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Major Advisor: Adam Smith, Professor, Computer Science

ABSTRACT

Building useful predictive models often involves learning from personal data.

For instance, companies use customer data to target advertisements, online edu-

cation platforms collect student data to recommend content and improve user en-

gagement, and medical researchers fit diagnostic models to patient data. A recent

line of research aims to design learning algorithms that provide rigorous privacy

guarantees for user data, in the sense that their outputs—models or predictions—

leak as little information as possible about individuals in the training data. The

goal of this dissertation is to design private learning algorithms with performance

comparable to the best possible non-private ones. We quantify privacy using dif-

ferential privacy, a well-studied privacy notion that limits how much information

is leaked about an individual by the output of an algorithm. Training a model

using a differentially private algorithm prevents an adversary from confidently

determining whether a specific person’s data was used for training the model.

We begin by presenting a technique for practical differentially private convex

optimization that can leverage any off-the-shelf optimizer as a black box. We also

perform an extensive empirical evaluation of the state-of-the-art algorithms on a

range of publicly available datasets, as well as in an industry application.
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Next, we present a learning algorithm that outputs a private classifier when

given black-box access to a non-private learner and a limited amount of unlabeled

public data. We prove that the accuracy guarantee of our private algorithm in the

PAC model of learning is comparable to that of the underlying non-private learner.

Such a guarantee is not possible, in general, without public data.

Lastly, we consider building recommendation systems, which we model us-

ing matrix completion. We present the first algorithm for matrix completion with

provable user-level privacy and accuracy guarantees. Our algorithm consistently

outperforms the state-of-the-art private algorithms on a suite of datasets. Along

the way, we give an optimal algorithm for differentially private singular vector

computation which leads to significant savings in terms of space and time when

operating on sparse matrices. It can also be used for private low-rank approxima-

tion.
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CHAPTER 1

Introduction

Building useful predictive models often involves learning from personal data. For

instance, companies use customer data to target advertisements, online education

platforms collect student data to recommend content and improve user engage-

ment, and medical researchers fit diagnostic models to patient data. Learning,

in the above context, refers to using the data of a small set of individuals sampled

from a population to design useful predictive models. The goal is to generate mod-

els about characteristics that are not only limited to the sampled individuals, but

which generalize to the underlying population as well. For this dissertation, we

consider a setting where the sampled individuals contribute their data to a trusted

central aggregator. Then, the aggregator runs a learning algorithm on the collected

data to generate a predictive model as its output. We provide a schematic of the

framework in Figure 1.1.

Figure 1.1: A schematic that depicts the considered setting of learn-
ing: several individuals sampled from a population contribute their
data to a trusted central aggregator, who in turn runs a learning al-
gorithm to generate a predictive model as its output.

As many recent works (Dinur & Nissim (2003); Homer et al. (2008); Sankarara-
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man et al. (2009); Bun et al. (2014); Dwork et al. (2015b); Wu et al. (2016); Shokri

et al. (2017); Carlini et al. (2018); Melis et al. (2018)) indicate, a model can leak in-

formation about the sensitive data it was trained on, even though the data might

have never been made public. This motivates the need for providing privacy guar-

antees to the individuals whose data is a part of the training set.

We quantify privacy using differential privacy (Dwork et al. (2006b,a)), a well-

studied privacy notion that limits how much information is leaked about an indi-

vidual by the output of an algorithm. Differential privacy (DP) has been widely

adopted by the academic community, as well as big corporations like Google and

Apple. The philosophy underlying DP is that the output of an algorithm should

not change significantly due to the presence or absence of any individual in the

input. In other words, training a model using a differentially private algorithm

prevents an adversary from confidently determining whether a specific person’s

data was used for training the model. This guarantee holds even if the adversary

has access to the trained model, and any external side information. We formally

define DP in Definition 2.1.3.

In recent years, many works have focused on enabling learning with DP. The

aim of this dissertation is to design private learning algorithms that provide gener-

alization guarantees comparable to the best possible non-private ones. One of the

highlights of this dissertation is a set of black-box methods for transforming non-

private learning methods into private learning algorithms. Such transformations

are useful as they tend to be modular, and can take advantage of novel learning

techniques which may additionally have been tuned for performance. They can

also make use of any customized infrastructure that may have been built for the

non-private learning techniques. In contrast, white-box modifications, i.e., trans-
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formations dependent on the inner structure of specific techniques, often involve

having to make adjustments to the hardware design and software pipelines. This

can be time-consuming, expensive, and can result in a loss in efficiency of the tech-

nique. For instance, the existing white-box modification of SGD within Tensorflow

(Abadi et al. (2015)) results in reduced parallelism for the private technique.

Our first main result is a generic private algorithm for convex optimization that

uses non-private algorithms as black-box. Convex optimization is central to ma-

chine learning, and the advances therein also have implications to deep learning.

Next, we provide black-box transformations for classification tasks in the semi-

supervised learning setting.

In addition to black-box transformations, we also provide a private algorithm

for recommendation systems, which we model via the problem of matrix com-

pletion. Our algorithm builds on the popular Frank-Wolfe method (Frank &

Wolfe (1956); Jaggi et al. (2010)), a standard iterative optimization technique hav-

ing lightweight updates, which enables our algorithm to provide a strong privacy

guarantee along with non-trivial utility for this problem.

1.1 THE LANDSCAPE OF “PRIVATE” LEARNING

In this section, we briefly describe some approaches taken by prior works to learn

“privately”. Our focus is on providing rigorous guarantees, but there is a lot of

work on methods with heuristic guarantees. A typical example is k-anonymity

(Sweeney (2002)), which has been commonly used to make anonymized releases

of sensitive data. Common methods for achieving k-anonymity release a version of

the original input dataset in which some attribute values may be hidden, whereas

some others may be generalized to broader categories. Even though k-anonymity
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protects against a specific class of linkage attacks, it does not provide any guarantee

on the leakage of specific attributes of individual records. Moreover, anonymized

releases of datasets may not exist in isolation, and k-anonymity has been shown

(Ganta et al. (2008)) to be vulnerable to composition attacks which make use of

side information to re-identify overlapping samples from mutiple independently

anonymized datasets.

The notion of secure multi-party computation (see Lindell & Pinkas (2008);

Evans et al. (2018) for an overview) has been used in settings where rather than

contributing private data to a central aggregator (as shown in Figure 1.1), individ-

uals keep their data with themselves but want to collectively run an algorithm.

Secure multi-party computation (MPC) has a different, and complementary, goal

as compared to differential privacy. It focuses on ensuring that only the output of

the joint computation is revealed; raw inputs and all intermediate results are kept

secret. However, there can be cases where releasing the output of a computation

can reveal the raw inputs. For instance, if the output of a sum of multiple non-

negative integers is 0, it reveals that the value of each of the individual inputs is

0. To this end, DP focuses on bounding the leakage of information about any in-

dividual input from releasing the output of a computation. DP algorithms can be

implemented via an MPC protocol (for example, Dwork et al. (2006a)) to remove

the need for a trusted aggregator. In particular, the algorithms proposed in this

dissertation can be implemented via MPC.

A related line of work (for example, Konečný et al. (2016); Konecný et al. (2016);

McMahan et al. (2017); McMahan & Ramage (2017)) has focused on Federated

Learning, a framework which has many interpretations. The core idea of Feder-

ated Learning is to collaboratively train a model on a central server without di-
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rectly sharing any individual’s input data with the server. Although there is no

single standard for privacy or confidentiality in the setting of Federated Learning,

efficient approaches for MPC (for example, Bonawitz et al. (2017); Reyzin et al.

(2018)) can be advantageous in practice for incorporating DP in this setting.

In the absence of a guarantee of privacy, information about training data can be

leaked in unexpected ways. There have been many works that demonstrate this by

designing attacks to exploit the learning process. Dinur & Nissim (2003) design a

general reconstruction attack, which reconstructs the input dataset by taking advan-

tage of multiple statistical queries being answered with sufficient accuracy on the

input. Other works (for example, Homer et al. (2008); Sankararaman et al. (2009);

Bun et al. (2014); Dwork et al. (2015b); Shokri et al. (2017); Melis et al. (2018)) design

membership inference attacks that infer the presence or absence of a particular record

in the training process by exploiting the predictions of the trained model and some

side information. Carlini et al. (2018) focus on memorization attacks that extract sen-

sitive input samples that were accidentally memorized by high-dimensional mod-

els during training.

The initial works demonstrating attacks led to many notions being proposed

for bounding the information leakage about inputs from the output of a training

algorithm, and DP was one such rigorous notion to come out of those efforts. Al-

though some basic mechanisms for obtaining DP (for example, the Laplace mech-

anism from Dwork et al. (2006b), and the Gaussian mechanism from Nikolov et al.

(2013)) can be composed together to perform various tasks, it is often the case that

custom, task-specific techniques provide better utility. Thus, much of the research

in this area has focused on building DP mechanisms providing utility guarantees

for complex tasks.
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There are several major lines of work within differentially private learning.

In recent years, designing DP techniques with utility guarantees for convex op-

timization has been a very active area of research (for example, see Chaudhuri

et al. (2011); Kifer et al. (2012); Song et al. (2013); Smith & Thakurta (2013); Bassily

et al. (2014a); Jain & Thakurta (2014); Talwar et al. (2014); Wu et al. (2017); Feld-

man et al. (2018)). There have also been efforts (Abadi et al. (2016); Papernot et al.

(2016, 2018)) on effectively training high-dimensional deep neural networks with

differential privacy. There is a body of literature, including Kasiviswanathan et al.

(2008); Beimel et al. (2010); Chaudhuri & Hsu (2011); Beimel et al. (2013); Bun et al.

(2015), that studies the effect of incorporating privacy on the sample complexity

for various families of problems in the standard PAC model of learning (Valiant

(1984); Kearns & Vazirani (1994)). Lastly, many works (for example, Blum et al.

(2005); McSherry & Mironov (2009); Chan et al. (2011); Hardt & Roth (2012); Dwork

et al. (2014c); Hardt & Roth (2013); Liu et al. (2015)) have focused on designing DP

recommendation systems. To that end, they provide algorithms for matrix com-

pletion and low-rank approximation.

In this dissertation, we provide a detailed discussion of prior works on private

recommendation systems in Section 3.4, DP convex optimization in Chapter 4, and

private PAC learning in Chapter 5.
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CHAPTER 2

Preliminaries

In this chapter, we formally define the notation, important definitions, and existing

results that have been used in this dissertation.

We denote the data universe by U , and defineD to be a distribution over U . We

denote an m-element dataset by D = {d1, d2, . . . , dm}. Typically, for each i ∈ [m]

we have di drawn independently from D, denoted by di ∼ D.

2.1 DEFINING “PRIVACY”

Here, we provide formal definitions of the notions we use to quantify privacy,

mainly differential privacy (DP), and a recent variant called concentrated differential

privacy (CDP). We also describe some common privacy mechanisms that have been

used in subsequent chapters.

DP bounds the effect of a record on the output of an algorithm, and this is

captured by a “neighboring” relationship between datasets. There are two notions

of neighboring used in this dissertation, which we define next.

Definition 2.1.1 (Neighboring under modification). A pair of datasets D,D′ ∈ Um

are neighboring under modification if D′ can be obtained from D by modifying one

sample di ∈ D for some i ∈ [m].

For defining neighboring under insertion/deletion, we denote the symmetric

difference between any two datasets D,D′ ∈ U∗ by D4D′.

Definition 2.1.2 (Neighboring under insertion/deletion). A pair of datasets D,D′ ∈

U∗ are neighboring under insertion/deletion if |D4D′| = 1. In other words, D can be

obtained from D′ by either the addition or deletion of a sample.
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We use the definition of neighboring under modification (Definition 2.1.1) in

Chapter 4 and Chapter 6, whereas we use neighboring under insertion/deletion

(Definition 2.1.2) in Chapter 5.

2.1.1 Differential Privacy

Here, we define differential privacy, state some of its useful properties, and de-

scribe a few common mechanisms used for achieving DP.

Definition 2.1.3 ((ε, δ)-Differential Privacy (Dwork et al. (2006b,a))). A (randomized)

algorithm A with input domain U∗ and output range R is (ε, δ)-differentially private if

for all pairs of neighboring inputs D,D′ ∈ U∗, and every measurable S ⊆ R, we have

Pr (A(D) ∈ S) ≤ eε · Pr (A(D′) ∈ S) + δ,

where probabilities are taken over the coin flips of A.

When δ > 0, the notion is also known as approximate DP. On the other hand,

when δ = 0, it is known as pure DP, and is parameterized only by ε.

An important advantage of differential privacy is that it is closed under post-

processing, and can be adaptively composed, which we describe next.

Lemma 2.1.4 (Post-processing (Dwork et al. (2006b))). If a mechanism A : U∗ → R

is (ε, δ)-differentially private, then for any function f : R → R′, we have that f ◦A is also

(ε, δ)-differentially private.

Lemma 2.1.5 (Basic Composition (Dwork et al. (2006b))). For each i ∈ [k], let al-

gorithm Ai : U∗ ×
i−1∏
j=1

Rj → Ri be (εi, δi)-DP in its first argument. If algorithm
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A[k] : U∗ →
k∏
j=1

Rj is defined such that

A[k](D) = (A1(D),A2 (D,A1(D)) , . . . ,Ak(D,A1(D), . . . ,Ak−1(D)))

then A[k] is
(

k∑
i=1

εi,
k∑
i=1

δi

)
-DP.

Lemma 2.1.6 (Advanced Composition (Dwork et al. (2010); Kairouz et al. (2017))).

For each i ∈ [k], let algorithm Ai : U∗ ×
i−1∏
j=1

Rj → Ri be (εi, δi)-DP in its first argument.

If algorithm A[k] : U∗ →
k∏
j=1

Rj is defined such that

A[k](D) = (A1(D),A2 (D,A1(D)) , . . . ,Ak(D,A1(D), . . . ,Ak−1(D)))

then for every δ′ > 0, algorithm A[k] is
(
ε′, 1− (1− δ′)

k∏
i=1

(1− δi)
)

-DP, where

ε′ = min


k∑
i=1

εi,
k∑
i=1

εi(e
εi − 1)

eεi + 1
+

√√√√√√√√√min


k∑
i=1

2ε2i log

e+

√
k∑
i=1

ε2i

δ′

,
k∑
i=1

2ε2i log
1

δ′


 .

To describe two of the common techniques for achieving differential privacy,

we first define the global sensitivity of a function.

Definition 2.1.7 (Lp-sensitivity). A function f : U∗ → Rn has Lp-sensitivity ∆ if

max
D,D′∈U∗ s.t.

(D,D′) neighbors

‖f(D)− f(D′)‖p = ∆.

One of the most common techniques for achieving pure differential privacy is

the Laplace mechanism, which we define next.
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Lemma 2.1.8 (Laplace mechanism (Dwork et al. (2006b))). If a function f : U∗ → Rn

has L1-sensitivity ∆, and a mechanism A on input D ∈ U∗ outputs f(D) + b, where

b ∼ Lap (λIn×n) and λ = ∆
ε

, then A satisfies ε-differential privacy. Here, Lap(λIn×n)

denotes a vector of n i.i.d. samples from the Laplace distribution Lap(λ).

Next, we define one of the most common techniques for achieving approximate

differential privacy, which is the Gaussian mechanism.

Lemma 2.1.9 (Gaussian mechanism (Nikolov et al. (2013))). If a function f : U∗ →

Rn has L2-sensitivity ∆, and a mechanism A on input D ∈ U∗ outputs f(D) + b, where

b ∼ N
(

0, ∆2

ε2

(
1 +

√
2 log 1

δ

)2

In×n

)
, then A satisfies (ε, δ)-differential privacy. Here,

N(0, σ2In×n) denotes a vector of n i.i.d. samples from the zero-mean Gaussian distribution

having variance σ2.

2.1.2 Concentrated Differential Privacy

In Chapter 6, we also use a recently proposed notion of privacy called zero concen-

trated differential privacy (zCDP) (Bun & Steinke (2016)). The definition of concen-

trated differential privacy (CDP) was given by Dwork & Rothblum (2016), which

was then modified by Bun & Steinke (2016).

Definition 2.1.10 (ρ-zCDP (Bun & Steinke (2016))). A (randomized) algorithmA with

input domain U∗ and output range R is ρ-zCDP if for all pairs of neighboring inputs

D,D′ ∈ U∗, and for all α ∈ (1,∞), we have:

Dα(A(D)||A(D′)) ≤ ρα

where Dα(P ||Q) = 1
α−1

log

(
Ex∼P

[(
P (x)
Q(x)

)α−1
])

denotes the α-Rényi divergence be-

tween distributions P and Q.
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Next, we provide the post-processing and composition properties of zCDP.

Lemma 2.1.11 (Post-processing (Bun & Steinke (2016))). If a mechanismA : U∗ → R

is ρ-zCDP, then for any function f : R → R′, we have that f ◦ A is also ρ-zCDP.

Lemma 2.1.12 (Composition (Bun & Steinke (2016))). Let A1 : U∗ → R1, and A2 :

U∗ × R1 → R2 be two randomized algorithms, where A1 is ρ1-zCDP and A2(·, r1) is

ρ2-zCDP for each ri ∈ R1. If algorithm A : U∗ → R2 is composed such that A(D) =

A2(D,A1(D)), then A is (ρ1 + ρ2)-zCDP.

Now, we show that zCDP is an intermediate notion between pure DP and ap-

proximate DP.

Lemma 2.1.13 (Bun & Steinke (2016)). If a mechanism A : U∗ → R is:

• ε-DP, then A is
(

1
2
ε2
)
-zCDP.

• ρ-zCDP, then A is
(
ρ+ 2

√
ρ log (1/δ), δ

)
-DP for every δ ∈ (0, 1).

Lastly, we provide the zCDP guarantees of the Gaussian mechanism.

Lemma 2.1.14 (Gaussian mechanism (Bun & Steinke (2016))). If a function f : U∗ →

Rn has L2-sensitivity ∆, and a mechanism A on input D ∈ U∗ outputs f(D) + b, where

b ∼ N
(

0, ∆2

2ρ
In×n

)
, then A satisfies ρ-zCDP. Here, N(0, σ2In×n) denotes a vector of n

i.i.d. samples from the zero-mean Gaussian distribution having variance σ2.

2.2 THE FRAMEWORK OF LEARNING

Next, we provide some definitions from learning theory that will be useful in sub-

sequent chapters.

Define a function ` : Θ × U → R for some set Θ, and let the average over

a dataset be defined as L(θ;D) = 1
m

m∑
i=1

`(θ; di) for θ ∈ Θ, D ∈ Um. Also, define
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the expectation of L over a distribution to be L(θ;D) = ED∼Dm(L (θ;D)). We first

define empirical risk and population risk.

Definition 2.2.1 (Empirical Risk). Given an element θ̂ ∈ Θ and a dataset D ∈ Um, the

empirical risk of θ̂ on D is

R(θ̂;D) = L(θ̂;D)−min
θ∈Θ

L(θ;D).

Given an algorithm A : Θ × Um → R, we define the empirical risk of A on a

dataset D ∈ Um as R(A;D) = E(R(A(D);D)), where the expectation is over the

internal randomness of A.

Definition 2.2.2 (Population Risk). Given a distribution D over U and an element θ̂ ∈

Θ, the population risk of θ̂ on D is

R(θ̂;D) = L(θ̂;D)−min
θ∈Θ

L(θ;D).

Given an input dataset D ∼ Dm, our central objective in the subsequent chap-

ters of this dissertation will be to find an element θ̂ ∈ Θ such that its population

risk R(θ̂;D) is low, and the privacy of the input dataset D is guaranteed. In other

words, if θopt = arg min
θ∈Θ

L(θ;D), i.e., θopt is an element in the class Θ with a popula-

tion risk equal to 0, we want θ̂ to be competitive with θopt while guaranteeing the

privacy of dataset D. The class Θ and the optimization function ` will vary by the

problem we are trying to solve, and each subsequent chapter addresses a special

case:

• In Chapter 4, we have Θ = Rn as the n-dimensional model space, and the loss

function `(θ; d) for θ ∈ Θ, d ∈ U is convex in the first parameter θ. This formu-

lation falls under unconstrained convex optimization, and finds applications
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in a variety of settings, including machine learning via linear regression, lo-

gistic regression, or support vector machines (SVMs).

• In Chapter 5, we operate in the standard PAC model of learning, where the

universe is the space of feature vectors and labels U = X ×Y , and the search

space Θ = H is a hypothesis class where each hypothesis h ∈ H is a mapping

h : X → Y . For d = (x, y) ∈ U , the loss function `(h; d) = I[h(x) 6= y] denotes

the classification error.

• In Chapter 6, we solve the problem of matrix completion, where the data uni-

verse U consists of the entries of an (m × n) matrix Y ∗ s.t. ‖Y ∗‖nuc ≤ k for

some k > 0, where ‖Y ∗‖nuc denotes the nuclear norm of matrix Y ∗. The input

is the incomplete matrix D = PΩ(Y ∗), where Ω = {(i, j) ⊆ [m] × [n]} comes

from a distributionD that is uniform over [m]×[n], the operator PΩ(Y )ij = Yij

if (i, j) ∈ Ω, and 0 otherwise. The search space Θ = {Y ∈ Rm×n : ‖Y ‖nuc ≤ k},

and the loss function `(Y ;PΩ(Y ∗)i) = m
2|Ω|‖PΩ(Y − Y ∗)i‖2

F denotes a scaled

version of the Mean Squared Error (MSE) over the observed entries. We also

present an optimal differentially private algorithm for singular vector com-

putation, based on Oja’s method, that provides significant savings in terms

of space and time when operating on sparse matrices. We conduct an em-

pirical evaluation of our algorithm on a suite of datasets, and show that it

consistently outperforms the state-of-the-art private algorithms.
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CHAPTER 3

Main Results

In this chapter, we first provide an overview of the main results in this dissertation.

Next, we describe each of the results in detail.

3.1 OVERVIEW

We start by presenting our two major contributions towards practical differen-

tially private convex optimization. They were published in Iyengar, Near, Song,

Thakkar, Thakurta, & Wang (2019b). First, we present Approximate Minima Per-

turbation, a novel algorithm that can leverage any off-the-shelf optimizer. All the

state-of-the-art algorithms have some hyperparameters that need to be tuned for

obtaining good utility, thus incurring an additional cost to privacy. In contrast,

we show that our algorithm can be employed without any hyperparameter tun-

ing, thus making it attractive for practical deployment. Our second contribution is

to perform an extensive empirical evaluation of the state-of-the-art algorithms for

differentially private convex optimization, and compare it with our new approach.

