose performance can be
tuned, that can be explained to decision-makers, and defines successful development for the
program. SBD seeks to keep the design space of options open as long as possible so that
changes in constraints and requirements can be accommodated with minimal impact on the
acquisition program, and to avoid early convergence on a dominated, sub-optimal solution.

PBD attempts to come to a design concept quickly. This is in part an attempt to reduce the
overall development time. It is also part of an attempt to reduce the uncertainty in time, cost
and performance estimates. The idea is that the sooner a design becomes well defined, the
sooner reliable cost and performance estimates can be made. Also, it is easier to explain a
point design to funding and decision agencies than it is to explain that the detailed concept is
yet-to-be-determined, but is somewhere in a set of options.

Given static constraints, PBD is expected to arrive at an articulated solution and cost estimates
sooner. Given dynamic constraints, SBD is expected to arrive at solutions with lower variance in
the time. In the larger view, we need to consider the costs and benefits of different
methodologies, and when they should be applied. Consider uncertainty in system
development. Is one less risky than the other (sunk cost at risk, value at risk, conditional value
at risk)? Uncertainties include need (adversaries who choose conditions, tactics and equipment
to attack our limitations and avoid our strengths, plus “random” nature of the world), and
opportunity (adaptive component maturation investment to fill unmet needs, and unexpected
opportunities).

The goals of this research are to establish a rigorous and principled foundation to express,
compare and contrast SBD and PPD methodologies, to develop an analytic formulation for SBD,
to develop an analytic approach to address the sequence and timing of design decisions, and to
extend the SBD analytic MPT to provide information and guidelines to analyze alternatives. The
objectives are to formalize SBD, PBD, and their differences and commonalities; to develop a

80

rigorous, principled, practical and relevant approach to organize design-space into “regions” in
a way that is relevant to SBD, to integrate sequencing and timing considerations into SBD
decision making, and to provide analytical methods for new insights for decisions and analysis
during system development.

The scope and context encompasses MDD to MS-C: progressive resolution/instantiation of the
system concept and range of time and costs vs capabilities. The DoD acquisition lifecycle is
organized around progressive refinement of the system requirements, without specifying the
design. At the same time, DoD acquisition practices are oriented producing reliable time, cost
and performance estimates. The uncertainty in the estimates is greater when the design is
uncertain (“set-based”) than when there is a specific concept.

At any point in time, PBD has greater variance in time and cost given change in requirements
and opportunities but lower expected time and cost, vice SBD. Over time, considering change
dynamics, SBD may have lower variance and expected value.

4.5.4 A FORMALISM FOR REGIONS OF DESIGN SPACE

The section describes a sequence of concepts leading up to a rigorous and useful
characterization of regions of design space that is compatible with SBD and which supports
novel and valuable analysis operations during SBD. At this point in time the formalism is not
complete, and there a several questions and issues that remain to be addressed.

The system architecture can be represented as an AND/OR graph with dependencies. At an
AND node, all of the child subsystem have to be specified for the parent node to be completely
specified. At an OR node, exactly one of the child nodes can be selected and must be selected
to instantiate the OR node. At the bottom level of the graph are component options. The
nodes one level up from the bottom are all OR nodes. Dependencies are relationships that
cross branches of the graph identifying mutually incompatible choices, and significant
performance or cost interactions. In a strictly logical AND/OR graph, AND and OR nodes
alternate. In practice, because the nodes correspond to real subsystems, the architecture can
have AND nodes followed by AND nodes matching the organization of the real system. The
TARDEC Standard Product Classification Hierarchy is an example of the AND/OR graph for the
generic ground vehicle architecture. A partial example is:

• Vehicle AND
• Chassis OR

• Monocoque hull
• Frame

• Suspension OR
• Torsion bar
• Hydra-pneumatic
• McPherson

• Running Gear OR
• Tracks
• Wheels AND

• Configuration OR

81

• 4-by-4, 6-by-6, etc.
• Tire diameter OR …

• Engine OR …
• Dependencies AND

• Suspension/Torsion bar & Running Gear/Wheels are incompatible
• Suspension/McPherson & Running Gear/Tracks are incompatible

The system architecture can be “flattened” into a genomic representation. The genomic
representation simplifies developing the design space region formalism. In the genomic
representation, every OR node one level up from the bottom in the AND/OR graph is a gene
site. The alleles at the a gene site are the component options at the corresponding OR node.
Each gene site also has a “not present” allele to represent the case where the branch leading to
that OR node was not chosen at a higher level. The genomic representation has completeness
and consistency checks when it is mapped to the AND/OR graph: exactly one branch is
instantiated at each OR node, every branch is instantiated at each AND node, and there are no
“orphan” components (components alleles at an OR node that was not chosen).

A design solution in the genomic representation has an allele choice at each gene site, and it
meets the consistency and completeness checks.

A feasible solution is a design solution that meets all the performance and life cycle
requirements on all dimensions.

A feasible region is a set of connected feasible solutions. Two feasible solutions are 1-
connected if they differ at exactly one gene site, so a single allele swap converts one to the
other. Two feasible solutions are N-connected if (a) they are not N-1 connected, and (b) one is
1-connected to a solution that is (N-1)-connected to the other. Feasible regions can be grown
from a feasible solution. Every feasible solution in a region is connected to every other solution
in the region on a path of single gene changes such that every solution on the path is in the
region.

A region differs from a set in that every pair of points in the region are connected on a path of
“single nucleotide polymorphisms (SNPs)” that stays within the region at every stage, whereas
sets are simply collections of point solutions that may not all be connected within the set.

A region is convex if for any two solutions in the region, every “mix and match” combination of
their alleles is in the region. If two solutions in the region are N-connected, then every solution
on every path of length N that connects the two is in the region.

82

Convex regions have a compact representation: the set of alleles at each gene site allowed in
that region. Every combination is in the region (it is a “box” in design space). Feasible convex
regions have a nice property: allele choices (within the region set) at each gene site can be
made independently without violating feasibility.

Convex feasible regions can be grown from a feasible point solution by adding alleles one-at-a-
time at gene sites, but only adding those that preserve convexity. Making the convex region
growing unique, requires on unambiguous rule for which allele at which gene site to add next,
e.g., add the allele at the gene site that maximizes region availability.

The availability of a component is the forecast probability that the component will be available
when it is needed for design, integration and testing. Availability can change over time due to
component maturation. Design solution availability is simply the product of the availabilities of
the choices at all the gene sites. Region availability is the probability that at least one solution
in the region is available.

Convex region availability has a simple computation. Availability at a gene site is the probability
that at least one allele is available. The probability that a solution in the region is available is
the product of the availabilities over all the gene sites. This assumes that the availabilities of
alleles are independent, i.e., the availability of one allele at one gene site does not affect
availability of any other allele at any gene site.

4.5.5 ANALYSIS OF DESIGN SPACE REGION, TOPOLOGY, AND SENSITIVITY TO REQUIREMENTS IN SBD

To think about topology and geography, consider islands and shorelines at the continent,
country and vacation spot resolution versus changing sea levels, and variable tides and sea
states. As the water level changes (requirements restrict), connected islands and convex cores
may split or join. In practice, the challenge is even more complicated. “Islands” may be
connected at low-tide via a causeway, but not at high-tide or high-sea-state. Geographers have
not resolved how to address temporal (seasonal; daily) variations vs connection (truck load
limits, highway/bridge capacity, failure in trunk lines, etc.) in mapping the topology of regions.
(In theory, this can all be resolved to the cost of connection – capacity, bandwidth and time to
implement – except that these are unknowns and may be unknowable.)

The formalism presented in the previous section provides rigorous, principled, and
computationally-feasible methods to analyze the topology of design space vis-à-vis the
architecture and product specifications at two levels: (a) organization into disjoint, but self-
connected, feasible regions, and (b) organization into convex feasible regions. Convex feasible
regions are a refinement of feasible regions. In the organization of design space into a unique
collection of feasible regions, each feasible region is self-connected (each point solution inside
it is connected by SNPs to each other solution), and the feasible regions are distinct and non-
intersecting. In the organization of design space into a unique collection of convex feasible

83

regions, each convex feasible region is compact, and the convex feasible regions are distinct in
the sense that they do not have overlapping interiors, although they are not strictly disjoint
since they can share points at their boundaries. The convex feasible regions have useful
properties for SBD. Changes at a gene site (restricted to the allele set of the region for that
gene site) can be made independent of any other gene site.

Feasible regions and convex feasible regions have descriptive characteristics that makes them
useful for SBD – to gain insight into the topology of design space, to select significant regions to
focus on, to characterized regions with point solutions for the purpose of exposition and
nominal cost estimation, to identify tipping points where changes in requirements change the
topology, and gain insight from the sensitivity of region properties to requirements changes
and design decisions.

From the perspective of SBD, the interesting topic is “how do changes in requirements affect
the topology and geography of design space?” The formalization provides the ability to answer
these questions, but also more fundamental questions: “how much can the requirements be
changed without changing the topology of design space?” - I.e., “where are the tipping points
where feasible regions appear/disappear, split and merge?”

Other relevant questions that can be addressed include:

“What point design represents the regions (e.g., can generate the region and is, in a sense
that is to be determined, the most resilient)?”

“How large is the region (e.g., number of point solutions, breadth on the minimum
dimension)?”

“How dense is the region (ratio of size of the minimal circumscribing convex region to the
non-convex circumscribed region)?

“How compact is the region (ratio of size of the inscribed convex region to the non-convex
region)?”

“How sensitive are the characteristics of a region to requirements? To design decisions?”
“How sensitive is topology of design space to requirements? To design decisions?”

These questions, and others, e.g., based on change-cost versus number of independent
questions, can be addressed in this framework, but further research is needed to articulate the
issues, benefits, and methods.

84

5 GEORGIA INSTITUTE OF TECHNOLOGY

5.1 ACTIVITY 1. PAST RESULTS: PHASES 1 AND 2

5.1.1 PHASE 1 RESULTS

During Phase I, GTRI investigated relevant, existing tools and their ability to capture –ilities in a
tradespace environment. The investigations were initially limited to those toolsets developed
by SERC members involved in the ITAP Phase 1 work. GTRI investigated prior research in the
area of web-based analytical tools for systems engineering decision-making. Of these, the
GTRI-developed Framework for Assessing Cost and Technology (FACT) was identified as a
promising toolset example that integrates a model based systems engineering (MBSE) approach
and methodology to enable tradespace analysis. GTRI investigators therefore identified key
aspects of FACT that could be used to help capture and analyze –ilities as their definitions
matured during the course of the multi-year ITAP effort.

FACT is an open architecture web-based tool developed to enable collaborative tradespace
exploration for early phase design of complex systems (initially military ground vehicles, but
since extended to other applications) [Browne et al. 2013; Ender et al. 2012; O’Neal et al. 2011].
FACT embodies a web services based environment that enables models to be interconnected,
providing a rapid exploration of the design tradespace in support of systems engineering
analysis. FACT is model agnostic and capable of linking disparate models and simulations of
both government and commercial origin through the application of community established
data interoperability standards.

Further, FACT focuses on interoperability and data sharing with the emphasis centered on
metadata. FACT was designed on a philosophy of open architecture to enable extensibility. To
achieve this, and avoid the encumbrance of licensing fees limiting its use or tethering it to a
single manufacturer over its lifetime, FACT was built using open source software components,
and the US Government is free to use, modify and distribute it. FACT’s development followed
guidance from the Department of Defense, mandating that it be web-based and accessible
from common computer workstations, be built entirely from open source software, and offer
an open and extensible architecture [Assistant Secretary of Defense 2007; Assistant Secretary
of Defense 2009].

FACT provides decision support tools to help manage risks of cost, schedule, and performance
through a rapid analysis of alternative technology and materiel using surrogate models, or
equation regression representations of more complex M&S tools. It is designed primarily to
provide tradespace analysis during conceptual design. Other stages of the system lifecycle can
benefit from the FACT process, but the conceptual design phase is where both good and bad
decisions have the greatest impact on cost and performance. Although FACT’s development

85

was originally envisioned for vehicle acquisition programs, the overall process and application is
independent of vehicles and can be applied to any system-of-systems.

SysML was highly leveraged as the point of reference for the data schema implemented as FACT
was initially developed. SysML1 is a general-purpose graphical modeling language for MBSE
applications that supports the specification, design, analysis and verification of a broad range of
systems. It is a subset and extension of the Object Management Group’s Unified Modeling
Language (UML), the industry standard for modeling software-intensive systems, giving systems
engineers the ability to represent system requirements, structure, behavior and properties
using a formal diagram syntax.

The Phase 1 evaluation found that a FACT-like framework and methodology might well
incorporate extensions to the SERC team’s methods, especially as they are defined to capture -
ilities tradespace of interest. During the Phase 1 timeframe, however, FACT existed as a specific
development for application to ground vehicles for the USMC. The team determined that a
more flexible and scalable integrating toolset might be better suited to support research and
integration of –iliities defined as critical to support DoD and other acquisition and design
processes.

5.1.2 PHASE 2 RESULTS

Phase 2 therefore extended the investigation to developed, open-source, web-based analytical
tools outside of the ITAP effort. The goals were to identify the best tools and develop a flexible,
integrated way to support analyses from various starting points in a workflow. In so doing,
GTRI’s contributions for the Phase 2 effort focused on two primary fronts: (1) integration of a
toolset and workflow process to guide early stage design refinement, and (2) directly using this
toolset and workflow to enable designers to begin assessing some key aspect of resiliency as
related to evaluating design alternatives. The toolset was designed and then built to use open
source technologies, supporting a workflow that would guide early stage design refinement
while being extendable to more rigorously detailed design exploration. Conceptually, this built
heavily from the FACT work cited previously but differed in that the aims were to create a
flexible, open architecture, and integrating workflow that would support early-stage analytical
research and method maturation across ITAP extensions as they mature.

The tools identified for use and integration in to a workflow to enable efficient generation of a
tradespace and subsequent rational reduction of the design alternatives included SysML,
described previously, and OpenMDAO. Recognizing widespread use of SysML across the DoD
(to include the SERC’s sponsor community), GTRI leveraged previous research for authoring
SysML models and using those models to execute design tradespace exploration [Browne et al.
2013]. The integration of these capabilities was extended to allow feedbacks within the design
process and allow compatibility with NASA’s OpenMDAO framework.

1
 http://www.omgsysml.org/

86

OpenMDAO is an open-source Multidisciplinary Design Analysis and Optimization (MDAO)
framework developed by NASA Glenn and Langley Research Centers [OpenMDAO, 2014]. It has
been developed for use as an integrated analysis and design environment that can be applied
to many systems engineering applications. It is capable of linking multiple disparate models or
other analysis tools in a single design structure matrix that can map system design variables to
performance attributes in a manner similar to Phoenix Integration’s Model Center2. Applying
OpenMDAO’s built-in library of solvers, optimizers and design of experiments generation tools
allows for rapid generation of design tradespaces of greater fidelity and complexity than in
some previous efforts.

A tradespace is defined as a collection of design variables and system attributes, different levels
of which characterize each design alternative for a given system. A model or collection of
models is a mathematical representation of the system and any external variables necessary to
map the input variables to output variables. Commonly, input variables are chosen to be
system design variables while output variables are defined to be system attributes. This
relationship may, however, be reversed depending on the mapping. Variables may be intrinsic
to the system or dependent on conditions external to the system (e.g., cargo space versus miles
per gallon). Some form of cost is also typically derived from the characteristics that describe
each system design alternative. This is illustrated in Figure 11 where X and Y are used to
describe input variables and output variables respectively.

OpenMDAO is a key element for tradespace generation. OpenMDAO wrappers can be created
which extend the analysis performed to externally hosted models. The software then governs
the interaction with these models by way of managing the input and output metadata,
especially in terms of units and allowable ranges, and orders the execution of the various
analytical blocks, which are then executed sequentially to generate a complete tradespace.

As an initial proof of concept an open source, web-based toolset was developed to couple a
rationally guided workflow to existing analysis methods for design tradeoff evaluation. This
toolset leverages existing open source web frameworks such as Python based Django3 and
Javascript based D34 to enable the rapid development of a complex, database-driven website.
The OpenMDAO framework is used to facilitate complex analysis by linking together the
separate models used to describe the behavior and performance of the system of interest. In
addition to the use of several open source software frameworks, the toolset also takes
advantage of the SysML modeling language to specify the parametric constraints that define
system performance.

The proof of concept was specifically developed to evaluate and begin to test how an –ilities
related analytical construct might be used within the toolset and workflow. One of the more
mature concepts was that of Epoch Era Analysis (EEA) by the MIT ITAP collaborators, which was

2
 http://www.phoenix-int.com/software/phx-modelcenter.php

3
 https://www.djangoproject.com/

4
 http://d3js.org/

actually developed prior to ITAP. EEA began as a high-level framework to identify, structure,
and evaluate the impact of different or changing dimensions on expected suitability or
performance of systems [Beesmeyer, Ross, and Rhodes 2012; Ross and Rhodes 2008]. These
dimensions may include broad environmental contexts such as weather, political or financial
scenarios, and environmental or operational characteristics, as well as stakeholder needs across
short-term variation (‘epochs’) or longer term, time-ordered sequences (‘eras’). Different
analytical methods were then incorporated into EEA over time (as discussed in subsequent
publications by this group) to help quantify one aspect or another.

Figure 11: Defining a Tradespace

The GTRI team decided that a streamlined modification of EEA might serve as an excellent test
construct for the process. Frequently, DoD users do not have sufficient data to flesh out the full
concept of EEA as described in the literature. Also, analysts often are not able to specifically
elucidate and specify a precise timeline with respect to how demands of a system might change
much less how the relevant data might change over time. Consequently, the GTRI team
focused on how to create a highly flexible analytical construct that could readily scale with
vastly increasing tradespace sizes and yet still capture demands of competing stakeholders or
changing performance requirements in an intuitive manner.

The end result of this effort was the development of a Needs Context construct. A significant
concern during early phases of acquisition, or during the Pre-Milestone A analysis of the DoD
Acquisition process is the resiliency of a system design across simultaneously competing or
sequentially changing requirements on its performance attributes. A Needs Context is a
scalable, applied methodology to capture certain dimensions of resiliency related to how well a
system performs its functions in the face of requirements perturbations. It is defined based on

87

88

flexible subsets of performance attributes relevant to the stakeholder(s) and ranking of those
attributes within each.

