700 research outputs found

    Proximity Operators of Discrete Information Divergences

    Get PDF
    Information divergences allow one to assess how close two distributions are from each other. Among the large panel of available measures, a special attention has been paid to convex φ\varphi-divergences, such as Kullback-Leibler, Jeffreys-Kullback, Hellinger, Chi-Square, Renyi, and Iα_{\alpha} divergences. While φ\varphi-divergences have been extensively studied in convex analysis, their use in optimization problems often remains challenging. In this regard, one of the main shortcomings of existing methods is that the minimization of φ\varphi-divergences is usually performed with respect to one of their arguments, possibly within alternating optimization techniques. In this paper, we overcome this limitation by deriving new closed-form expressions for the proximity operator of such two-variable functions. This makes it possible to employ standard proximal methods for efficiently solving a wide range of convex optimization problems involving φ\varphi-divergences. In addition, we show that these proximity operators are useful to compute the epigraphical projection of several functions of practical interest. The proposed proximal tools are numerically validated in the context of optimal query execution within database management systems, where the problem of selectivity estimation plays a central role. Experiments are carried out on small to large scale scenarios

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    A flexible framework for solving constrained ratio problems in machine learning

    Get PDF
    The (constrained) optimization of a ratio of non-negative set functions is a problem appearing frequently in machine learning. As these problems are typically NP hard, the usual approach is to approximate them through convex or spectral relaxations. While these relaxations can be solved globally optimal, they are often too loose and thus produce suboptimal results. In this thesis we present a flexible framework for solving such constrained fractional set programs (CFSP). The main idea is to transform the combinatorial problem into an equivalent unconstrained continuous problem. We show that such a tight relaxation exists for every CFSP. It turns out that the tight relaxations can be related to a certain type of nonlinear eigenproblem. We present a method to solve nonlinear eigenproblems and thus optimize the corresponding ratios of in general non-differentiable differences of convex functions. While the global optimality cannot be guaranteed, we can prove the convergence to a solution of the associated nonlinear eigenproblem. Moreover, in practice the loose spectral relaxations are outperformed by a large margin. Going over to constrained fractional set programs and the corresponding nonlinear eigenproblems leads to a greater modelling flexibility, as we demonstrate for several applications in data analysis, namely the optimization of balanced graph cuts, constrained local clustering, community detection via densest subgraphs and sparse principal component analysis.Die (beschränkte) Optimierung von nichtnegativen Bruchfunktionen über Mengen ist ein häufig auftretendes Problem im maschinellen Lernen. Da diese Probleme typischerweise NP-schwer sind, besteht der übliche Ansatz darin, sie durch konvexe oder spektrale Relaxierungen zu approximieren. Diese können global optimal gelöst werden, sind jedoch häufig zu schwach und führen deshalb zu suboptimalen Ergebnissen. In dieser Arbeit stellen wir ein flexibles Verfahren zur Lösung solcher beschränkten fraktionellen Mengenprogramme (BFMP) vor. Die Grundidee ist, das kombinatorische in ein equivalentes unbeschränktes kontinuerliches Problem umzuwandeln. Wir zeigen dass dies für jedes BFMP möglich ist. Die strenge Relaxierung kann dann mit einem nichtlinearen Eigenproblem in Bezug gebracht werden. Wir präsentieren ein Verfahren zur Lösung der nichtlinearen Eigenprobleme und damit der Optimierung der im Allgemeinen nichtdifferenzierbaren und nichtkonvexen Bruchfunktionen. Globale Optimalität kann nicht garantiert werden, jedoch die Lösung des nichtlinearen Eigenproblems. Darüberhinaus werden in der Praxis die schwachen spektralen Relaxierungen mit einem großen Vorsprung übertroffen. Der Übergang zu BFMPs und nichtlinearen Eigenproblemen führt zu einer verbesserten Flexibilität in der Modellbildung, die wir anhand von Anwendungen in Graphpartitionierung, beschränkter lokaler Clusteranalyse, dem Finden von dichten Teilgraphen, sowie dünnbesetzter Hauptkomponentenanalyse demonstrieren

    Advances in privacy-preserving machine learning

    Get PDF
    Building useful predictive models often involves learning from personal data. For instance, companies use customer data to target advertisements, online education platforms collect student data to recommend content and improve user engagement, and medical researchers fit diagnostic models to patient data. A recent line of research aims to design learning algorithms that provide rigorous privacy guarantees for user data, in the sense that their outputs---models or predictions---leak as little information as possible about individuals in the training data. The goal of this dissertation is to design private learning algorithms with performance comparable to the best possible non-private ones. We quantify privacy using \emph{differential privacy}, a well-studied privacy notion that limits how much information is leaked about an individual by the output of an algorithm. Training a model using a differentially private algorithm prevents an adversary from confidently determining whether a specific person's data was used for training the model. We begin by presenting a technique for practical differentially private convex optimization that can leverage any off-the-shelf optimizer as a black box. We also perform an extensive empirical evaluation of the state-of-the-art algorithms on a range of publicly available datasets, as well as in an industry application. Next, we present a learning algorithm that outputs a private classifier when given black-box access to a non-private learner and a limited amount of unlabeled public data. We prove that the accuracy guarantee of our private algorithm in the PAC model of learning is comparable to that of the underlying non-private learner. Such a guarantee is not possible, in general, without public data. Lastly, we consider building recommendation systems, which we model using matrix completion. We present the first algorithm for matrix completion with provable user-level privacy and accuracy guarantees. Our algorithm consistently outperforms the state-of-the-art private algorithms on a suite of datasets. Along the way, we give an optimal algorithm for differentially private singular vector computation which leads to significant savings in terms of space and time when operating on sparse matrices. It can also be used for private low-rank approximation