Our evaluation is on a range of publicly available benchmark datasets, as well as

an industry application obtained through a collaboration with Uber.

Next, we present a learning algorithm (inspired by Papernot et al. (2016)) that

outputs a private classifier when given black-box access to a non-private learner

and a limited amount of unlabelled public data. It was published in Bassily,

Thakurta, & Thakkar (2018). We start by providing a new differentially private

algorithm for answering a sequence of m online classification queries (given by a

sequence ofm unlabeled public feature vectors) based on a training set with a fixed

privacy budget. Our algorithm follows the paradigm of subsample-and-aggregate
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(Nissim et al. (2007)), in which any generic non-private learner is trained on dis-

joint subsets of the private training set, and then for each classification query, the

votes of the resulting classifiers ensemble are aggregated in a differentially private

fashion. Our private aggregation is based on a novel combination of the distance-

to-instability framework (Smith & Thakurta (2013)), and the sparse-vector tech-

nique (Dwork et al. (2009); Hardt & Rothblum (2010)). We show that our algorithm

makes a conservative use of the privacy budget. In particular, if the underlying

non-private learner yields a classification error of at most α ∈ (0, 1), then our con-

struction answers more queries, by at least a factor of 1/α in some cases, than what

is implied by a direct application of the advanced composition theorem for differ-

ential privacy. Next, we apply the knowledge transfer technique (which is inspired

by the early work of Breiman (1996)) to construct a private learner that outputs a

classifier, which can be used to answer an unlimited number of queries.

We analyze our construction in the (agnostic) PAC model, and prove upper

bounds on the sample complexity for both the realizable and the non-realizable

cases. Similar to non-private sample complexity, our bounds are completely char-

acterized by the VC dimension of the concept class. If only private data is used,

there are lower bounds showing that the private sample complexity will have a

necessary dependence on the dimensionality of the model (Bassily et al. (2014a)),

or the size of the model class (Bun et al. (2015)). Thus, such a guarantee is not

possible, in general, without public data.

Lastly, we present the first provably DP algorithm with formal utility guaran-

tees for the problem of user-level privacy-preserving matrix completion. It was

published in Jain, Thakkar, & Thakurta (2018). Our algorithm is based on the

Frank-Wolfe method for optimization, and it consistently estimates the underlying
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preference matrix as long as the number of users m is ω(n5/4), where n is the num-

ber of items, and each user provides her preference for at least
√
n randomly se-

lected items. We also empirically evaluate our algorithm on a suite of datasets. We

show that it provides nearly the same accuracy as the state-of-the-art non-private

algorithm and outperforms the state-of-the-art private algorithm by 30% in some

cases.

Our matrix completion algorithm involves computing a rank one approxima-

tion of a matrix. For this purpose, we give an optimal differentially private al-

gorithm for singular vector computation, based on Oja’s method, that provides

significant savings in terms of space and time when operating on sparse matrices.

Further, we show that it can be used for differentially private low-rank approxi-

mation and thus might be of independent interest.

3.2 PRIVATE CONVEX OPTIMIZATION

With the recent advancements in machine learning and big data, private convex

optimization has proven to be useful for large-scale learning over sensitive user

data that has been collected by organizations. Our objective is to provide insight

into practical differentially private convex optimization, with a specific focus on

the classical technique of objective perturbation (Chaudhuri et al. (2011); Kifer et al.

(2012)). Our main technical contribution is to design a new algorithm for private

convex optimization that is amenable to real-world scenarios, and provide privacy

and utility guarantees for it. In addition, we conduct a broad empirical evaluation

of approaches for private convex optimization, including our new approach. Our

evaluation is more extensive than prior works (Chaudhuri et al. (2011); Song et al.

(2013); Jain & Thakurta (2014); Wu et al. (2017)). Apart from these, we also consider
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four industry use cases, obtained in collaboration with Uber Technologies, Inc. We

provide advice and resources for practitioners, including open-source implemen-

tations (Iyengar et al. (2019a)) of the algorithms evaluated, and benchmarks on all

the public datasets considered.

3.2.1 Objective Perturbation and its Practical Feasibility

We focus our attention on the technique of objective perturbation, because prior

works (Chaudhuri et al. (2011); Kifer et al. (2012)) as well as our own preliminary

empirical results have hinted at its superior performance. The standard technique

of objective perturbation (Chaudhuri et al. (2011)) consists of a two-stage process:

“perturbing” the objective function by adding a random linear term, and releasing

the minima of the perturbed objective. It has been shown (Chaudhuri et al. (2011);

Kifer et al. (2012)) that releasing such a minima can be done while achieving DP

guarantees.

However, objective perturbation provides privacy guarantees only if the out-

put of the mechanism is the exact minima of the perturbed objective. Practical algo-

rithms for convex optimization often involve the use of first-order iterative meth-

ods, such as gradient descent or stochastic gradient descent (SGD) due to their

scalability. However, such methods typically offer convergence rates that depend

on the number of iterations carried out by the method, so they are not guaran-

teed to reach the exact minima in finite time. As a result, it is not clear if objective

perturbation in its current form can be applied in a practical setting, where one

is usually constrained by resources such as computing power, and reaching the

minima might not be feasible.

We answer the following question in the affirmative: Does there exist an alter-
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native to standard objective perturbation which provides comparable privacy and

utility guarantees when the released model is not necessarily the minima of the per-

turbed objective? A major implication of this result is that one can use first-order

iterative methods in combination with such an approach. This can be highly bene-

ficial in terms of the time taken to obtain a private solution, as first-order methods

often find a “good” solution quickly.

3.2.2 Our Approach: Approximate Minima Perturbation

We propose Approximate Minima Perturbation (AMP), a strengthened alternative

to objective perturbation. Our method provides privacy and utility guarantees

when the released model is a noisy “approximate” minima for the perturbed ob-

jective. We measure the convergence of a model in terms of the Euclidean norm of

its gradient of the perturbed objective. The scale of the noise added to the approx-

imate minima contains a parameter representing the maximum tolerable gradient

norm. This results in a trade-off between the gradient norm bound (consequently,

the amount of noise to be added to the approximate minima) and the difficulty, in

practice, of being able to obtain an approximate minima within the norm bound.

This can be useful in settings where a limited computing power is available, which

can in turn act as a guide for setting an appropriate norm bound. We note that if

the norm bound is set to zero, then this approach reduces to the setting of stan-

dard objective perturbation. Approximate Minima Perturbation also brings with

it certain distinct advantages, which we will describe next.

Approximate Minima Perturbation works for all convex objective functions:

Previous works (Chaudhuri et al. (2011); Kifer et al. (2012)) provide privacy guar-

antees for objective perturbation only when the objective is a loss function of a
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generalized linear model, i.e., when the loss function is parameterized by an inner

product of the feature vector of the data, and the model. On the other hand, the

guarantees provided for AMP hold for any objective function, and our analysis ex-

tends to objective perturbation as well. In both cases, the objective functions are

assumed to possess standard properties like Lipschitz continuity and smoothness.

Approximate Minima Perturbation is the first feasible approach that can lever-

age any off-the-shelf optimizer: AMP can accommodate any off-the-shelf opti-

mizer as a black-box for carrying out its optimization step. This enables a simple

implementation that inherits the scalability properties of the optimizer used, which

can be particularly important in situations where high-performance optimizers are

available. AMP is the only known feasible algorithm for DP convex optimization

that allows the use of any off-the-shelf optimizer.

Approximate Minima Perturbation has a competitive hyperparameter-free vari-

ant: To ensure privacy for an algorithm, its hyperparameters must be chosen ei-

ther independently of the data, or by using a differentially private hyperparameter

tuning algorithm. Previous work (Chaudhuri et al. (2011); Chaudhuri & Vinterbo

(2013); Abadi et al. (2016)) has shown this to be a challenging task. AMP has only

four hyperparameters: one related to the Lipschitz continuity of the objective, and

the other three related to splitting the privacy budget within the algorithm. In

Section 4.4.1, we present a data-independent method for setting all of them. Our

empirical evaluation demonstrates that the resulting hyperparameter-free variant

of AMP yields comparable accuracy to the standard variant with its hyperparam-

eters tuned in a data-dependent manner (which may be non-private).
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3.2.3 Empirical Evaluation, & Resources for Practitioners

We also report on an extensive and broad empirical study of the state-of-the-art

differentially private convex optimization techniques. In addition to AMP and its

hyperparameter-free variant, we evaluate four existing algorithms: private gra-

dient descent with minibatching (Bassily et al. (2014a); Abadi et al. (2016)), both

the variants (convex, and strongly convex) of the private Permutation-based SGD

algorithm (Wu et al. (2017)), and the private Frank-Wolfe algorithm (Talwar et al.

(2014)).

Our evaluation is the largest to date, including a total of 13 datasets. We include

datasets with a variety of different properties, including four high-dimensional

datasets and four use cases represented by datasets obtained in collaboration with

Uber.

The results of our empirical evaluation demonstrate three key findings. First,

we confirm the expectation that the cost of privacy decreases as dataset size in-

creases. For all the use cases in our evaluation, we obtain differentially private

models that achieve an accuracy within 4% of the non-private baseline even for

conservative settings of the privacy parameters. For reasonable values of the pri-

vacy parameters, the accuracy of the best private model is within 2% of the base-

line for two of these datasets, essentially identical to the baseline for one of them,

and even slightly higher than the baseline for one of the datasets! This provides

empirical evidence to further the claims of previous works (Bassily et al. (2014b);

Dwork et al. (2015a)) that DP can also act as a type of regularization, reducing the

generalization error.

Second, our results demonstrate a general ordering of algorithms in terms of

empirical accuracy. Our results show that AMP generally outperforms all the other
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algorithms across all the considered datasets. Under specific conditions like high-

dimensionality of the dataset and sparsity of the optimal predictive model for it,

we see that private Frank-Wolfe provides the best performance.

Third, our results show that a hyperparameter-free variant of AMP achieves

nearly the same accuracy as the standard variant with its hyperparameters tuned

in a data-dependent manner. Approximate Minima Perturbation is therefore sim-

ple to deploy in practice as it can leverage any off-the-shelf optimizer, and it has a

competitive variant that does not require any hyperparameter tuning.

We provide an open-source implementation (Iyengar et al. (2019a)) of the al-

gorithms evaluated, including our Approximate Minima Perturbation, and a com-

plete set of benchmarks used in producing our empirical results. In addition to

enabling the reproduction of our results, this set of benchmarks will provide a stan-

dard point of reference for evaluating private algorithms proposed in the future.

Our open-source release represents the first benchmark for differentially private

convex optimization.

3.2.4 Main Contributions

Our main contributions are as follows:

• We propose Approximate Minima Perturbation, a strengthened alternative

to objective perturbation that provides privacy guarantees even for an ap-

proximate minima of the perturbed objective, and therefore allows the use of

any off-the-shelf optimizer. No previous approach provides this capability.

Compared to previous approaches, AMP also provides improved utility in

practice, and works with any convex loss function under standard assump-

tions.
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• We conduct the largest empirical study to date of state-of-the-art DP convex

optimization approaches, including as many as nine public datasets, four of

which are high-dimensional. Our results demonstrate that AMP generally

provides the best accuracy.

• We evaluate DP convex optimization on four use cases obtained in collabo-

ration with Uber. Our results suggest that for the large-scale datasets used

in practice, privacy-preserving models can obtain essentially the same accu-

racy as non-private models for reasonable values of the privacy parameters.

In one case, we show that a DP model achieves a higher accuracy than the

non-private baseline.

• We present a competitive hyperparameter-free variant of AMP, allowing the

approach to be deployed without the need for tuning on publicly available

datasets, or by a DP hyperparameter tuning algorithm.

• We release open-source implementations (Iyengar et al. (2019a)) of all the

algorithms we evaluate, and the first benchmarks for differentially private

convex optimization algorithms on as many as nine public datasets.

3.3 MODEL-AGNOSTIC PRIVATE LEARNING

The main goal in the standard setting of differentially private learning is to design

a differentially private learner that, given a private training set as input, outputs a

model (or, a classifier) that is safe to publish. Despite being a natural way to de-

fine the private learning problem, there are several limitations with this standard

approach. First, there are pessimistic lower bounds in various learning problems

implying that the error associated with the final private model will generally have



23

necessary dependence on the dimensionality of the model (Bassily et al. (2014a)),

or the size of the model class (Bun et al. (2015)). Second, this approach often re-

quires non-trivial, white-box modification of the existing non-private learners (Ka-

siviswanathan et al. (2008); Chaudhuri et al. (2011); Kifer et al. (2012); Smith &

Thakurta (2013); Bassily et al. (2014a); Talwar et al. (2015); Abadi et al. (2016)),

which can make some of these constructions less practical since they require mak-

ing changes in the infrastructure of the existing systems. Third, designing algo-

rithms for this setting often requires knowledge about the underlying structure of

the learning problem, e.g., specific properties of the model class (Beimel et al. (2010,

2013); Bun et al. (2015)); or convexity, compactness, and other geometric properties

of the model space (Bassily et al. (2014a); Talwar et al. (2015)).

We study the problem of differentially private learning when the learner has

access to a limited amount of public unlabeled data. Our central goal is to character-

ize in a basic model, such as the standard PAC model, the improvements one can

achieve for private learning in such a relaxed setting compared to the aforemen-

tioned standard setting. Towards this goal, we first consider a simpler problem,

namely, privately answering classification queries given by a sequence of public

unlabeled data Q = {x̃1, · · · , x̃m̃}. In this problem, one is given a private labeled

dataset denoted by D, and the goal is to design an (ε, δ)-differentially private algo-

rithm that labels all m̃ public feature vectors inQ. In designing such an algorithm,

there are four main goals we aim to achieve: (i) We wish to provide an algorithm

that enables answering as many classification queries as possible while ensuring

(ε, δ)-differential privacy. This is a crucial property for the utility of such an al-

gorithm since the utility in this problem is limited by the number of queries we

can answer while satisfying the target privacy guarantee. (ii) We want to have a
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modular design paradigm in which the private algorithm can use any generic non-

private algorithm (learner) in a black-box fashion, i.e., it only has oracle access to the

non-private algorithm. This property is very attractive from a practical standpoint

as the implementation of such an algorithm does not require changing the inter-

nal design of the existing non-private algorithms. (iii) We want to have a design

paradigm that enables us to easily and formally transfer the accuracy guarantees of

the underlying non-private algorithm into meaningful accuracy guarantees for the

private algorithm. The most natural measure of accuracy in that setting would be

the misclassification rate. (iv) We want to be able to use such an algorithm together

with the public unlabeled data to construct a differentially private learner that out-

puts a classifier, which can then be used to answer as many classification queries as

we wish. In particular, given the second goal above, the final private learner would

be completely agnostic to the intricacies of the underlying non-private learner and

its model. Namely, it would be oblivious to whether the model is simple logistic

regression, or a multi-layer deep neural network.

Given the above goals, a natural framework to consider is knowledge aggrega-

tion and transfer, which is inspired by the early work of Breiman (1996). The gen-

eral idea is to train a non-private learner on different subsamples from the private

dataset to generate an ensemble of classifiers. The ensemble is collectively used

in a differentially private manner to generate privatized labels for the given un-

labeled public data. Finally, the public data together with the private labels are

used to train a non-private learner, which produces a final classifier that is safe to

publish.
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3.3.1 Our Techniques

We give a new construction for privately answering classification queries that is

based on a novel framework combining two special techniques in the literature

of differential privacy, namely, the subsampling stability framework (Nissim et al.

(2007); Smith & Thakurta (2013)) and the sparse vector technique (Dwork et al.

(2009); Hardt & Rothblum (2010); Dwork et al. (2014a)). Our construction also fol-

lows the knowledge aggregation and transfer paradigm, but it exploits the stability

properties of good non-private learners in a quantifiable and formal manner. Our

construction is based on the following idea: if a good learner is independently

trained b times on equally sized, independent training sets, then one would ex-

pect the corresponding output classifiers h1, · · · , hb to predict “similarly” on a new

example from the same distribution. Using this idea, we show that among m̃ clas-

sification queries, one only needs to “pay the price of privacy” for the queries for

which there is significant disagreement among the b classifiers. Using our con-

struction and the unlabeled public data, we also provide a final private learner.

We show via formal and quantifiable guarantees that our construction achieves

our four main goals stated earlier.

We note that our framework is not restricted to classification queries; it can be

used for privately answering any sequence of online queries that satisfy certain

stability properties in the sense of Smith & Thakurta (2013).

3.3.2 Main Contributions

Answering online classification queries using privacy conservatively: In Sec-

tion 5.4, we give our (ε, δ)-DP construction for answering a sequence of online

classification queries. Our construction uses any generic non-private learner in a
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black-box fashion. The privacy guarantee is completely independent of the non-

private learner and its accuracy. Moreover, the accuracy guarantee can be obtained

directly from the accuracy of the non-private learner, i.e., the construction allows

us to directly and formally “transform” the accuracy guarantee for the non-private

learner into an accuracy guarantee for the final private algorithm.

We provide a new privacy analysis for the novel framework combining sub-

sampling stability and sparse vector techniques. We analyze the accuracy of our

algorithm in terms of its misclassification rate, defined as the ratio of misclassified

queries to the total number of queries, in the standard (agnostic) PAC model. Our

accuracy analysis is new, and is based on a simple counting argument. We con-

sider both the realizable and non-realizable (agnostic) cases. In the realizable case,

the underlying non-private learner is assumed to be a PAC learner for a hypothesis

class H of VC-dimension V . The private training set consists of m labeled exam-

ples, where the labels are generated by some unknown hypothesis h∗ ∈ H. The

queries are given by a sequence of m̃ i.i.d. unlabeled domain points drawn from

the same distribution as the domain points in the training set. We show that, with

high probability, our private algorithm can answer up to ≈ m/V queries with a

misclassification rate of ≈ V/m, which is essentially the optimal misclassification

rate attainable without privacy. Thus, answering those queries essentially comes

with no cost for privacy. When answering m̃ > m/V queries, the misclassification

rate is≈ m̃V 2/m2. A straightforward application of the advanced composition the-

orem of differential privacy would have led to a misclassification rate ≈
√
m̃V/m,

which can be significantly larger than our rate. This is because our construction

pays a privacy cost only for “hard” queries for which the PAC learner tends to be

incorrect. Our result for the realizable case is summarized below. We also provide
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an analogous statement for the non-realizable case (Theorem 13).

Informal Theorem 3.3.1 (Corresponding to Theorem 12). Given a PAC learner for a

class H of VC-dimension V , a private training set of size m, and assuming realizability,

our private construction (Algorithm 10) answers a sequence of up to Ω̃(m/V ) binary clas-

sification queries such that, with high probability, the misclassification rate is Õ(V/m).

When the number of queries m̃ is beyond Ω̃(m/V ), then with high probability, the misclas-

sification rate is Õ (m̃V 2/m2).

A model-agnostic private learner with formal guarantees: In Section 5.5, we use

the knowledge transfer technique to bootstrap a private learner from our construc-

tion above. The idea is to use our private construction to label a sufficient number

of public feature vectors. Then, we use these newly labeled public data for training

a non-private learner to finally output a classifier. Since there is no privacy con-

straint associated with the public data, the overall construction remains private

as differential privacy is closed under post-processing. Note that this construc-

tion also uses the non-private learner as a black box, and hence it is agnostic to

the structure of such learner and the associated model. This general technique

has also been adopted in Papernot et al. (2016). Our main contribution here is

that we provide formal and explicit utility guarantees for the final private learner

in the standard (agnostic) PAC model. Our guarantees are in terms of upper

bounds on the sample complexity in both realizable and non-realizable cases. Let

L(h;D) , P
(x,y)∼D

[h(x) 6= y] denote the true classification error of a hypothesis h.

Given black-box access to an agnostic PAC learner for a class H of VC-dimension

V , we obtain the following results:

Informal Theorem 3.3.2 (Corresponding to Theorems 14, 17). Let 0 < α < 1. Let m

be the size of the private training set. There exists an (ε, δ)-differentially private algorithm
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(Algorithm 11) that, given access to m̃ = Õ
(
V
α2

)
unlabeled public data points, w.h.p.

outputs a classifier ĥ ∈ H such that the following guarantees hold: (i) Realizable case:

L(ĥ;D) ≤ α for n = Õ
(
V 3/2/α3/2

)
, and (ii) Agnostic case: L(ĥ;D) ≤ α + O(γ) for

n = Õ
(
V 3/2/α5/2

)
, where γ = min

h∈H
L(h;D).

Our bounds are only a factor of Õ
(√

V/α
)

worse than the corresponding opti-

mal non-private bounds. In the agnostic case, however, we note that the accuracy

of the output hypothesis in our case has a suboptimal dependency (by a small

constant factor) on γ , min
h∈H

L(h;D).

We note that the same construction can serve as a private learner in a less re-

strictive setting where only the labels of the training set are considered private

information. This setting is known as label-private learning, and it has been ex-

plored before in Chaudhuri & Hsu (2011) and Beimel et al. (2016). Both works

have only considered pure, i.e., (ε, 0), differentially private learners, and their con-

structions are white-box, i.e., they do not allow for using a black-box non-private

learner. The bounds in Chaudhuri & Hsu (2011) involve smoothness assumptions

on the underlying distribution. In Beimel et al. (2016), an upper bound on the sam-

ple complexity is derived for the realizable case. Their bound is a factor of O(1/α)

worse than the optimal non-private bound for the realizable case.

3.4 PRIVATE MATRIX COMPLETION

Collaborative filtering (or matrix completion) is a popular approach for modeling

the recommendation system problem, where the goal is to provide personalized

recommendations about certain items to a user (Koren & Bell (2015)). In other

words, the objective of a personalized recommendation system is to learn the entire

users-items preference matrix Y ∗ ∈ Rm×n using a small number of user-item pref-
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erences Y ∗ij , (i, j) ∈ [m]× [n], wherem is the number of users and n is the number of

items. Naturally, in absence of any structure in Y ∗, the problem is ill-defined as the

unknown entries of Y ∗ can be arbitrary. Hence, a popular modeling hypothesis is

that the underlying preference matrix Y ∗ is low-rank, and thus, the collaborative

filtering problem reduces to that of low-rank matrix completion (Recht (2011); Can-

des & Recht (2012)). One can also enhance this formulation using side-information

like user-features or item-features (Yu et al. (2014)).