The motivation for the Needs Context is that choices must be made based on what is valued
most by stakeholders, recognizing that some stakeholders may have a greater influence. A
Needs Context can represent different or directly competing objectives for a system’s
performance for:

 Different stakeholders, each with different or competing priorities in parallel
 Changes in requirements over time (future performance requirements differ in series)
 Different mission profiles that necessitate different performance objectives, whether in

parallel or in series

Value of a given system attribute is scaled against objective and threshold requirement levels,
using the Key Performance Parameter (KPP) concept to promote comparability across analyses.
Value of a system design alternative is then assessed using concepts from multi-attribute utility
theory (MUAT), synergistic with the concept of evaluating Robustness of Fielded System
Capabilities and Capacity with respect to Operational Requirements in terms of broad utility.
Since each Needs Context may be defined using different attributes, and/or different valuations
and preference weightings, Needs Context utility will have a different value for each system
design alternative k (SDk) within each individual Needs Context, i.e.:

[𝑈𝑘 = 𝛼 ∗ 𝑣𝑗(𝑌𝑗𝑘) + 𝛽 ∗ 𝑣𝑚(𝑌𝑚𝑘) + ⋯ + 𝛾 ∗ 𝑣𝑛(𝑌𝑛𝑘)]𝑁𝑒𝑒𝑑𝑠 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑖

…where Uk denotes the overall utility of system design alternative k (SDk) for a given Needs
Context, Yjk represents system attribute j for system design alternative k, {α, β, γ} are weights
derived from preference rankings or other means, and each vj is a value function expressing the
relative value of the given system attribute level to a stakeholder. Value functions are typically
linear or exponential expressions but may be any monotonic function. Cost is also a function of
system design alternative characteristics, though it depends on other influences and variables
as well. Utility and cost are expressed as related dimensions, linked by an underlying SDk. The
Needs Context methodology adds a dimension of analysis to the classical utility representation

as shown in Figure 12. The toolset, workflow, and example operationalized construct were
described and published as part of INCOSE 2014 [Sitterle, Curry, Freeman, and Ender 2014].

Figure 12: Classical 2D vs. Needs Context 3D Utility

89

5.1.3 PHASE 2 INSIGHTS

Specifically, Phase 2 sought to define and develop a capability through which new analytical
methods may be explored, refined, and linked together in a design space environment. More
complex analytical constructs and their subsequent synthesis into systems engineering decision
aiding processes could be investigated and matured in this framework prior to integration into
existing customer processes. This allows for customized performance attributes, especially as
relating to hard-to-define “-ilities”, to be investigated and matured for specific design domains.

Phase 2 efforts produced several insights. For one, starting with formally defined system model
architectures has implications for structuring an integrated toolset for tradespace exploration.
Firstly, performance-based attributes (e.g., braking distance) require a system model to couple
with basic engineering representations of the system’s operation and/or operational
environment. The model of the system alone is insufficient to produce all quantitative system
attributes that are typically important to the decision making process.

Most standard forms of utility evaluation derive from normalizations of the current design
space with a single value function for each performance attribute. The impact is that utility is
then not comparable from one analysis to the next when different performance attribute
ranges are generated from differences in input variable ranges or system architecture.
Similarly, using single value functions for each performance attribute implicitly assumes non-
competing preferences across different stakeholders, mission profiles, etc.

The Needs Context construct described here avoids both of these limitations. By scaling to
defined requirements, given the same contributing attributes (defined the in same way) and
the same requirement levels, the broad utility measures captured in a Needs Context are
comparable across analyses. The flexibility to define different requirement levels for a given
performance attribute in each Needs Context also allows for simultaneous visualization and
evaluation of competing objectives.

5.2 ACTIVITY 2. SUMMARY OF PHASE 3 RESULTS (TRADESPACE MPTS)

Building from the insights gained during Phase 2, the Phase 3 Tradespace Methods Processes
and Tools (MPT) effort focused on 2 primary fronts. The first was more academic in nature, and
investigated a more rigorous grounding as well as a few augmentations to the Needs Context
method from Phase 2. The second focused on more robust integration of the processes and
tools to support future extensibility to additional methods and –ilities-related analyses.

The first step was to more completely document the rationale for specifying the Needs Context
in the way chosen during Phase 2 and to more firmly place that into context with the other ITAP
work. There is already an enormous body of work focused on developing decision support
methods and a tradespace toolset framework architecture in support of the Department of
Defense’s (DoD) analysis of various large-scale and complex engineering systems. This includes
research and development of methodologies to conduct Analysis of Alternatives (AoA) relevant

90

to evaluating different dimensions of resiliency for these systems. Many of these dimensions
are quite strongly related to the –ilities being investigated under the ITAP effort and the newer
DoD priority for Engineered Resilient Systems (ERS).

Towards this end, tradespace analysis is of great importance and requires development and
maturation of executable and scalable analytical constructs. These constructs must be
implementable within the context of a larger workflow, and in tandem with each other, to
guide trade space exploration and evaluate ERS resiliency concepts. In order to more clearly
understand precisely what the Needs Context evaluates, and therefore help the broader
community understand ways in which it either could or should not be used in conjunction with
other constructs, we sought to more fully define its focus based on existing ontologies.

The need to evaluate systems according to requirement needs, changes in those requirements,
and against some sort of human (or stakeholder) value has been well established in the
literature. While by no means an exhaustive list, the following excerpts from literature trace
this understanding well:

Challenges in requirements elicitation include:
– Scope and context to reflect true user needs
– Fostering understanding among different communities affected by the

development of a given system
– Requirements volatility (i.e., Requirements change over time.)

[Christel & Kang 1992]

“There is… an explicit recognition that designs are created to provide value to
humans, and design decisions are made in some attempt to maximize that value.
Decision-based design recognizes the need for human intervention in the design
process in four areas: determination of human values, determination of the
relationships to be included in analytical models, assessment of probabilities for
random events, and creativity through the creation of design options coupled
with judgment on which options should be given consideration for
implementation.”

[Hazelrig, 1998]

“Knowledge about evolution, and likely future requirements is critical to
incorporate functional and performance options within an architecture.”

[Schultz & Fricke 1999]

“Robustness characterizes a system’s ability to be insensitive towards changing
environments. Robust systems deliver their intended functionality under varying
operating conditions without being changed.”

[Fricke & Schultz 2005]

“Value robustness is the ability of a system to continue to deliver stakeholder
value in the face of changing contexts and needs.”

[Ross & Rhodes 2008 (IEEE SysCon)]

91

“To achieve value robustness, design systems “… using natural value-centric
timescales, wherein the context and expectations define the timescales.”

[Ross & Rhodes 2008 (INCOSE)]

The Needs Context analytical basis and workflow derive strongly from concepts espoused by
Hazelrig (1998), conceptually expanded by Fricke and Schultz [1999 & 2005], and further
delineated by Ross and Rhodes [2008] as EEA. It was constructed to specifically help evaluate
robustness in the face of changing or competing stakeholder needs. As such, the Needs
Context relates directly to the ERS concepts of a system being “trusted and effective in a wide
range of contexts” and exhibiting “broad utility” [Goerger et al 2014].

A broad review on flexibility performed by the AFIT team of ITAP collaborators placed many
concepts relevant to resiliency into an ontological framework [Ryan et al 2013]. This work
comprehensively analysed systems engineering literature to arrive at a set of proposed,
consistent definitions for flexibility, agility, adaptability, and robustness. The authors found
consistency with the analytical developments by Fricke and Schultz [2005]. Robustness, for
example, was subsequently specified as a measure of how effectively a system could maintain a
given set of capabilities in response to external changes after it has been fielded.

The Needs Context analytical construct therefore builds from robustness as defined by Ryan et
al. [2013] and the concept of broad utility advocated by Goerger et al. [2014] to create a
requirements-based evaluation of a non-cost value of system design alternatives. Robustness
of Fielded System Capabilities and Capacity with respect to Operational Requirements is a more
complete descriptor to aid accuracy and utility of a Needs Context as a building block in future
analyses.

We then investigated the relevance of placement of the Needs Context within a larger
analytical workflow. The Needs Context process begins by defining any number of Needs
Contexts, each defined by some individualized subset of the performance attributes defined for
the system. The attributes within each Needs Context are assigned threshold and objective
requirement values as well as a preference ranking (i.e., preference across attributes within the
given Needs Context) or weighted by any other means. The same performance attribute may
be used in multiple Needs Contexts and characterized differently by threshold, objective, and
rank/ weight values in each one.

The Needs Context is essentially an analytical filter to rapidly identify the system design
alternatives that provide the most value to Stakeholders and/or mission needs in a transparent,
scalable manner that preserves future comparability. As such, it may apply to a raw, freshly
generated tradespace or a tradespace that has already been filtered by some other means. The
Needs Context approach and algorithms are robust to either scenario and may be applied at
any point in an analytical workflow. It is important to understand, however, what the Needs
Context does by way of selecting design alternatives based on a Broad Utility evaluation of a
specific Robustness dimension. This will allow proper systems engineering of an entire

92

analytical workflow such that the information presented to an analyst is consistent with the
goals and specifications of ERS.

Consider that a typical tradespace for early-stage design alternatives of defense systems may
be quite large. There may be thousands of alternative designs and hundreds of design
attributes if not more in some cases. Taken together with the immense flexibility inherent in
the Needs Context construct, it can be challenging for an analyst to have a good understanding
of what impact a given Needs Context produces in terms of valuing the design alternatives. We
therefore need a way to evaluate the big picture of this impact on a per-Needs-Context basis
before moving on to evaluation of multiple Needs Contexts and their tradeoffs simultaneously.

One simple and clear way to achieve this is to create a raw count histogram of the top X% of
utility scores for a given Needs Context, and overlay these scores with the raw count histogram
from the “full tradespace” before application of the Needs Context filter. 25% is a good
example number for this approach to be informative. Using X% = 25% as an example, this does
not refer to those design alternatives with utility scores above 0.75 but rather the top 25% of all
utility scores for the given Needs Context. This histogram overlay will present a visual graphic
to an analyst showing the effect of the given Needs Context before accepting those results and
proceeding to the next Needs Context definition or analysis of all Needs Contexts. This
visualization may be displayed alongside a heatmap showing the Spearman correlation
coefficients from the “full tradespace”. These correlations will help analyst quickly see positive
or negative relationships for attributes. That way, if ‘best’ values are lost for a given attribute
that was not defined in a Needs Context, we can see how it related to other attributes and
therefore why. This knowledge will allow the analyst to decide if this is acceptable or if the
Needs Context should be adjusted. The intent is to provide a quick and intuitive “big picture
understanding for each Needs Context.

The overall workflow for this process is depicted in Figure 13. The precise equations and math
behind these steps have been provided previously in [Sitterle et al. 2014] and GTRI’s
contributions to the Phase 2 ITAP Final Technical Report.

93

Figure 13: Graphical depiction of Needs Context Steps and Workflow

The GTRI team next investigated different methods that might help modify this approach if the
attributes specified as part of the value equation were not truly independent from a
stakeholder perspective. Most valuations methods still use some version of simple additive
weighted (SAW) measures – including multi-attribute utility theory (MUAT) methods – which
frequently assume that no interaction between the valued attributes exists even when that has
not been verified. Fuzzy methods evolved in part to cope with potential interactions as well as
a means of handling uncertainty surrounding them. These methods include non-additive
subjective and objective functions such as ordered weighted average (OWA) and fuzzy integrals.
The Choquet integral is part of this latter category and has been used previously in the context
of multi-criteria decision-making. [Grabisch and Labreuche, 2010)]

Like SAW measures of utility, the OWA and Choquet integral operators are aggregation
functions. However, a fundamental difference is the reordering process used for the fuzzy
methods. For example, a weight in an OWA aggregation function is not associated with a
specific argument but rather with its ordered position in the aggregate [Grabisch 1996; Ben
Hassine-Guetari, Darmont, and Chachat 2010]. In our case, this would correspond to ordering
the values of specified attributes (i.e., as defined by the attribute’s value function scaled as
described previously) for a given design alternative, with the weights dependent on the
placement of the value in that reordering. This approach does not, however, take into account
that a decision maker may have very distinct priorities for which attribute is the most important
that are not reflected by the valuation of that attribute.

The Choquet integral in its discrete form uses a similar reordering basis and substitutes the
classical weight vector with a monotone fuzzy set function called a capacity. These fuzzy
integrals can represent interaction between criteria because a weight of importance (i.e., a
capacity) is attributed to every subset of criteria. The fuzzy weights assigned to the various

94

subsets of n total attributes may be supra-additive, additive, or sub-additive. However, for an
alternative with n attributes, (2n – 2) coefficients must be either specified by the analyst or
determined via some other means to evaluate a Choquet interval [Grabisch & Rouens, 2000; Fu,
Hall, & Lawry, 2005]. The number of coefficients involved in the fuzzy integral model grows
exponentially with the number of criteria to be aggregated. And, the attribute valuations and
hence integral equation changes with each alternative according to the reordering of the
specified attributes.

The exponential complexity of evaluating a design alternative “valuation” using Choquest
integrals makes the method exceeding difficult to use for large or even moderate numbers of
contributing attributes. Additionally, while methods including partial preference ranking and
information theoretic functions have been employed to calculate the numerous fuzzy weights
on the subsets and ease the burden otherwise on the analyst, these do not eliminate the need
to reorder the attribute values that populate the integral structure for each alternative. Many
of these methods also depend on some quantifiable characteristics present in the data (i.e., the
tradespace) at that point in the analytical process. For example, using a tradespace generated
measure such as one of the various correlation measures between the attributes may be
employed to determine supra, simple, or sub-additivity for the capacity relationships.
Unfortunately, this would eliminate the direct comparability of one tradespace analysis to the
next since such measures will change not only from one tradespace to the next but also with
any other analytical “filtering” method applied earlier in the process.

In light of these experiences, the GTRI team next chose to consider various ways in which
uncertainty could be brought into the additive function for broad utility and carried forward as
part of the analytical process. In an additive function of weighted valuations on attributes,
uncertainty could come in on either the valuations or the weights. Uncertainty on the value
functions would be expressed in terms of uncertainty associated with the KPP scaling
parameters, the objective and threshold requirement levels that determined the valuation. The
potential space for valuation this could open, however, did not preserve the original intent of
this construct and process.

Turning therefore to uncertainty on the weights, we considered two distinct cases: (i) ordinal
ranking of attributes was provided but without certainty, or (ii) no ordinal ranks at all were
provided. (Recall that a Needs Context by definition specifies only a subset – though any subset
– of attributes present in the tradespace. It is so defined in order to provide evaluations of
alternatives based on what is most critical to stakeholders.) Applying uncertainty to the
weights for the additive value function creates a stochastic version of the analysis achieved via
an efficient Monte Carlo on a specified random distribution for (i) and constrained according to
an ordinally defined convex polytope for (ii). This approach is well developed and applied to
multi-attribute additive utility problems throughout the literature. The approach was well
defined by Charnetski and Soland [1976 & 1978], Parnell [1999] and then expanded upon
tremendously by [Lahdelma et al. 1998; 2003; Tervonen, Tommi, and Lahdelma, 2007]. The
benefit of including uncertainty in this manner is that it allows us to move away from

95

deterministic evaluations without requiring in depth knowledge about models or other sources
of uncertainty that may not be available to the analyst.

The second primary focus of Phase 3 was to implement the processes and tools in a robust way
such that the resulting framework can be leveraged in future Phases to further support
additional methods and –ilitiy-related analyses. One principle tenet to accomplish this focus is
to recognize that end users have different initial conditions to their problems and require a
framework that enables them to inject themselves into different points along the generalized
Systems Engineering workflow.

For example, one user may already have a high level SysML model describing their problem
while another may have a set of analysis models that can be executed to generate a
tradespace. In fact, a user may have previously generated their tradespace data using outside
analysis codes but need to perform additional analyses as part of a trade study to extract design
alternatives that satisfy their particular needs.

While the framework is informed by this desired end user flexibility, specifically for Phase 3 the
Needs Context analysis formulated in Phase 2 was decomposed into smaller reusable functional
building blocks. These functional blocks were then implemented in the Python programming
language as steps in a data pipelining tool. Now particular Needs Contexts analyses can be
performed by composing these blocks together into a pipeline and then passing in a tradespace
to analyze. Because of the flexible framework, the pipelining step is separate from the
tradespace generation step to allow a user to inject a previously executed tradespace data set
from outside the framework. In the future, additional blocks can be developed along a similar
paradigm that can be composed with the Needs Context analysis to address alternative –ilitiy-
related metrics and analyses.

In addition to the development and implementation of the data pipelining additional effort has
been to expand on the initial web tool from Phase 2. The web tool explored in Phase 2, and in
other work, offers a collaborative and distributed way to interact with the flexible framework
being developed. This interface development work has been to offer additional visual feedback
to the user about the particular Needs Contexts and tradespace under consideration and
support filtering of the tradespace based on each design alternative’s utility.

5.2.1 PHASE 3 INSIGHTS ON TRADESPACE ANALYSIS

A major understanding from this process is that generating a tradespace from various models is
not a trivial task if the goals are to achieve flexibility, scalability (often via properly orchestrated
modularity), and efficiency of the process. Also, a use case has a specific path through the
networked workflow. Driving the tool development with a generalized workflow helps ensure
we can meet the requirements of future use cases.

96

Similarly, a Needs Context is not the same as a use case. In an operational sense, the latter is a
defined scenario that captures various exogenous conditions under which the system must
achieve desired performance. Use cases are therefore typically unique to the defined
operational scenario and variable levels/ ranges defined. In contrast, a Needs Context is
defined from a stakeholder perspective and based entirely on performance requirements and
prioritization of those requirements. It may indeed help evaluate a use case, but the
definitional basis is distinct.

In addition, -ilities are often defined according to life cycle stage or blur across several; care
must be taken to operationalize appropriately. Specifying the precise way in which any
analytical construct applies to tradespace analysis and also its specific lifecycle context is critical
to future synthesis with other methods. Composability and traceability of constructs is key to
future maturation using other methods in tandem. MPTs must be modular, efficient, and
scalable for same reasons as above.

Uncertainty was investigated here and applied based on methods found in the literature in
order to help elucidate how to propagate that through a series of analyses using some of the
processes and tools described. The key is not in applying a well-understood concept as much as
understanding how to blend various sources of uncertainty across constructs in a scalable but
also meaningful way that can be intuitively brought into visualizations to guide the analyst.
Methods must pay attention to computational feasibility as the dimensionality of the problem
increases; else the method should incorporate some sort of dimensionality reduction.

5.3 ACTIVITY 2. SUMMARY OF PHASE 3 RESULTS (SYSML BASED COST MODELING)

This section describes the SysML-based cost modeling work in ITAP being led by Russell Peak
(GT) and Jo Ann Lane (USC), as well as Ray Madachy (NPS) who recently joined in this
collaboration. One key ITAP research goal is to create a framework that enables a wide variety
of -ility models to come together to support system trade studies (including cost modeling as
one aspect of affordability). In this particular task we are bringing together four main bodies of
work (BWj) toward this goal:

 (BW1) The FACT work (which T. Ender et al. bring to the RT113 team) provides front-end
trade study capability.