    Algorithmes d'optimisation en grande dimension : applications à la résolution de problèmes inverses

    Get PDF
    An efficient approach for solving an inverse problem is to define the recovered signal/image as a minimizer of a penalized criterion which is often split in a sum of simpler functions composed with linear operators. In the situations of practical interest, these functions may be neither convex nor smooth. In addition, large scale optimization problems often have to be faced. This thesis is devoted to the design of new methods to solve such difficult minimization problems, while paying attention to computational issues and theoretical convergence properties. A first idea to build fast minimization algorithms is to make use of a preconditioning strategy by adapting, at each iteration, the underlying metric. We incorporate this technique in the forward-backward algorithm and provide an automatic method for choosing the preconditioning matrices, based on a majorization-minimization principle. The convergence proofs rely on the Kurdyka-L ojasiewicz inequality. A second strategy consists of splitting the involved data in different blocks of reduced dimension. This approach allows us to control the number of operations performed at each iteration of the algorithms, as well as the required memory. For this purpose, block alternating methods are developed in the context of both non-convex and convex optimization problems. In the non-convex case, a block alternating version of the preconditioned forward-backward algorithm is proposed, where the blocks are updated according to an acyclic deterministic rule. When additional convexity assumptions can be made, various alternating proximal primal-dual algorithms are obtained by using an arbitrary random sweeping rule. The theoretical analysis of these stochastic convex optimization algorithms is grounded on the theory of monotone operators. A key ingredient in the solution of high dimensional optimization problems lies in the possibility of performing some of the computation steps in a parallel manner. This parallelization is made possible in the proposed block alternating primal-dual methods where the primal variables, as well as the dual ones, can be updated in a quite flexible way. As an offspring of these results, new distributed algorithms are derived, where the computations are spread over a set of agents connected through a general hyper graph topology. Finally, our methodological contributions are validated on a number of applications in signal and image processing. First, we focus on optimization problems involving non-convex criteria, in particular image restoration when the original image is corrupted with a signal dependent Gaussian noise, spectral unmixing, phase reconstruction in tomography, and blind deconvolution in seismic sparse signal reconstruction. Then, we address convex minimization problems arising in the context of 3D mesh denoising and in query optimization for database managementUne approche efficace pour la résolution de problèmes inverses consiste à définir le signal (ou l'image) recherché(e) par minimisation d'un critère pénalisé. Ce dernier s'écrit souvent sous la forme d'une somme de fonctions composées avec des opérateurs linéaires. En pratique, ces fonctions peuvent n'être ni convexes ni différentiables. De plus, les problèmes auxquels on doit faire face sont souvent de grande dimension. L'objectif de cette thèse est de concevoir de nouvelles méthodes pour résoudre de tels problèmes de minimisation, tout en accordant une attention particulière aux coûts de calculs ainsi qu'aux résultats théoriques de convergence. Une première idée pour construire des algorithmes rapides d'optimisation est d'employer une stratégie de préconditionnement, la métrique sous-jacente étant adaptée à chaque itération. Nous appliquons cette technique à l'algorithme explicite-implicite et proposons une méthode, fondée sur le principe de majoration-minimisation, afin de choisir automatiquement les matrices de préconditionnement. L'analyse de la convergence de cet algorithme repose sur l'inégalité de Kurdyka-L ojasiewicz. Une seconde stratégie consiste à découper les données traitées en différents blocs de dimension réduite. Cette approche nous permet de contrôler à la fois le nombre d'opérations s'effectuant à chaque itération de l'algorithme, ainsi que les besoins en mémoire, lors de son implémentation. Nous proposons ainsi des méthodes alternées par bloc dans les contextes de l'optimisation non convexe et convexe. Dans le cadre non convexe, une version alternée par bloc de l'algorithme explicite-implicite préconditionné est proposée. Les blocs sont alors mis à jour suivant une règle déterministe acyclique. Lorsque des hypothèses supplémentaires de convexité peuvent être faites, nous obtenons divers algorithmes proximaux primaux-duaux alternés, permettant l'usage d'une règle aléatoire arbitraire de balayage des blocs. L'analyse théorique de ces algorithmes stochastiques d'optimisation convexe se base sur la théorie des opérateurs monotones. Un élément clé permettant de résoudre des problèmes d'optimisation de grande dimension réside dans la possibilité de mettre en oeuvre en parallèle certaines étapes de calculs. Cette parallélisation est possible pour les algorithmes proximaux primaux-duaux alternés par bloc que nous proposons: les variables primales, ainsi que celles duales, peuvent être mises à jour en parallèle, de manière tout à fait flexible. A partir de ces résultats, nous déduisons de nouvelles méthodes distribuées, où les calculs sont répartis sur différents agents communiquant entre eux suivant une topologie d'hypergraphe. Finalement, nos contributions méthodologiques sont validées sur différentes applications en traitement du signal et des images. Nous nous intéressons dans un premier temps à divers problèmes d'optimisation faisant intervenir des critères non convexes, en particulier en restauration d'images lorsque l'image originale est dégradée par un bruit gaussien dépendant du signal, en démélange spectral, en reconstruction de phase en tomographie, et en déconvolution aveugle pour la reconstruction de signaux sismiques parcimonieux. Puis, dans un second temps, nous abordons des problèmes convexes intervenant dans la reconstruction de maillages 3D et dans l'optimisation de requêtes pour la gestion de bases de donnée

    Online beam current estimation in particle beam microscopy

    Full text link
    Accepted manuscrip

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    • …
    corecore