Naturally, personalization problems require collecting and analyzing sensitive

customer data like their preferences for various items, which can lead to serious

privacy breaches (Korolova (2010); Narayanan & Shmatikov (2010); Calandrino

et al. (2011)). We attempt to address this problem of privacy-preserving recom-

mendations using collaborative filtering (McSherry & Mironov (2009); Liu et al.

(2015)). We answer the following question in the affirmative: Can we design a ma-

trix completion algorithm which keeps all the ratings of a user private, i.e., guarantees

user-level privacy while still providing accurate recommendations? In particular, we

provide the first differentially private matrix completion algorithms with provable

accuracy guarantees.

Most of the prior works on DP matrix completion and low-rank approximation

(Blum et al. (2005); Chan et al. (2011); Hardt & Roth (2012, 2013); Kapralov & Talwar

(2013); Dwork et al. (2014b)) have provided guarantees which are non-trivial only

in the entry-level privacy setting, i.e., they preserve privacy of only a single rating

of a user. Hence, they are not suitable for preserving a user’s privacy in practical

recommendation systems. In fact, their trivial extension to user-level privacy leads

to vacuous bounds (see Table 3.1). Some works (McSherry & Mironov (2009); Liu

et al. (2015)) do serve as an exception, and directly address the user-level privacy
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problem. However, they only show empirical evidences of their effectiveness; they

do not provide formal error bounds. In case of Liu et al. (2015), the DP guarantee it-

self might require an exponential amount of computation. In contrast, we provide

an efficient algorithm based on the classic Frank-Wolfe (FW) procedure (Frank &

Wolfe (1956)), and show that it gives strong utility guarantees while preserving

user-level privacy. Furthermore, we empirically demonstrate its effectiveness on

various benchmark datasets.

Our private FW procedure needs to compute the top right singular vector of a

sparse user preference matrix, while preserving DP. For practical recommendation

systems with a large number of items, this step turns out to be a significant bot-

tleneck both in terms of space as well as time complexity. To alleviate this issue,

we provide a method, based on the celebrated Oja’s algorithm (Jain et al. (2016)),

which is nearly optimal in terms of the accuracy of the computed singular vector

while still providing significant improvement in terms of space and computation.

In fact, our method can be used to speed-up even the vanilla differentially private

PCA computation (Dwork et al. (2014c)). To the best of our knowledge, this is the

first algorithm for DP singular value computation with optimal utility guarantee,

that also exploits the sparsity of the underlying matrix.

Notion of privacy: In the context of matrix completion, where the goal is to release

the entire preference matrix while preserving privacy, the standard notion of differ-

ential privacy (Definition 2.1.3) implies that the computed ratings/preferences for

any particular user cannot depend strongly on her own personal preferences. Nat-

urally, the resulting preference computation is going to be trivial and inaccurate

(which also follows from the reconstruction attacks of Dinur & Nissim (2003) and

Hardt & Roth (2012)).
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To alleviate this concern, we consider a relaxed but natural DP notion (for rec-

ommendation systems) called joint differential privacy (Kearns et al. (2014)). Con-

sider an algorithm A that produces individual outputs Yi for each user i, i.e., the

i-th row of preference matrix Y . Joint DP ensures that for each user i, the output

of A for all other users (denoted by Y−i) does not reveal “much” about the pref-

erences of user i. That is, the recommendations made to all the users except the

i-th user do not depend significantly upon the i-th user’s preferences. Although

not mentioned explicitly, previous works on DP matrix completion (McSherry &

Mironov (2009); Liu et al. (2015)) strive to ensure Joint DP.

Granularity of privacy: DP protects the information about a user in the context

of presence or absence of her data record. Prior works on DP matrix completion

(McSherry & Mironov (2009); Liu et al. (2015)), and its close analogue, low-rank

approximation (Blum et al. (2005); Chan et al. (2011); Hardt & Roth (2012); Dwork

et al. (2014c); Hardt & Roth (2013)), have considered different variants of the no-

tion of a data record. Some have considered a single entry in the matrix Y ∗ as

a data record (resulting in entry-level privacy), whereas others have considered a

more practical setting where the complete row is a data record (resulting in user-

level privacy). Here, we present all our results in the strictly harder user-level pri-

vacy setting. To ensure a fair comparison, we present the results of prior works in

the same setting.

3.4.1 Problem Definition: Matrix Completion

The goal of a low-rank matrix completion problem is to estimate a low-rank (or a

convex relaxation of bounded nuclear norm) matrix Y ∗ ∈ Rm×n, having seen only

a small number of entries from it. Here, m is the number of users, and n is the
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number of items. Let Ω = {(i, j) ⊆ [m] × [n]} be the index set of the observed

entries from Y ∗, and let PΩ : Rm×n → Rm×n be a matrix operator s.t. PΩ(Y )ij = Yij

if (i, j) ∈ Ω, and 0 otherwise. Given, PΩ(Y ∗), the objective is to output a matrix

Y such that the following generalization error, i.e., the error in approximating a

uniformly random entry from the matrix Y ∗, is minimized:

L(Y ) = E(i,j)∼unif [m]×[n]

[(
Yij − Y ∗ij

)2
]
. (3.1)

Generalization error captures the ability of an algorithm to predict unseen samples

from Y ∗. We would want the generalization error to be o(1) in terms of the problem

parameters when Ω = o(mn). Throughout this section and Chapter 6, we will

assume that m > n.

3.4.2 Main Contributions

We provide the first joint DP algorithm for low-rank matrix completion with for-

mal non-trivial error bounds, which are summarized in Tables 3.1 and 3.2. At a

high level, our key result can be summarized as follows:

Informal Theorem 3.4.1 (Corresponds to Corollary 6.2.1). Assume that each entry

of a hidden matrix Y ∗ ∈ Rm×n is in [−1, 1], and there are
√
n observed entries per user.

Also, assume that the nuclear norm of Y ∗ is bounded by O(
√
mn), i.e., Y ∗ has nearly

constant rank. Then, there exist (ε, δ)-joint differentially private algorithms that have o(1)

generalization error as long as m = ω(n5/4).

In other words, even with
√
n observed ratings per user, we obtain asymptot-

ically the correct estimation of each entry of Y ∗ on average, as long as m is large

enough. The sample complexity bound dependence on m can be strengthened by
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making additional assumptions, such as incoherence, on Y ∗.

Our algorithm is based on two important ideas: a) using local and global com-

putation, b) using the Frank-Wolfe method as a base optimization technique.

Local and global computation: The key idea that defines our algorithm, and al-

lows us to get strong error bounds under joint DP is splitting the algorithm into

two components: global and local. Recall each row of the hidden matrix Y ∗ belongs

to an individual user. The global component of our algorithm computes statistics

that are aggregate in nature (e.g., computing the correlation across columns of the

revealed matrix PΩ(Y ∗)). On the other hand, the local component independently

fine-tunes the statistics computed by the global component to generate accurate

predictions for each user. Since the global component depends on the data of all

users, adding noise to it (for privacy) does not significantly affect the accuracy of

the predictions. McSherry & Mironov (2009); Liu et al. (2015) also exploit a similar

idea of segregating the computation, but they do not utilize it formally to provide

non-trivial error bounds.

Frank-Wolfe based method: We use the standard nuclear norm formulation (Recht

(2011); Shalev-Shwartz et al. (2011); Tewari et al. (2011); Candes & Recht (2012)) for

the matrix completion problem:

min
‖Y ‖nuc≤k

L(Y ; Ω), (3.2)

where L(Y ; Ω) = 1
2|Ω|‖PΩ(Y −Y ∗)‖2

F , the sum of singular values of Y is denoted by

‖Y ‖nuc, and the underlying hidden matrix Y ∗ is assumed to have nuclear norm of

at most k. Note that we denote the empirical risk of a solution Y given the observed

indices Ω by L(Y ; Ω). We use the popular Frank-Wolfe algorithm (Frank & Wolfe

(1956); Jaggi et al. (2010)) as our algorithmic building block. At a high-level, FW
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computes the solution to (3.2) as a convex combination of rank-one matrices, each

with nuclear norm at most k. These matrices are added iteratively to the solution.

Our main contribution is to design a version of the FW method that preserves

Joint DP. That is, if the standard FW algorithm decides to add matrix u · vT during

an iteration, our private FW computes a noisy version of v ∈ Rn via its global

component. Then, each user computes the respective element of u ∈ Rm to obtain

her update. The noisy version of v suffices for the Joint DP guarantee, and allows

us to provide the strong error bound in Theorem 3.4.1 above.

We want to emphasize that the choice of FW as the underlying matrix comple-

tion algorithm is critical for our system. FW updates via rank-one matrices in each

step. Hence, the error due to noise addition in each step is small (i.e., proportional

to the rank), and allows for an easy decomposition into the local-global computa-

tion model. Other standard techniques like proximal gradient descent based tech-

niques (Cai et al. (2010); Lin et al. (2010)) can involve nearly full-rank updates in

an iteration, and hence might incur large error, leading to arbitrary inaccurate so-

lutions. Note that though a prior work (Talwar et al. (2015)) has proposed a DP

Frank-Wolfe algorithm for high-dimensional regression, it was for a completely

different problem in a different setting where the segregation of computation into

global and local components was not necessary.

Private singular vector of sparse matrices using Oja’s method: Our private FW re-

quires computing a noisy covariance matrix which implies Ω(n2) space/time com-

plexity for n items. Naturally, such an algorithm does not scale to practical recom-

mendation systems. In fact, this drawback exists even for standard private PCA

techniques (Dwork et al. (2014c)). Using insights from the popular Oja’s method,

we provide a technique (see Algorithm 14) that has a linear dependency on n as



35

long as the number of ratings per user is small. Moreover, the performance of our

private FW method isn’t affected by using this technique.

SVD-based method: We also extend our technique to a singular value decompo-

sition (SVD) based method for matrix completion/factorization. Our utility anal-

ysis shows that there are settings where this method outperforms our FW-based

method, but in general it can provide a significantly worse solution. The main

goal is to study the power of the simple SVD-based method, which is still a popu-

lar method for collaborative filtering.

Empirical results: Finally, we show that along with providing strong analytical

guarantees, our private FW also performs well empirically. We show its efficacy

on benchmark collaborative filtering datasets like Jester (Goldberg et al. (2001)),

MovieLens (Harper & Konstan (2015)), the Netflix prize dataset (Bennett & Lan-

ning (2007)), and the Yahoo! Music recommender dataset (Yahoo (2011)). Our

algorithm consistently beats (in terms of accuracy) the existing state-of-the-art in

DP matrix completion (SVD-based method by McSherry & Mironov (2009), and a

variant of projected gradient descent (Cai et al. (2010); Bassily et al. (2014b); Abadi

et al. (2016)).

3.4.3 Comparison to Prior Work

As discussed earlier, our results are the first to provide non-trivial error bounds

for DP matrix completion. For comparing different results, we consider the fol-

lowing setting of the hidden matrix Y ∗ ∈ Rm×n and the set of released entries Ω: i)

|Ω| ≈ m
√
n, ii) each row of Y ∗ has an L2 norm of

√
n, and iii) each row of PΩ(Y ∗)

has L2-norm at most n1/4, i.e., ≈
√
n random entries are revealed for each row.

Furthermore, we assume the spectral norm of Y ∗ is at most O(
√
mn), and Y ∗ is
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rank-one. These conditions are satisfied by a matrix Y ∗ = u ·vT , where
√
n random

entries are observed per user, and ui, vj ∈ [−1, 1] ∀i, j.

Algorithm Bound on m Bound on |Ω|
Nuclear norm min. (non-private) ω(n) ω(m

√
n)

(Shalev-Shwartz et al. (2011))
Noisy SVD + kNN – –

(McSherry & Mironov (2009))
Noisy SGLD (Liu et al. (2015)) – –
Private FW (Jain et al. (2018)) ω(n5/4) ω(m

√
n)

Table 3.1: Sample complexity bounds for matrix completion. m =
no. of users, n = no. of items. The bounds hide privacy parameters ε
and log(1/δ), and polylog factors in m, n.

Algorithm Error
Randomized response (Blum et al. (2005)) O(

√
m+ n)

(Chan et al. (2011); Dwork et al. (2014b))
Gaussian measurement (Hardt & Roth (2012)) O

(√
m+

√
µn
m

)
Noisy power method (Hardt & Roth (2013)) O(

√
µ)

Exponential mechanism (Kapralov & Talwar (2013)) O(m+ n)

Private FW (Jain et al. (2018)) O
(
m3/10n1/10

)
Private SVD (Jain et al. (2018)) O

(√
µ
(
n2

m
+ m

n

))

Table 3.2: Error bounds (‖Y − Y ∗‖F ) for low-rank approximation.
µ ∈ [0,m] is the incoherence parameter (Definition 29). The bounds
hide privacy parameters ε and log(1/δ), and polylog factors in m an
n. Rank of the output matrix Ypriv is O

(
m2/5/n1/5

)
for Private FW,

whereas it is O(1) for the others.

In Table 3.1, we provide a comparison based on the sample complexity, i.e., the

number of users m and the number observed samples |Ω| needed to attain a gen-

eralization error of o(1). We compare our results with the best non-private algo-

rithm for matrix completion based on nuclear norm minimization (Shalev-Shwartz

et al. (2011)), and the prior work on DP matrix completion (McSherry & Mironov
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(2009); Liu et al. (2015)). We see that for the same |Ω|, the sample complexity on

m increases from ω(n) to ω(n5/4) for our FW-based algorithm. While McSherry &

Mironov (2009); Liu et al. (2015) work under the notion of Joint DP as well, they do

not provide any formal accuracy guarantees.

Interlude: Low-rank approximation. We also compare our results with the prior

work on a related problem of DP low-rank approximation. Given a matrix Y ∗ ∈

Rm×n, the goal is to compute a DP low-rank approximation Ypriv, s.t. Ypriv is close

to Y ∗ either in the spectral or Frobenius norm. Notice that this is similar to ma-

trix completion if the set of revealed entries Ω is the complete matrix. Hence, our

methods can be applied directly. To be consistent with the existing literature, we

assume that Y ∗ is rank-one matrix, and each row of Y ∗ has L2-norm at most one.

Table 3.2 compares the various results. While all the prior works provide trivial

error bounds (in both Frobenius and spectral norm, as ‖Y ∗‖2 = ‖Y ∗‖F ≤
√
m), our

methods provide non-trivial bounds. The key difference is that we ensure Joint

DP (Definition 18), while existing methods ensure the stricter standard DP (Defini-

tion 2.1.3), with the exponential mechanism (Kapralov & Talwar (2013)) ensuring

(ε, 0)-standard DP.
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CHAPTER 4

Private Convex Optimization

In this chapter, we will look at a technique for practical differentially private con-

vex optimization. We will also look at an extensive empirical evaluation, which

includes many high-dimensional publicly available benchmark datasets, corrobo-

rating that this technique performs well in practice.

4.1 ADDITIONAL PRELIMINARIES

Given an m-element dataset D = {d1, d2, . . . , dm}, s.t. di ∼ D for i ∈ [m], the objec-

tive is to get a model θ̂ from the following unconstrained optimization problem:

θ̂ ∈ arg min
θ∈Rn

L(θ;D),

where L(θ;D) = 1
m

m∑
i=1

`(θ; di) is the empirical risk, n > 0, and `(θ; di) is defined as

a loss function for di that is convex in the first parameter θ ∈ Rn. This formulation

falls under the framework of ERM, which is useful in various settings, including

the widely applicable problem of classification in machine learning via linear re-

gression, logistic regression, or support vector machines. The notation ‖x‖ is used

to represent the L2-norm of a vector x. Next, we define certain basic properties of

functions that will be helpful in further sections.

Definition 4.1.1. A function f : Rn → R :

• is a convex function if for all θ1, θ2 ∈ Rn, we have

f(θ1)− f(θ2) ≥ 〈∇f(θ2), θ1 − θ2〉
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• is a ξ-strongly convex function if for all θ1, θ2 ∈ Rn, we have

f(θ1) ≥ f(θ2) + 〈∇f(θ2), θ1 − θ2〉+
ξ

2
‖θ1 − θ2‖2

or equivalently, 〈∇f(θ1)−∇f(θ2), (θ1 − θ2)〉 ≥ ξ‖θ1 − θ2‖2

• has Lq-Lipschitz constant ∆ if for all θ1, θ2 ∈ Rn, we have

|f(θ1)− f(θ2)| ≤ ∆ · ‖θ1 − θ2‖q

• is β-smooth if for all θ1, θ2 ∈ Rn, we have

‖∇f(θ1)−∇f(θ2)‖ ≤ β · ‖θ1 − θ2‖

Lastly, we define Generalized Linear Models (GLMs).

Definition 4.1.2 (Generalized Linear Model). For a model space θ ∈ Rn, where n > 0,

the sample space U in a Generalized Linear Model (GLM) is defined as the cartesian

product of a n-dimensional feature space X ⊆ Rn and a label space Y , i.e., U = X × Y .

Thus, each data sample di ∈ U can be decomposed into a feature vector xi ∈ X , and a label

yi ∈ Y . Moreover, the loss function `(θ; di) for a GLM is a function of xTi θ and yi.

In this chapter, we will use the notion of neighboring under modification (Def-

inition 2.1.1) for the guarantee of DP (Definition 2.1.3).

4.2 RELATED WORK

Convex optimization in the non-private setting has a long history; several excellent

resources provide a good overview (Boyd & Vandenberghe (2004); Bubeck et al.
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(2015)). A lot of recent advances have been made in the field of convex Empirical

Risk Minimization (ERM) as well. A comprehensive list of works on stochastic

convex ERM has been provided in Zhang et al. (2017), whereas Feldman (2016)

provides dimension-dependent lower bounds for the sample complexity required

for stochastic convex ERM and uniform convergence.

A large body of existing work examines the problem of differentially private

convex ERM. The techniques of output perturbation and objective perturbation

were first proposed in Chaudhuri et al. (2011). Near dimension-independent risk

bounds for both the techniques were provided in Jain & Thakurta (2014); how-

ever, the bounds are achieved for the standard settings of the techniques, which

provide privacy guarantees only for the minima of their respective objective func-

tions. A private SGD algorithm was first given in Song et al. (2013), and opti-

mal risk bounds were provided for a later version of private SGD in Bassily et al.

(2014a). A variant of output perturbation was proposed in Wu et al. (2017) that

requires the use of permutation-based SGD, and reduces sensitivity using proper-

ties of that algorithm. Several works (Kifer et al. (2012); Smith & Thakurta (2013))

deal with DP convex ERM in the setting of high-dimensional sparse regression, but

the algorithms in these works also require obtaining the minima. The Frank-Wolfe

algorithm (Frank & Wolfe (1956)) has also seen a resurgence lately (Jaggi (2013);

Lacoste-Julien & Jaggi (2013); Lacoste-Julien & Jaggi (2015); Lacoste-Julien (2016)).

We study the performance of a DP version of Frank-Wolfe (Talwar et al. (2014)) in

our empirical analysis.

There are also works in DP convex optimization apart from the ERM model.

Many recent works (Jain et al. (2012); Duchi et al. (2013); Thakurta & Smith (2013))

examine the setting of online learning, whereas high-dimensional kernel learning
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is considered in Jain & Thakurta (2013); these settings are quite different from ours,

and the results are incomparable. There have also been works (Zhang et al. (2012);

Wu et al. (2015)) on DP regression analysis, a subset of DP convex optimization.

However, the privacy guarantees in these hold only if the algorithms are able to

find some minima. There have also been advances in DP non-convex optimization,

including deep learning (Shokri & Shmatikov (2015); Abadi et al. (2016)). A broad

survey of works in DP machine learning has been provided in Ji et al. (2014).

Previous empirical evaluations have provided limited insight into the practical

performance of the various algorithms for DP convex optimization. Output per-

turbation and objective perturbation are evaluated on two datasets in Chaudhuri

et al. (2011) and Jain & Thakurta (2014), and private SGD is evaluated in Song et al.

(2013). Wu et al. (2017) perform the broadest comparison, including their own ap-

proach, and two variants of private SGD (Song et al. (2013); Bassily et al. (2014a))

on six datasets, but they do not include objective perturbation. No prior evalua-

tion considers the state-of-the-art algorithms from all three major lines of work in

the area (output perturbation, objective perturbation, and private SGD). Moreover,

none of the prior evaluations considers high-dimensional data—a maximum of 75

dimensions is considered in Wu et al. (2017).

Our empirical evaluation is the most complete to date. We evaluate state-of-

the-art algorithms from all 3 lines of work on 9 public datasets and 4 use cases. We

consider low-dimensional and high-dimensional (as many as 47,236 dimensions)

datasets. In addition, we release open-source implementations for all algorithms,

and benchmarking scripts to reproduce our results (Iyengar et al. (2019a)).
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4.3 APPROXIMATE MINIMA PERTURBATION

In this section, we will describe Approximate Minima Perturbation, a strength-

ened alternative to objective perturbation that provides DP guarantees in the case

even when the output of the algorithm is not the actual minima of the perturbed

objective function. The perturbed objective takes the form L(θ;D) + Λ
2
‖θ‖2 + 〈b, θ〉,

where b is a random variable drawn from an appropriate distribution, and Λ is an

appropriately chosen regularization constant. We make two crucial improvements

over the original objective perturbation algorithm (Chaudhuri et al. (2011); Kifer

et al. (2012)):

• The privacy guarantee of objective perturbation holds only at the exact minima of

the underlying optimization problem, which is never guaranteed in practice given

finite time. We show that AMP provides a privacy guarantee even for an approxi-

mate solution.

• Earlier privacy analyses for objective perturbation (Chaudhuri et al. (2011); Kifer

et al. (2012)) hold only when the loss function `(θ; d) is a loss for a GLM (see Def-

inition 4.1.2), as they implicitly make a rank-one assumption on the Hessian of

the loss 52`(θ; d). Via a careful perturbation analysis of the Hessian, we extend

the analysis to any convex loss function under standard assumptions. It is im-

portant to note that AMP reduces to objective perturbation if the “approximate"

minima condition is tightened to getting the actual minima of the perturbed ob-

jective.