 (BW2) The MIM work (which R. Peak et al. bring to the RT113 team) provides fine-grain
associativity capability to connect diverse models (including leaf-level design models and
analysis models), as well as knowledge representation patterns to fold in all kinds of "-ility"
models. This could potentially enhance the backend of FACT (ultimately leading to a more
generalized method beyond MIM). [Peak et al. 2010]

 (BW3) The cost/effort modeling work (which B. Boehm, J. Lane, R. Madachy, et al. bring to
the RT113 team) is one key type of "-ility" model that can be represented in the above

97

framework (e.g., to incorporate cost analysis with other analyses and trade study aspects
involving diverse comprehensive "-ility" considerations). This includes cost modeling for
systems engineering (COSYSMO), COSYSMO for systems of systems (SoS), software
development effort modeling (COCOMO), and related work. [Lane, 2009; Madachy, 1997; et
al.]

Other ITAP team members can potentially provide expertise with other models that can be
similarly represented (e.g., as others have recently implemented via SysML for
manufacturability, environmental sustainability, and end-of-life recyclability [Romaniw and
Bras, 2010; 2011] and [Culler, 2010]).

 (BW4) The overall SysML/MBE/MBSE technology area (which R. Peak, T. Ender, et al.
represent on the RT113 team) provides a practical means to embody and deliver the above
technology and concepts. [www.omgsysml.org]

See the ITAP Phase 2 report (for CY2013) for further background context and examples of the
above bodies of work and their envisioned combination in ITAP.

5.3.1 APPROACH TOWARD SYSML-BASED COST MODELING WITHIN MIM AND FACT

During Stage 1 of this task (Oct-Dec 2013) the focus was both (i) to define the big picture
context as highlighted above, and (ii) to implement an initial example (Case Study 1).

During Stage 2 (Jan-Dec 2014), which this current report covers, we have focused on the
following:

 Enhancing and refining the generic SysML-based cost modeling building blocks from Stage 1.
These building blocks and their underlying cost modeling principles are generic and thus can
be applied to practically any system (not just Case Study1 or Case Study2).

 Updating the Case Study1 implementation where needed as one means to re-verify the
updated building blocks.

 Implementing a new case study, Case Study2 [Lane, 2010], which has more complexity and
exercises more facets of the above cost modeling building blocks.

 Exploring additional technologies that can make interacting with these models more
intuitive and comfortable for people who do not have much background with SysML.

 Investigating how to interface with the growing body of SysML-based system models. The
goal is to wire together a SysML-based system model with a SysML-based cost model,
including automating the calculation of the cost drivers and size drivers that a COSYSMO
model requires. In contrast, today the typical practice is to manually estimate those values
and provide them as manual inputs into a COSYSMO model.

 Identifying potential additional future applications, both in terms of analysis capabilities and
case studies. For example, we should be able to support risk analysis (Madachy 1997, 2013)
by leveraging the same cost and size driver building blocks we have already created.

The sections below highlight this Stage 2 work.

file:///C:/Users/LoanerLaptop/Desktop/tmp-rsp/2013-10-gtri-serc-itap/1_Contract/Phase2/Final_Report/3_ITAP_Overall_Report/1_Prep/www.omgsysml.org

98

5.3.2 KNOWLEDGE CAPTURE VIA GENERAL-PURPOSE SYSML BUILDING BLOCKS

As given in the ITAP Phase 2 report (Dec 2013), in Stage 1 we took the COSYSMO-SoS cost
modeling concepts described in [Lane, 2009] and captured them as general-purpose SysML
building blocks. During Stage 2 we refined these building blocks, including correcting and
generalizing some calculations (which were not exercised in Case Study1). We also identified
additional useful parameters that can be derived from the existing parameters, such as metrics
regarding the quantities of various types of requirements at different SoS levels. We
implemented a few of these new parameters in Stage 2, and we plan to implement more during
Stage 3. The resulting building blocks are highlighted in Figure 14. The next section illustrates
how these building blocks are applied in two particular case studies.

Figure 15 graphically illustrates the comparison between a traditional COSYSMO spreadsheet
(for a single system) and a DNA signature (equation graph) that can be auto-generated from the
COSYSMO building blocks implemented in SysML. This DNA signature structure holds true
regardless of the case study or actual system that the building blocks are applied to. The cost
driver calculations and cost effort multiplier variable are seen in the typical dandelion roll-up
pattern in the lower-right portion of the DNA signature. The size driver calculations and
equivalent size variable roll-up are seen in a sparser dandelion pattern in the upper-left portion
of the DNA signature. The bottom-line estimate of systems engineering effort is calculated via
the equations in the middle that utilize these cost effort multiplier and equivalent size
variables.

In case the reader is not familiar with the concepts of DNA signatures (equation graphs), Figure
16 summarizes the notation and corresponding SysML elements from which they are
generated. Briefly, a red shape represents an equation, a blue shape represents the local
variables utilized in that equation, and a yellow shape represents the block properties that are
connected to those variables.

99

Figure 14: Implementation of COSYSMO-SoS cost/effort modeling concepts as general-purpose

SysML building blocks — selected SysML diagrams.

100

Figure 15: COSYSMO concepts as (i) traditional spreadsheet (on left) compared to (ii) SysML-

based DNA signature (on right).

© Ricardo Valerdi, University of Southern California

ENTER SIZE PARAMETERS FOR SYSTEM OF INTEREST

Easy Nominal Difficult E N D

of System Requirements 10 20 7 60 0.5 1.0 5.0

of System Interfaces 10 10 8 89 1.1 2.8 6.3

of Algorithms 20 15 10 221 2.2 4.1 11.5

of Operational Scenarios 5 5 4 223 6.2 14.4 30.0

593

SELECT COST PARAMETERS FOR SYSTEM OF INTEREST VL VL-L L L-N N

Requirements Understanding H 0.77460 1.85 1.59 1.36 1.17 1.00

Architecture Understanding H 0.80623 1.62 1.44 1.27 1.13 1.00

Level of Service Requirements H 1.31909 0.62 0.70 0.79 0.89 1.00

Migration Complexity N 1.00000 1.00

Technology Risk N 1.00000 0.70 0.77 0.84 0.91 1.00

Documentation H 1.13137 0.82 0.86 0.91 0.95 1.00

and diversity of installations/platforms N 1.00000 1.00

of recursive levels in the design N 1.00000 0.80 0.85 0.89 0.95 1.00

Stakeholder team cohesion VL 1.50000 1.50 1.36 1.22 1.11 1.00

Personnel/team capability N 1.00000 1.48 1.34 1.22 1.10 1.00

Personnel experience/continuity N 1.00000 1.46 1.33 1.21 1.10 1.00

Process capability EH 0.68000 1.46 1.33 1.21 1.10 1.00

Multisite coordination L 1.15326 1.33 1.24 1.15 1.07 1.00

Tool support N 1.00000 1.34 1.25 1.16 1.08 1.00

1.09632 composite effort multiplier

241.8 38.55 1.06

1.0

 SYSTEMS ENGINEERING PERSON MONTHS

equivalent size

pro forma parameter values

101

Figure 16: DNA signature nomenclature and corresponding SysML elements (illustrated via a

Fuel Tank tutorial example).

5.3.3 OVERVIEW AND COMPARISON OF CASE STUDIES

The composite ITAP team leveraged two existing (non-SysML) case studies to illustrate the
overall approach and to verify the results. Both associated papers [Lane 2009; and Lane 2010]
are comprehensive and include specific equations and numbers, which makes it feasible to
readily verify the new SysML implementations. The original papers utilize COSYSMO cost/effort
estimation concepts at both the SoS and single system levels.Error! Reference source not
ound. Table 8 shows some of the metrics for each case study, where you can see that Case
Study2 has two more systems versus Case Study1, as well as more SoS-level requirements and
more constituent system (CS)-level requirements, and thus more resulting cost model variables
and equations. The next two sections cover each case study individually.

Table 8: Comparison of case study complexity (healthcare SoS Case Study1 versus healthcare
SoS Case Study2).

SoS Case Study

of
Systems

of
Requirements

of
Vars.

of
Eqns.

Notes

1 [Lane 2009] 4 220 grand total: 50 SoS top reqs; CS reqs; 150 SoS, 20 non-SoS 1166 204 Baseline complexity.

2 [Lane 2010] 6 680 grand total: 130 SoS top reqs; CS reqs; 375 SoS, 175 non-SoS 1830 320 More facets and complexity.

DNA signature of instance ft330

(flattened equation structure auto-generated from SysML)

value property

(~system attribute)

constraint parameter

(~local variable)

constraint property

(~equation usage)

102

5.3.4 CASE STUDY 1 – HEALTHCARE SOS (BASELINE COMPLEXITY)

This section highlights the healthcare SoS Case Study1 implemented during Stage 1 (see ITAP
Phase 2 report from Dec 2013). During Stage 2 we also enhanced its implementation and added
additional views as presented here. Some of the original equation table and spreadsheet views
from [Lane 2009] are given in Figure 17, while Figure 18 shows the new SysML implementation
execution and results summary. In Figure 19 the results comparison indicates successful
verification of the SysML implementation. Figure 20 highlights the SysML-based
implementation and the resulting top-level DNA signature (as well as DNA signatures for
selected sub-elements in the case study). These initial results graphically illustrate the repeated
and recursive patterns that one would expect from an SoS cost model based on COSYSMO
concepts.

Figure 17: Healthcare SoS Case Study1 and its main systems: original document and

spreadsheet views. [Lane, 2009] 5

5
 Technically Case Study1 also has a Patient Management System, but it has no updates or affects at the SoS level

in Case Study1 and is thus not illustrated here.

Recursive application of

COSYSMO concepts for each

constituent system in SoS,

plus considerations specific to

SoS top-level.

4 main systems; SoS top reqs: 50; CS reqs: 150 SoS, 20 non-SoS (220 reqs grand total)

103

Figure 18: Healthcare SoS Case Study1: execution of the SysML model and its calculations.

Figure 19: Healthcare SoS Case Study1: verification of SysML model results compared to original

results.

Top-Level SysML Instances
(bdd view - after solving in ParaMagic)

Tool for Solving SysML Instance Structures
(object-oriented spreadsheet-like tool)

No. of variables: 1166

No. of equations: 204

Original Results Summary [Lane 2009]
(subject to known corrections & round-off)

SysML-Based Results Summary

24.65

137.59

No. of variables: 1166

No. of equations: 204

104

Figure 20: Healthcare SoS Case Study1: selected DNA signatures auto-generated from the

SysML model.

5.3.5 CASE STUDY 2 – HEALTHCARE SOS (INCREASED COMPLEXITY)

During Stage 2 the team utilized an additional healthcare SoS example from [Lane, 2010] as
Case Study2. This example has increased complexity vs. Case Study1 as seen in Error! Reference
ource not found. Table 8. Also note that it exercises additional features and variations in
COSYSMO-SoS that Case Study1 did not. Figure 21 summarizes the original case study. Figure 22
illustrates the execution of the Case Study2 SysML model and successful verification compared
to the original results. In Figure 23 we see the same overall DNA signature patterns that are
present in Case Study1, but note that the clusters are denser because Case Study 2 has more
systems.

105

Figure 21: Healthcare SoS Case Study2: original document and spreadsheet views. [Lane, 2009]

Recursively uses COSYSMO,

and adds SoS aspects.

6 main systems; SoS top reqs: 130; CS reqs: 375 SoS, 175 non-SoS (680 reqs grand total)

106

Figure 22: Healthcare SoS Case Study2: verification of the SysML model results compared to

original results.

Top-Level SysML Instances
(bdd view - after solving in ParaMagic)

Original Calculations & Results [Lane et al.]

etc.

Original Schematic

Good comparison

(subject to errors

in round-off)

No. of variables: 1830

No. of equations: 320

107

Figure 23: Healthcare SoS Case Study2: SoS-level DNA signature auto-generated from the SysML

model.

The composite team has also explored several potential extensions to be considered for Stage 3
(CY2015) and beyond. One key extension deals with how to provide alternative interfaces to
interact with these SysML-based cost models. SysML provides nice modeling capabilities with
flexible structure and rich semantics. However, people who do not know SysML may find it
challenging to interact with all of that power in its native SysML format. Therefore, several
organizations have developed technologies over the past few years that connect SysML models
to more traditional front-ends including interactive web pages and auto-generated documents.
One of the most promising implementations is Open-MBEE6, which NASA JPL has developed
and uses internally on its projects. JPL has recently released this technology to the public. We
have installed this environment at Georgia Tech recently and have learned the basics. During
Stage 3 we will investigate creating interactive front-ends that are spreadsheet-like and easy-
to-use, yet which maintain all the power of SysML building blocks behind them.

6
 https://github.com/Open-MBEE

108

Another extension area is additional capabilities that leverage the same cost and size driver
building blocks we have already created. For example, previous research indicates that we
should be able to support risk analysis (Madachy 1997, 2013), and other work has shown that
total system cost can be derived from the systems engineering effort calculated by COSYSMO.
Other envisioned applications include:

 Analysis of alternatives
o Subsystem/component upgrades
o Levels of capability option performance within SoS
o Interoperability assessments for alternatives

 System/component retirement (or replacement) assessments

 Capabilities vs. costs

Furthermore, we have identified several case studies for potential future work. One pool of
candidates involves simply taking existing SysML-based system models and wiring in the above
cost modeling building blocks. For example, there is a hybrid SUV model described in the SysML
spec itself that most vendors implement. We also have multiple SysML system models covering
various domains that are available from MBSE/SysML-oriented academic classes at Georgia
Tech. We have presented the Stage 1 work at several venues [Peak and Lane, 2014], and have
had resulting discussions with several companies in the DoD supply chain who are interested to
try it on their SysML-based projects. Note that DoDAF/UPDM-based models (which leverage
SysML) are additional candidates, including the search & rescue model that is part of the UPDM
spec. Two other specific case study candidates are illustrated in Figure 24.

Figure 24: Candidate future case studies.

Case: Emergency Response SoSCase: Military Operations SoS

Ambulance:
• Cardiac monitor

• IV infusion pump

• Camera

• Laptop

Level 1 Trauma Center:
• Emergency workstations

• Audio communication

• Video communications

• Patient information

• Cardiac monitor information

In-Patient

Systems

109

5.3.6 SUMMARY: SYSML COST MODELING

In summary, we have created cost modeling building blocks in SysML that leverage the
COSYSMO-SoS/COCOMO legacy and experiences. We have successfully validated this
knowledge capture via two healthcare SoS case studies: base complexity (Case Study1) and
increased complexity (Case Study2). Benefits of this approach include the following:

• Enables better knowledge capture:

– More modular, reusable, precise, maintainable, and complete (e.g., units).
– Non-causal; better verification & validation vs. spreadsheets.

• Enables swapping in/out alternative subsystem designs.
• Provides patterns that are easy-to-apply with practically any system or SoS.
• Provides a basis to integrate with existing body of system models, including executable

system models represented in SysML and/or DoDAF/UPDM. Methods to automate this
integration are WIP in RT113/ITAP for Stage 3 (CY2015).

The above building blocks and case study applications effectively demonstrate how the basic
MIM approach incorporates COSYSMO-SoS and related concepts in a modular SysML building
block fashion. This then puts COSYSMO-SoS capabilities within the broader MIM context that
can be built upon in future ITAP phases and tied together with FACT for larger-scale case
studies involving multiple “–ility” considerations.

5.4 ACTIVITY 3. FUTURE PLANS: PHASE 4 AND 5

In previous ITAP phases and on the basis of past lessons learned from other, customer-specific
toolsets, GTRI has identified and begun maturing the foundations of a design space
environment and integrated workflow to aid in the investigation of –ility formalisms. Building
on existing formalism definitions from across the ITAP team, GTRI is further investigating
methods whereby we may operationalize these formalisms into measureable and executable
constructs to support Pre-Milestone A analysis. The work proposed for Fiscal Years 2015 and
2016 seeks to further mature these methods, processes, and tools (MPTs) to specify
operationally relevant dimensions for alternative analysis of early-stage DoD system designs.

Throughout the development process and method inclusion, this effort and its future
maturation will seek to preserve an open framework and approach that promotes quantitative
and qualitative transparency of the tradespace refinement. Our goals are to ensure that the
workflow and toolset support easy inclusion of analytical constructs that may be developed on
other ITAP efforts to evaluate different –ilities in different ways. A key to synthesizing these
constructs will be scalability, flexibility, and modularity of the construct as well as the workflow
and processes we are striving to integrate. Our hope is that this philosophy will lead to more
effective collaboration and traceability while offering a capability to both refine and synthesize
research constructs for complex tradespace evaluation.

110

Specifically, for CY 2015 and CY2016, GTRI proposes to mature the previous work under ITAP in
two primary directions: 1) Maturation of the methods and constructs to analytically execute
formalisms, and 2) Maturation of the processes and tools that help operationalize these
constructs in a scalable and traceable manner. For the first, we seek to add the modeling and
analysis dimension required to evaluate and produce environmentally dependent system
attributes. Because the model of a system alone is insufficient to produce all quantitative
system attributes important to the decision making process, this step will enable us to evaluate
different environment influences relevant to fielded operational performance.

There are many –ilities being investigated across the ITAP teams that could benefit from this
capability. Context-dependent notions of risk and identification of feasible sets as being
investigated by WSU are good examples. Other –ility metrics include versatility, agility,
functional persistence, etc. as investigated by AFIT, USC, MIT, and others. A key to the
usefulness and broad applicability of incorporating this dimension is how to achieve the link to
environmentally dependent analytical blocks to help complete a tradespace generation. This
must also adhere to concepts of modularity, flexibility, and scalability to support tradespace
analyses.

Including the environmental dimension (or rather, the capability to include many different
environmental dimensions) is also directly in line with DoD Concept of Operations (ConOps)
needs. A ConOps is essentially a type of requirements document. It describes the mission of
the system, its operational and support environments, and the functions and characteristics of
the system within an overall operational environment7. A ConOps therefore communicates a
story in terms of needs from the users’ point of view at a given point in the life cycle. In the
Pre-Milestone A stage, evaluating anticipated system performance against various ConOps
helps promote early-stage development specification. In turn, this identifies a much smaller set
of design alternatives to carry forward for more rigorous and (typically) data-intensive
evaluations.

To evaluate the performance of how we incorporate the environmental dimension in the
workflow and toolset, GTRI proposes to mature the Needs Context construct from Phases 2 and
3. The Needs Context already adds a dimension to traditional utility analysis. Instead of one
utility per design alternative, there are as many utilities as there are Needs Contexts, which are
representations of requirements across stakeholders and/or operational needs. However, we
have not yet been evaluating conditions under which system attributes may be expressed
differently due to distinct operational environment conditions. When we add the environment
dimension, we may, for example, have three different values of a system performance attribute
for a single system design alternative. And, the different values may be arrived at through
different "mapping modules" that calculate environmentally dependent system attributes. The
resulting tradespace may be thought of as partitioned:

{ Intrinsic system attributes |

7
 ANSI/AIAA G-043- 1992, “Guide for the Preparation of Operational Concept Documents”

111

Extrinsic attributes dependent on Environment 1 |
Extrinsic attributes dependent on Environment 2 | etc. }.

This will occur because a system attribute may capture a concept, have the same name, and yet
be evaluated differently (by distinct mapping equations) and expressed at different quantitative
levels for a single design alternative.

Instead of aggregating the various expressions of a given system attribute that may arise
however, we seek to preserve the different performance information. Where the existing
Needs Context construct produces an aggregated utility, the environmentally dependent
system attributes will not be aggregated.

Key to successful realization of the above goals, are the supporting computational methods,
processes, and tools that also require additional research effort. Partitioned tradespaces are
high dimensional, nontrivial analysis problems that may require significant computational time
to detect the set of ideal alternatives in the tradespace. To reduce the analysis effort required,
the successful implementation must be scalable and flexible. Scalability of these methods
includes designing algorithms that are tractable for high dimensional problems as well as being
able to be executed in a parallel computing environment. The implementation should also be
flexible so that it may be reused for different problem domains. This can be partly
accomplished by understanding the algorithms needed and implementing the salient portions
in a modular fashion.

FY 2015
Specifically, for FY 2015, we propose to investigate the MPTs as described above to add the
environmental dependence and ability to produce and evaluate a partitioned tradespace.

FY 2016
For FY 2016, we hope to expand this concept yet again to consider variance within a single
environment. For example, a ground vehicle may be designed to operate with certain
capabilities in a desert environment. This is usually evaluated at some nominal conditions for
that environment. In reality, however, there are variations within that environment that can be
extreme such as during monsoon season. Any ground vehicle in such a regions would need to
perform under all conditions in that environment that occur with any degree of significance.
We therefore propose to develop the framework and MPTs to allow us to evaluate across single
environment distributions in addition to the multiple environment study proposed for FY 2015.

112

5.5 REFERENCES

1. Assistant Secretary of Defense (Networks and Information Integration) and DoD Chief

Information Officer (2007).  DoD Information Assurance Certification and Accreditation

Process (DIACAP), Department of Defense  Instruction 8510.01.
2. Assistant Secretary of Defense (Networks and Information Integration) and Chief

Information Officer (2009).  Clarifying Guidance Regarding Open Source Software (OSS),
Department of Defense Memorandum.

3. Beesemyer, J. , A. Ross, and D. Rhodes (2012). "Case Studies of Historical Epoch Shifts:
Impacts on Space Systems and their Responses." In AIAA Space.

4. Culler, M. (2010) Modeling Product Life Cycle Networks in SysML with a Focus on LCD
Computer Monitors. Master's thesis, GW Woodruff School of Mechanical Engineering,
Georgia Tech, Atlanta.

5. Hassine-Guetari, Soumaya Ben, Jérôme Darmont, and Jean-Hugues Chauchat (2010).
"Aggregation of data quality metrics using the Choquet integral." Aggregation of data
quality metrics using the Choquet integral.

6. Browne, Daniel, Robert Kempf, Aaron Hansen, Michael O’Neal, and William Yates (2013).
"Enabling Systems Modeling Language Authoring in a Collaborative Web-based Decision
Support Tool." Procedia Computer Science 16: 373-382.

7. Charnetski, Johnnie R., and Richard M. Soland (1976). "Technical Note—Statistical Measures
for Linear Functions on Polytopes." Operations Research 24, no. 1: 201-204.

8. Charnetski, Johnnie R., and Richard M. Soland (1978). "Multiple‐attribute decision making
with partial information: The comparative hypervolume criterion." Naval Research Logistics
Quarterly 25, no. 2: 279-288.

9. Christel, Michael G., and Kyo C. Kang (1992). Issues in requirements elicitation. No.
CMU/SEI-92-TR-12. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA.

10. Ender, Tommer R., Daniel C. Browne, William W. Yates, and Michael O'Neal (2012). "FACT:
An M&S Framework for Systems Engineering." In The Interservice/ Industry Training,
Simulation & Education Conference (I/ITSEC), vol. 2012, no. 1. National Training Systems
Association.

11. Fricke, E., & Schulz, A. P. (2005). Design for changeability (DfC): Principles to enable changes
in systems throughout their entire lifecycle. Systems Engineering; 8(4).

12. Fu, Guangtao, Hall, J., Lawry, J. (2005). "Beyond probability: new methods for representing
uncertainty in projections of future climate." Tyndall Centre for Climate Change Research
Working Paper 75.

13. Goerger, S.R., Madni, A.M., and Eslinger, O.J. (2014). “Engineered Resilient Systems: A DoD
Perspective,” Conference on Systems Engineering Research (CSER 2014), Procedia Computer
Science; 28, 865-872.

14. Grabisch, Michel (1996). "The application of fuzzy integrals in multicriteria decision making."
European journal of operational research 89, no. 3: 445-456.

15. Grabisch, M., and Labreuche, C. (2010). "A decade of application of the Choquet and Sugeno
integrals in multi-criteria decision aid." Annals of Operations Research 175, no. 1: 247-286.

113

16. Grabisch, M., and Roubens, M. (2000). "Application of the Choquet integral in multicriteria
decision making." Fuzzy measures and integrals 40: 348-375.

17. Hazelrigg, George A. (1998) "A framework for decision-based engineering design." Journal
of mechanical design 120, no. 4: 653-658.

18. Lahdelma, R., Hokkanen, J., Salminen, P. (1998). "SMAA-Stochastic multiobjective
acceptability analysis." European Journal of Operational Research 106, no. 1: 137-143.

19. Lahdelma, R., Miettinen, K., Salminen, P. (2003). "Ordinal criteria in stochastic multicriteria
acceptability analysis (SMAA)." European Journal of Operational Research 147, no. 1: 117-
127.

20. Lane, J.A. (2009) Cost Model Extensions to Support Systems Engineering Cost Estimation for
Complex Systems and Systems of Systems. 7th Annual Conference on Systems Engineering
Research (CSER), Loughborough.

21. Lane, J.A. (2010) Evolution of Systems Engineering Cost Estimation. Chapter 6 (unpublished
draft) for cost modeling book. http://csse.usc.edu/

22. Madachy, R.J. (1997) Heuristic Risk Assessment Using Cost Factors. IEEE Software.
23. Madachy, R.J. (2013) Expert COSYSMO - Systems Engineering Cost Model Risk Advisor,

http://csse.usc.edu/tools/ExpertCOSYSMO.php (as accessed Nov 2013)
24. O’Neal, M., Ender, T.R., Browne, D.C., Bollweg, N.B., Pearl, C.J., Brico, J.L. (2011).

“Framework for Assessing Cost and Technology: An Enterprise Strategy for Modeling and
Simulation Based Analysis.” In MODSIM World 2011 Conference and Expo, Virginia Beach,
VA, October 14.

25. OpenMDAO; 2014. http://openmdao.org/
26. Parnell, G.S., Jackson, J.A., Burk, R.C., Lehmkuhl, L.J., Engelbrecht, J.A. (1999). "R&D concept

decision analysis: using alternate futures for sensitivity analysis." Journal of Multi‐Criteria
Decision Analysis 8, no. 3: 119-127.

27. Peak, R.S. and Lane, J.A. (2014) SysML Building Blocks for Cost Modeling: Towards Model-
Based Affordability Analysis. INCOSE International Workshop (IW14), Torrance, California.

28. Peak, R.S., Paredis, C.J.J., McGinnis, L.F., Friedenthal, S.A., Burkhart, R.M., et al. (2010)
Integrating System Design with Simulation and Analysis Using SysML. INCOSE MBSE
Challenge, Modeling & Simulation Interoperability (MSI) Team, Phase 2 Final Report (v2.1).
http://www.pslm.gatech.edu/projects/incose-mbse-msi/

29. Romaniw, Y., Bras, B., Guldberg, T. (2011) Sustainable Manufacturing Analysis using Activity
Based Costing in SysML. ASME IDETC/CIE, Washington DC.

30. Romaniw, Y. and Bras,B. (2010) Sustainable Manufacturing Analysis using an Activity Based
Object Oriented Method. SAE Journal of Aerospace 2(1) 214-224.

31. Ross, A., and Rhodes, D. (2008). "Architecting Systems for Value Robustness: Research
Motivations and Progress," 2nd Annual IEEE Systems Conference, Montreal, Canada.

32. Ross, A.M., and Rhodes, D.H. (2008). "Using natural value-centric time scales for
conceptualizing system timelines through epoch-era analysis." In INCOSE International
symposium.

33. Ryan, E. T., Jacques, D. R., & Colombi, J. M. (2013) An ontological framework for clarifying
flexibility‐related terminology via literature survey. Systems Engineering; 16(1), 99-110.

http://openmdao.org/
http://www.pslm.gatech.edu/projects/incose-mbse-msi/

114

34. Schulz, A.P., and Fricke, E. (1999). "Incorporating flexibility, agility, robustness, and
adaptability within the design of integrated systems-key to success?." In Digital Avionics
Systems Conference, 1999. Proceedings. 18th, vol. 1, pp. 1-A. IEEE.

35. Sitterle, V., Curry, M., Freeman, D., and Ender, T. (2014). “Integrated Toolset and Workflow
for Tradespace Analytics in Systems Engineering,” 24th Annual International Council on
Systems Engineering (INCOSE) Symposium, Las Vegas, NV.

36. Tamburini, D.R., Peak, R.S., Paredis, C.J.J. (2005) Composable Objects (COB) Requirements &
Objectives v1.0. Technical Report, Georgia Tech, Atlanta.
http://eislab.gatech.edu/projects/nasa-ngcobs/

37. Tervonen, T., and Lahdelma, R. (2007). "Implementing stochastic multicriteria acceptability
analysis." European Journal of Operational Research 178, no. 2: 500-513.

115

6 PENNSYLVANIA STATE UNIVERSITY

6.1 PAST RESULTS: PHASES 1 AND 2 RESULTS

Under Phase 2, PSU has developed a preliminary formal model of design as a sequential
decision process of initially considering broad ranges of potential solutions to the design
problem at a low level of detail, and then sequentially reducing the space of design solutions
considered while increasing the detail. More specifically, we consider how the computational
models used to support decision making evolve from simple models for early conceptual
analyses (e.g., Excel spreadsheets running on desktop computers) to extraordinarily detailed
models running on supercomputers (e.g., coupled aero and structural analyses). Key
considerations in establishing a workflow (and addressed in this work) include the nonrecurring
cost to create the models, the recurring cost to exercise them across a trade space, and the
reduction in trade space that can be achieved with the models. As each level of modelling
requires different levels of detail, the rate of increase of detail is also critical. Finally, how the
models couple to form a sequential chain of analyses is considered.

The model of decision making developed in this work
has its roots in the domain of marketing, which is
fundamentally concerned with how consumers
choose. While there are many different approaches
to modelling the consumer’s choice process, a
common thread is that the consumer goes through a
process of sequentially reducing the space of
considered choices through a number of discrete
sets. Shocker et al. [5] define a model that has been
widely adopted in the field, directly informing our
efforts (see Fig. 1). The initial set is the universal set
and is the set of all possible choices. The awareness
set consists of the subset of items for which the DM
becomes aware. It is a subset of the universal set and
is likely a strict subset. A consideration set is a
purposefully constructed set of potential solutions –
so creating this set took effort by the DM. The idea of
a consideration set is a critical one, as it reflects the concept that the DM makes a preliminary
choice in forming the consideration set prior to a final choice. The choice set is defined as the
final consideration set – it is the set of alternatives that are considered prior to a final choice.
Although only one consideration set is shown in Figure 25, there can be many intermediate
sets, each smaller than the predecessor and subject to more scrutiny. The strategies for forming
each set is expected to evolve adaptively based on the numbers of alternatives and attributes
as per adaptive strategy selection research [14-16].

Figure 25. Model of decision making in
marketing

116

This choice model has since been extended by the authors to explicitly include the effort to use
computational modeling to guide a DM (Decision Maker) in their search through the trade
space [9]. The basic premise is that DMs and their team start with low fidelity designs subjected
to low fidelity analyses. This phase identifies regions of interest and culls other regions from
further consideration using some heuristic such as compensatory or non-compensatory [1]. The
process is repeated while subjecting the reduced size set to further and further analyses. The
final choice set is analyzed at the maximum fidelity. Figure 26 shows an intermediate step in the
larger convergence process.

In executing a TSE (Trade Space Exploration) exercise and selection process against a particular
consideration set, the DM down-selects to a smaller consideration set thus forming a decision
epoch — their final decision is the single choice. The entire process can be viewed as a series of
decision epochs, with each epoch incurring an allocation of time and resources resulting in a
smaller consideration set for the next stage. Each epoch retains a set Graphically, the core
product of phase 2 is the design flow in the figure below.

Figure 26: Core Produce of Phase 2 Design Flow

6.2 PHASE 3 RESULTS
PSU has developed a preliminary formal model of design as a sequential decision process of
initially considering broad ranges of potential solutions to the design problem at a low level of
detail, and then sequentially reducing the space of design solutions considered while increasing
the detail. More specifically, we consider how the computational models used to support
decision making evolve from simple models for early conceptual analyses (e.g., Excel
spreadsheets running on desktop computers) to extraordinarily detailed models running on
supercomputers (e.g., coupled aero and structural analyses). Key considerations in establishing
a workflow (and addressed in this work) include the nonrecurring cost to create the models, the
recurring cost to exercise them across a trade space, and the reduction in trade space that can

117

be achieved with the models. As each level of modelling requires different levels of detail, the
rate of increase of detail is also critical. Finally, how the models couple to form a sequential
chain of analyses is considered.

The core of the modelling problem and analysis approach adopted here is that we start with a
fixed, finite of discrete points defining the tradespace, the consideration set. Each discrete point
is defined by a set of n parameters, thus the set forms a cloud of points in an n-dimensional
tradespace. No restriction is put on the form of the parameters other than that we can form a
rank ordering over them. So a parameter can be anything from the real number line to discrete
numbers, to choices of colors, as long as they can be ordered.

Models/analyses are applied to points in the tradespace, with the results used to decide which
tradespace points to carry forward and which ones to eliminate from further consideration.
Early models and analyses either do not incorporate all of the physics of the problem or do not
consider all of the parameters of the points, i.e., they consider a reduced level of detail of the
tradespace points. For this reason, reduced order models are incapable of completely reducing
a tradespace to a final solution. Instead, they can only decrease the size of the consideration
set. The remaining consideration set is then subject to further analysis by more expensive
modelling efforts that consider more parameters and more physics, resulting in further
decrease in the size of the set. In the final model/analysis stage, a choice of a single point in the
tradespace is made.

In the flow from a conceptual level model to a detailed model, we constrain the conceptual
level model to only remove points that are guaranteed to not be the final choice when run
through the final detailed model. Since the concept level model will be analysing trade points
based on fewer numbers of parameters, the requirement that points are guaranteed to be
removed in more detailed analyses tightly couples the levels of analyses. How the concept
model is used is heavily dependent on what the detailed model is and how it will be used. They
have to be considered as a flow.

Within this flow, then, all of the modelling stages prior to the final one serve only to cull the
tradespace. A particular level of model, when applied to either the original consideration set or
a reduced subset of it, will only remove the points in the set it is capable of removing. Each
model has a certain discriminatory power which is tied to the total number of points from the
original consideration set that it will remove. From a cost-of-modelling perspective, a
reasonable expectation is that the greater the discriminatory power of a model, the greater the
recurring and non-recurring costs of its use.

As this work is preliminary in nature, assumptions used in order to focus on the key aspects of
the modelling approach include

 Discrete pre-determined sets of design points

 All points described by the same set of parameters

 The concept of discriminatory power and the restricted ability of models to remove design
points

118

 No uncertainty in the models (such as could be modelled by a probability distribution)

Nomenclature:

Zi the ith consideration set of designs
qi size of the ith set |Zi|
Mi The ith modelling effort used to analyse a consideration set and cull it to a smaller set
X vector input to a concept model
Y vector of input to a detailed model
gc(x) concept model

gd (x,y) detailed model

6.2.1 FORMAL MODEL OF THE SEQUENTIAL PROCESS

Start with a random list that represents finite parameter trade space, Z, and where each
element of Z corresponds to a parameter of a design. An example would be spherical tank
design where the three parameters are radius, wall thickness, and material choice and so Z =
[radius, thickness, material] and each of the parameters can take values from some set of
possibilities.

The space of Z has an ideal point z* . The ideal point is the point that would be chosen if there
were time and ability to analyse every point in Z with the most detailed modelling effort. We

apply a “modelling effort” M to Z and this refines and localizes the position of . The modeling
effort can be more or less discriminatory, with differing results for each case. So if we have
efforts and and and is more discriminatory, then using results in a smaller next

set as compared to using .

Modelling efforts also have cost. The cost of an effort is decomposed into a fixed cost for
initially establishing a model and a variable cost proportional to the size of the set Z that the

model is applied to. We will use a linear approximation to cost, so cost of model is

, where is the size of the set Z. Label the size of the set as qi , then
 ci = a i + biqi .

The simple linear cost model neglects factors such as learning curves, where the cost per
analysis should decrease with each analysis conducted. It also neglects sustainment costs
merely for having a model in hand, such as annual licensing costs for software and hardware.
These can be added to increase accuracy.

z*

M1 M 2 M 2 M 2

M1

ci M i

ai + bi Zi Z

119

6.2.1 The Modeling Effort M

The modeling effort M is all of the cost and time to define designs and to identify and acquire
computational models to the point of being able to use them, the time and effort to train the
people in using the tools, along with the cost and time to exercise the models, analyze the
results, and down-select the trade space. The discriminatory power of the modeling effort is a
function both the tools used to execute it and the people executing the effort. So for example
the same toolset used by senior users empowered by the final decision maker would likely have
more discriminatory power than a group is less trusted users. In summary, the modeling effort
includes a technology element for populating the tradespace and visualizing it, and a human
element for analyzing the results and making a decision. The model has a fixed and variable
cost. Furthermore, the model has a discriminatory power, which is reflected in its ability to

localize the ideal point .

An important restrictive modeling assumption adopted for this preliminary work is that
applying a model to a space reduces the space to a subset of the original q, not by a percentage
of the remaining qi . Therefore, there are no gains to be realized by repeatedly exercising the

same model. Similarly, the size of the set realized by running a model is independent of set it is
run over, unless the set’s size is smaller than qi . This is a restrictive assumption that can be

relaxed and modified in later models.

6.2.2 SINGLE STAGE MODELING VERSUS TWO STAGE MODELING

Look at the case where we have two efforts, and , assume that is of the quality that

applying to all of will identify exactly The effort will not identify exactly where

is, but will cull the space of Z to some smaller region where , or equivalently . If

 is run against Z first, then when is run, it need only be run over since we know that

does not lie in the set . This results in a cost savings in running since the run cost

depends on the size of the space to run it on. This is the fundamental key to executing the
multi-step modeling, the reduction in size of the set considered by the next stage of analysis.

So what must hold with regards to the costs of and and the reduction in set size by in

order to justify using a two-step process? The cost of a single step process is . The

cost for a two-step process is

 .

Solving for results in the following relationship:

 .