Algorithmic description: Given a dataset D = {d1, d2, . . . , dm}, where each di ∼ D,

we consider (objective) functions of the form L(θ;D) = 1
m

m∑
i=1

`(θ; di), where θ ∈ Rn

is a model, loss `(θ; di) has L2-Lipschitz constant ∆ for all di, is convex in θ, has a
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continuous Hessian, and is β-smooth in both the parameters.

At a high level, Approximate Minima Perturbation provides a convergence-

based solution for objective perturbation. In other words, once the algorithm

finds a model θapprox for which the norm of the gradient of the perturbed objec-

tive ∇Lpriv(θapprox;D) is within a pre-determined threshold γ, it outputs a noisy

version of θapprox, denoted by θout. Since the perturbed objective is strongly convex,

it is sufficient to add Gaussian noise, with standard deviation σ2 having a linear

dependence on the norm bound γ, to θapprox to ensure DP.

Details of AMP are provided in Algorithm 1. Note that although we get a re-

laxed constraint on the regularization parameter Λ (in Algorithm 1) if the loss func-

tion ` is a loss for a GLM, the privacy guarantees hold for general convex loss func-

tions as well. The parameters (ε1, δ1) within the algorithm represent the amount of

the privacy budget dedicated to perturbing the objective, with the rest of the bud-

get (ε2, δ2) being used for adding noise to the approximate minima θapprox. On the

other hand, the parameter ε3 intuitively represents the part of the privacy budget

ε1 allocated to scaling the noise added to the objective function. The remaining

budget (ε1 − ε3) is used to set the amount of regularization used.

Privacy and utility guarantees: Here, we provide the privacy and utility guaran-

tees for Algorithm 1. While we provide a complete privacy analysis (Theorem 1),

we only state the utility guarantee (Theorem 2) as it is a slight modification from

previous work (Kifer et al. (2012)).

Theorem 1 (Privacy guarantee). Algorithm 1 is (ε, δ)-differentially private.

Proof Idea. For obtaining an (ε, δ)-DP guarantee for Algorithm 1, we first split the

output of the algorithm into two parts: one being the exact minima of the per-

turbed objective, whereas the other containing the exact minima, the approximate
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Algorithm 1 Approximate Minima Perturbation

Input: Dataset: D = {d1, · · · , dm}; loss function: `(θ; di) that has L2-Lipschitz con-
stant ∆, is convex in θ, has a continuous Hessian, and is β-smooth for all θ ∈ Rn

and all di; Hessian rank bound parameter: r which is the minimum of n and
twice the upper bound on the rank of `’s Hessian; privacy parameters: (ε, δ);
gradient norm bound: γ.

1: Set ε1, ε2, ε3, δ1, δ2 > 0 such that ε = ε1 + ε2, δ = δ1 + δ2, and 0 < ε1 − ε3 < 1
2: Set Λ ≥ rβ

ε1−ε3

3: b1 ∼ N (0, σ2
1In×n), where σ1 =

( 2∆
m )

(
1+
√

2 log 1
δ1

)
ε3

4: Let Lpriv(θ;D) = 1
m

m∑
i=1

`(θ;Di) + Λ
2m
‖θ‖2 + bT1 θ

5: θapprox ← θ such that ‖∇Lpriv(θ;D)‖ ≤ γ

6: b2 ∼ N (0, σ2
2In×n), where σ2 =

(mγΛ )
(

1+
√

2 log 1
δ2

)
ε2

7: Output θout = θapprox + b2

minima obtained in Step 1 of the algorithm, as well as the Gaussian noise added to

it. For the first part, we bound the ratio of the density of the exact minima taking

any particular value, under any two neighboring datasets, by eε1 with probability

at least 1 − δ1. We first simplify such a ratio, as done in Chaudhuri et al. (2011)

via the function inverse theorem, by transforming it to two ratios: one involving

only the density of a function of the minima value and the input dataset, and the

other involving the determinant of this function’s Jacobian. For the former ratio,

we start by bounding the sensitivity of the function using the L2-Lipschitz constant

∆ of the loss function. Then, we use the guarantees of the Gaussian mechanism

to obtain a high-probability bound (shown in Lemma 4.3.1). We bound the latter

ratio (in Lemma 4.3.2) via a novel approach that uses the β-smoothness property of

the loss. Next, we use the the gradient norm bound γ, and the strong convexity of

the perturbed objective to obtain an (ε2, δ2)-DP guarantee for the second part of the

split output. Lastly, we use the basic composition property of DP (Lemma 2.1.5) to

get the statement of the theorem.
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Proof. Define θmin = arg minθ∈Rn Lpriv(θ;D). Fix a pair of neighboring datasets

D∗, D′ ∈ Dm, and some α ∈ Rn. First, we will show that:

pdfD∗(θmin = α)

pdfD′(θmin = α)
≤ eε1 w.p. ≥ 1− δ1. (4.1)

We define b(θ;D) = −∇L(θ;D) − Λθ
m

for D ∈ Dm and θ ∈ Rn. Changing variables

according to the function inverse theorem (Theorem 17.2 in Billingsley (1995)), we

get

pdfD∗(θmin = α)

pdfD′(θmin = α)
=

pdf(b(α;D∗); ε1, δ1,∆)

pdf(b(α;D′); ε1, δ1,∆)
· | det(∇b(α;D′))|
| det(∇b(α;D∗))|

(4.2)

We will bound the ratios of the densities and the determinants separately. First, we

will show that for ε3 < ε1, pdf(b(α;D∗);ε,δ,∆)

pdf(b(α;D′);ε,δ,∆)
≤ eε3 w.p. at least 1− δ1, and then we will

show that | det(∇b(α;D′))|
| det(∇b(α;D∗))| ≤ eε1−ε3 if ε1 − ε3 < 1.

Lemma 4.3.1. We define b(θ;D) = −∇L(θ;D)− Λθ
m

for D ∈ Dm, and θ ∈ Rn. Then, for

any pair of neighboring datasets D∗, D′ ∈ Dm, and ε3 < ε1, we have

pdf(b(α;D∗); ε1, δ1,∆)

pdf(b(α;D′); ε1, δ1,∆)
≤ eε3 w.p. at least 1− δ1.

Here, Lpriv(α; ) is defined as in Algorithm 1.

Proof. Assume w.l.o.g. that di ∈ D∗ has been replaced by d′i in D′. We first bound

the L2-sensitivity of b(α; ):

‖b(α;D∗)− b(α;D′)‖ ≤ ‖∇`(α; d′i)−∇`(α; di)‖
m

≤ 2∆

m
,

where the last inequality follows as ‖∇`(α; )‖ ≤ ∆.

Setting σ1 ≥
( 2∆
m )

(
1+
√

2 log 1
δ1

)
ε3

for ε3 < ε1, we get the statement of the lemma from
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the guarantees of the Gaussian mechanism (Lemma 2.1.9).

Lemma 4.3.2. Let b(θ;D) be defined as in Lemma 4.3.1. Then for any pair of neighboring

datasets D∗, D′ ∈ Dm, if ε1 − ε3 < 1, we have

| det(∇b(α;D′))|
| det(∇b(α;D∗))|

≤ eε1−ε3 .

Proof. Assume w.l.o.g. that di ∈ D∗ is replaced by d′i in D′. Let A = m∇2L(α;D∗),

and E = ∇2`(α; d′i) − ∇2`(α; di). As the (n × n) matrix E is the difference of the

Hessians of the loss of two individual samples, we can define a bound r on the

rank of E as follows:

r = min
{
n, 2 ·

(
upper bound on rank of∇2`(α; )

)}
Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A, and λ′1 ≤ λ′2 ≤ · · · ≤ λ′n be the

eigenvalues of A+ E. Thus,

|det(∇b(α;D′))|
|det(∇b(α;D∗))|

=
det
(
A+E+ΛIn

m

)
det
(
A+ΛIn
m

) =

n∏
i=1

(
λ′i + Λ

)
n∏
i=1

(λi + Λ)

=
n∏
i=1

(
1 +

λ′i − λi
λi + Λ

)
≤

n∏
i=1

(
1 +
|λ′i − λi|

Λ

)

= 1 +
n∑
i=1

|λ′i − λi|
Λ

+
∑

i,j∈[n],
i 6=j

∏
k∈{i,j}

|λ′k − λk|

Λ2
+ · · ·

≤ 1 +
rβ

Λ
+

(rβ)2

Λ2
+ · · · ≤ Λ

Λ− rβ

The first inequality follows since A is a positive semi-definite matrix (as ` is con-
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vex) and thus, λj ≥ 0 for all j ∈ [n]. The second inequality follows as i) the rank of

E is at most r, ii) both A and A + E are positive semi-definite (so λj, λ′j ≥ 0 for all

j ∈ [n]), and iii) we have an upper bound β on the eigenvalues of A and A+E due

to `(θ; dj) being convex in θ, having a continuous Hessian, and being β-smooth.

The last inequality follows if Λ > rβ. Also, we want Λ
Λ−rβ ≤ exp(ε1 − ε3), which

implies Λ ≥ rβ
1−exp(ε3−ε1)

≥ rβ
ε1−ε3 . Both conditions are satisfied by setting Λ = rβ

ε1−ε3

as ε1 − ε3 < 1.

From Equation 4.2, and Lemmas 4.3.1 and 4.3.2, we get that pdfD∗ (θmin=α)

pdfD′ (θmin=α)
≤

eε1 w.p. ≥ 1− δ1. In other words, θmin is (ε1, δ1)-differentially private.

Now, since we can write θout as θout = θmin + (θapprox − θmin + b2), we will prove

that releasing (θapprox − θmin + b2) is (ε2, δ2)-differentially private.

Lemma 4.3.3. For D ∈ Dm, let γ ≥ 0 be chosen independent of D, and let θmin =

arg minθ∈Rn Lpriv(θ;D). If θapprox ∈ Rn s.t. ‖∇Lpriv(θapprox;D)‖ ≤ γ, then releasing

(θapprox− θmin + b2), where b2 ∼ N (0, σ2
2In×n) for σ2 =

(mγΛ )
(

1+
√

2 log 1
δ2

)
ε2

, is (ε2, δ2)-DP.

Proof. We start by bounding the L2-norm of (θapprox − θmin):

‖θapprox − θmin‖ ≤
m‖∇Lpriv(θapprox;D)−∇Lpriv(θmin;D)‖

Λ
≤ mγ

Λ
(4.3)

The first inequality follows as Lpriv is Λ
m

-strongly convex, and the second in-

equality follows as ∇Lpriv(θmin;D) = 0 and ∇Lpriv(θapprox;D) ≤ γ. Now, setting

σ2 =
(mγΛ )

(
1+
√

2 log 1
δ2

)
ε2

, we get the statement of the lemma by the properties of the

Gaussian mechanism (Lemma 2.1.9).

As ε1 + ε2 = ε, and δ1 + δ2 = δ, we get the privacy guarantee of Algorithm 1 by

Equation 4.1, Lemma 4.3.3, and basic composition of DP (Lemma 2.1.5).
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Next, we provide the utility guarantee (in terms of excess empirical risk) for

Algorithm 1 in Theorem 2.

Theorem 2 (Utility guarantee (adapted from Kifer et al. (2012))). Let θ̂ be the true

unconstrained minimizer ofL(θ;D) = 1
m

m∑
i=1

`(θ; di), and r = min {n, 2R`H}whereR`H is

an upper bound on the rank of the Hessian of `. In Algorithm 1, if εi = ε
2

for i ∈ {1, 2}, ε3 =

max
{
ε1
2
, ε1 − 0.99

}
, δj = δ

2
for j ∈ {1, 2}, and we set the regularization parameter Λ =

Θ

(
1

‖θ̂‖

(
∆
√
rn log 1/δ

ε
+

√
m2∆γ
√
n log 1/δ

ε

))
such that it satisfies the constraint in Step 1,

then the following is true:

E
(
L(θout;D)− L(θ̂;D)

)
= O

‖θ̂‖∆
√
rn log 1

δ

mε
+ ‖θ̂‖

√√√√∆γ
√
n log 1

δ

ε

 .

Proof. For bounding the expected risk of the algorithm, we first need to bound its

empirical risk (Lemma 4.3.4).

Lemma 4.3.4 (Empirical Risk). Let θ̂ be the minimizer of L(θ;D) = 1
m

m∑
i=1

`(θ; di), and

θmin be the minimizer of Lpriv(θ;D) = L(θ;D) + Λ
2m
‖θ‖2 + bT1 θ, where b1 is as defined in

Algorithm 1. Also, let θout be the output of Algorithm 1. We have:

L(θout;D)− L(θ̂;D) ≤ ∆
(mγ

Λ
+ ‖b2‖

)
+

Λ‖θ̂‖2

2m
+

2n‖b1‖2

Λ
.

Proof. We have

L(θout;D)− L(θ̂;D) = (L(θout;D)− L(θmin;D)) +
(
L(θmin;D)− L(θ̂;D)

)
(4.4)
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First, we will bound (L(θout;D)− L(θmin;D)). We have:

L(θout;D)− L(θmin;D) ≤ |L(θout;D)− L(θmin;D)| ≤ ∆‖θout − θmin‖

= ∆‖θapprox − θmin + b2‖ ≤ ∆‖θapprox − θmin‖+ ∆‖b2‖

≤ ∆
(mγ

Λ
+ ‖b2‖

)
(4.5)

The second inequality above follows from the Lipschitz property of L(;D). The

first equality follows as θout = θmin+(θapprox−θmin+b2), whereas the last inequality

follows from inequality 4.3.

Next, we bound
(
L(θmin;D)− L(θ̂;D)

)
on the lines of the proof of Lemma 3

in Kifer et al. (2012). Let θ# = arg minθ∈Rp L
#(θ;D), where L#(θ;D) = L(θ;D) +

Λ
2n
‖θ‖2. As a result, Lpriv(θ;D) = L#(θ;D) + bT1 θ. So, we have:

L(θmin;D)− L(θ̂;D) = L#(θmin;D)− L#(θ#;D) + L#(θ#;D)− L#(θ̂;D)

+
Λ‖θ̂‖2

2m
− Λ‖θmin‖2

2m

≤ L#(θmin;D)− L#(θ#;D) +
Λ‖θ̂‖2

2m
(4.6)

The inequality above follows as L#(θ#;D) ≤ L#(θ̂;D).

Let us now bound L#(θmin;D) − L#(θ#;D). To this end, we first observe that

since Lpriv is Λ
m

-strongly convex in θ, we have that

Lpriv(θ
#;D) ≥ Lpriv(θmin;D)−∇Lpriv(θmin;D)T (θmin − θ#) +

Λ

2m
‖θ# − θmin‖2

= Lpriv(θmin;D) +
Λ

2m
‖θ# − θmin‖2 (4.7)

The equality above follows as ‖∇Lpriv(θmin;D)‖ = 0.
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Substituting the definition of Lpriv(;D) in equality 4.7, we get that

L#(θmin;D)− L#(θ#;D) ≤ bT1 (θ# − θmin)− Λ

2m
‖θ# − θmin‖2 (4.8)

≤ ‖b1‖ · ‖θ# − θmin‖ (4.9)

Inequality 4.9 above follows by the Cauchy–Schwarz inequality.

Now, since L#(θmin;D)−L#(θ#;D) ≥ 0, it follows from inequalities 4.8 and 4.9

that

‖b1‖ · ‖θ# − θmin‖ ≥
Λ

2m
‖θ# − θmin‖2

⇒ ‖θ# − θmin‖ ≤
2m‖b1‖

Λ
(4.10)

We get the statement of the lemma from equation 4.4, and inequalities 4.5, 4.6,

4.9, and 4.10.

Now, we are ready to prove Theorem 2. The proof is on the lines of the proof

of Theorem 4 in Kifer et al. (2012). First, let us get a high probability bound on

L(θout;D) − L(θ̂;D). To this end, we will first bound ‖b1‖ and ‖b2‖ w.h.p., where

bs ∼ N (0, σ2
sIn×n) for s ∈ {1, 2}. Using Lemma 2 from Dasgupta & Schulman

(2007), we get that w.p. ≥ 1− α
2

,

‖bs‖ ≤ σs

√
2n log

2

α
.

Substituting this into Lemma 4.3.4, we get that w.p. ≥ 1− α,

L(θout;D)− L(θ̂;D) ≤ ∆

(
mγ

Λ
+ σ2

√
2n log

2

α

)
+

Λ‖θ̂‖2

2m
+

4mσ2
1n log 2

α

Λ
.
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It is easy to see that by setting εi = ε
2

for i ∈ {1, 2}, ε3 = max
{
ε1
2
, ε1 − 0.99

}
, δj =

δ
2

for j ∈ {1, 2}, and Λ = Θ

(
∆
√
rn log 1/δ

ε‖θ̂‖ + m

‖θ̂‖

√
∆γ
√
n log 1/δ

ε

)
such that it satisfies

the constraint in Step 1 in Algorithm 1, we get the statement of the theorem.

Remark: For loss functions of Generalized Linear Models, we have r = 2. Here, for

small values of γ (for example, γ = O
(

1
m2

)
), the excess empirical risk of Approx-

imate Minima Perturbation is asymptotically the same as that of objective pertur-

bation (Kifer et al. (2012)), and has a better dependence on m than that of Private

Permutation-based SGD (Wu et al. (2017)). Specifically, the dependence is ∝ 1
m

for

Approximate Minima Perturbation, and ∝ 1√
m

for Private PSGD.

Towards Hyperparameter-free Approximate Minima Perturbation: AMP can be

considered to have the following hyperparameters: the Lipschitz constant ∆, and

the privacy parameters ε2, δ2, and ε3 which split the privacy budget within the al-

gorithm. A data-independent approach for setting these parameters can eliminate

the need for hyperparameter tuning with this approach, making it convenient to

deploy in practice.

For practical applications, given a sensitive dataset and a convex loss function,

the ∆ hyperparameter can be thought of as a trade-off between the sensitivity of

the loss and the amount of external interference required to achieve that sensitiv-

ity, for instance, sample clipping (defined in Section 4.4.1) on the data. In the next

section, we provide a hyperparameter-free variant of AMP that has performance

comparable to the standard variant in which all the hyperparameters are tuned.

4.4 EXPERIMENTAL RESULTS

Our evaluation seeks to answer two major research questions:
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1. What is the cost (to accuracy) of privacy? How close can a DP model come

to the non-private baseline? For industrial use cases, is the cost of privacy low

enough to make DP learning practical?

2. Which algorithm provides the best accuracy in practice? Is there a total order

on the available algorithms? Does this ordering differ for datasets with different

properties?

Additionally, we also attempt to answer the following question which can re-

sult in a significant advantage for the deployment of a DP model in practice:

3. Can Approximate Minima Perturbation be deployed without hyperparameter

tuning? Can its hyperparameters (∆, ε2, δ2, and ε3) be set in a data-independent

manner?

Summary of results: Question #1: Our results demonstrate that for datasets of

sufficient size, the cost of privacy is negligible. Experiments 1 (on low-dimensional

datasets), 2 (on high-dimensional datasets), and 3 (on datasets obtained in collab-

oration with Uber) evaluate the cost of privacy using logistic loss. Our results

show that for large datasets, a DP model exists that approaches the accuracy of

the non-private baseline at reasonable privacy budgets. Experiment 3 shows that

for the larger datasets common in practical settings, a privacy-preserving model

can produce even better accuracy than the non-private one, which suggests that

privacy-preserving learning is indeed practical.

We also present the performance of private algorithms using Huber SVM loss

(on all the datasets mentioned above) in Section 4.4.6. The general trends from the

experiments using Huber SVM loss are identical to those obtained using logistic

loss.
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Question #2: Our experiments demonstrate that AMP generally provides the

best accuracy among all the evaluated algorithms. Moreover, experiment 2 shows

that under specific conditions, private Frank-Wolfe can provide the best accu-

racy. In all the regimes, the results generally show an improvement over other

approaches.

Question #3: Our experiments also demonstrate that a simple data-independent

method can be used to set ∆, ε2, δ2, and ε3 for AMP, and that this method provides

good accuracy across datasets. For most values of ε, our data-independent ap-

proach provides nearly the same accuracy as the version tuned using a grid search

(which may be non-private).

4.4.1 Experiment Setup

Algorithms evaluated: Our evaluation includes one algorithm drawn from each of

the major approaches to private convex optimization: objective perturbation, out-

put perturbation, private gradient descent, and the private Frank-Wolfe algorithm.

For each approach, we select the best-known algorithm and configuration.

For objective perturbation, we implement AMP (Algorithm 1) as it is the only

practically feasible objective perturbation approach; for all variants pertaining to

the standard regime in Chaudhuri et al. (2011), obtaining some exact minima is

necessary for achieving a privacy guarantee. For all the experiments, we tune the

value of the hyperparameters ∆, ε2, δ2, and ε3 using the grid search described later.

We also evaluate a hyperparameter-free variant of AMP that sets the hyperpa-

rameters ∆, ε2, δ2 and ε3 independent of the data. We describe the strategy in detail

towards the end of this subsection.

For output perturbation, we implement Private Perturbation-based SGD (Wu
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et al. (2017)) (PSGD), as it is the only practically feasible variant of output pertur-

bation; for all variants pertaining to the standard regime in Chaudhuri et al. (2011),

obtaining some exact minima is necessary for achieving a privacy guarantee. We

evaluate both the variants, with minibatching, proposed in Wu et al. (2017): convex

(Algorithm 2), and strongly convex (Algorithm 3). For the convex variant, we eval-

uate all three proposed learning rate schemes (constant learning rate, decreasing

learning rate, and square-root learning rate). We include results only for constant

learning rate, as our experiments show that this scheme produces the most accu-

rate models.

Algorithm 2 Differentially Private Permutation-based Stochastic Gradient Descent
(Wu et al. (2017))
Input: Data set: D = {d1, · · · , dm}, loss function: `(θ; di) with L2-Lipschitz con-

stant ∆, privacy parameters: (ε, δ), number of passes: T , minibatch size: k,
constant learning rate: η.