So needs to restrict the space to or less in order to justify using it in a two-stage process.

z*

M1 M 2 M 2

M 2 Z z*. M1 z*

Z1 Z1 < Z q1 < q

M1 M 2 Z1 z*

Z - Z1 M 2

M1 M 2 M1

c = a2 + b2q

c = a1 + b1q+a2 + b2q1

= (a1 +a2)+ b1q+ b2q1

q1

q1 £
(b2 - b1)q-a1

b2

M1 q1

120

6.2.3 MULTI-STAGE PROCESS

The sequential process can have arbitrarily many modeling steps. Consider the case of having
three potential models to employ. There are four potential configurations to consider (note
that all four sequences end with):

In general, if there are n models to choose from then there is an upper bound of possible
configurations to consider. This upper bound is loose, however, and can be tightened
considerably. Considering all of the alternatives, the cost of each is the following:

The alternative paths can be laid out as a graph through a state space, with ’s as states and

the models used as arcs in the graph.

Figure 27. Sequencing of models

Adopting the nomenclature , the best modeling approach to get to state can be

calculated as

while the best modeling approach to get to state is

and the only approach to get to is to use M1 . In general, if there are N models, then there

are potentially 2N-1 configurations to choose from, but one only needs to actually consider

 N + + 3+ 2 +1= (N 2 +N) / 2 possible values, which can be written as

M 3

M3

M1M3

M 2M3

M1M2M3

2n-1

c3 = a3 + b3q

c13 = a1 +a3 + b1q + b3q1

c23 = a2 +a3 + b2q + b3q2

c123 = a1 +a2 +a3 + b1q + b2q1 + b3q2

qi

M iM j®M ij
q3

M123 = min M1M3,M12M3,M3[]

q2

M12 = min M1M2,M2[]
q1

121

number of combinations =
N +1

2

æ

è
ç

ö

ø
÷ .

6.2.4 EXAMPLE: WING DESIGN FOR LIGHT CIVIL AIRCRAFT

The performance of a wing is primarily a function of its geometry, which for typical light civil
aircraft can be characterized by its airfoil properties, span, and chord. Given a wing that uses
the same airfoil shape throughout, and the 2-D airfoil has a known rate of change a of cl with

respect to angle of attack a of cl = ala , then a first order approximation to the behavior of the 3-

D wing is the relationship

 aw =
al

1+
al

peAR

where e is the Oswald coefficient and AR is the aspect ratio,
which is based on the wing span b and the wing area S. This
model only has the variables b and S; and the equation to
determine aw is in simple closed form. It can be considered a

concept model.

improved model of wing performance can achieved by using
lifting line theory [17] to model the wing is a series of finite 1-D
wing segments with vortices from each segment influencing the

other (Figure 28). This improved modeling approach involves both increasing the number of
design variable to be specified (the wing chord for each segment) and the computationally

complexity (the algorithm solves a linear system of size equal to the number of segments the
wing is divided into). Whereas the concept model was a simple closed form equation, a lifting

line model dividing the wing into m segments requires solving a set of m linear equations with a
typical algorithmic complexity O(n3). Additionally, the wing chord at the m locations must be

specified. The ability to choose the discretization m offers a relatively smooth continuum of
models of increasing detail to consider.

We define the initial consideration set Z to be a set of 5000 different wing designs, each with a
unique choice of 2-D airfoil (setting al), a fixed span b and a set of 200 chord values along the

wing. We can arbitrarily choose three levels of models to consider, the concept model, a lifting
line model with m=20 unique wing segments, and a lifting line model with m = 200 segments,
i.e., maximum detail.

Figure 28: Wing Segment

122

Table 9. Models of wing to form a sequence from

Model Description Variables Complexity Accuracy

M1 Closed form
equation

al, b, S O(1) Low

M2 Lifting line with 20
chord segments

al, b,
chord1,…,chord20

O(203) Medium

M3 Lifting line with 200
chord segments

al, b,
chord1,…,chord200

O(2003) Final

Assuming that the design problem consists of finding some ideal combination of wing
aerodynamic performance with mass, cost, aircraft space requirements, etc., we would want to
use the cheaper models as much as possible to remove as many of the designs in Z as possible
prior to running the more expensive models. All model sequences must end with M3, however,
as only it can discriminate between the wing designs.

6.2.5 CONNECTION BETWEEN CONCEPT & DETAILED

Consider the simple wing model above, and the relationship between M1 and M2. The concept
model only has the three input variables, while the (relatively) detailed model has 21. There are
potentially many wing designs in Z that are unique with respect to M2 but have the same three
values of input with respect to M1.

A similar property holds between M2 and M3. We say that to fully describe a wing requires
setting 201 attributes. When a wing has fixed only the 20 chord values needed for M2, we in
essence have fixed 21 of the 201 attributes that fully describe a wing, and have 180 degrees of
freedom remaining. The 180 degrees of freedom reflect on deferred decisions. When we run
M2, we are leaving the other 180 variables free to take a value to be determined later. This is in
a way uncertainty, but it is fundamentally different from the uncertainty associated with
unmodeled physics or random events, and cannot appropriately be modeled by a probability
distribution. Instead, it should be modeled by an interval. The formal model of the relationship
follows.

6.2.7 Formal Model of Relationship between Concept & Detailed
Assume there is a detailed model and a conceptual model. The detailed model has as input a
set of vector-valued variables x and y from discrete sets of parameters X = {x1, ,xN} and

 Y = {y1, ,yM} and returns a scalar value v that is to be minimized,

 v = gd (x,y) .

The complementary conceptual model only takes as input x and that has the following form:

 v = gc(x).

The decision problem is to find some optimal choice of x and y satisfying

123

v* = min

x,y
gd (x,y)

x*,y* = argmin
x,y

gd (x,y)

Further assume that the detailed model is expensive to exercise, and that finding the optimum
requires an exhaustive search of all possible values for X and Y. In order to reduce the search
time, we’d like to use the lower order (conceptual) model to cull as much of the search space as
possible prior to running the detailed model. The complementary conceptual model that has
the following form
 vc = gc(x)

The concept model takes as input a subset of the inputs to the detailed model. The goal is to
use the concept model to eliminate values of X that are guaranteed not to contain x* . An
example ideal concept model would be implemented as (or be equivalent to)
 gc(x) = min

y
gd (x,y) .

Such a model would identify x* directly, leaving only a search over Y to complete the
optimization. However by our problem definition this would require actually running the
detailed model exhaustively over the space of possible Y values for each X, which would result
in exactly the same number of evaluations as running the detailed model and optimizing over X
and Y in the first place.

Typically concept models are lower order models and almost always taking as input a subset (X)
of the total number of inputs that would run in a detailed model, meaning they do not contain
all of the details of relationships that are in the detailed model. Much work has been done on
“model uncertainty” but in this instance uncertainty is not the correct term, since what really
remains when we pick a value from X is interval, i.e., there are remaining degrees of freedom as
we still need to ultimately pick a value from Y.

Instead of a single concept model, we propose to have a concept interval returned by the
conceptual model.

vl = gl (x)

vu = gu (x)
 .

For a particular value of X, the upper and lower bounds have the property
gl (x) £ min

y
gd (x,y) £ gu (x). So the concept model forms an upper and lower bound on the best

possible value achievable with gd given X is fixed. The bounds define an interval in which the

ideal point x* must lie. The concept model(s) can then be used to exclude regions of X that x* is
guaranteed not to lie.

 "xi ÎX : if $ x j ÎX s.t. gl (xi) > gu(x j) : xi Ïconsideration set

In plain English, for a point xi if there is another point x j such that the best possible result of

gd (xi ,y) is worse than the worst possible result with gd (x j ,y) then we know that xi ¹ x* , i.e., we

can remove it from the consideration set of candidates
for x* .

Figure 29. Model value space

124

Figure 29 shows a graphic example of the principle. The grey region is the projection of all
values of v = gd (x,y), while orange curve and the blue curve are the lower and upper bounding

curves respectively on the best possible value of gd (x,y) for a given fixed x.

Reconsidering the wing design problem, let each of 201 parameters of {al ,chord1 ,chord200} take

one of 10 possible values. So there are potentially 10200 points in the initial consideration set Z
if we were to explicitly enumerate all possible combinations. Treating the models M2 and M3 as
concept and detailed respectively, then

X = {al ,chord1 ,chord20}

Y = {chord21 ,chord200}
.

The model M3 takes in all of M2’s variables plus additional ones. For M 2 to be a proper

conceptual model with respect toM 3 it should return two values,

 M2l
(x) £ min

y
M3(x,y) £M2u

(x) .

6.3 FUTURE PLANS: PHASES 4 AND 5 PLANS
This effort contains two key contributions to the design community; a model of design as a
sequential decision process of refinement using progressively more accurate and expensive
models, and a connection approach for how conceptual models couple with detailed models. A
number of assumptions were used to simplify developing and understanding the modeling
approach. One was that a discrete pre-determined set of design points formed the
consideration set Z. However, even in the simple wing problem the size of Z would be 10200,
which could never be exhaustively enumerated. There are no obvious hindrances to extending
the modelling approach to continuous spaces. Another assumption is that all points are
described by the same set of parameters. An obvious counter-example is where a concept
model for a ship is created in an Excel spreadsheet with a fixed set of parameters (X) but then a
solid geometry model is created for the detailed design, which differ from other detailed design
by gigabytes of data. The key is the fact that after xÎX has been specified, many degrees of
freedom remain, and do the concept model should return ranges, not single values.

The assumption that models have a discriminatory power and a restricted ability of models to
remove design points aligns well with the idea that trade spaces are culled at least initially using
non-compensatory strategies such as applying requirements/constraints to candidate designs
and removing them if they violate. The final assumption is that there is no uncertainty in the
models. There is no inherent reason that uncertainty cannot be included - the purpose in this
assumption is just to clearly highlight that the models need to provide bounds and intervals as
output rather than points due to the remaining degrees of freedom of the decision process.
Including uncertainty would have the impact of making the upper and lower bounds
probabilistic rather than deterministic, otherwise the fundamental approach remains the same.

The next step in research is to identify candidate models across many domains and attempt to
categorize their recurring and nonrecurring costs and discriminatory power, forming them into

125

sequences and exploring methods to create optimal model flows. Methods to easily create the
upper and lower concept models are also a near-term target. Last is the introduction of
multiple objectives into the mix, which will greatly complicate the definition of an upper and
lower bound, replacing a simple greater/less than relationship with a dominance one.

6.3.1 PHASE 4 PLANS

In Phase 4, PSU will focus their efforts on validating the Sequential Decision Process model
against a series of case studies of increasing complexity. The case studies will in turn drive the
next steps in exploration. We will implement the simple wing design model with varying
number of wing segments from 10s to thousands, and will treat it as both a value optimization
problem (linear-weighted sum or other scalar function) and as a multi-objective problem with
Pareto optimality as the defining metric. Intent is to publish at the ASME International Design
Engineering Technical Conferences, August 2015, and submit to the journal our results.

Under separate funding, PSU will have opportunity to deploy the techniques developed here to
both the US Army Capital Planning Model effort and the DOD Rapid Composition of Cost Models
effort. These complementary efforts will offer the first opportunity to prove out the techniques
on practical problems.

6.3.2 PHASE 5 PLANS

With phase 4 focused on validation and extension, Phase 5 will be focused on deployment. PSU
will develop questionnaire templates to help organizations understand their sequential
modeling process, along with computational tools to help them understand the principles of
fidelity increase versus trade space decrease. Finally, we will deploy decision tools to help
program managers and system engineers plan the Model-Based System Engineering processes

6.4 REFERENCES

1. Payne, J.W., J.R. Bettman, and E.J. Johnson, The adaptive decision maker. 1993: Cambridge
University Press.

2. Busemeyer, J.R. and A. Diederich, Survey of decision field theory. Mathematical Social Sciences,
2002. 43(3): p. 345-370.

3. Busemeyer, J.R. and J.T. Townsend, DECISION FIELD-THEORY - A DYNAMIC COGNITIVE
APPROACH TO DECISION-MAKING IN AN UNCERTAIN ENVIRONMENT. Psychological Review,
1993. 100(3): p. 432-459.

4. Hotaling, J.M., J.R. Busemeyer, and J. Li, Theoretical Developments in Decision Field Theory:
Comment on Tsetsos, Usher, and Chater (2010). Psychological Review, 2010. 117(4): p. 1294-
1298.

126

5. Shocker, A.D., et al., Consideration set influences on consumer decision-making and choice:
Issues, models, and suggestions. Marketing letters, 1991. 2(3): p. 181-197.

6. Frey, D.D., et al., The Pugh Controlled Convergence method: model-based evaluation and
implications for design theory. Research in Engineering Design, 2009. 20(1): p. 41-58.

7. Singer, D., N. Doerry, and M. Buckley, What is Set-Based Design? Naval Engineers Journal, 2009.
121(4): p. 31-43.

8. Stump, G., et al., Visual Steering Commands for Trade Space Exploration : User-Guided
Sampling With Example. Journal of Computing and Information Science in Engineering, 2009.
9(4): p. 044501:1-10.

9. Miller, S., et al., Preference Construction, Sequential Decision Making, and Trade Space
Exploration, in ASME 2013 IDETC/CIE 2013. 2013: Portland, OR.

10. Bettman, J.R., M.F. Luce, and J.W. Payne, Preference construction and preference stability:
Putting the pillow to rest. Journal of Consumer Psychology, 2008. 18(3): p. 170-174.

11. Dean, M. and A. Caplin, Search and satisficing. The American Economic Review, 2011. 101(7): p.
2899-2922.

12. Kahn, B.E. and J. Baron, An Exploratory Study of Choice Rules Favored for High-Stakes Decisions.
Journal of Consumer Psychology, 1995. 4(4): p. 305-328.

13. Abdul-Muhmin, A.G., Contingent Decision Behavior: Effect of Number of Alternatives To Be
Selected on Consumers’ Decision Processes. Journal of Consumer Psychology, 1999. 8(1): p. 91-
111.

14. Kahneman, D. and A. Tversky, The rational choice, values and frames. Psikhologicheskii Zhurnal,
2003. 24(4): p. 31-42.

15. Tversky, A. and D. Kahneman, RATIONAL CHOICE AND THE FRAMING OF DECISIONS. Journal of
Business, 1986. 59(4): p. S251-S278.

16. Tversky, A. and D. Kahneman, ADVANCES IN PROSPECT-THEORY - CUMULATIVE
REPRESENTATION OF UNCERTAINTY. Journal of Risk and Uncertainty, 1992. 5(4): p. 297-323.

17. Phillips, W.F. and D.O. Snyder, Modern adaptation of Prandtl's classic lifting-line theory. Journal
of Aircraft, 2000. 37(4): p. 662-670.

127

7 AIR FORCE INSTITUTE OF TECHNOLOGY

7.1 PAST RESULTS: PHASES 1 AND 2

Phase 1 focused on the development and application of the CEVLCC model referenced below.
Phase 2 focused on the initial work on the application to the Air Force Advanced Trainer (T-X)
Concept described below.

7.2 PHASE 3 RESULTS

7.2.1 APPLICATION PROJECT – A METHOD FOR EVALUATING DESIGN FLEXIBILITY EARLY IN DESIGN

APPLIED TO AIR FORCE ADVANCED TRAINER (T-X) CONCEPT

This research concluded that a methodology could be developed that quantitatively measures
design flexibility and the expected impact to Life Cycle Cost (LCC) based upon era realization.
The methodology builds on the stochastic life cycle cost work done by Ryan et al, [Ryan, E.,
“Cost-Based Decision Model for Valuing System Design Options,” PhD Dissertation, Air Force
Institute of Technology, Wright-Patterson AFB, OH, September 2012] and applies it to the Air
Force Advanced Trainer (T-X) Concept, with subject matter support from the AF Life Cycle
Management Center. Variations of an Air-Force-only trainer development program were
considered based on potential requirements for Navy, Heavy (multi-engine) and Special
Operations trainers. Varying probabilities for the realization of these requirements were
considered as well as the cost impact from incorporating “hooks” for these requirements in the
baseline AF-only design. These “hooks,” such as a stronger and heavier structure to
accommodate Navy carrier operations or a multi-engine configuration to support a heavy
aircraft requirement, had adverse impacts on both acquisition and sustainment costs, which
was not always offset by economies of scale in the acquisition and sustainment phases.

The quantitative measurement was accomplished by using LCC as a proxy metric for design
flexibility. Probability of occurrence for the requirements realizations, the cost impact of
design flexibility, and cost modifiers associated with economies of scale (for both production
and sustainment) were large drivers of expected LCC. Sensitivity analysis was performed to
identify how robust the preferred solution was to variations in the event probabilities and/or
cost impact parameters. Given the assumptions of the study, this method and application
demonstrated that when expected LCC is used to infer value of design flexibility, a quantifiable
return on investment can be measured. The results of this research were briefed to AF Materiel
Command Headquarters (AFMC/EN) and the Development Planning office of the AF Life Cycle
Management Center and were documented in the AFIT MS Thesis (AFIT-ENV-14-M-05) entitled
“Exploring a Method to Quantitatively Measure Design Flexibility Early in the Defense

128

Acquisition Life Cycle” by Captain Joseph Kim. Extensions to this work are looking to create and
demonstrate stronger linkages between the system/concept architecture and the design
impacts, as well as to provide sufficient input data for higher fidelity cost estimating models.

7.2.2. METHODOLOGY DEVELOPMENT WITH APPLICATION – EVALUATING THE IMPACT OF

REQUIREMENTS CHANGES ON DESIGN AND ACQUISITION EFFORT

Military systems have traditionally been designed to satisfy a small set of initial requirements.
This approach often causes an inability for the system to easily meet future requirements. This
research introduces a modeling method which uses architecture analysis to assess the impact
of change on a system module or component due to a specific requirements change. It
attempts to inform the designer/decision-maker as to strategies that are more likely to mitigate
the impact of potential requirements changes. The method modifies the Generational Variety
Index [Martin, M. V., & Ishii, K. (2002). Design for variety: developing standardized and
modularized product platform architectures. Research in Engineering Design, 13, 213-235]
methodology by including uncertainty in (1) the likelihood of a specific requirements change,
and (2) the impact of that requirements change on a system module. In addition to
requirements changes, per se, we consider two types of design changes that can result from a
requirements change—scalable changes, which are incremental in nature, and modifiable
changes, which are more radical. Our probabilistic model examines (1) how a specific
requirements change impacts a module, (2) how a given module is impacted by a combination
of requirements changes, (3) how a specific requirements change impacts the entire system,
and (4) how the system is impacted by a combination of requirements changes. Examples of
architectural information used by this approach include requirements traceability to system
functionality, allocation decisions tying functions to components, and identification of
interfaces and/or design dependencies between components or modules. Results obtained
from our method can further inform decisions regarding resource allocation and system design
in the face of uncertainty regarding future system requirements.