1: θ ← 0n

2: Let τ be a random permutation of [m]
3: for t = 1 to T − 1 do
4: for b = 1 to m

k
do

5: Let s1 = dτ(bk), · · · , sk = dτ(b(k+1)−1)

6: θ ← θ − η( 1
k

∑k
i=1∇`(θ; si))

7: σ2 ← 8T 2∆2η2 log( 2
δ

)

k2ε2

8: b ∼ N (0, σ2In×n)
9: Output θpriv = θ + b

For private gradient descent, we implement a variant of the private SGD al-

gorithm originally proposed in Bassily et al. (2014a). Our variant (Algorithm 4)

leverages the Moments Accountant (Abadi et al. (2016)), incorporates minibatch-

ing, and sets the noise parameter based on the desired number of iterations (as

compared to a fixed m2 iterations in Bassily et al. (2014a)).

For private Frank-Wolfe, we implement the version (Algorithm 5) originally
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Algorithm 3 Differentially Private Strongly Convex Permutation-based Stochastic
Gradient Descent (Wu et al. (2017))
Input: Data set: D = {d1, · · · , dm}, loss function: `(θ; di) that is ξ-strongly convex

and β-smooth with L2-Lipschitz constant ∆, privacy parameters: (ε, δ), num-
ber of passes: T , minibatch size: k.

1: θ ← 0n

2: Let τ be a random permutation of [m]
3: for t = 1 to T − 1 do
4: ηt ← min 1

β
, 1
ξt

5: for b = 1 to m
k

do
6: Let s1 = dτ(bk), · · · , sk = dτ(b(k+1)−1)

7: θ ← θ − ηt( 1
k

∑k
i=1∇`(θ; si))

8: σ2 ← 8∆2 log( 2
δ

)

ξ2m2ε2

9: b ∼ N (0, σ2In×n)
10: Output θpriv = θ + b

proposed in Talwar et al. (2014). This algorithm performs constrained optimiza-

tion by design. Following the advice of Jaggi (2013), we use a decreasing learning

rate for better accuracy guarantees. Unlike the other algorithms, private Frank-

Wolfe has nearly dimension-independent error bounds, so it should be expected

to perform comparatively better on high-dimensional datasets.

For each algorithm, we evaluate the variant that provides (ε, δ)-differential pri-

vacy. Most algorithms can also provide ε-differential privacy at an additional cost

to accuracy.

Datasets: Table 4.1 lists the public datasets used in our experimental evaluation.

Each of these datasets is available for download, and our open-source release con-

tains scripts for downloading and pre-processing these datasets. It also contains

scripts for generating both the synthetic datasets. As RCV1 has multi-label classi-

fication over 103 labels (with most of the labels being used for a very small pro-

portion of the dataset), for this dataset we consider the task of predicting whether

a sample is categorized under the most frequently used label or not.
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Algorithm 4 Differentially Private Minibatch Stochastic Gradient Descent (Bassily
et al. (2014a); Abadi et al. (2016))
Input: Data set: D = {d1, · · · , dm}, loss function: `(θ; di) with L2-Lipschitz con-

stant ∆, privacy parameters: (ε, δ), number of iterations: T , minibatch size: k,
learning rate function: η : [T ]→ R.

1: σ2 ← 16∆2T log 1
δ

m2ε2

2: θ1 = 0n

3: for t = 1 to T − 1 do
4: s1, · · · , sk ← Sample k samples uniformly with replacement from D
5: bt ∼ N (0, σ2In×n)
6: θt+1 = θt − η(t)[( 1

k

∑k
i=1∇`(θ; si)) + bt]

7: Output θT

Algorithm 5 Differentially Private Frank-Wolfe (Talwar et al. (2015))

Input: Data set: D = {d1, · · · , dm}, loss function: L(θ;D) = 1
n

n∑
i=1

`(θ; di) (with L1-

Lipshitz constant ∆ for `), privacy parameters: (ε, δ), convex set: C = conv(S)
with ‖C‖1 denoting maxs∈S‖s‖1 and S being the set of corners.

1: Choose an arbitrary θ1 from C

2: σ2 ← 32∆2‖C‖21T log(1/δ)
m2ε2

3: for t = 1 to T − 1 do
4: ∀s ∈ S, αs ← 〈s,5L(θt;D)〉+ Lap(σ), where Lap(λ) ∼ 1

2λ
e−|x|/λ

5: θ̃t ← arg min
s∈S

αs

6: θt+1 ← (1− ηt)θt + ηθ̃t, where ηt = 1
t+1

7: Output θpriv = θT

The selected datasets include datasets from 2 categories, low-dimensional, and

high-dimensional. We define low-dimensional datasets to be ones where m � n (m

is the number of samples and n is the number of dimensions). High-dimensional

datasets are defined as those for which m and n are on roughly the same scale, i.e.

m ≤ n (or nearly so). We consider the Synthetic-H, Gisette, Real-sim, and RCV1

datasets to be high-dimensional.

To obtain training and testing sets, we randomly shuffle the dataset, take the

first 80% as the training set, and the remaining 20% as the testing set.
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Table 4.1: Datasets used in our evaluation

Dataset # Samples # Dim. # Classes
Low-Dimensional Datasets (Public)

Synthetic-L 10,000 20 2
Adult 45,220 104 2

KDDCup99 70,000 114 2
Covertype 581,012 54 7

MNIST 65,000 784 10
High-Dimensional Datasets (Public)

Synthetic-H 5,000 5,000 2
Gisette 6,000 5,000 2

Real-sim 72,309 20,958 2
RCV1 50,000 47,236 2

Industrial Datasets (Uber)
Dataset #1 4m 23 2
Dataset #2 18m 294 2
Dataset #3 18m 20 2
Dataset #4 19m 70 2

Sample clipping: Each of the algorithms we evaluate has the requirement that

the loss have a Lipschitz constant. We can enforce this requirement for the loss

functions we consider by bounding the norm for each sample. We can accomplish

this by pre-processing the dataset, but it must be done carefully to preserve DP.

For all the algorithms except private Frank-Wolfe, to make the loss have an L2-

Lipschitz constant ∆, we bound the influence of each sample (xi, yi) by clipping

the feature vector xi to
(
xi ·min

(
1, ∆
‖xi‖

))
. This transformation is independent of

other samples, and thus preserves DP; it has also been previously used, e.g. in

Abadi et al. (2016). As the private Frank-Wolfe algorithm requires the loss to have

a relaxed L1-Lipschitz constant ∆, it suffices (using Theorem 1 from Paulavičius &

Žilinskas (2006)) to bound the L∞-norm of each sample (xi, yi) by ∆. We achieve

this by clipping each dimension xi,j , where j ∈ [n], to min (xi,j,∆).

Hyperparameters: Each of the evaluated algorithms has at least one hyperparam-
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eter. The values for these hyperparameters should be tuned to provide the best

accuracy, but the tuning should be done privately in order to guarantee end-to-end

differential privacy. Although a number of differentially private hyperparameter

tuning algorithms have been proposed (Chaudhuri et al. (2011); Chaudhuri & Vin-

terbo (2013); Abadi et al. (2016)) to address this problem, they add more variance

in the performance of each algorithm, thus making it more difficult to compare the

performance across different algorithms.

In order to provide a fair comparison between algorithms, we use a grid search

to determine the best value for each hyperparameter. Our grid search considers

the hyperparameter values listed in Table 4.2. In addition to the standard algo-

rithm hyperparameters (Λ, η, T, k), we tune the clipping parameter ∆ used in pre-

processing the datasets, and the constraint on the model space used by private

Frank-Wolfe, Private SGD when using regularized loss, and Private strongly con-

vex PSGD. The parameter C controls the size of the L1/L2-ball from which models

are selected by private Frank-Wolfe/the other algorithms respectively. For AMP,

we set ε2 = f ·ε, δ2 = f ·δ, and tune for f . Here, f denotes the fraction of the budget

(ε, δ) that is allocated to (ε2, δ2). Also, since the valid range of the hyperparameter

ε3 depends on the value of ε1, we set ε3 = f1 ·ε1, and tune for f1. We also ensure that

the constraint on ε3 in Line 1 of Algorithm 1 is satisfied. Note that tuning hyperpa-

rameters may be non-private, but it enables a direct comparison of the algorithms

themselves.

We consider a range of values for the privacy parameter ε. Following Wu et al.

(2017), we set the privacy parameter δ = 1
m2 , where m is the size of the training

data. The complete set of values considered is listed in Table 4.2. For multiclass

classification datasets such as MNIST and Covertype, we implement the one-vs-
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Table 4.2: Hyperparameter & privacy parameter values

Hyperparameter Values Considered
Λ (regularization factor) 10−5, 10−4, 10−3, 10−2, 0

η (learning rate) 0.001, 0.01, 0.1, 1
T (number of iterations) 5, 10, 100, 1000, 5000

k (minibatch size) 50, 100, 300
∆ (clipping threshold) 0.1, 1, 10, 100
C (model constraint) 1, 10

f (output budget fraction) 0.001, 0.01, 0.1, 0.5
f1 (privacy budget fraction) 0.9, 0.92, 0.95, 0.98, 0.99

Privacy Parameter Values Considered
ε 10−2, 10−

3
2 , 10−1, 10−

1
2 ,

100, 10
1
2 , 101

δ 1
n2

all strategy by training a binary classifier for each class, and split ε and δ equally

among the binary classifiers so that we can achieve an overall (ε, δ)-DP guarantee

by using basic composition (Lemma 2.1.5).

Algorithm Implementations: The implementations used in our evaluation are

written in Python, and are available in our open source release (Iyengar et al.

(2019a)). For Approximate Minima Perturbation, we define the loss and gradi-

ent according to Algorithm 1, and leverage SciPy’s minimize procedure to find

the approximate minima.

For all datasets, our implementation is able to achieve γ = 1
m2 , where m is the

size of the training data. For low-dimensional datasets, our implementation of

AMP uses SciPy’s BFGS solver, for which we can specify the desired norm bound

γ. The BFGS algorithm stores the full Hessian of the objective, which does not

fit in memory for the sparse high-dimensional datasets in our study. For these,

we define an alternative low-memory implementation using SciPy’s L-BFGS-B

solver, which does not store the full Hessian.
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Experiment procedure: Our experiment setup is designed to find the best possi-

ble accuracy achievable for a given setting of the privacy parameters. To ensure a

fair comparison, we begin every run of each algorithm with the initial model 0n.

Because each of the evaluated algorithms introduces randomness due to noise, we

train 10 independent models for each combination of the hyperparameter setting.

We report the mean accuracy and standard deviation for the combination of the

hyperparameter setting with the highest mean accuracy over the 10 independent

runs. The results shown are for hyperparameters tuned via the mean test set ac-

curacy. Since all the considered algorithms aim to minimize the empirical loss, we

also conducted experiments by tuning via the mean training set accuracy. Both

settings provided visibly identical results.

Differences with the setting in Wu et al. (2017): Although both the studies have 3

datasets in common (Covertype, KDDCup99, and MNIST), our setting is slightly

different from Wu et al. (2017) for all 3 of them. For Covertype, our study uses all

7 classes, while Wu et al. (2017) uses a binary version. For KDDCup99, we use a

10% sample of the full dataset (as in Chaudhuri et al. (2011)), while Wu et al. (2017)

uses the full dataset. For MNIST, we use all 784 dimensions, while Wu et al. (2017)

uses random projection to reduce the dimensionality to 50.

The results we obtain for both the variants of the Private PSGD algorithm (Wu

et al. (2017)) are based on faithful implementations of those algorithms. We tune

the hyperparameters for both, using the grid search described earlier.

Non-private baseline: Note that one of the main objectives of this study is to de-

termine the cost of privacy in practice for convex optimization. Hence, to provide

a point of comparison for our results, we also train a non-private baseline model

for each experiment. We use Scikit-learn’s LogisticRegression class to train
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this model on the same training data as the private algorithms, and test its accu-

racy on the same testing data as the private algorithms. We do not perform sample

clipping when training this model.

Strategy for Hyperparameter-free Approximate Minima Perturbation: Now, we

describe a data-independent approach for setting Approximate Minima Pertur-

bation’s only hyperparameters, ∆, ε2, δ2, and ε3, for both the loss functions we con-

sider (see Section 4.4.2). For ∆, we find that setting ∆ = 1 achieves a good trade-off

between the amount of noise added for perturbing the objective, and the infor-

mation loss after sample clipping across all datasets. Next, we consider only the

synthetically generated datasets for setting the hyperparameters specific to AMP.

Fixing γ = 1
m2 , we find that setting ε2 = 0.01 · ε and δ2 = 0.01 · δ achieves a good

trade-off between the budget for perturbing the objective, and the amount of noise

that its approximate minima can tolerate. For setting ε3, we consider two separate

cases:

• For ε1 = 0.99 · ε, and ε3 = f1 · ε1, we see that setting f1 = 0.99 for ε1 = 0.0099,

f1 = 0.95 for ε1 ∈ {0.0313, 0.099}, and f1 = 0.9 for ε1 ∈ {0.313, 0.99, 3.13, 9.99}

yields a good accuracy for Synthetic-L. Hence, we observe that for very low

values of ε1, a good accuracy is yielded by ε3 close to ε1 (i.e., most of the budget

is used to reduce the scale of the noise, and the influence of regularization is kept

large). As ε1 increases, we see that it is more beneficial to reduce the effects of

regularization. We fit a basic polynomial curve of the form y = a + bx−c, where

a, b, c > 0, to the above-stated values to get a dependence of f1 (the privacy

budget fraction) in terms of ε1. We combine it with the lower bound imposed on

f1 by Theorem 1 (for instance, we require f1 ≥ 0.9 for ε1 = 9.99) to obtain the

following data-independent relationship between ε1 and ε3 for low-dimensional
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datasets:

ε3 = max

{
min

{
0.887 +

0.019

ε0.373
1

, 0.99

}
, 1− 0.99

ε1

}
· ε1

• For Synthetic-H, we see that setting f1 = 0.97 yields a good accuracy for all

the values of ε1 considered. Thus, combining it with the lower bound imposed

on f1 by Theorem 1, we obtain the following relationship for high-dimensional

datasets:

ε3 = max

{
0.97, 1− 0.99

ε1

}
· ε1

Note that the results for this strategy are consistent for both loss functions across

all the public and the industrial datasets considered, none of which were used in

defining the strategy except for setting the Lipschitz constant ∆ of the loss. They

can be considered to be effectively serving as test-cases for the strategy.

4.4.2 Loss Functions

Our evaluation considers the loss functions for two commonly used models: logis-

tic regression and Huber SVM. First, we present the results for logistic regression

in detail. The results for Huber SVM are available in Section 4.4.6.

Logistic regression: The L2-regularized logistic regression loss function on a sam-

ple (x, y) with y ∈ {1,−1} is `(θ, (x, y)) = ln(1 + exp(−y〈θ, x〉)) + Λ
2
‖θ‖2.

Our experiments consider both the regularized and un-regularized (i.e., Λ = 0)

settings. The un-regularized version has L2-Lipschitz constant ∆ when for each

sample x, ‖x‖ ≤ ∆. It is also ∆2-smooth. The regularized version has L2-Lipschitz

constant ∆ + ΛC when for each sample x, ‖x‖ ≤ ∆, and for each model θ, ‖θ‖ ≤ C.

It is also (∆2 + Λ)-smooth, and Λ-strongly convex.
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Table 4.3: List of abbreviations used for algorithms

Abbreviation Full-form
NP baseline Non-private baseline

AMP Approximate Minima Perturbation
H-F AMP Hyperparameter-free AMP

P-SGD Private SGD
P-PSGD Private PSGD

P-SCPSGD Private Strongly Convex PSGD
P-FW Private Frank-Wolfe

4.4.3 Experiment 1: Low-Dimensional Datasets

In Figure 4.1, we show the results of the experiments with logistic regression on

low-dimensional data. All four algorithms perform better in comparison with the

non-private baseline for binary classification tasks (Synthetic-L, Adult, and KD-

DCup99) than for multi-class problems (Covertype and MNIST), because ε and δ

must be split among the binary classifiers built for each class.

Figure 4.4 contains precise accuracy numbers for each dataset for reasonably

low values of ε. These results provide a more precise comparison between the four

algorithms, and quantify the accuracy loss versus the non-private baseline for each

one. Across all datasets, Approximate Minima Perturbation generally provides the

most accurate models across ε values.

4.4.4 Experiment 2: High-Dimensional Datasets

For this experiment, we repeat the procedure in Experiment 1 on high-dimensional

data, and present the results in Figure 4.2. The results are somewhat different in

the high-dimensional regime. We observe that although Approximate Minima Per-

turbation generally outperforms all the other algorithms, the private Frank-Wolfe

algorithm performs the best on Synthetic-H. From prior works (Jain & Thakurta
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Figure 4.1: Accuracy for logistic regression on low-dimensional
datasets. Horizontal axis depicts varying values of ε; vertical axis
shows accuracy on the testing set.
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Figure 4.2: Accuracy for logistic regression on high-dimensional
datasets. Horizontal axis depicts varying values of ε; vertical axis
shows accuracy on the testing set.
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Figure 4.3: Accuracy results for logistic regression on industrial
datasets. Horizontal axis depicts varying values of ε; vertical axis
shows accuracy on the testing set.
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Low-Dimensional Binary Datasets (ε = 0.1)
Synthetic-L 94.9 83.1 80.6 81.6 81.7 76.4 81.8

Adult 84.8 79.1 78.7 78.5 77.4 77.2 76.9
KDDCup99 99.1 97.5 97.4 98.0 98.1 95.8 96.8

Low-Dimensional Multi-class Datasets (ε = 1)
Covertype 71.2 64.3 63.5 65.0 62.4 62.2 63.0

MNIST 91.5 71.9 70.5 68.6 68.0 63.2 65.0

Figure 4.4: Accuracy results (in %) for logistic regression on low-
dimensional datasets. For each dataset, the result in bold represents
the DP algorithm with the best accuracy for that dataset. We report
the accuracy for ε = 1 for multi-class datasets, as compared to ε = 0.1
for datasets with binary classification, because multi-class classifica-
tion is a more difficult task than binary classification. A key for the
abbreviations used for the algorithms is provided in Table 4.3.

(2014); Talwar et al. (2014)), we know that both objective perturbation and the pri-

vate Frank-Wolfe have near dimension-independent utility guarantees when the

loss is of a GLM, and we indeed observe this expected behavior from our exper-

iments. As in experiment 1, we present precise accuracy numbers for ε = 0.1 in

Figure 4.5.

Private Frank-Wolfe works best when the optimal model is sparse (i.e., a few

important features characterize the classification task well), as in the Synthetic-H

dataset, which is well-characterized by just ten important features. This is because

private Frank-Wolfe adds at most a single feature to the model at each iteration,

and noise increases with the number of iterations. However, noise does not in-

crease with the total number of features, since it scales with the bound on the

L∞-norm of the samples. This behavior is in contrast to Approximate Minima

Perturbation (and the other algorithms considered in our evaluation), for which

noise scales with the bound on the L2-norm of the samples. Private Frank-Wolfe
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High-Dimensional Datasets (ε = 0.1)
Synthetic-H 95.8 53.2 51.4 52.8 53.5 52.0 57.6

Gisette 96.6 62.8 59.7 61.5 62.3 61.3 58.3
Real-sim 93.3 73.1 71.9 66.3 66.1 65.6 69.8

RCV1 93.5 64.2 59.9 55.1 58.9 56.2 64.1

Figure 4.5: Accuracy results (in %) for logistic regression on high-
dimensional datasets. For each dataset, the result in bold represents
the DP algorithm with the best accuracy for that dataset. A key for
the abbreviations used for the algorithms is provided in Table 4.3.

therefore approaches the non-private baseline better than the other algorithms for

high-dimensional datasets with sparse models, even at low values of ε.

4.4.5 Experiment 3: Industrial Use Cases

For this experiment, we repeat the procedure in Experiment 1 on industrial use

cases, obtained in collaboration with Uber. These use cases are represented by

four datasets, each of which has separately been used to train a production model

deployed at Uber. The details of these datasets are listed in Table 4.1. The results

of this experiment are depicted in Figure 4.3, with more precise results for ε = 0.1

in Figure 4.6.

The industrial datasets are much larger than the datasets considered in Experi-

ment 1. The difference in scale is reflected in the results: all of the algorithms con-

verge to the non-private baseline for very low values of ε. These results suggest

that in many practical settings, the cost of privacy is negligible. In fact, for Dataset

#1, some differentially private models exhibit a slightly higher accuracy than the

non-private baseline for a wide range of ε. For instance, even Hyperparameter-

1For Dataset #1, AMP slightly outperforms even the NP baseline, as can been seen from Fig-
ure 4.3.
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Industrial Datasets (ε = 0.1)
Dataset #1 75.3 75.31 75.3 75.3 75.3 75.3 75.3
Dataset #2 72.2 70.4 70.1 69.8 69.5 68.9 68.6
Dataset #3 73.6 71.9 71.8 71.8 71.4 71.2 71.6
Dataset #4 82.1 81.7 81.7 81.7 81.5 81.3 81.0

Figure 4.6: Accuracy results (in %) for logistic regression on indus-
trial datasets. For each dataset, the result in bold represents the DP
algorithm with the best accuracy for that dataset. A key for the ab-
breviations used for the algorithms is provided in Table 4.3.

free AMP, which is end-to-end differentially private as there is no tuning involved,

yields an accuracy of 75.34% for ε = 0.1 versus the non-private baseline of 75.33%.

Some prior works (Bassily et al. (2014b); Dwork et al. (2015a)) have theorized that

differential privacy could act as a type of regularization for the system, and im-

prove the generalization error; this empirical result of ours aligns with this claim.

4.4.6 Results for Huber SVM

Here, we report the results of experiments with the Huber SVM loss function. The

Huber SVM loss function is a differentiable and smooth approximation of the stan-

dard SVM’s hinge loss. We define the loss function as in Bassily et al. (2014b).

Defining z = y〈x, θ〉, the Huber SVM loss function is:

`(θ, (x, y)) =


1− z 1− z > h

0 1− z < −h

(1−z)2

4h
+ 1−z

2
+ h

4
otherwise

As with logistic regression, the Huber SVM loss function has L2-Lipschitz con-
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Figure 4.7: Accuracy results for Huber SVM on low-dimensional
datasets. Horizontal axis depicts varying values of ε; vertical axis
shows accuracy (in %) on the testing set.

stant ∆ when for each sample x, we have ‖x‖ ≤ ∆.