The following investigative questions are considered by this research:

1. What are various system-level architecture options that allow a system
architecture/design to meet current and possible future requirements? The system
architecture provides traceability from the requirements to system functionality to
system modules or components. The terms “component” and “module” are used
interchangeably for purposes of this research. A module is defined as an “an
independent building block of a larger system with a specific function and well-defined
interfaces” [Hölttä-Otto, K. (2005). Modular Product Platform Design. Espoo, Finland:
Helsinki University of Technology].

2. How does a type of requirements change impact a module/component?
3. How is the module/component impacted by a combination of requirement changes?

129

The two previous questions provide the necessary information for a decision maker to
understand the impacts on modules as a result of requirements changes. This information
allows system designers to determine where change mitigation should occur and how it should
occur.

4. How does a type of requirements change impact the system as a whole?
5. How is the system impacted by a combination of requirement changes?

These two questions use the same information available to the component impact questions
but instead focus the results on how the requirements impact the system rather than
components. This information provides the necessary information for a decision maker to
prioritize the management of requirements change and then determine strategies on how to
reduce the impact of changes due to requirements.

The proposed methodology as described by this paper only considers the initiating point of
functional change and the direct/indirect impact of that functional change on linking functions
in the system. The research demonstrates the model use through the analysis of a flexible
munition system architecture case study.

This effort will continue under Phase IV of RT-113. A Master’s Thesis by Captain Jason
Altenhofen will be provided in the March 2015 timeframe, and a paper/presentation based on
this work has been accepted for the Industrial and Systems Engineering Conference (ISERC) in
May 2015. Additional work associated with a flexible weapons cost modeling approach is
ongoing as part of this effort, and will be completed under Phase IV.

7.2.3 THEORETICAL DEVELOPMENT – ENERGY AND INFORMATION IMPACTS ON SYSTEM FUNCTIONALITY

AND EFFECTIVENESS

While system functions and functionality are widely used concepts in systems engineering,
there is significant diversity in their definitions and no unified approach to measurement. This
research establishes a systems engineering method for measuring impacts to functionality in
dynamic engineered systems based on changes in kinetic energy. This metric is applied at
particular levels of abstraction and system scales, consistent with the established multi-scale
nature of systems. By measuring system behavior in context with expected scenarios, it is
possible to estimate expected functionality or set bounds on a system's maximum
functionality. This measurement can be used to evaluate system robustness and resiliency,
compare systems, examine impacts to functionality based on energy or information availability,
and guide development of system architecture.

An initial investigation in this new research area explores the relationship between energy and
system functionality to assess the robustness of an operational system in the face of variations
associated with energy available. Results from this initial investigation have been submitted to
the INCOSE Systems Engineering Journal and for presentation at the Industrial and Systems

130

Engineering Conference (ISERC) in May 2015. Additional work in this area will continue under
Phase IV, and will address connections to information content, information availability, and
system complexity. The principal author for this work is Jason Clark, an AFIT doctoral student
supported in part by RT-113.

7.3 PLANNED PHASE 4 WORK - COMBINED AFIT AND NPS RT-113 TASK FOR 2015

AFIT and NPS are developing a common application and integrated effort for validating
several of the approaches they have been developing and refining under RT-46 and RT-113.
The application will involve heterogeneous teams of autonomous and cooperative agents for
ISR missions. A System-of-System level architecture will be developed encompassing a variety
of tactical ISR missions that must be conducted in contested and denied environments.
Environments that affect the functionality and/or performance of communications,
surveillance, and navigation environments present unique challenges for ISR UAV CONOPs with
respect to UAV system capabilities (communications, sensing, data processing, command and
control, navigation). Actors associated with this architecture will include not only variants of
autonomous/cooperative agents, but command and control and adversarial elements as well.
The architecture will be developed to support analysis of effectiveness and robustness given
uncertain future scenarios and possible design approaches for the autonomous/cooperative
agents and their associated command and control system. The architecture will also be
developed to support software and system cost estimating approaches in order to assess cost
effectiveness as well as mission effectiveness. This effort will build upon several prior efforts at
AFIT and NPS:

 AFIT has modeled System-of-System level architecture behavior and effectiveness in
both the Arena and MATLAB environments. These efforts have shown the value of
architecture-based modeling to aid in requirements definition and design decisions.
While these efforts have been successful, they have required a mapping from the
architecture definition to the modeling and simulation environment, and they have
typically not integrated cost estimation into the analysis. The current proposed effort
will utilize new Model Based Systems Engineering tools to eliminate the need for a
transition from the architecture to an executable model. Tools such as Magic Draw
and/or the Monterey Phoenix approach developed by NPS will be considered for the
proposed task.

 NPS has pioneered the Monterey Phoenix (MP) approach to developing executable
architectures that can be used to evaluate performance, expose design problems, and
uncover problems associated with emergent behavior. The approach can be used to
auto-generate a range of scenarios based on the behaviors of the various actors,
allowing the architect/system designer to modify the systems to either accommodate
favorable scenarios or eliminate the possibility of unfavorable scenarios. The intent
with MP is to support a complete cycle of automated system verification/validation that
is currently not possible using existing UML/SysML approaches.

131

 AFIT has been applying MIT’s Epoch Era Analysis for capturing uncertain future
requirements and environments. This has been combined with a stochastic life cycle
cost modeling approach to estimate an expected value of the life cycle cost given
probabilities for the future epochs and cost estimates to adapt or modify the systems to
accommodate the epochs. An initial application looked at the Air Force advanced
trainer concept, and a current application is applying the methodology to an Air Force
concept for Flexible Weapons (GBU-X). The current GBU-X effort is identifying the
architectural features essential for estimation of both acquisition and
operations/support costs of the systems, and seeks to create a business case analysis
that compares the legacy munitions approach to a more flexible architecture.

 NPS has been developing approaches for improving integrated systems and software
cost models and connecting them directly to tradespace analysis tools. During RT46,
they prototyped a web service for the COQUALMO cost/quality model and in this phase
are developing SysML constructs for computing COSYSMO and COCOMO II cost/risk
(with USC and Georgia Tech). The ISR UAV architectural system requirements can be
automatically fed into COSYSMO for systems engineering cost/risk. Software size also
needs to be captured. MP can compute function point measures for software size, and
this capability will be evaluated. It will also be assessed for deriving systems engineering
inputs.

The proposed AFIT-NPS tasks are as follows:

Develop a baseline Operational and System Architecture to capture a set of military
scenarios, using new Model-based Systems Engineering (MBSE) tool(s).

For a representative multi-agent UAS system within the environments of interest, this effort
will produce a baseline set of SysML views. In particular, a Parametric View will be produced
to support the cost and analysis models that will become part of the overall effort.

Transition the baseline architecture to the Monterey Phoenix environment. The MP
process will be used to identify alternate events for each actor in each scenario. With this
“superset” of information, we can automatically generate all possible use case variants
within the scope to provide a scenario coverage that far exceeds what could be done with
only a manual effort. This provides a more substantial reference data set the system
architecture must satisfy (containing many more possible behaviors, including off nominal
cases) and a more complete set of input data to ensuing cost and performance analyses.

Utilize the executable architecture modeling framework of MP to perform automated
assertion checking and find counterexamples of behavior that violate the expected

132

system's correctness. This supports a complete cycle of automated system
verification/validation impossible with existing SysML/UML technologies.
Exhaustive/representative sets of scenarios generated by MP will be transformed by
automated tools into implementation testing suites, another huge benefit providing the
continuity of design from the early architecture models to the implementation.

Design and Demonstrate ISR UAV tradespace. The power of new tools such as MagicDraw
and ModelCenter is the integration with analysis tools, across a network or on the same
machine. SysML has traditionally only captured and documented the operational concept,
system requirements, activities/tasks, organizations and information flows, including
possible physical instantiations. New MBSE tools facilitate analysis such as optimization,
simulation, design of experiments, assessment, sensitivity analysis and statistical hypothesis
testing and regression. For this project, such trades and characterizations could examine
collaborative and vehicle swarming algorithms, increasing autonomy on multi-vehicle, and
single operator operations. Likewise, the effects on environmental variables within the
architecture, such as communications and/or GPS jamming, air defenses, evasion,
camouflage, and other factors could define the scenarios. These types of trades
demonstrate how a business case for varying technologies, capabilities or designs could be
accomplished, if cost information is included.

Develop life cycle cost models for the various components of the architecture, and embed
them within a larger stochastic life cost estimating approach to evaluate cost
effectiveness in an uncertain future environment. Cost data will be attached to every
actor and event in every possible scenario, computing the cost of each scenario, were it to
occur. A probability of occurrence for each possible scenario will be generated, providing
for highly refined overall cost estimates (for operations, for maintenance, and perhaps
earlier lifecycle phases) within a specified confidence interval.

133

8 NAVAL POSTGRADUATE SCHOOL

8.1 PAST RESULTS: PHASES 1 AND 2

The NPS Phase 2 activities improved and piloted several existing ITA analysis toolsets based on
the results of Phase 1. The focus for iTAP MPT extensions and applications was in the Ships and
Aircraft domains, and making provisions for Space Systems in Phase 3.

We met the following goals for research as detailed in the Phase 2 report 2:

 Experimented with tailoring existing or new tradespace and affordability MPTs for use
by an early adopter organization

 Trained early adopters in its use, monitor their pilot usage, and determined areas of
strengths and needed improvements, especially in the MPTs’ ilities

 Extended the MPTs to address the top-priority needed improvements

 Worked with early adopters to help transition the improved MPTs into their use

 Identified and pursued further improvements for the early adopters or for more general
usage.

The tools were tailored for software product line cost modeling, and total ownership cost for
integrated engineering activities. The early adopters represented NAVAIR and NAVSEA. An
array of improvements for our models and tools were identified for going forward in Phase 3
for ility tradeoffs.

We supported outreach meetings to summarize and demonstrate iTAP capabilities to potential
early-adopter organizations. These included visits to the Army Engineer Research and
Development Center (ERDC) in Vicksburg, MS, and NAVSEA CREATE-Ships personnel in
Carderock associated with DoD Engineered Resilient Systems (ERS).

We also engaged in new community-building activities with NAVAIR stakeholders. NPS and USC
began collaboration with the NAVAIR avionics software product line FACE program. We are
supporting their surveys with recommendations, data collection, interpreting software lifecycle
cost models and calibrations of the COPLIMO product line cost model 8.

This MPT transitioning is an outgrowth from RT-46 Phase 1 and RT-18 product line cost
modeling. This application is a highly relevant example of modeling product line benefits for
the DoD. See the Appendix - Product Line Modeling Background for more detail as this is core
model is applied and extended in later phases.

A previous shortfall of our TOC toolset was lacking the capability to estimate operations and
maintenance. We added parametric maintenance models into our system cost model suite for

134

systems engineering, software engineering, hardware development and production. The initial
maintenance models are for systems and software.

Cost uncertainty modeling was also extended via improvements in Monte Carlo analysis.
Additional size inputs were made available for probabilistic distributions, as well as a wider
array of distribution types. This feature works in tandem with the new lifecycle extensions for
maintenance.

We began a ship case study for design and cost tradeoffs with military students at NAVSEA. The
group is designing a new carrier and integrating RT-46 cost models into a Model-Based Systems
Engineering (MBSE) dashboard for Total Ship Systems Engineering (TSSE). Part of the applied
research is a comparison and refinement of potential ship cost models for affordability
tradeoffs in the MBSE framework.

Initial comparisons of MIL-STD 881 Work Breakdown Structures (WBS) were performed to find
commonalities and variabilities across DoD domains, and identify suggested improvements.
This analysis informs us how to best structure canonical TOC tools to address multiple DoD
domains efficiently. Additionally, a detailed review and critique of the recent MIL-STD 881 UAV
WBS was done and deficiencies noted for autonomy trends which are of increasing importance.

NPS further extended Phase 1 cost models for breadth of engineering disciplines to include
systems engineering, software engineering and hardware. We also added Monte Carlo risk
analysis for a subset of cost parameters in the integrated SE/SW/HW cost model.

To better the address full lifecycle costs we improved TOC capabilities by adding lifecycle
maintenance models. We started on extensions of general cost models for DoD system types
starting with ships and space systems.

NPS supported startup efforts with USC, SMC and the Aerospace Corp. for researching and
incrementally developing the next-generation full-coverage space systems cost estimation
model COSATMO. A prototype mockup for an existing satellite cost model was developed to
support tool usage scenario discussions.

The recently updated MIL-STD 881C 13 standard WBS for UAVs was critiqued by NPS and
assessed for cost modeling. Recommendations were identified to better address autonomy
trends for the DoD, as these are increasingly important and crossing into the Ship domain for
mixed Navy systems.

See the Phase 2 report for underlying details of the WBS critique 2. A UAV oriented pilot
application is planned for Phase 4. This critique will help inform the cost modeling aspect for
UAV systems.

135

8.2 - PHASE 3 RESULTS

On Task 2 we reached out to DoD organizations and sought MPT piloting opportunities. Task 3
activities added incremental capability enhancements to our suite of system cost models and
tools. Phase 3 included the successful adoption of the Constructive Product Line Model
(COPLIMO) at NAVAIR resulting in follow-on research funding to extend the software cost
model. This example application of a model and tool is an outgrowth of both Task 2 for
piloting, and Task 3 to develop an ensemble of DoD-relevant cost models.

8.2.1 TASK 2: MPTS AND PILOTING

This task is a continuation of RT46 Method, Processes and Tools (MPT) development and pilot
applications. It continued some Phase 2 work seeking to further apply concurrent cyber-
physical-human system ilities tradespace analysis and design to NAVSEA and Army TACOM
systems. We supported the NAVSEA collaboration activities, helping prepare for the NAVSEA
Technical Interchange meeting on cost modeling capabilities but couldn’t attend.

After investigations to collaborate with the CREATE-SHIPS program in Phase 2, we sought to
pilot MPTs in the Navy Ship domain for affordability tradeoffs with NAVSEA ship design. This
continued in Phase 3 along with further targets of opportunity at NAVSEA. We also continued
integration and community-building activities with Engineering Resilient Systems (ERS) and
other DoD programs.

We also continued collaboration with the NAVAIR avionics software product line cost modeling,
defining goals of the overall FACE business case analysis. For this we studied NAVAIR’s air
platform scenarios and COPLIMO variation for model validation purposes. A multi-module and
multi-mission extension to support the avionics software product line cost analysis was defined.
See the Appendix - Product Line Modeling Background for further details of the model
foundation.

We helped validate the preliminary parametric approach adopted by NAVAIR and their
assumptions. We identified and discussed survey improvements for product line organizational
maturity assessment for the FACE consortium for NAVAIR.

For MPTs we also explored application of SysML architecture models to support costing in ship
and space system domains, and canvas for existing SysML models for deconstruction.
Monterey Phoenix (MP) 56 was identified as an alternative modeling approach for tradespace
analysis.

We continued assessment of the MP architectural modeling approach in conjunction with
SySML. We also evaluated the feasibility of using web service-based cost models in the MP
environment. Potential domain applications were evaluated and we chose a UAV swarm pilot

136

supporting an ISR mission. We defined a corresponding tradespace demonstration project
using MBSE tools with AFIT for Phase 4.

Supporting details of the NAVSEA and NAVAIR pilot applications are next.

NAVSEA Ship Design Pilot Application

We continued NAVSEA collaboration activities by demonstrating the NPS Dashboard for Total
Ship Systems Engineering (TSSE), in support of NAVSEA and the Army Materiel Systems Analysis
Activity (AMSAA) application to watercraft cost modeling and tradespace analysis.

NPS has a TSSE MBSE Dashboard platform suitable for MPT piloting, extending and transitioning
research. We can extend the TSSE MBSE infrastructure for affordability trades to complement
and interoperate physical tradespace with TOC models. This is feasible since the MBSE models
encapsulate ship or air vehicle requirements and factors linkable to parametric cost models for
two-way integration.

The TSSE dashboard implements a methodology for effectiveness-based engineering design
including:

 Integration of systems architecture, combat systems, and combat operations, as well as
related life cycle design and cost considerations

 Impact of system trade offs

 Impact of decision options for ship design, cost, and effectiveness in multiple criteria
trade space analysis.

The system design output is based on needed combat capabilities (mission effectiveness),
engineering feasibility (ship synthesis), and cost. The dashboard focus is early in life cycle, and
to provide assistance to a decision maker. It is conceptually overviewed in Figure 30.

Currently two Excel-based ship cost models exist for 1) a very simple cost model within an
existing ship synthesis model, and 2) an NPS ship cost model derived from more detailed
outside sources. The team can study and implement aspects of each and the web-based cost
modeling tool.

The MBSE dashboard project was web demonstrated by NPS researchers in Phase 3 to potential
adopters at AMSAA for a new Maneuver Support Vessel. The dashboard was well received, but
it wasn’t good adoption timing due to imminent watercraft program milestones.

There was extensive NAVSEA and ERS coordination effort with WSU, also enlisting support from
Cliff Whitcomb at NPS as we sought the pilot application with AMSAA. Discussions with Jeff
Hough at NAVSEA indicated they already have a large staff supporting analysis of the new
watercraft with no immediate need for assistance. There is currently no viable opportunity for
piloting but we will continue discussions to reach better understandings. These activities are co-
reported with supporting details in the WSU section.

137

Figure 30: MBSE Design Process

NAVAIR Software Product Line Modeling Pilot Application

NPS and USC have been collaborating with NAVAIR stakeholders involved in avionics software
product line architectures on the Future Airborne Capability Environment (FACE™) initiative.
The FACE approach, via common standards, standardization of software interfaces and
software re-use, offers a number of benefits such as increased competition, reduced software
development times, greater innovation, and lower cost of doing business 12.

FACE is a technical standard that defines a common operating environment supporting
portability and reuse of software components across DoD aviation systems. The FACE
Ecosystem is intended to provide the following:

 An open technical standard that defines/specifies a reference architecture which is in
alignment with DoD Open Architecture guidance (modular, open, partitionable)

138

 Thoroughly defined, standardized, verifiable, open APIs at key interfaces
 A process for conformance verification and certification
 A registry of certified FACE conformant software.

FACE describes the standard framework upon which capabilities can be developed as Software
Product Lines (SPLs) to enhance portability, speed to field, reuse, and tech refresh, while
reducing duplicative development. The FACE initiative ties SPLs, architectures and business
principals together into a coherent process for use across DoD. The FACE standard also
describes a Reference Architecture that supports several technical "ilities" to include flexibility,
scalability, reusability, portability, extensibility, conformance testability, modifiability, usability,
interoperability, and integrateability.

By using the FACE technical standard, decoupling the software from its interfaces, and adding
the required layers of abstraction, the software can be reused across multiple platforms for
very little cost beyond the initial development costs for both new development and life cycle
updates.