To ensure that the experiments run to completion for Synthetic-H, we run the

experiments on 2000 samples, each consisting of 2000 dimensions. For all the ex-

periments, we obtain the non-private baseline using SciPy’s minimize procedure

with the Huber SVM loss function defined above. Following Wu et al. (2017), we

set h = 0.1. The results for low-dimensional datasets are shown in Figure 4.7,

high-dimensional datasets in Figure 4.8, and industrial datasets in Figure 4.9.

We show more precise results in Figure 4.10. They demonstrate a similar trend
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Figure 4.8: Accuracy results for Huber SVM on high-dimensional
datasets. Horizontal axis depicts varying values of ε; vertical axis
shows accuracy (in %) on the testing set.
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Figure 4.9: Accuracy results for Huber SVM on industrial datasets.
Horizontal axis depicts varying values of ε; vertical axis shows accu-
racy (in %) on the testing set.
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Low-Dimensional Binary Datasets (ε = 0.1)
Synthetic-L 94.9 89.3 87.8 85.6 86.2 79.4 86.8

Adult 84.8 79.6 77.5 79.0 76.5 76.0 77.8
KDDCup99 99.1 98.7 98.72 98.5 98.5 98.1 98.0

Low-Dimensional Multi-class Datasets (ε = 1)
Covertype 71.5 66.4 65.3 64.3 62.3 62.7 63.3

MNIST 91.5 74.7 73.7 69.6 72.9 70.6 65.1
High-Dimensional Datasets (ε = 0.1)

Synthetic-H3 96.5 55.2 54.3 55.0 56.6 55.6 56.0
Gisette 96.6 69.9 67.9 65.7 70.6 66.8 66.8

Real-sim 93.6 78.3 76.7 73.6 71.8 69.7 78.3
RCV13 93.8 74.5 72.9 71.3 70.1 69.7 75.8

Industrial Datasets (ε = 0.1)
Dataset #1 75.3 75.3 75.3 75.3 75.34 75.3 75.3
Dataset #2 72.2 70.8 70.6 70.8 70.3 70.2 68.6
Dataset #3 73.6 71.3 71.2 71.2 71.1 71.1 71.1

Dataset #43 81.9 81.5 81.3 81.7 81.5 81.2 81.2

Figure 4.10: Accuracy results (in %) for Huber SVM. For each dataset,
the result in bold represents the DP algorithm with the best accuracy
for that dataset. We report the accuracy for ε = 1 for multi-class
datasets, as compared to ε = 0.1 for datasets with binary classifica-
tion, as multi-class classification is a more difficult task than binary
classification. A key for the abbreviations used for the algorithms is
provided in Table 4.3.

to the earlier results for logistic regression, with our Approximate Minima Pertur-

bation approach generally providing the highest accuracy. However, the advan-

tage of Approximate Minima Perturbation is less pronounced in this setting.

2H-F AMP can outperform AMP when the data-independent strategy provides a better value
for the privacy budget fraction f1 than the specific set of values we consider for tuning in AMP.

3The numbers cited here do not reflect the trend for this dataset, as can be seen from Figure 4.10
4Slightly outperforms even the NP baseline, as can been seen from Figure 4.9.
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4.4.7 Discussion

For large datasets, the cost of privacy is low. Our results confirm the expectation

that very accurate differentially private models exist for large datasets. Even for

relatively small datasets like Adult and KDDCup99 (where m < 100, 000), our

results show that a differentially private model has accuracy within 6% of the non-

private baseline even for a conservative privacy setting of ε = 0.1.

For all the larger industrial datasets (m > 1m), the accuracy of the best differ-

entially private model is within 4% of the non-private baseline even for the most

conservative privacy value considered (ε = 0.01). For ε = 0.1, it is within 2% of

the baseline for two of these datasets, essentially identical to the baseline for one

of them, and even slightly higher than the baseline for one.

These results suggest that for realistic deployments on large datasets (m > 1m,

and low-dimensional), a differentially private model can be deployed without

much loss in accuracy.

Approximate Minima Perturbation almost always provides the best accuracy,

and is easily deployable in practice. Our results in all the experiments demon-

strate that among the available algorithms for differentially private convex op-

timization, our Approximate Minima Perturbation approach almost always pro-

duces models with the best accuracy. For four of the five low-dimensional datasets,

and all the public high-dimensional datasets we considered, Approximate Min-

ima Perturbation provided consistently better accuracy than the other algorithms.

Under some conditions like high-dimensionality of the datasets, and sparsity of

the optimal predictive model for it, private Frank-Wolfe does give the best perfor-

mance. Unlike Approximate Minima Perturbation, however, no hyperparameter-

free variant of private Frank-Wolfe exists—and suboptimal hyperparameter values
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can reduce accuracy significantly for this algorithm.

As mentioned earlier, Approximate Minima Perturbation also has important

properties that enable its practical deployment. It can leverage any off-the-shelf

optimizer as a black box, allowing implementations to use existing scalable opti-

mizers (our implementation uses Scipy’s minimize). None of the other evaluated

algorithms have these properties.

Hyperparameter-free Approximate Minima Perturbation provides good utility.

As demonstrated by our experimental results, AMP can be deployed without tun-

ing hyperparameters, at little cost to accuracy. Our data-independent approach

therefore enables deployment—without significant loss of accuracy—in practical

settings where public data may not be available for tuning.
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CHAPTER 5

Model-Agnostic Private Learning

In this chapter, we will look at a framework that needs only a black-box access

to a non-private learner for obtaining private classifiers when an analyst has a

limited amount of unlabelled public data at her disposal. The utility analysis for

this framework applies to any sufficiently accurate non-private learner.

5.1 ADDITIONAL PRELIMINARIES

For classification tasks, we use X to denote the space of feature vectors, and Y to

denote the set of labels. Thus, the data universe U = X × Y in this case, and each

data element is denoted as (x, y). First, we provide a definition of PAC learning

(used in Section 5.4).

Definition 5.1.1 (Agnostic Probably Approximately Correct (PAC) learner (Valiant

(1984); Kearns & Vazirani (1994))). Let D be a distribution defined over the space of

feature vectors and labels U = X × Y . Let H be a hypothesis class with each h ∈ H is a

mapping h : X → Y . We say an algorithm A : U∗ → H is an Agnostic PAC learner

for H if it satisfies the following condition: For every α, β ∈ (0, 1), there is a number

m = m(α, β) ∈ N such that when A is run on a dataset D of m i.i.d. examples from D,

then with probability 1 − β (over the randomness of D) it outputs a hypothesis hD with

L(hD;D) ≤ γ + α, where L(h;D) , P
(x,y)∼D

[h(x) 6= y] and γ , min
h∈H

L(h;D).

We will also use the following parametrized version of the above definition.

Definition 5.1.2 ((α, β,m)-learner for a class H). Let α, β ∈ (0, 1) and m ∈ N. An

algorithm A is (α, β,m)-(agnostic) PAC learner for a classH if, given an input dataset

D of m i.i.d. examples from the underlying unknown distribution D, with probability
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1 − β, it outputs a hypothesis hD ∈ H with L(hD;D) ≤ γ + α (where γ is defined as in

Definition 5.1.1 above).

In this chapter, we will use the notion of neighboring under insertion/deletion

(Definition 2.1.2) for the guarantee of DP (Definition 2.1.3).

5.1.1 The Sparse Vector Technique

Here, we describe the Sparse vector technique used later in this chapter. It is a com-

mon framework for achieving differential privacy, and we provide here the privacy

and utility guarantees for it. Sparse vector allows answering a set of queries in an

online setting, where a cost for privacy is incurred only if the answer to a query

falls near or below a predetermined threshold. We denote the set of queries by

F = {f1, · · · , fm̃}, where every fi : U∗ → R, and has global sensitivity at most one.

We provide a pseudocode for the technique in Algorithm 6. Next, we provide the

privacy and accuracy guarantees for Algorithm 6.

Algorithm 6 AsparseVec: Sparse vector technique

Input: dataset: D, query set F = {f1, · · · , fm̃}, privacy parameters ε, δ > 0, unsta-
ble query cutoff: T , threshold: w

1: c← 0, λ←
√

32T log(1/δ)/ε, and ŵ ← w + Lap(λ)
2: for fi ∈ F and c ≤ T do
3: f̂i(D)← fi(D) + Lap(2λ)

4: If f̂i(D) > ŵ, then , output >, else output ⊥, and set ŵ ← w + Lap(λ),
c← c+ 1

Theorem 3 (Privacy guarantee (Dwork et al. (2010); Hardt & Rothblum (2010);

Dwork et al. (2014a))). Algorithm 6 is (ε, δ)-differentially private.

Theorem 4 (Accuracy guarantee (Dwork et al. (2010); Hardt & Rothblum (2010);

Dwork et al. (2014a))). For α = log(2m̃T/β)
√

512T log(1/δ)/ε, and any set of m̃
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queries f1, · · · , fm̃, define the set L(α) = {i : fi(D) ≤ w + α}. If |L(α)| ≤ T , then

we have the following w.p. at least 1− β: ∀i 6∈ L(α), Algorithm 6 outputs >.

5.2 RELATED WORK

For learning privately via aggregation and knowledge transfer, Hamm et al. (2016)

explored a similar technique. However, their construction deviated from the above

description. In particular, it was a white-box construction with weak accuracy

guarantees; their guarantees also involved making strong assumptions about the

learning model and the loss function used in training. Recent work (Papernot

et al. (2016, 2018)), of which Papernot et al. (2018) is independent from our work,

gave algorithms that follow the knowledge transfer paradigm described above.

Their constructions are black-box. However, only empirical evaluations are given

for their constructions; no formal utility guarantees are provided. For the query-

answering setting, a recent independent work (Dwork & Feldman (2018)) consid-

ers the problem of private prediction, but only in the single-query setting, whereas

we study the multiple-query setting. The earliest idea of using ensemble classifiers

to provide differentially private prediction can be traced to Dwork, Rothblum, and

Thakurta from 2013.

5.3 PRIVATELY ANSWERING STABLE ONLINE QUERIES

In this section, we design a generic framework that allows answering a set of

queries on a dataset while preserving differential privacy, and only incurs a pri-

vacy cost for the queries that are unstable.
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5.3.1 The Distance to Instability Framework

First, we describe the distance to instability framework from Smith & Thakurta

(2013) that releases the exact value of a function on a dataset while preserving dif-

ferential privacy, provided the function is sufficiently stable on the dataset. We de-

fine the notion of stability first, and provide the pseudocode for a private estimator

for any function via this framework in Algorithm Astab (Algorithm 7).

Algorithm 7 Astab: Private estimator for f via distance to instability (Smith &
Thakurta (2013))
Input: dataset: D, function f : U∗ → R, distance to instability distf : U∗ → R,

threshold: Γ, privacy parameter ε > 0

1: d̂ist ← distf (D) + Lap (1/ε)

2: If d̂ist > Γ, then output f(D), else output ⊥

Definition 5.3.1 (k-stability (Smith & Thakurta (2013))). A function f : U∗ → R is

k-stable on dataset D if adding or removing any k elements from D does not change the

value of f , that is, f(D) = f(D′) for all D′ such that |D4D′| ≤ k. We say f is stable on

D if it is (at least) 1-stable on D, and unstable otherwise.

The distance to instability of a dataset D ∈ U∗ with respect to a function f is the

number of elements that must be added to or removed from D to reach a dataset

that is not stable. Note that D is k-stable if and only if its distance to instability is

at least k.

Theorem 5 (Privacy guarantee for Astab). If the threshold Γ = log(1/δ)/ε, and the

distance to instability function distf (D) = arg max
k

[f(D) is k-stable], then Algorithm 7

is (ε, δ)-differentially private.

Proof. We prove the above theorem by considering the two possibilities for any D′

s.t. |D∆D′| = 1: either f(D) = f(D′), or f(D) 6= f(D′). We prove the privacy in

these two cases via Lemmas 5.3.2 and 5.3.3.
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Lemma 5.3.2. Let D ∈ U∗ be any fixed dataset. Assume that for any dataset D′ ∈ U∗

s.t. |D∆D′| = 1, we have f(D) = f(D′). Then, for any output s ∈ R ∪ {⊥}, we have:

Pr[Astab(D, f) = s] ≤ eε Pr[Astab(D
′, f) = s].

Proof. First, note that with the instantiation in Theorem 5, the function distf has a

global sensitivity of one. Therefore, by the guarantees of the Laplace mechanism

(Lemma 2.1.8), d̂ist satisfies ε-differential privacy. Since the set of possible outputs

is the same (i.e., {f(D),⊥}) for both D and D′, and the decision to output f(D)

versus ⊥ depends only on d̂ist , we get the statement of the lemma by the post-

processing property of differential privacy (Lemma 2.1.4).

Lemma 5.3.3. Let D ∈ U∗ be any fixed dataset. Assume that for any dataset D′ ∈ U∗

s.t. |D∆D′| = 1, we have f(D) 6= (D′). Then, for any output s ∈ R ∪ {⊥}, we have the

following with probability at least 1− δ: Astab(D, f) = Astab(D
′, f) = ⊥.

Proof. Since f(D) 6= f(D′), it follows that f(D) and f(D′) are unstable, that is,

distf (D) = distf (D
′) = 0. This implies

Pr[Astab(D, f) = ⊥] = Pr[Astab(D
′, f) = ⊥] = Pr

[
Lap

(
1

ε

)
≤ log(1/δ)

ε

]
.

Since the density function for the Laplace distribution Lap(λ) is µ(x) = 1
2λ
e−|x|/λ, it

follows that Pr
[
Lap

(
1
ε

)
≤ log(1/δ)

ε

]
≥ 1− δ.

We get the statement of Theorem 5 by combining Lemmas 5.3.2 and 5.3.3.

Theorem 6 (Utility guarantee for Astab (Smith & Thakurta (2013))). If the threshold

Γ = log(1/δ)/ε, the distance to instability function is chosen as in Theorem 5, and f(D)

is ((log(1/δ) + log(1/β)) /ε)-stable, then Algorithm 7 outputs f(D) with probability at

least 1− β.
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5.3.2 Online Query Release via Distance to Instability

Using Algorithm AOQR (Algorithm 8), we show that for a set of m̃ queries F =

{f1, · · · , fm̃} to be answered on a dataset D, one can exactly answer all but T of

them while satisfying differential privacy, as long as at most T queries in F are

not k-stable, where k ≈ log (m̃)
√
T/ε. Notice that the dependence of k on the total

number of queries (m̃) is logarithmic. In contrast, one would achieve a dependence

of roughly
√
m̃ by using the advanced composition property of differential privacy

(Lemma 2.1.6).

Algorithm 8 AOQR: Online Query Release via distance to instability

Input: dataset: D, query setF = {f1, · · · , fm̃} chosen online, distance to instability
distfi : U∗ → R,∀i ∈ [m̃], unstable query cutoff: T , privacy parameters ε, δ > 0

1: c← 0, λ←
√

32T log(2/δ)/ε, w ← 2λ · log(2m̃/δ), and ŵ ← w + Lap(λ).
2: for f ∈ F and c ≤ T do
3: out← Astab (D, f, distf ,Γ = ŵ, ε = 1/2λ)
4: If out = ⊥, then c← c+ 1 and ŵ ← w + Lap(λ)
5: Output out

The main design focus in this section is that the algorithms should be able to

handle very generic query classes F under minimal assumptions. A salient feature

of AlgorithmAOQR is that it only requires the rangeRi of the function fi : U∗ → Ri,

where fi ∈ F , to be discrete for all i ∈ [m̃].

We provide the privacy and utility guarantees for Algorithm AOQR in Theo-

rem 7 and Corollary 5.3.6, respectively. Surprisingly, the utility guarantee of AOQR

has no dependence on the cardinality of the setRi, for all i ∈ [m̃].

Theorem 7 (Privacy guarantee for AOQR). If for all functions f ∈ F , the distance to

instability function is distf (D) = arg max
k

[f(D) is k-stable], then Algorithm 8 is (ε, δ)-

differentially private.
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Proof. In our proof, we use ideas from the proof of Theorem 5 and the Sparse vector

technique (see Section 5.1 for a background on the technique). For clarity, we split

the computation in Algorithm 8 into two logical phases: First, for every query

f ∈ F , AOQR either commits to >, or outputs ⊥ based on the input dataset D.

Next, if it commits to >, then it outputs f(D).

Now, let us consider two fictitious algorithmsA1 andA2, whereA1 outputs the

sequence of > and ⊥ corresponding to the first phase above, and A2 is invoked to

output fi(D) only for the queries fi that A1 output >. Notice that the combination

ofA1 andA2 is equivalent toAOQR. SinceA1 is essentially executing the sparse vec-

tor technique (Algorithm 6), by Theorem 3, it satisfies (ε, δ/2)-differential privacy.

Next, we analyze the privacy for Algorithm A2.

Consider any particular query f ∈ F . For any dataset D′ s.t. |D4D′| = 1, there

are two possibilities: either f(D) = f(D′), or f(D) 6= f(D′). When f(D) = f(D′),

if A1 outputs ⊥, algorithm A2 is not invoked and hence the privacy guarantee

isn’t affected. Moreover,if A1 outputs >, we get the following lemma by the post-

processing property of differential privacy (Lemma 2.1.4):

Lemma 5.3.4. Let D ∈ U∗ be any fixed dataset. Assume that for any dataset D′ ∈ U∗ s.t.

|D4D′| = 1, we have f(D) = f(D′). Then, for any output s ∈ R, we have the following

for the invocation of Algorithm A2: Pr[A2(D, f) = s] = Pr[A2(D′, f) = s].

When f(D) 6= f(D′), by Lemma 5.3.3, A1 outputs ⊥ with probability at least

1− δ/2m̃. Therefore, we get that:

Lemma 5.3.5. Let D ∈ U∗ be any fixed dataset. Assume that for any dataset D′ ∈ U∗

s.t. |D4D′| = 1, we have f(D) 6= f(D′). Then, Algorithm A2 is never invoked to output

f(D) with probability at least 1− δ/2m̃.

Now, consider the sequence of queries f1, · · · , fm̃. Let F1 be the set of queries
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where, for every f ∈ F1, we have f(D) = f(D′). Let F2 = F\F1. Since Al-

gorithm A1 is (ε, δ/2)-differentially private for all queries in F , it is also (ε, δ/2)-

differentially private for all queries in F1. Now since |F2| ≤ m̃, using Lemma 5.3.5

and taking an union bound over all the queries in |F2|, Algorithm A2 is never in-

voked for queries in F2 with probability at least 1− δ/2. By the basic composition

property of DP (Lemma 2.1.5), this implies (ε, δ)-differential privacy for the overall

algorithm AOQR.

Corollary 5.3.6 (Utility guarantee forAOQR). For any set of m̃ adaptively chosen queries

F = {f1, · · · , fm̃}, let distfi(D) = arg max
k

[fi(D) is k-stable] for each fi. Also, de-

fine L(α) = {i : dist fi(D) < α} for α = 32 · log (4m̃T/min (δ, β))
√

2T log(2/δ)/ε. If

|L(α)| ≤ T , then we have the following w.p. at least 1 − β: ∀i 6∈ L(α), Algorithm AOQR

(Algorithm 8) outputs fi(D).

Proof. The proof follows directly from Theorem 4. To see this, note that Algorithm

AOQR follows the same lines of Algorithm AsparseVec (Algorithm 6) with slight ad-

justments. In particular, > in AsparseVec is replaced with f(D) in AOQR; δ in the

setting of λ in AsparseVec is replaced with δ/2 in the setting of λ in AOQR; w which

is left arbitrary in AsparseVec is set to 2λ log(2m̃/δ) in AOQR; q in AsparseVec is replaced

with distf (D) in Astab; and q̂ in AsparseVec is replaced with d̂ist in Astab. Putting

these together with Theorem 4 and the premise in the corollary statement (i.e.,

|{i : distfi(D) < α}| ≤ T ) immediately proves the corollary with the specified

value of α. Note that by comparing Theorem 4 with the premise in the corollary,

we can see that the value of α in the corollary is obtained by adding the value of w

as set in AOQR and the value of α as set in Theorem 4.
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5.3.3 Instantiation: Online Query Release via Subsample and Aggregate

While AlgorithmAOQR has the desired property in terms of generality, it falls short

in two critical aspects: i) it relies directly on the distance to instability framework

(Algorithm Astab in Section 5.3.1) which does not provide an efficient way to com-

pute the distance to instability for a given function, and ii) given a function class

F , it is unclear which functions from F satisfy the desired property of α-stability.

In Algorithm AsubSamp (Algorithm 9), we address both of these concerns by in-

stantiating the distance to instability function in AlgorithmAOQR with the subsam-

ple and aggregate framework (as done in Smith & Thakurta (2013)). We provide

the privacy and accuracy guarantees forAsubSamp in Corollary 5.3.7, and Theorem 8,

respectively. In Section 5.4, we show how Algorithm AsubSamp can be used for clas-

sification problems without relying too much on the underlying learning model

(e.g., convex versus non-convex models).

Algorithm 9 AsubSamp: Online Query Release via subsample and aggregate

Input: dataset: D, query set F = {f1, · · · , fm̃} chosen online, range of the queries:
{R1, · · · ,Rm̃}, unstable query cutoff: T , privacy parameters ε, δ > 0, failure
probability: β

1: b← 136 · log (4m̃T/min (δ, β/2))
√
T log(2/δ)/ε

2: Arbitrarily split D into b non-overlapping chunks of size m/b. Call them
D1, · · · , Db

3: for i ∈ [m̃] do
4: Let Si = {fi(D1), · · · , fi(Db)}, and for every r ∈ Ri, let ct(r) = # times r

appears in Si
5: f̂i(D)← arg max

r∈Ri
[ct(r)]

6: distf̂i ← max

{
0,

(
max
r∈Ri

[ct(r)]− max
r∈Ri\f̂i(D)

[ct(r)]

)
− 1

}
7: Output AOQR

(
D,
{
f̂1, · · · , f̂m̃

}
,
{
distf̂1

, · · · , distf̂m̃
}
, T, ε, δ

)

The key idea inAsubSamp is as follows: i) First, arbitrarily split the dataset D into
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b subsamples of equal size,D1, · · · , Db, ii) For each query fi ∈ F , where i ∈ [m̃], and

each r ∈ Ri, compute ct(r), which is the number of subsamples Dj , where j ∈ [b],

for which fi(Dj) = r, iii) Define f̂i(D) to be the r ∈ Ri with the largest ct, and the

distance to instability function distf̂i to correspond to the the difference between the

largest ct and the second largest ct among all r ∈ Ri, iv) Invoke AOQR with f̂i and

distf̂i . Now, note that distf̂i is always efficiently computable. Furthermore, Theorem

8 shows that if D is a dataset of m i.i.d. samples drawn from some distribution D,

and fi on a dataset of m/b i.i.d. samples drawn from D matches some r ∈ Ri w.p.

at least 3/4, then with high probability f̂i(D) is a stable query.