Benefits to the government from a SPL approach include:

 Reduced development and life cycle costs

 Reduced time to field

 Reduce vendor lock

 Reduced redundant development

 Increased competition and competitive
avionics software marketplace

 Increased opportunities for reuse

 Testable OSA requirements

Industry benefits from a SPL include:

 Companies can avoid “locking in loss” in a
time of decreasing budgets

 Opens previously closed markets to all
vendors

 Innovative companies can preserve market
share due to reduced vendor lock

 Allows small businesses more opportunity to
provide capabilities

 Allows air frame vendors to focus on what
they do best

 Facilitates interoperability between industry
partners in support of teaming
arrangements

Delphi Survey
The goal of gathering industry responses is to determine current software development costs,
development processes and reuse practices in the defense avionics software industry. This can
be used to forecast potential cost savings and process improvements brought about by the
FACE common operating environment. The Delphi surveys are to obtain a consensus view
identifying:

 The current software effort drivers in this sector

 Their level of influence on software development effort

 The impact of FACE on software effort drivers.

This information be used to calibrate Government software cost estimation models by

 Adding or changing effort drivers for FACE

139

 Calibrating the influence of particular effort drivers for estimates of programs using
FACE.

The final results will be used to develop and refine a Business Case Analysis (BCA) that will
estimate cost avoidance over the lifecycle of a FACE conformant platform. An earlier,
preliminary Delphi showed the representative impacts of the FACE product line approach in
Figure 31. Note this CER applies only to software engineering effort and is an adjustment factor
applied to estimates of effort to develop “new” or "modified" interface software code. The
FACE CER is not to be applied to reused code (business logic), hardware, testing or other types
of costs.

Figure 31: Representative Impact of FACE Architecture on Effort

We are supporting the fuller Delphi effort to better define the cost parameters and usage
scenarios using the more detailed COPLIMO baseline parameters.

At the end of Phase 3 the next FACE industry survey was still under refinement. It is currently
composed of the following sections:

 Section 1 - Company (Division) & Software Engineering Unit Background

 Section 2 - Software Engineering Unit Operations (Practices)

 Sections 3 - Software Effort Drivers prior to the FACE Initiative

 Section 4 - Introduction to the FACE Initiative

 Sections 5 - Software Effort Drivers in the FACE Environment

 Section 6 - Study Close & Opportunity for Feedback

Parametric Modeling
By interpeting COPLIMO for this unique environment, this collaboration has also identified the
following extensions to better model the avionics software product line approach:

 Treat only a portion of the overall software system as product-line software. The
original COPLIMO assumes sizes are 100% inherited from product commonality.

 Account for additional equivalent size for the integration layer requirements and
associated effort, which must be included with system-specific requirements/effort.

140

These new model aspects were pursued in Phase 3 along with supporting a revised Delphi
survey. The specific NAVAIR extensions and instantiations of COPLIMO are summarized below:

 Five aircraft platforms need updates to their current Flight Management System (FMS):

1. Jet
2. Cargo Plane
3. Multi-mission Helicopter
4. Support Helicopter
5. New Jet Fighter (does not yet exist, i.e. a Gen X Fighter)

 For each platform updates are needed on one or more of the following possible FMS

capabilities:
1. Guidance
2. Hover
3. Landing System
4. Auto Rerouter
5. Military Flight Management (MIL FM)
6. Civilian Flight Management (CIV FM)
7. Navigation Database (NAV DB)

 Task Order (Used for Process Maturity/ Learning)

1. Updates performed one platform at a time in the order listed above.
2. Applicable FMS capabilities for each platform will be updated one at a time in the

order the capabilities are listed above.

Considerations of the scenarios were used to derive the model inputs in Table 10. Not shown
are the software size values of the components. From these inputs a portion of the outputs
are shown in Table 11. In this platform case the saving are substantial.

Table 10. FACE Product Line Model Scenario Inputs

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

REUSE High Extra High Low Nominal

DOCU High Low High Low

RELY High Nominal Nominal Nominal

AA Basic Basic Basic Basic

SU Very High Very High Very High Very High

UNFM Completely
Familiar

Completely
Familiar

Completely
Familiar

Completely
Familiar

DM 20% 20% 20% 20%

CM 20% 20% 20% 20%

141

IM 50% 50% 50% 50%

PFRAC 40% 40% 40% 40%

RFRAC 30% 30% 30% 30%

AFRAC 30% 30% 30% 30%

FACE Dev. State Legacy
Upgrade

Legacy
Upgrade

Legacy
Upgrade

Legacy
Upgrade

Labor Rate $150 $150 $150 $150

Hours Per Month 160% 160% 160% 160%

Level of Integration Relative to
Effort Size

10% 10% 10% 10%

LCU 1 20% 20% 20% 20%

LCU 2 65% 65% 65% 65%

LCU 3 30% 30% 30% 30%

LCU 4 15% 15% 15% 15%

LCU 5 25% 25% 25% 25%

FACE LCU State FACE
Upgrade

FACE
Upgrade

FACE
Upgrade

FACE
Upgrade

Table 11. FACE Produce Line Model Ample Output (Portion)

 LCU 1 PMRs LCU 1 Cost LCU 2 PMRs LCU 2 Cost

Non_PL Dev 886.22 $21,269,268 2880.21 $69,125,120

Integration 133.50 $3,203,988 433.87 $10,412,963

Non-FACE Total 1019.72 $24,473,256 3314.09 $79,538,083

FACE/PL Dev 219.59 $5,270,086 688.67 $16,528,175

FACE/Integration 125.62 $3,014,953 408.27 $9,798,598

FACE Total 345.21 $8,285,039 1096.95 $26,326,773

 LCU 3 PMRs LCU 3 Cost LCU 4 PMRs LCU 4 Cost

Non_PL Dev 1329.33 $31,903,902 664.66 $15,951,951

Integration 200.25 $4,805,983 100.12 $2,402,991

Non-FACE Total 1529.58 $36,709,884 764.79 $18,354,942

FACE/PL Dev 323.83 $7,771,884 167.47 $4,019,187

FACE/Integration 188.43 $4,522,430 94.22 $2,261,215

FACE Total 512.26 $12,294,313 261.68 $6,280,402

 LCU 5 PMRs LCU 5 Cost

Non_PL Dev 1107.77 $26,586,585 Total Non FACE

Integration 166.87 $4,004,986 $189,667,735

Non-FACE Total 1274.65 $30,591,570 Total FACE

FACE/PL Dev 271.71 $6,520,985 $63,476,204

FACE/Integration 157.03 $3,768,691 SPL Savings $126,191,531

142

FACE Total 428.74 $10,289,676

The parametric cost modeling and survey enhancement activities continue. The above are
representative outputs of one analysis iteration. Assumptions are still being evaluated and
parameter values refined. The ongoing study results will be superseded.

8.2.2 TASK 3. NEXT-GENERATION, FULL-COVERAGE COST ESTIMATION MODEL ENSEMBLES

Beginning with work in the space domain with USAF/SMC and the Aerospace Corp., this task is
to research and develop an ensemble of cost estimation models covering the systems
engineering, development, production, operations, sustainment, and retirement. NPS
continued extending the scope and tradespace interoperability of cost models and tools from
previous phases.

This also comprises the related Task 2 work supporting NAVAIR avionics software product line
cost analysis (see Task 2 above). We also elaborated a ship cost model and developed a
representative TOC analysis. This is shown later. We also made minor improvements in System
Cost Model Suite for additional air vehicle types.
We continued exploring cost model extensions to meet initial COSATMO needs, and as a basis
for additional domain cost models. The research team also reached out to BAE Systems for
empirical systems engineering cost data.

We supported the development and data analysis for an ensemble of cost estimation
models/tools beyond COSATMO. This involves defining COSATMO-oriented next-generation
versions of software (COCOMO III), systems engineering (COSYSMO 3.0), and extensions of
COSYSMO to estimate system development costs.
We started periodic meeting for COCOMO III. We drafted some model requirements, use
cases, data definitions and cost driver rating scales. NPS began defining the formal COCOMO III
use cases for the research team.
Workshops, presentations, meetings and other events supporting this task included:

 Participated in the January INCOSE Affordability Working Group meeting.

 Participated and presented Issues in Total Ownership Cost Modeling for DoD Systems at
the Ground Systems Architecture Workshop working group meeting on future ground
systems cost estimation needs and models.

 Presented NPS Total Ownership Cost Models at SERC Technical Review in March.

 Participated in COSATMO, COSYSMO 3.0 and COCOMO III cost modeling workshops at
the USC-CSSE Annual Research Review (ARR) in April.

143

 Participated in a workshop with the Carnegie Mellon University System Assurance

project in Pittsburgh in July. Presented on Total Ownership Cost and Product Line

Models. Established several potential new collaboration thrusts with both CMU and

RT113 researchers at the workshop.

 Prepared for and held USC-NPS-industry workshop at October 21-23 USC

COCOMO/Systems and Software Cost Modeling Forum to define COSATMO-oriented

next-generation versions of software (COCOMO III), systems engineering (COSYSMO

3.0), and extensions of COSYSMO to estimate system development costs.

The following example illustrates a relevant application of the System Cost Model Suite for a
ship Total Ownership Cost (TOC) probabilistic estimate using Monte Carlo analysis. The
previous Phase 2 report 2 demonstrated a point estimate with the integrated tool. This update
shows a representative TOC analysis with further supporting details and the enhanced Monte
Carlo capabilities.

Ship Total Ownership Cost Example

In this scenario the Navy requires a new Amphibious Assault Ship with a planned IOC of 2019.
The program office wants to assess the Total Ownership Cost for a 15 year operational lifetime
and set a conservative budget for it. This example demonstrates uncertainty analysis to
determine a high confidence level budget.

The ship will be new design with a most likely weight of 5000 long tons. The combined
subsystems for the ship total to the systems engineering sizes and degrees of difficulty in Table
12.

Table 12. Systems Engineering Size

 Easy Nominal Difficult

of System Requirements 120 185 48

of System Interfaces 12 67 45

of Algorithms 19 125 58

of Operational
Scenarios

3 14 8

Other system-level cost factors are:

 The requirements understanding is strong with only a few undefined areas.

 There is a similar strong understanding of the system architecture and COTS.

 The level of service requirements involve complex, coupled Key Performance
Parameters and are critical due to a risk to human life.

144

The software will be comprised of the following:

 The total new software to develop is estimated to be 850 KSLOC.

 There will be reused combat system software that is 225 KSLOC. This reused software
will require substantial integration and testing that is 50% of the effort compared to
new software.

 Other subsystems will include 400 KSLOC of modified software. It is estimated that 10%
of the modified software design needs to change, about 15% of its code will change and
will require 60% integration and testing compared to new. The software baseline is
described as:

 Moderate level of code commentary, headers, documentation.

 High cohesion, low coupling.

 Clear match between program and application world-views.

Additional software cost factors include:

 There will be some development flexibility allowed to the contractors, and occasional
relaxation of the need to conform to specified requirements.

 The overall team of organizations is fairly cohesive and largely cooperative with each
other.

 The required software reliability of nearly all systems must be very high, since failure
could be a risk to human life.

 The software complexity is very high with many subsystems interfacing with each other.

 The software development starts in FY14 and must be completed in five years to meet
the IOC of 2019.

For RDT&E we include the costs of systems engineering, software development, hardware
development and production. For maintenance and upgrades over 15 years of operations we
assume:

 Systems engineering modifications to requirements, interfaces, algorithms, and
scenarios are estimated to be 10% per year.

 For software maintenance 150 Equivalent KSLOC is expected to change per year.
The software understanding will be improved from RDT&E due to the new software,
with an estimated 10% less penalty.

 The likely operational costs of the ship hardware, associated maintenance and spare
parts are $30M annually for this ship class.

Further ground rules and assumptions for the lifecycle costs and phasing are:

 All systems, software and hardware activities commence in parallel.

 Hardware monthly costs are constant before IOC, and constant within each year
after IOC.

 The software Transition phase occurs once after IOC.

All labor rates are $10,000 per Person-Month.

145

For systems engineering, the total size is 2650 Equivalent Nominal Requirements. The off-
nominal cost factors are described as:

 Requirements Understanding is High

 Architecture Understanding is High

 Level of Service Requirements is Very High.

The software size requires inputs for new, modified and reused categories. The total aggregate
size is 1031710 Equivalent SLOC (the detailed inputs are shown later in this example). The off-
nominal cost factors are described as:

 Development Flexibility is Low

 Team Cohesion is High

 Required Software Reliability is Very High

 Product Complexity is Very High

 Required Development Schedule is Very Low.

The ship weight of 5000 long tons at 2240 pounds/long ton is the equivalent of 11,200,000
pounds for the AMCM model input. The new design indicates Block #1.

We will use a symmetrical triangular probability distribution for the ship weight. The ship
architects say it might be reduced to 2500 long tons, 5000 is still most likely, but it might need
to be 7500 long tons to fit all mission systems on-board.

System requirements volatility is modeled with a uniform probability distribution for systems
engineering size. The point estimate for total equivalent size will be the minimum of a uniform
distribution with a maximum that is 20% additional size for possible growth.

For software size, we choose a normal probability distribution using the point estimate
equivalent size as the mean with a standard deviation of 15%. For simplicity we assume that all
other parametric cost factors stay fixed.

The complete systems engineering inputs are shown in Figure 322. The software inputs are in
Figure 33. Hardware development and production input factors are shown in Figure 34.

146

Figure 32: Systems Engineering Inputs

147

Figure 33: Software Engineering Inputs

148

Figure 34: Hardware Inputs

The results in Figure 35 and Figure 36 show the summaries and separate CDFs for RDT&E,
maintenance and the combined TOC.

149

Figure 35: Project Summary with Monte Carlo Analysis

Figure 36: Detailed Monte Carlo Results

150

8.3 FUTURE PLANS: PHASES 4 AND 5

8.3.1 TASK 2: MPTS AND PILOTING

Task 2 will be a collaboration with AFIT for a joint Intelligence, Surveillance and Reconnaissance
(ISR) mission application involving heterogenous teams of autonomous and cooperative agents.
NPS will provide cost modeling expertise, tools and Monterey Phoenix (MP) modeling support. A
focus will be on translations between models/tools in MBSE, specifically mapping architectural
elements into cost model inputs.

AFIT and NPS will develop a common application and integrated effort for validating several of the
approaches they have been developing and refining under RT-46 and RT-113. A System-of-System
level architecture will be developed encompassing a variety of tactical ISR missions that must be
conducted in contested and denied environments. Environments that affect the functionality
and/or performance of communications, surveillance, and navigation environments present
unique challenges for ISR UAV CONOPs with respect to UAV system capabilities (communications,
sensing, data processing, command and control, navigation).

Actors associated with this architecture will include not only variants of autonomous/cooperative
agents, but command and control and adversarial elements as well. The architecture will be
developed to support analysis of effectiveness and robustness given uncertain future scenarios
and possible design approaches for the autonomous/cooperative agents and their associated
command and control system. The architecture will also be developed to support software and
system cost estimating approaches in order to assess cost effectiveness as well as mission
effectiveness.

This effort will build upon several prior efforts at AFIT and NPS:

 AFIT has modeled System-of-System level architecture behavior and effectiveness in both
the Arena and MATLAB environments. These efforts have shown the value of architecture
based modeling to aid in requirements definition and design decisions. While these efforts
have been successful, they have required a mapping from the architecture definition to the
modeling and simulation environment, and they have typically not integrated cost
estimation into the analysis. The current proposed effort will utilize new Model Based
Systems Engineering tools to eliminate the need for a transition from the architecture to
an executable model. Tools such as Magic Draw and/or the Monterey Phoenix approach
developed by NPS will be considered for the proposed task.

 NPS has pioneered the Monterey Phoenix (MP) approach to developing executable
architectures that can be used to evaluate performance, expose design problems, and
uncover problems associated with emergent behavior. The approach can be used to auto-
generate a range of scenarios based on the behaviors of the various actors, allowing the

151

architect/system designer to modify the systems to either accommodate favorable
scenarios or eliminate the possibility of unfavorable scenarios. The intent with MP is to
support a complete cycle of automated system verification/validation that is currently not
possible using existing UML/SysML approaches.

 AFIT has been applying MIT’s Epoch Era Analysis for capturing uncertain future
requirements and environments. This has been combined with a stochastic life cycle cost
modeling approach to estimate an expected value of the life cycle cost given probabilities
for the future epochs and cost estimates to adapt or modify the systems to accommodate
the epochs. An initial application looked at the Air Force advanced trainer concept, and a
current application is applying the methodology to an Air Force concept for Flexible
Weapons (GBU-X). The current GBU-X effort is identifying the architectural features
essential for estimation of both acquisition and operations/support costs of the systems,
and seeks to create a business case analysis that compares the legacy munitions approach
to a more flexible architecture.

 NPS has been developing approaches for improving integrated systems and software cost
models and connecting them directly to tradespace analysis tools. Earlier on RT46 they
prototyped a web service for the COQUALMO cost/quality model and in this phase are
developing SySML constructs for computing COSYSMO and COCOMO II cost/risk (with USC
and Georgia Tech). The ISR UAV architectural system requirements can be automatically
fed into COSYSMO for systems engineering cost/risk. Software size also needs to be
captured. MP can compute function point measures for software size, and this capability
will be evaluated. It will also be assessed for deriving systems engineering inputs.

The planned tasks are:

 Develop a baseline Operational and System Architecture to capture a set of military
scenarios, using new Model-based Systems Engineering (MBSE) tool(s). For a
representative multi-agent UAS system within the environments of interest, capture a
baseline set of SySML views. In particular, begin developing the Parametric View.

 Transition the baseline architecture to the Monterey Phoenix environment. The MP
process will be used to identify alternate events for each actor in each scenario. With this
“superset” of information, we can automatically generate all possible use case variants
within a scope limit to provide a scenario coverage that far exceeds what could be done
with only a manual effort. This provides a more substantial reference data set the system
architecture must satisfy (containing many more possible behaviors including off nominal
cases), and a more complete set of input data to ensuing cost and performance analyses.
MP can also provide cost attributes.

 Utilize the executable architecture modeling framework of MP to perform automated
assertion checking and find counterexamples of behavior that violate the expected
system's correctness. This supports a complete cycle of automated system

152

verification/validation impossible with existing SysML/UML technologies.
Exhaustive/representative sets of scenarios generated by MP will be transformed by
automated tools into implementation testing suites, another huge benefit providing the
continuity of design from the early architecture models to the implementation.

 Design and Demonstrate ISR UAV tradespace. The power of new tools such as MagicDraw
and ModelCenter is the integration with analysis tools, across a network or on the same
machine. SySML has traditionally only captured and documented the operational concept,
system requirements, activities/tasks, organizations and information flows, including
possible physical instantiations. New MBSE tools facilitate analysis such as optimization,
simulation, design of experiments, assessment, sensitivity analysis and statistical
hypothesis testing and regression. For this project, such trades and characterizations could
examine collaborative and vehicle swarming algorithms, increasing autonomy on multi-
vehicle, and single operator operations. Likewise, the effects on environmental variables
within the architecture, such as communications and/or GPS jamming, air defenses,
evasion, camouflage, and other factors could define the scenarios. These types of trades
demonstrate how a business case for varying technologies, capabilities or designs could be
accomplished, if cost information is included.