Corollary 5.3.7 (Privacy guarantee for AsubSamp). Algorithm 9 is (ε, δ)-differentially

private.

The proof of Corollary 5.3.7 follows immediately from the privacy guarantee

for AOQR (Algorithm 8).

Theorem 8 (Utility guarantee for AsubSamp). Let F denote any set of m̃ adaptively cho-

sen queries, and D be a dataset of m samples drawn i.i.d. from a fixed distribution D. For

b = 136 · log (4m̃T/min (δ, β/2)) ·
√
T log(2/δ)/ε, let L̄ ⊆ F be a set of queries s.t. for

every f ∈ L̄, there exists some xf for which f(D̂) = xf w.p. at least 3/4 over drawing

a dataset D̂ of m/b i.i.d. data samples from D. If |L̄| ≥ m̃ − T , then w.p. at least 1 − β

over the randomness of AlgorithmAsubSamp (Algorithm 9), we have the following: ∀f ∈ L̄,

Algorithm AsubSamp outputs xf . Here, (ε, δ) are the privacy parameters.

Proof. For a given query f ∈ F , let X(i)
f be the random variable that equals

to 1 if f(Di) in Algorithm AsubSamp equals xf , and 0 otherwise. Thus, we have

Pr[X
(i)
f = 1] ≥ 3/4 by assumption. By the standard Chernoff-Hoeffding bound,

we get
b∑
i=1

X
(i)
f ≥ 3b/4 −

√
b log(2m̃/β)/2 with probability at least 1 − β/2m̃. If
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we set b ≥ 72 log(2m̃/β), then the previous expression is at least 2b/3. By the union

bound, this implies that with probability at least 1−β/2, we have distf̂ ≥ b/3 for ev-

ery f ∈ L̄. Furthermore, to satisfy the distance to instability condition in Corollary

5.3.6, we need b/3 ≥ 32·log (4m̃T/min (δ, β/2))
√

2T log(2/δ)/ε. Both the conditions

on b are satisfied by setting b = 136 · log (4m̃T/min (δ, β/2))
√
T log(2/δ)/ε. Using

Corollary 5.3.6 along with this value of b, we get the statement of the theorem.

5.4 PRIVATELY ANSWERING CLASSIFICATION QUERIES

In this section, we instantiate the distance to instability framework (Algorithm 7)

with the subsample and aggregate framework (Algorithm 9), and then combine

it with the Sparse vector technique (Algorithm 6) to obtain a construction for pri-

vately answering classification queries with a conservative use of the privacy bud-

get (Algorithm 10 below). We consider here the case of binary classification for

simplicity. However, we note that one can easily extend the construction (and ob-

tain analogous guarantees) for multi-class classification.

A private training set, denoted by D, is a set of m private binary-labeled

data points {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m drawn i.i.d. from some (arbi-

trary unknown) distribution D over U = X × Y . We will refer to the induced

marginal distribution over X as DX . We consider a sequence of (online) clas-

sification queries defined by a sequence of m̃ unlabeled points from X , namely

Q = {x̃1, · · · , x̃m̃} ∈ X m̃, drawn i.i.d. from DX , and let {ỹ1, · · · , ỹm̃} ∈ {0, 1}m̃ be

the corresponding true unknown labels. Algorithm 10 has oracle access to a non-

private learner A for a hypothesis class H. We will consider both realizable and

non-realizable cases of the standard PAC model. In particular, A is assumed to be

an (agnostic) PAC learner forH.
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Algorithm 10 AbinClas: Private Online Binary Classification via subsample and ag-
gregate, and sparse vector

Input: Private dataset: D, sequence of online unlabeled public data (defining the
classification queries) Q = {x̃1, · · · , x̃m̃}, oracle access to a non-private learner
A : U∗ → H for a hypothesis class H, cutoff parameter: T , privacy parameters
ε, δ > 0, failure probability: β

1: c← 0, λ←
√

32T log(2/δ)/ε, and b← 34
√

2λ · log (4m̃T/min (δ, β/2))
2: w ← 2λ · log(2m̃/δ), and ŵ ← w + Lap(λ)
3: Arbitrarily split D into b non-overlapping chunks of size m/b. Call them
D1, · · · , Db

4: for j ∈ [b], train A on Dj to get a classifier hj ∈ H
5: for i ∈ [m̃] and c ≤ T do
6: Let Si = {h1(xi), · · · , hb(xi)}, and for y ∈ {0, 1}, let ct(y) = # times y appears

in Si
7: q̂xi(D)← arg max

y∈{0,1}
[ct(y)], distq̂xi ← max {0, ct (q̂xi)− ct (1− q̂xi)− 1}

8: outi ← Astab

(
D, q̂xi , distq̂xi ,Γ = ŵ, ε = 1/2λ

)
9: If outi = ⊥, then c← c+ 1 and ŵ ← w + Lap(λ)

10: Output outi

Theorem 9 (Privacy guarantee forAbinClas). AlgorithmAbinClas (Algorithm 10) is (ε, δ)-

DP.

The proof of this theorem follows from combining the guarantees of the dis-

tance to instability framework (Smith & Thakurta (2013)), and the sparse vector

technique (Dwork et al. (2014a)). The idea is that in each round of query response,

if the algorithm outputs a label in {0, 1}, then there is “no loss in privacy” in terms

of ε (as there is sufficient consensus). However, when the output is⊥, there is a loss

of privacy. This argument is formalized via the distance to instability framework.

Sparse vector helps account for the privacy loss across all the m̃ queries.

Theorem 10. Let α, β ∈ (0, 1), and γ , min
h∈H

L(h;D). (Note that in the realizable case

γ = 0). In Algorithm AbinClas (Algorithm 10), suppose we set the cutoff parameter as

T = 3
(

(γ + α)m̃+
√

(γ + α)m̃ log(m̃/β)/2
)

. If A is an (α, β/b,m/b)-agnostic PAC

learner (Definition 5.1.2), where b is as defined in AbinClas, then i) with probability at least
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1− 2β,AbinClas does not halt before answering all the m̃ queries inQ, and outputs⊥ for at

most T queries; and ii) the misclassification rate of AbinClas is at most T/m̃ = O(γ + α).

Proof. First, notice that A is an (α, β/b,m/b)-agnostic PAC learner, hence w.p.

≥ 1 − β, the misclassification rate of hj for all j ∈ [b] is at most γ + α. So, by

the standard Chernoff’s bound, with probability at least 1−β none of the hj’s mis-

classify more than (γ + α)m̃ +
√

(γ + α)m̃ log(m̃/β)/2 , B queries in Q. Now,

we use the following Markov-style counting argument (Lemma 5.4.1) to bound

the number of queries for which at least b/3 classifiers in the ensemble {h1, . . . , hb}

result in a misclassification.

Lemma 5.4.1. Consider a set of {(x̃1, ỹ1), . . . , (x̃m̃, ỹm̃)} ∈ (X × Y)m̃, and b binary clas-

sifiers h1, . . . , hb, where each classifier is guaranteed to make at most B mistakes in pre-

dicting the m̃ labels {ỹ1, . . . , ỹm̃}. For any ξ ∈ (0, 1/2],

∣∣∣∣{i ∈ [m̃] : |{j ∈ [b] : hj(x̃i) 6= ỹi}| > ξb

}∣∣∣∣ < B/ξ.

Therefore, there are at most 3B queries x̃i ∈ Q, where the votes of the ensemble

{h1(x̃i), . . . , hb(x̃i)} has number of ones (or, zeros) > b/3 (i.e., they significantly

disagree). Now, to prove part (i) of the theorem, observe that to satisfy the distance

to instability condition (in Theorem 6) for the remaining m̃− 3B queries, it would

suffice to have b/3 ≥ 32 log (4m̃T/min (δ, β/2))
√

2T log(2/δ)/ε (taking into account

the noise in the threshold passed to Astab in Step 8 of AbinClas). This condition on b

is satisfied by the setting of b in AbinClas. For part (ii), note that by the same lemma

above, w.p. 1 − β, there are at least 2b/3 classifiers that output the correct label in

each of the remaining m̃ − 3B queries. Hence, w.p. ≥ 1 − 2β, Algorithm AbinClas

will correctly classify such queries. This completes the proof.

Remark 11. A natural question for using Theorem 10 in the agnostic case is that how
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would one know the value of γ in practice, in order to set the right value for T? One simple

approach is to set aside half the training dataset, and compute the empirical misclassifica-

tion rate with differential privacy to get a sufficiently accurate estimate for γ + α (as in

standard validation techniques Shalev-Shwartz & Ben-David (2014)), and use it to set T .

Since the sensitivity of misclassification rate is small, the amount of noise added would not

affect the accuracy of the estimation. Furthermore, with a large enough training dataset,

the asymptotics of Theorem 10 would not change either.

Explicit misclassification rate: In Theorem 10, it might seem that there is a circular

dependency of the following terms: T → α → b → T . However, the number of

independent relations is equal to the number of parameters, and hence, we can set

them meaningfully to obtain non-trivial misclassification rates.

We now obtain an explicit misclassification rate for AbinClas in terms of the VC-

dimension of H. Let V denote the VC-dimension of H. First, we consider the

realizable case (γ = 0). Our result for this case is formally stated in the following

theorem.

Theorem 12 (Misclassification rate in the realizable case). For any β ∈ (0, 1), there

exists M = Ω̃(εm/V ), and a setting for T = Õ (m̄2 V 2/ε2m2), where m̄ , max(M, m̃),

such that w.p. ≥ 1 − β, AbinClas yields the following misclassification rate: (i) Õ(V/εm)

for up to M queries, and (ii) Õ (m̃V 2/ε2m2) for m̃ > M queries.

Proof. By standard uniform convergence arguments (Shalev-Shwartz & Ben-David

(2014)), there is an (α, β,m/b)-PAC learner with a misclassification rate of α =

Õ (bV /m). Setting T as in Theorem 10 with the aforementioned setting of α, and

setting b as in Algorithm AbinClas gives the setting of T in the theorem statement.

For up to m̃ = Ω̃(εm/V ) queries, the setting of T becomes T = O(1), and hence

Theorem 10 implies AbinClas yields a misclassification rate Õ(V/εm), which is es-
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sentially the same as the optimal non-private rate. Beyond Ω̃(εm/V ) queries,

T = Õ(m̃2 V 2/ε2m2), and hence, Theorem 10 implies that the misclassification rate

of AbinClas is Õ (m̃V 2/ε2m2).

We note that the attainable misclassification rate is significantly smaller than the

rate of Õ
(√

m̃V/εm
)

implied by a direct application of the advanced composition

theorem of differential privacy. Next, we provide analogous statement for the non-

realizable case (γ > 0).

Theorem 13 (Misclassification rate in the non-realizable case). For any β ∈ (0, 1),

there existsM = Ω̃
(

min
{

1/γ,
√
εm/V

})
, and T = O(m̄γ)+Õ

(
m̄4/3 V 2/3/ε2/3m2/3

)
,

where m̄ , max{M, m̃}, such that w.p. ≥ 1 − β, Algorithm AbinClas yields the following

misclassification rate: (i) O(γ) + Õ
(√

V/εm
)

for up to M queries, and (ii) O(γ) +

Õ
(
m̃1/3 V 2/3/ε2/3m2/3

)
for m̃ > M queries.

Proof. Again, by a standard argument, A is (α, β,m/b)-agnostic PAC learner with

α = Õ
(√

bV /m
)

, and hence, it has a misclassification rate of ≈ γ + Õ
(√

bV /m
)

when trained on a dataset of sizem/b. Setting T as in Theorem 10 with this value of

α, and setting b as inAbinClas, and then solving for T in the resulting expression, we

get the setting of T as in the theorem statement (it would help here to consider the

cases where γ > α and γ ≤ α separately). For up to M = Ω̃
(

min
{

1/γ,
√
εm/V

})
queries, the setting of T becomes T = O(1), and hence Theorem 10 implies AbinClas

yields a misclassification rate of O(γ)+ Õ
(√

V/εm
)

, which is essentially the same

as the optimal non-private rate. Beyond M queries, we have that T = O(m̃γ) +

Õ
(
m̃4/3 V 2/3/ε2/3m2/3

)
. Hence, Theorem 10 implies that the misclassification rate

of AbinClas is O(γ) + Õ
(
m̃1/3 V 2/3/ε2/3m2/3

)
.
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5.5 ANSWERING QUERIES TO MODEL-AGNOSTIC PRIVATE LEARNING

In this section, we build on our algorithm and results in Section 5.4 to achieve

a stronger objective. In particular, we bootstrap from our previous algorithm an

(ε, δ)-differentially private learner that publishes a final classifier. The idea is based

on a knowledge transfer technique: we use our private construction above to gen-

erate labels for sufficient number of unlabeled domain points. Then, we use the

resulting labeled set as a new training set for any standard (non-private) learner,

which in turn outputs a classifier. We prove explicit sample complexity bounds for

the final private learner in both PAC and agnostic PAC settings.

Our final construction can also be viewed as a private learner in the less restric-

tive setting of label-private learning where the learner is only required to protect

the privacy of the labels in the training set. Note that any construction for our orig-

inal setting can be used as a label-private learner simply by splitting the training

set into two parts and throwing away the labels of one of them.

Let hpriv denote the mapping defined byAbinClas (Algorithm 10) on a single query

(unlabeled data point). That is, for x ∈ X , let hpriv(x) ∈ {0, 1,⊥} denote the output

ofAbinClas on a single input query x. Note that w.l.o.g., we can view hpriv as a binary

classifier by replacing ⊥ with a uniformly random label in {0, 1}. Our private

learner is described in Algorithm 11 below.

Algorithm 11 APriv: Private Learner

Input: Unlabeled set of m̃ i.i.d. feature vectors: Q = {x̃1, . . . , x̃m̃}, oracle access to
our private classifier hpriv, oracle access to an agnostic PAC learnerA for a class
H.

1: for t = 1, . . . , m̃ do
2: ŷt ← hpriv(x̃t)

3: Output ĥ← A(D̃), where D̃ = {(x̃1, ŷ1), . . . , (x̃m̃, ŷm̃)}
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Note that since differential privacy is closed under post-processing, APriv is

(ε, δ)-DP w.r.t. the original dataset (input to AbinClas). Note also that the mapping

hpriv is independent ofQ; it only depends on the input training set D (in particular,

on h1, . . . , hb), and the internal randomness ofAbinClas. We now make the following

claim about hpriv.

Claim 5.5.1. Let 0 < β ≤ α < 1, and m̃ ≥ 4 log(1/αβ)/α. Suppose that A in AbinClas

(Algorithm 10) is an (α, β/b,m/b)-(agnostic) PAC learner for the hypothesis class H.

Then, with probability at least 1 − 2β (over the randomness of the private training set

D, and the randomness in AbinClas), we have L(hpriv;D) ≤ 3γ + 7α = O(γ + α), where

γ = min
h∈H

L(h;D).

Proof. The proof largely relies on the proof of Theorem 10. First, note that w.p.

≥ 1 − β (over the randomness of the input dataset D), for all j ∈ [b], we have

L(hj;D) ≤ α. For the remainder of the proof, we will condition on this event. Let

x̃1, . . . , x̃m̃ be a sequence of i.i.d. domain points, and ỹ1, . . . , ỹm̃ be the correspond-

ing (unknown) labels. Now, define vt , 1 (|{j ∈ [b] : hj(x̃t) 6= ỹt}| > b/3) for every

t ∈ [m̃]. Note that since (x̃1, ỹ1), . . . , (x̃m̃, ỹm̃) are i.i.d., it follows that v1, . . . , vm̃ are

i.i.d. (this is true conditioned on the original dataset D). As in the proof of Theo-

rem 10, we have: P
x̃1,...,x̃m̃

[
1
m̃

∑m̃
t=1 vt > 3

(
α + γ +

√
log(m̃/β)
2m̃(α+γ)

)]
< β. Hence, for any

t ∈ [m̃], we have Ẽ
xt

[vt] = E
x̃1,...,x̃m̃

[
1
m̃

∑m̃
t=1 vt

]
< β+3

(
α + γ +

√
log(m̃/β)
2m̃(α+γ)

)
≤ 7α+3γ.

Let v̄t = 1 − vt. Using the same technique as in the proof of Theorem 10, we

can show that w.p. at least 1 − β over the internal randomness in Algorithm 10,

we have v̄t = 1 ⇒ hpriv(x̃t) = ỹt. Hence, conditioned on this event, we have

P̃
xt

[hpriv(x̃t) 6= ỹt] ≤ P̃
xt

[vt = 1] = Ẽ
xt

[vt] ≤ 7α + 3γ.

We now state and prove the main results of this section. Let V denote the VC-

dimension ofH.
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Theorem 14 (Sample complexity bound in the realizable case). Let 0 < β ≤ α < 1.

Let m̃ be such that A is an (α, β, m̃)-agnostic PAC learner ofH, i.e., m̃ = O
(
V+log(1/β)

α2

)
.

Let the parameter T of AbinClas (Algorithm 10) be set as in Theorem 12. There exists m =

Õ
(
V 3/2/ε α3/2

)
for the size of the private dataset such that, w.p. ≥ 1 − 3β, the output

hypothesis ĥ of APriv (Algorithm 11) satisfies L(ĥ;D) = O(α).

Proof. Let h∗ ∈ H denote the true labeling hypothesis. We will denote the true

distribution D as (DX , h∗). Note that since T is set as in Theorem 12, and given

the value of m̃ in the theorem statement, we get b = Õ(V 2/ε2 α2m). Hence, there

is a setting m = Õ
(
V 3/2/ε α3/2

)
such that A is an (α, β/b,m/b)-PAC learner for H

(in particular, sample complexity in the realizable case = m/b = Õ(V/α)). Hence,

by Claim 5.5.1, w.p. ≥ 1 − 2β, we get L(hpriv;D) ≤ 7α. For the remainder of the

proof, we will condition on this event. Let D̃ = {(x1, ŷ1), . . . , (xm̃, ŷm̃)} be the new

training set generated by APriv (Algorithm 11), where m̃ is set as in the theorem

statement. Note that each (x̃t, ŷt), t ∈ [m̃], is drawn independently from (DX , hpriv).

Now, since A is also an (α, β, m̃)-agnostic PAC learner for H, w.p. ≥ 1 − β (over

the new set D̃), the output hypothesis ĥ satisfies

L(ĥ; (DX , hpriv))− L(h∗; (DX , hpriv)) ≤ L(ĥ; (DX , hpriv))−min
h∈H

L(h; (DX , hpriv)) ≤ α.

Observe that

L(h∗; (DX , hpriv)) = E
x∼DX

[1 (h∗(x) 6= hpriv(x))] = L(hpriv; (DX , h∗)) = L(hpriv;D)

≤ 7α

where the last inequality follows from Claim 5.5.1 (with γ = 0). Hence, we get
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L(ĥ; (DX , hpriv)) ≤ 8α. Furthermore, observe that

L(ĥ;D) = E
x∼DX

[
1(ĥ(x) 6= h∗(x))

]
≤ E

x∼DX

[
1(ĥ(x) 6= hpriv(x)) + 1(hpriv(x) 6= h∗(x))

]
= L(ĥ; (DX , hpriv)) + L(hpriv;D) ≤ 15α.

Hence, w.p. ≥ 1− 3β, we have L(ĥ;D) ≤ 15α.

Remark 15. In Theorem 14, if A is an ERM learner, then the value of m̃ can be reduced

to Õ(V/α). Hence, the resulting sample complexity would be m = Õ(V 3/2/ε α), saving

us a factor of 1√
α

. This is because the disagreement rate in the labels produced byAbinClas is

≈ α, and agnostic learning with such a low disagreement rate can be done using Õ(V/α)

if the learner is an ERM (Boucheron et al., 2005, Corollary 5.2).

Remark 16. Our result involves using an agnostic PAC learnerA. Agnostic PAC learners

with optimal sample complexity can be computationally inefficient. One way to give an

efficient construction in the realizable case (with a slightly worse sample complexity) is

to use a PAC learner (rather than an agnostic one) in APriv with target accuracy α (and

hence, m̃ = Õ(V/α)), but then train the PAC learner inAbinClas towards a target accuracy

1/m̃. Hence, the misclassification rate ofAbinClas can be driven to zero. This yields a sample

complexity bound m = Õ(V 2/ε α).

Theorem 17 (Sample complexity bound in the non-realizable case). Let 0 < β ≤

α < 1, and m̃ = O
(
V+log(1/β)

α2

)
. Let T be set as in Theorem 13. There exists m =

Õ
(
V 3/2/ε α5/2

)
such that, w.p. ≥ 1 − 3β, the output hypothesis ĥ of (Algorithm 11)

satisfies L(ĥ;D) = O(α + γ).

Proof. The proof is similar to the proof of Theorem 14.
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5.6 DISCUSSION

Implications, and comparison to prior work on label privacy: Our results also

apply to the setting of label-private learning, where the learner is only required

to protect the privacy of the labels in the training set. That is, in this setting, all

unlabeled features in the training set can be viewed as public information. This

is a less restrictive setting than the setting we consider in this chapter. In par-

ticular, our construction can be directly used as a label-private learner simply by

splitting the training set into two parts and discarding the labels in one of them.

The above theorems give sample complexity upper bounds that are only a factor

of Õ
(√

V/α
)

worse than the optimal non-private sample complexity bounds. We

note, however, that our sample complexity upper bound for the agnostic case has

a suboptimal dependency (by a small constant factor) on γ , min
h∈H

L(h;D).