 Develop life cycle cost model interfaces for the various components of the architecture,
and embed them within a larger stochastic life cost estimating approach to evaluate cost
effectiveness in an uncertain future environment. Cost data will be attached to every
actor and event in every possible scenario, computing the cost of each scenario, were it to
occur. A probability of occurrence for each possible scenario will be generated, providing
for highly refined overall cost estimates (for operations, for maintenance, and perhaps
earlier lifecycle phases) within a specified confidence interval.

With the above steps, this application will use MP with cost modeling to enhance tradespace
analysis of UAV systems. The executable integrated architecture will provide for evaluation of UAV
technologies and/or design alternatives across a range of operational scenarios utilizing MBSE
tools and notations.

Current commercial MBSE tools support creation of a very small number of operational scenario
instances compared to what is possible. The validity of these tradespace analyses, however,
stands to be substantially improved by expanding the number of scenario variants considered, to
include a wider range of possible nominal and off nominal behaviors in both the system under
design and the environment. In particular, resulting cost estimates (e.g., for UAV software
development, as well as UAV missions during operations & maintenance) are impacted by
underrepresentation of possible scenarios and the lack of probability data on those scenarios. One
of our objectives is to increase the resolution of source data used for cost model computations.
We will compare, contrast, and possibly integrate methods in Phase 5 for cost modeling in MP and
SysML depending on the Phase 4 results.

153

The technical approach involves cycling AFIT-developed operational scenarios through the MP
modeling process, whereby alternate events are captured for each actor in each scenario. This will
produce a superset of scenario variants from the behavior models, suitable for input to tradespace
analysis models and cost model hooks developed in SysML.

With this we can capture lifecycle cost attributes for each function point in the architecture, based
on internal and external interactions in the MP models. We can also capture cost attributes for
each actor and each event in each generated scenario for use in mission cost effectiveness
analyses. Phase 5 will develop further improvements to MP. Based on Phase 4 results these may
include an improved event trace generator and a user-friendly GUI.

8.3.2 TASK 3. NEXT-GENERATION, FULL-COVERAGE COST ESTIMATION MODEL ENSEMBLES

NPS will continue extending the scope and tradespace interoperability of cost models and tools
in Phases 4 and 5. This is based on stakeholder feedback in earlier phases for parametric model
enhancements and tool automation improvements.

Leveraging Phase 3 cost driver research, Phase 4 will develop prototype systems engineering
and software cost models and tools for piloting and refinement, and extend the estimation
capabilities toward full-coverage in conjunction with USC.

The cost modeling activities will engage domain experts for Delphi estimates, evolve baseline
detailed definitions of the cost driver parameters and rating scales for use in data collection,
and gather initial data and determine areas needing further research to account for wide
differences between estimated and actual costs. Phase 5 will continue the extension in scope
of the models and tools and their piloting and refinement.

For tool interoperability we will integrate cost models in different ways with MBSE architectural
modeling approaches and as web services (also part of Task 2 piloting). We will also automate
systems and software risk advisors that operate in conjunction with the cost models.

We will expand on earlier phase results for cost modeling web services. We previously
developed a working prototype web service for Orthogonal Defect Classification Constructive
Quality Model (ODC COQUALMO) supporting tool interoperability (costing in the cloud).
COQUALMO was demonstrated in Phase 1 with only a subset of cost factors. Per interested
stakeholders we will develop full implementations of selected parametric cost models in Phases
4 and 5.

NPS will provide domain expertise to USC and Georgia Tech for the SysML cost model
integration effort. We will add the COCOMO software cost model formulas, and risk
assessment capabilities for Expert COSYSMO 3 and Expert COCOMO 4. In Phase 5, and we'll
continue those and evaluate Monte-Carlo approaches within SySML.

154

This task is also tied to Task 2 piloting with MBSE cost model interfaces. In Phases 4 and 5 we
will assess MP for automatically providing cost information from the architectural models. This
is analogous to the SySML method for extracting attributes and they will be compared. MP will
be used to extract software sizing information. It will generate function point measures which
will be input into COCOMO. We will also assess how MP architectural elements can be mapped
into systems engineering cost model inputs.

8.4 REFERENCES

1. Tradespace and Affordability – Phase 1 A013 - Final Technical Report SERC-2013-TR-039-1,
Systems Engineering Research Center, July 2013

2. Tradespace and Affordability – Phase 2, A013 - Final Technical Report SERC-2013-TR-039-2,
Systems Engineering Research Center, December 2013

3. R. Madachy and R. Valerdi, Automating Systems Engineering Risk Assessment, Proceedings
of the 8th Annual Conference on Systems Engineering Research, 2010

4. R. Madachy, Heuristic Risk Assessment Using Cost Factors, IEEE Software, May 1997

5. K. Giammarco and M. Auguston, “Well, You didn’t Say not to! A Formal Systems Engineering
Approach to Teaching an Unruly Architecture Good Behavior”, Complex Adaptive Systems
Conference, 2013

6. M. Auguston and C. Whitcomb, "Behavior Models and Composition for Software and
Systems Architecture", ICSSEA 2012, 24th International Conference on Software & Systems
Engineering and their Applications, 2012

7. Boehm, B., C. Abts, A.W. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy, D. Reifer, & B.
Steece (2000). Software Cost Estimation with COCOMO II, Prentice Hall.

8. Boehm, B., A. W. Brown, R. Madachy, & Y. Yang, A Software Product Line Life Cycle Cost
Estimation Model. Proceedings of the 2004 International Symposium on Empirical Software
Engineering, ISESE'04, August 19-20 2004, pp. 156-164.

9. Q. Redman, A. T. Crepea, G. Stratton, (2008). “Weapon Design Trade Off Using Life Cycle
Costs”, Raytheon Corporation, URL: http://www.galorath.com/images/uploads/3_-
_Quentin_Redman_-_Design_trades_using_Life_Cycle_Costs_short_version.pdf

10. Koskinen, Jussi , (2010). “Software Maintenance Costs”, Jyväskylä: University of Jyväskylä.
URL: http://users.jyu.fi/~koskinen/smcosts.htm

11. Boehm, B., J. Lane, and R. Madachy. 2010. "Valuing System Flexibility via Total Ownership
Cost Analysis." Proceedings of the NDIA SE Conference, October 2010, San Diego, CA, USA.

12. Robert Matthews, Robert Sweeney, Ken Stanka, “FACE Reference Architecture Business
Model White Paper”, Naval Air Systems Command, June 2013

13. Department of Defense, MIL-STD-881C, Work Breakdown Structures for Defense Materiel
Items (WBS), October 3, 2011

http://users.jyu.fi/~koskinen/smcosts.htm

155

8.5 APPENDIX - PRODUCT LINE MODELING BACKGROUND

A product line approach provides multiple benefits with respect to ilities across all DoD
domains. Affordability gains accrue from reusing common pieces in different systems/products
that share features. Furthermore, systems can be fielded faster leading to increased overall
mission effectiveness. Flexibility is enhanced increasing the option space. These benefits occur
because previously built components reduce the effort and enable more rapid development.

Relevant MPT frameworks for assessing product line aspects are described next. These
parametric approaches determine the TOC for various levels of investment in product line
architecting. The investment effort is the analysis of the commonalities and variabilities across
a product line of similar systems, and building in flexibility to enable reuse or easy adaptation of
common components, and plug-compatible interfaces for the variable components.

Product Line Modeling for Affordability and Ility Trades
The Constructive Product Line Investment Model (COPLIMO) is used to assess the costs,
savings, and return on investment (ROI) associated with developing and reusing software
product line assets across families of similar applications 8 COPLIMO is based on the well-
calibrated COCOMO II model 7 with 161 data points.

It includes parameters which are relatively easy to estimate early and be refined as further
information becomes available. One can perform sensitivity analyses with the model to see
how the ROI changes with different parameters.

Most product line cost models focus on development savings, and underestimate the savings in
Total Ownership Costs (TOC). COPLIMO consists of a product line development cost model and
an annualized post-development life cycle extension to cover full lifecycle costs. It models the
portions of software that involve product-specific newly-built software, fully reused black-box
product line components, and product line components that are reused with adaptation.

More elaborate versions of COPLIMO include additional reuse parameters while covering
software maintenance as well as development. Additional features such as present-value
discounting of future savings and Monte Carlo probability distributions have been added.

The COPLIMO framework has been instantiated and extended at the systems level, used to
assess flexibility and ROI tradeoffs. Some of these extensions and applications are described
next.

TOC Models for Valuing Product Line Flexibility

The following approaches extend COPLIMO for a TOC analysis for a family of systems. The
value of investing in product-line flexibility using Return On Investment (ROI) and TOC is

156

assessed with parametric models adapted from the basic COPLIMO model. The models are
implemented in separate tools available to all SERC collaborators:

 System-level product line flexibility investment model.

 Software product line flexibility investment model. The detailed software model
includes schedule time with NPV calculations.

Figure 37 shows the inputs and outputs for the system-level product line model.

Figure 37: Systems Product Line Flexibility Value Model

The example shown below represents a family of seven related systems with three-year
ownership durations. It is assumed annual changes are 10% of the development cost. Within
the family of systems, each is comprised of 40% unique functionality, 30% adapted from the
product line and 30% reused as-is without changes. Their relative costs are 40% for adapted
functionality and 5% for reused. The up-front investment cost in flexibility of 1.7 represents
70% additional effort compared to not developing for flexibility across multiple systems. Figure
38 shows the consolidated TOC and ROI outputs.

157

Figure 38: Product Line Flexibility TOC and ROI Results

However, it is desired to evaluate ranges of options and assess the sensitivity of TOC. The tools
allow for a range of relative costs as shown in Figure 39 for sensitivity runs. The results show
that the model can help projects determine “how much product line investment is enough” for
their particular situation. In the Figure 39 situation, the best level of investment in developing
for reuse is an added 60%.

158

Figure 39: Example Sensitivity Analysis (ROI Only)

Other types of sensitivity analyses can be conducted. Figure 40 shows example results of
assessing the sensitivity of TOC across a range of product ownership durations.

Figure 40: TOC Sensitivity by Ownership Duration Results

The TOC model can also be used in an acquisition decision situation to show that if a project
proposes a stovepipe single-product point solution in an area having numerous similar
products, and has not done an analysis of the alternative of investing in a product line
approach, the project’s TOC will represent a significantly higher cost to DoD and the taxpayers.

The general model was enhanced to handle specific DoD application domains, and added initial
Monte Carlo simulation capabilities. It incorporates the life cycle cost ratios for Operations and
Support (O&S) for hardware O&S cost distributions were derived from 9 and software from 10.

159

Setting the life cycle cost ratios as a function of system type in the tables impacts the general
TOC Product Line model inputs for Ownership Time and Annual Change Cost. The user chooses
a system type and ownership time, which invokes a calculated annual change costs for the
relevant domain.

The next example illustrates a domain-specific analysis for a missile system with a
demonstration of Monte Carlo simulation. The initial case study was for a general system, but
in this scenario the user specifies a missile system for O&S life cycle cost defaults.

A missile product line development with three year ownership time is being evaluated. The
user chooses the Missile System Type, and sets Ownership Time to 3 years. With these inputs,
the pre-calculated Annual Change Cost = 12%/3 years = 4%. The results are in Figure 41.

Shown also are the optional Monte Carlo results from varying the relative cost of developing for
flexibility. The means are listed with the ROI distribution graph. All input parameters are open
to variation for more sophisticated Monte Carlo analysis in follow-on work, per the next section
on proposed next steps.

160

Figure 41: DoD Application Domain and Monte Carlo TOC-PL Results

161

Summary
The TOC system product line models provide strong capabilities for analyzing alternative
approaches to system acquisition and the effects on TOC. They show that if total life cycle costs
are considered for development and maintenance, product lines can have a considerably larger
payoff, as there is a smaller base to undergo corrective, adaptive, and perfective maintenance.

There are other significant product line benefits besides life cycle cost savings, such as rapid
development time and adaptability to mission changes. The models provide an easy-to-use
framework for performing these broader ility and affordability analyses.

The models also demonstrate that not all attempts at product line reuse will generate large
savings. A good deal of domain engineering needs to be done well to identify product line
portions of the most likely to be product-specific, fully reusable, or reusable with adaptation.
Much product line architecting needs to be done well to effectively encapsulate the sources of
product line variation.

Extensions can be added including the effects of varying product sizes, change rates, product
line investment costs, and degrees of reuse across the products in the product line. The models
could be combined with other complementary models involving real options, risk assessments,
or tradeoffs among flexibility aspects such as evolvability, interoperability, portability, or
reconfigurability; or between flexibility aspects and other –ilities such as security, safety,
performance, reliability, and availability.

	p87.pdf
	Executive Summary
	iTAP Ongoing Contributions in Support of Better Buying Power 3.0
	Phase 1 Objectives, Approach, and Results
	Phase 2 Objectives, Approach, and Results
	References

	Research Team
	Table of Contents
	Figures and Tables
	iTAP Results by Organization: Past Results, Phase 3 Results, and Future Plans
	1 University of Southern California
	1.1 Past Results: Phases 1 and 2 Results
	1.2 Phase 3 Results
	1.2.1 Foundations: Initial ilities Ontology
	1.2.1.1 Initial Ontology Description

	1.2.2 The Need for a System ilities Ontology
	1.2.3 Ontology Definitions and Choices
	1.2.4 States, Processes and Relations
	1.2.5 Multi-Stakeholder ility Value Proposition Reconciliation
	1.2.6 Conclusions
	1.2.7 Acknowledgements
	1.2.8 References

	1.3 Task 2: Methods and Tools Piloting and Refinement
	1.4 Task 3: Next-Generation, Full-Coverage Cost Models
	1.4.1 Draft COSYSMO 3.0 Rating Scales: Problem and Solution Understanding

	1.5 Future Plans
	1.5.1 Task 1, Foundations
	1.5.2 Task 2: Methods and Tools Piloting and Refinement
	1.5.3 Task 3: Next-Generation, Full-Coverage Cost Models

	2 Massachusetts Institute of Technology
	2.1 Past Results: Phases 1 and 2
	2.1.1 Task 1. ility Foundations
	MIT Semantic Basis.

	2.2 Phase 3 Results
	2.2.1 Task 1. ility Foundations
	MIT Semantic Basis.

	2.2.2 References

	2.3 Future Plans: Phases 4 and 5
	2.3.1 Task 1. ility Foundations

	3 University of Virginia
	3.1 Past Results: Phases 1 and 2
	3.2 Phase 3 Results
	3.3 Future Plans: Phases 4 and 5
	3.3.1 Task 1: Foundations
	Value-Driven Evolution of Ility Science and Technology
	Technical Approach
	Activity #1: Making Formal Ility Theories Accessible

	3.3.2 plans for 2015
	Activity #2: An Evolving Formal Theory of Change-Related Ilities
	Activity #3: A Formal Framework for Value-Driven Tradeoff Analysis
	Activity #4: The Docility Index of Ilities, Tradeoffs, and Technologies

	3.3.3 Overall Plans for 2016

	4 Wayne State University
	4.1 Introduction
	4.2 “Deep Dive” into Tradespace and Affordability Needs and Context in DoD System Acquisition
	4.3 Enhanced Set-Based Design
	4.4 Report “Progress Toward a DoD Ground Vehicle Tradespace and Affordability Analysis Framework.”

	Nomenclature
	4.4.1 Introduction
	4.4.2 Context and Motivation
	4.4.2.1 Engine Tradeoff Analysis
	4.4.2.2 Suspension Tradeoff Analysis

	4.4.3 Ground System Tradespace and Affordability Analysis Framework
	4.4.3.1 Performance specification Framework
	4.4.3.2 Ground System Architecture
	4.4.3.3 Relationships and Attributes

	4.4.4 Tradespace Analysis
	4.4.5 Contribution, Significance, Limitations, and Extensions
	4.5 References
	4.5 Report “Design Space Regions, Geography and Topology for Set-Based Design.”
	4.5.1 Introduction
	4.5.2 System Development Context
	4.5.3 PBD and SBD
	4.5.4 A Formalism for Regions of Design Space
	4.5.5 Analysis of Design Space Region, Topology, and Sensitivity to Requirements in SBD

	5 Georgia Institute of Technology
	5.1 Activity 1. Past Results: Phases 1 and 2
	5.1.1 Phase 1 Results
	5.1.2 Phase 2 Results
	5.1.3 Phase 2 Insights

	5.2 Activity 2. Summary of Phase 3 Results (Tradespace MPTs)
	5.2.1 Phase 3 Insights on Tradespace Analysis

	5.3 Activity 2. Summary of Phase 3 Results (SysML Based Cost Modeling)
	5.3.1 Approach Toward SysML-Based Cost Modeling within MIM and FACT
	5.3.2 Knowledge Capture via General-Purpose SysML Building Blocks
	5.3.3 Overview and Comparison of Case Studies
	5.3.4 Case Study 1 – Healthcare SoS (baseline complexity)
	5.3.5 Case Study 2 – Healthcare SoS (increased complexity)
	5.3.6 Summary: SysML Cost Modeling

	5.4 Activity 3. Future Plans: Phase 4 and 5
	5.5 References

	6 Pennsylvania State University
	6.1 Past Results: Phases 1 and 2 Results
	6.2 Phase 3 Results
	6.2.1 Formal Model of the Sequential Process
	6.2.2 Single stage modeling versus two stage modeling
	6.2.3 Multi-stage process
	6.2.4 Example: wing design for light civil aircraft
	6.2.5 Connection between Concept & Detailed

	6.3 Future Plans: Phases 4 and 5 plans
	6.3.1 Phase 4 plans
	6.3.2 Phase 5 plans

	6.4 References

	7 Air Force Institute of Technology
	7.1 Past Results: Phases 1 and 2
	7.2 Phase 3 Results
	7.2.1 Application Project – A Method for Evaluating Design Flexibility Early in Design Applied to Air Force Advanced Trainer (T-X) Concept
	7.2.2. METHODOLOGY Development With Application – Evaluating the Impact of Requirements Changes on Design and Acquisition Effort
	7.2.3 Theoretical Development – Energy and Information Impacts on System Functionality and Effectiveness

	7.3 Planned Phase 4 Work - Combined AFIT and NPS RT-113 Task for 2015

	8 Naval Postgraduate School
	8.1 Past Results: Phases 1 and 2
	8.2 - Phase 3 Results
	8.2.1 Task 2: MPTs and Piloting
	8.2.2 Task 3. Next-Generation, Full-Coverage Cost Estimation Model Ensembles
	Ship Total Ownership Cost Example

	8.3 Future Plans: Phases 4 and 5
	8.3.1 Task 2: MPTs and Piloting
	8.3.2 Task 3. Next-Generation, Full-Coverage Cost Estimation Model Ensembles

	8.4 References
	8.5 Appendix - Product Line Modeling Background