Label-private learning has been considered before in Chaudhuri & Hsu (2011) and

Beimel et al. (2016). Both works have only considered pure, i.e., (ε, 0), differen-

tially private learners for those settings, and the constructions in both works are

white-box, i.e., they do not allow for modular construction based on a black-box

access to a non-private learner. The work of Chaudhuri & Hsu (2011) gave upper

and lower bounds on the sample complexity in terms of the doubling dimension.

Their upper bound involves a smoothness condition on the distribution of the fea-

tures DX . The work of Beimel et al. (2016) showed that the sample complexity (of

pure differentially label-private learners) can be characterized in terms of the VC

dimension. They proved an upper bound on the sample complexity for the realiz-

able case. The bound of Beimel et al. (2016) is only a factor of O(1/α) worse than

the optimal non-private bound for the realizable case.
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Beyond standard PAC learning with binary loss: In this chapter, we used our

algorithmic framework to derive sample complexity bounds for the standard (ag-

nostic) PAC model with the binary 0-1 loss. However, it is worth pointing out

that our framework is applicable in more general settings. In particular, if a sur-

rogate loss (e.g., hinge loss or logistic loss) is used instead of the binary loss, then

our framework can be instantiated with any non-private learner with respect to

that loss. That is, our construction does not necessarily require an (agnostic) PAC

learner. However, in such case, the accuracy guarantees of our construction will

be different from what we have here for the standard PAC model. In particular,

in the surrogate loss model, one often needs to invoke some weak assumptions

on the data distribution in order to bound the optimization error (Shalev-Shwartz

& Ben-David (2014)). One can still provide meaningful accuracy guarantees since

our framework allows for transferring the classification error guarantee of the un-

derlying non-private learner to a classification error guarantee for the final private

learner.
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CHAPTER 6

Private Matrix Completion

In this chapter, we will look at the first provably differentially private algorithm

with formal utility guarantees for the problem of user-level privacy-preserving

matrix completion.

6.1 ADDITIONAL PRELIMINARIES

6.1.1 Notions of Privacy

Let D = {d1, · · · , dm} be a dataset of m entries. Each entry di lies in a fixed domain

T , and belongs to an individual i, whom we refer to as an agent in this chapter.

Furthermore, di encodes potentially sensitive information about agent i. Let A be

an algorithm that operates on dataset D, and produces a vector of m outputs, one

for each agent i, from a set of possible outputs S. Formally, let A : T m → Sm. Let

D−i denote the dataset D without the entry of the i-th agent, and similarly A−i(D)

be the set of outputs without the output for the i-th agent. Also, let (di;D−i) denote

the dataset obtained by adding data entry di to the dataset D−i. In this chapter, we

will use the notion of neighboring under modification (Definition 2.1.1) for the

guarantee of privacy.

At a high-level, an algorithm A is (ε, δ)-standard DP (Definition 2.1.3) if for

any agent i and dataset D, the output A(D) and D−i do not reveal “much” about

her data entry di. For reasons mentioned in Section 3.4, our matrix completion

algorithms provide a privacy guarantee based on a relaxed notion of DP, called

joint differential privacy , which was initially proposed in Kearns et al. (2014).

Definition 18 (Joint differential privacy (Kearns et al. (2014))). An algorithm A sat-
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isfies (ε, δ)-joint differential privacy if for any agent i, any two possible values of data

entry di, d′i ∈ T for agent i, any tuple of data entries for all other agents, D−i ∈ T m−1,

and any output S ∈ Sm−1,

Pr
A

[A−i (di;D−i) ∈ S] ≤ eε Pr
A

[A−i (d′i;D−i) ∈ S] + δ.

Intuitively, an algorithm A preserves (ε, δ)-joint differential privacy if for any

agent i and dataset D, the output of A for the other (m − 1) agents (denoted by

A−i(D)) and D−i do not reveal “much” about her data entry di. Such a relaxation

is necessary for matrix completion because an accurate completion of the row of

an agent can reveal a lot of information about her data entry. However, it is still

a very strong privacy guarantee for an agent even if every other agent colludes

against her, as long as she does not make the predictions made to her public.

In this chapter, we consider the privacy parameter ε to be a small constant

(≈ 0.1), and δ < 1/m. There are semantic reasons for such choice of parameters

(Kasiviswanathan & Smith (2008)), but that is beyond the scope of this chapter.

6.1.2 The Frank-Wolfe Algorithm

We use the classic Frank-Wolfe algorithm (Frank & Wolfe (1956)) as one of the op-

timization building blocks for our differentially private algorithms. In Algorithm

12, we state the Frank-Wolfe method to solve the following convex optimization

problem:

Ŷ = arg min
‖Y ‖nuc≤k

1

2|Ω|
‖PΩ (Y − Y ∗)‖2

F . (6.1)

In this chapter, we use the approximate version of the algorithm from Jaggi (2013).

The only difference is that, instead of using an exact minimizer to the linear opti-



97

Algorithm 12 Approximate Frank-Wolfe algorithm

Input: Set of revealed entries: Ω, operator: PΩ, matrix: PΩ(Y ∗) ∈ Rm×n, nuclear
norm constraint: k, time bound: T , slack parameter: γ
Y (0) ← {0}m×n
for t ∈ [T ] do
W (t−1) ← 1

|Ω|PΩ

(
Y (t−1) − Y ∗

)
Get Z(t−1) with

∥∥Z(t−1)
∥∥
nuc
≤ k s.t.

(
〈W (t−1), Z(t−1)〉 − min

‖Θ‖nuc≤k
〈W (t−1),Θ〉

)
≤ γ

Y (t) ←
(
1− 1

T

)
Y (t−1) + Z(t−1)

T

Return Y (T )

mization problem, Line 12 of Algorithm 12 uses an oracle that minimizes the prob-

lem up to a slack of γ. In the following, we provide the convergence guarantee for

Algorithm 12.

Note: Observe that the algorithm converges at the rate of O(1/T ) even with an

error slack of γ. While such a convergence rate is sufficient for us to prove our

utility guarantees, we observe that this rate is rather slow in practice.

Theorem 19 (Utility guarantee). Let γ be the slack in the linear optimization oracle in

Line 12 of Algorithm 12. Then, following is true for Y (T ):

L
(
Y (T ); Ω

)
− min
‖Y ‖nuc≤k

L (Y ; Ω) ≤ k2

|Ω|T
+ γ.

Proof (Adapted from Jaggi (2013)). Let D ∈ Rm×n some fixed domain. We will define

the curvature parameter Cf of any differentiable function f : D → R to be the

following:

Cf = max
x,s∈D,µ∈[0,1]:
y=x+µ(s−x)

2

µ2
(f(y)− f(x)− 〈y − x,5f(x)〉) .

In the optimization problem in (6.1), let f(Y ) = 1
2|Ω| ‖PΩ (Y − Y ∗)‖2

F , and
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G(t−1) = arg min
‖Θ‖nuc≤k

〈W (t−1),Θ〉, where W (t−1) is as defined in Line 3 of Algorithm

12. We now have the following due to smoothness:

f
(
Y (t)

)
= f

(
Y (t−1) +

1

T

(
Z(t−1) − Y (t−1)

))
≤ f

(
Y (t−1)

)
+

1

2T 2
Cf +

1

T
〈Z(t−1) − Y (t−1),5f

(
Y (t−1)

)
〉. (6.2)

Now, by the γ-approximation property in Line 4 of Algorithm 12, we have:

〈Z(t−1) − Y (t−1),5f
(
Y (t−1)

)
〉 ≤ 〈G(t−1) − Y (t−1),5f

(
Y (t−1)

)
〉+ γ.

Therefore, we have the following from Equation (6.2):

f
(
Y (t)

)
≤ f

(
Y (t−1)

)
+

Cf
2T 2

(
1 +

2Tγ

Cf

)
+

1

T
〈G(t−1) − Y (t−1),5f

(
Y (t−1)

)
〉. (6.3)

Recall the definition of Ŷ from (6.1), and let h(Θ) = f(Θ)−f(Ŷ ). By convexity, we

have the following (also called the duality gap):

〈Y (t) −G(t),5f
(
Y (t)

)
〉 ≥ h

(
Y (t)

)
. (6.4)

Therefore, from (6.3) and (6.4), we have the following:

h
(
Y (T )

)
≤ h

(
Y (T−1)

)
−
h
(
Y (T−1)

)
T

+
Cf
2T 2

(
1 +

2Tγ

Cf

)
=

(
1− 1

T

)
h
(
Y (T−1)

)
+

Cf
2T 2

(
1 +

2Tγ

Cf

)
≤ Cf

2T 2

(
1 +

2Tγ

Cf

)
·

(
1 +

(
1− 1

T

)
+

(
1− 1

T

)2

+ · · ·

)
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≤ Cf
2T

(
1 +

2Tγ

Cf

)
=
Cf
2T

+ γ

⇔ f
(
Y (T )

)
− f

(
Ŷ
)
≤ Cf

2T
+ γ. (6.5)

With the above equation in hand, we bound the term Cf for the stated f(Θ) to

complete the proof. Notice that 2k2

|Ω| is an upper bound on the curvature constant

Cf (See Lemma 1 from Shalev-Shwartz et al. (2011), or Section 2 of Clarkson (2010),

for a proof). Therefore, from (6.5), we get:

f
(
Y (T )

)
− f

(
Ŷ
)
≤ k2

|Ω|T
+ γ,

which completes the proof.

6.2 PRIVATE MATRIX COMPLETION VIA FRANK-WOLFE

Recall that the objective is to solve the matrix completion problem (defined in Sec-

tion 3.4.1) under Joint DP. A standard modeling assumption is that Y ∗ is nearly

low-rank, leading to the following empirical risk minimization problem (Kesha-

van et al. (2010); Jain et al. (2013); Jin et al. (2016)): min
rank(Y )≤k

1

2|Ω|
‖PΩ(Y − Y ∗)‖2

F︸ ︷︷ ︸
L(Y ;Ω)

,

where k � min(m,n). As this is a challenging non-convex optimization problem,

a popular approach is to relax the rank constraint to a nuclear-norm constraint, i.e.,

min
‖Y ‖nuc≤k

L(Y ; Ω).

To this end, we use the FW algorithm (Algorithm 12) as our building block.

FW is a popular conditional gradient algorithm in which the current iterate is

updated as: Y (t) ← (1 − η)Y (t−1) + η · G, where η is the step size, and G is

given by: arg min
‖G‖nuc≤k

〈G,∇Y (t−1)L(Y ; Ω)〉. Note that the optimal solution to the above

problem is G = −kuv>, where (λ, u, v) are the top singular components of
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A(t−1) = PΩ(Y (t−1) − Y ∗). Also, the optimal G is a rank-one matrix.

Algorithmic ideas: In order ensure Joint DP and still have strong error guarantees,

we develop the following ideas. These ideas have been formally compiled into

Algorithm 13. Notice that both the functions Aglobal and Alocal in Algorithm 13 are

parts of the Private FW technique, where Aglobal consists of the global component,

and each user runs Alocal at her end to carry out a local update. Throughout this

discussion, we assume that max
i∈[m]
‖PΩ(Y ∗i )‖2 ≤ ∆.

Splitting the update into global and local components: One can equivalently write

the Frank-Wolfe update as follows: Y (t) ← (1 − η)Y (t−1) − η · k
λ
A(t−1)vv>, where

A(t−1),v, and λ are defined as above. Note that v and λ2 can also be obtained as the

top right eigenvector and eigenvalue of A(t−1)>A(t−1) =
m∑
i=1

Ai
(t−1)>Ai

(t−1), where

Ai
(t−1) = PΩ(Yi

(t−1) − Y ∗i ) is the i-th row of A(t−1). We will use the global component

Aglobal in Algorithm 13 to compute v and λ. Using the output of Aglobal, each user

(row) i ∈ [m] can compute her local update (using Alocal) as follows:

Yi
(t) = (1− η)Yi

(t−1) − ηk

λ
PΩ(Y (t−1) − Y ∗)ivv>. (6.6)

A block schematic of this idea is presented in Figure 6.1.

Noisy rank-one update: Observe that v and λ, the statistics computed in each

iteration of Aglobal, are aggregate statistics that use information from all rows of

Y ∗. This ensures that they are noise tolerant. Hence, adding sufficient noise can

ensure standard DP (Definition 2.1.3) for Aglobal. The second term in computing

λ̂′ in Algorithm 13 is due to a bound on the spectral norm of the Gaussian noise

matrix. We use this bound to control the error introduced in the computation of λ̂.

Since the final objective is to satisfy Joint DP (Definition 18), the local component
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Algorithm 13 Private Frank-Wolfe algorithm

function Global Component Aglobal (Input- privacy parameters: (ε, δ) s.t. ε ≤
2 log (1/δ), total number of iterations: T , bound on ‖PΩ(Y ∗i )‖2: ∆, failure proba-
bility: β, number of users: m, number of items: n)
σ ← ∆2

√
64 · T log(1/δ)/ε, v̂← {0}n, λ̂← 0

for t ∈ [T ] do
W (t) ← {0}n×n, λ̂′ ← λ̂+

√
σ log(n/β)n1/4

for i ∈ [m] do W (t) ←W (t) +Alocal(i, v̂, λ̂
′, T, t,∆)

Ŵ (t) ← W (t) + N (t), where N (t) ∈ Rn×n is a matrix with i.i.d. entries from
N (0, σ2)

(v̂, λ̂2)← Top eigenvector and eigenvalue of Ŵ (t)

function Local UpdateAlocal (Input- user number: i, top right singular vector: v̂,
top singular value: λ̂′, total number of iterations: T , current iteration: t, bound
on ‖PΩ(Y ∗i )‖2: ∆, private true matrix row: PΩ(Y ∗i ))
Yi

(0) ← {0}n, Ai(t−1) ← PΩ(Yi
(t−1) − Y ∗i )

ûi ← (Ai
(t−1) · v̂)/λ̂′

Define Π∆,Ω (M)i,j = min
{

∆
‖PΩ(Mi)‖2 , 1

}
·Mi,j

Yi
(t) ← Π∆,Ω

((
1− 1

T

)
Yi

(t−1) − k
T
ûi(v̂)T

)
Ai

(t) ← PΩ

(
Yi

(t) − Y ∗i
)

if t = T , Output Yi(T ) as prediction to user i and stop
else Return Ai(t)

>
Ai

(t) to Aglobal
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Figure 6.1: Block schematic describing the two functions Alocal and
Aglobal of Algorithm 13. The solid boxes and arrows represent com-
putations that are privileged and without external access, and the
dotted boxes and arrows represent the unprivileged computations.

Alocal can compute the update for each user (corresponding to (6.6)) without adding

any noise.

Controlling norm via projection: In order to control the amount of noise needed to

ensure DP, any individual data entry (here, any row of Y ∗) should have a bounded

effect on the aggregate statistic computed by Aglobal. However, each intermedi-

ate computation Yi
(t) in (6.6) can have high L2-norm even if ‖PΩ(Y ∗i )‖2 ≤ ∆.

We address this by applying a projection operator Π∆,Ω (defined below) to Yi
(t),

and compute the local update as Π∆,Ω

(
Yi

(t)
)

in place of (6.6). Π∆,Ω is defined

as follows: For any matrix M , Π∆,Ω ensures that any row of the “zeroed out”

matrix PΩ(M) does not have L2-norm higher than ∆. Formally, Π∆,Ω (M)i,j =

min
{

∆
‖PΩ(Mi)‖2 , 1

}
· Mi,j for all entries (i, j) of M . In our analysis, we show that

this projection operation does not increase the error.
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6.2.1 Privacy and Utility Analysis

Theorem 20. Algorithm 13 satisfies (ε, δ)-joint DP.

Proof. Note that we require ε ≤ 2 log
(

1
δ

)
for inputs (ε, δ) in Algorithm 13. Assum-

ing this is satisfied, let us consider the matrix sequence W (1), · · · ,W (T ) produced

by function Aglobal. Notice that if every user i ∈ [m] knows this sequence, then

she can construct her updates Yi(1), · · · , Yi(T ) by herself independent of any other

user’s data. Therefore, by post-processing (Lemma 2.1.4), it follows that as long

as function Aglobal satisfies (ε, δ)-differential privacy, one can ensure (ε, δ)-joint dif-

ferential privacy for Algorithm 13, i.e., the combined pair of functions Aglobal and

Alocal. (Recall that Lemma 2.1.4 states that any operation performed on the output

of a differentially private algorithm, without accessing the raw data, remains dif-

ferentially private with the same level of privacy.) Hence, Lemma 6.2.1 completes

the proof of privacy.

Lemma 6.2.1. For input parameters (ε, δ) such that ε ≤ 2 log
(

1
δ

)
, let W (t) be the output

in every iteration t ∈ [T ] of function Aglobal in Algorithm 13. Then, Aglobal is (ε, δ)-

differentially private.

Proof. We are interested in the function Cov(A(t)) = A(t)>A(t),where we haveA(t) =

PΩ

(
Y (t) − Y ∗

)
. Since ‖PΩ

(
Y (t)

)
i
‖2 ≤ ∆ and ‖PΩ (Y ∗)i ‖2 ≤ ∆ for all rows i ∈ [m],

we have that the L2-sensitivity of Cov(A(t)) is 4∆2. Recall that the L2-sensitivity

of Cov corresponds to the maximum value of ‖Cov(A)− Cov(A′)‖F for any two

matrices A,A′ in the domain, and differing in exactly one row. Using the zCDP

guarantee of the Gaussian mechanism (Lemma 2.1.14), the composition property

of zCDP (Lemma 2.1.12), and the relation between zCDP and approximate DP

(Lemma 2.1.13), it follows that adding Gaussian noise with standard deviation

σ =
∆2
√

64·T log(1/δ)

ε
in each iteration of the global component of private Frank-Wolfe
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(function Aglobal) ensures (ε, δ)-differential privacy for ε ≤ 2 log (1/δ).

We now show that the empirical risk of our algorithm is close to the optimal as

long as the number of users m is “large”.

Theorem 21 (Excess empirical risk guarantee). Let Y ∗ be a matrix with ‖Y ∗‖nuc ≤ k,

and max
i∈[m]
‖PΩ(Y ∗)i‖2 ≤ ∆. Let Y (T ) be a matrix, with its rows being Yi(T ) for all i ∈ [m],

computed by function Alocal in Algorithm 13 after T iterations. If ε ≤ 2 log
(

1
δ

)
, then with

probability at least 2/3 over the outcomes of Algorithm 13, the following is true:

L
(
Y (T ); Ω

)
= O

 k2

|Ω|T
+
kT 1/4∆

√
n1/2 log1/2(1/δ) log n

|Ω|
√
ε

 .

Furthermore, if T = Õ
(
k4/5ε2/5

n1/5∆4/5

)
, then L

(
Y (T ); Ω

)
= Õ

(
k6/5n1/5∆4/5

|Ω|ε2/5

)
after hiding

poly-logarithmic terms.

Proof. Recall that in function Aglobal of Algorithm 13, the matrix Ŵ (t) captures the

total error covariance corresponding to all the users at a given time step t, i.e.,

A(t)>A(t) =
∑
i∈[m]

Ai
(t)>Ai

(t). Spherical Gaussian noise of appropriate scale is added

to ensure that Ŵ (t) is computed under the constraint of differential privacy. Let

v̂ be the top eigenvector of Ŵ (t), and let λ̂2 be the corresponding eigenvalue. In

Lemma 6.2.2, we first show that λ̂ is a reasonable approximation to the energy of

A(t) captured by v̂, i.e., ‖A(t)v̂‖2. Furthermore, in Lemma 6.2.3 we show that v̂

captures sufficient energy of the matrix A(t). Hence, we can conclude that one can

use v̂ as a proxy for the top right singular vector of A(t).
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Lemma 6.2.2. With probability at least 1− β, the following is true:

‖A(t)v̂‖2 ≤ λ̂+O

(√
σ log(n/β)

√
n

)
.

Proof. Let E = Ŵ (t)−A(t)>A(t), where the matrix Ŵ (t) is computed in iteration t of

the function Aglobal. We have,

‖A(t)v̂‖2
2 = v̂>A(t)>A(t)v̂

= v̂>
(
A(t)>A(t) + E

)
v̂ − v̂>E v̂

≤ λ̂2 + ‖E ‖2

≤ λ̂2 +O
(
σ log(n/β)

√
n
)

w.p. ≥ 1− β (6.7)

Inequality (6.7) follows from the spectral norm bound on the Gaussian matrix E

drawn i.i.d. from N (0, σ2). (See Corollary 2.3.5 in Tao (2012) for a proof). The

statement of the lemma follows from inequality (6.7).

Lemma 6.2.3 (Follows from Theorem 3 of Dwork et al. (2014b)). Let A ∈ Rm×n be a

matrix and let Ŵ = A>A + E, where E ∼ N (0, σ2In×n). Let v be the top right singular

vector of A, and let v̂ be the top eigenvector of Ŵ . The following is true with probability at

least 1− β:

‖Av̂‖2
2 ≥ ‖Av‖2

2 −O
(
σ log(n/β)

√
n
)
.

Now, one can compactly write the update equation of Y (t) in function Alocal of
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Algorithm 13 for all the users as:

Y (t) ← Π∆,Ω

((
1− 1

T

)
Y (t−1) − k

T
ûv̂>

)
, (6.8)

where û corresponds to the set of entries ûi in function Alocal represented as a vec-

tor. Also, by Lemma 6.2.2, we can conclude that ‖û‖2 ≤ 1. Hence, Y (t) is in the set

{Y : ‖Y ‖nuc ≤ k} for all t ∈ [T ].

In the following, we incorporate the noisy estimation in the analysis of original

Frank-Wolfe (stated in Section 6.1.2). In order to do so, we need to ensure a couple

of properties: i) We need to obtain an appropriate bound on the slack parameter

γ in Algorithm 12, and ii) we need to ensure that the projection operator Π∆,Ω in

functionAlocal does not introduce additional error. We do this via Lemma 6.2.4 and

6.2.5 respectively.

Lemma 6.2.4. For the noise variance σ used in function Aglobal of Algorithm 13, w.p. at

least 1− β, the slack parameter γ in the linear optimization step of Frank-Wolfe algorithm

is at most O
(

k
|Ω|

√
σ log(n/β)

√
n
)

.

Proof. Recall that λ̂2 corresponds to the maximum eigenvalue of W (t), and notice

that A(t) is the scaled gradient of the loss function L(θ; Ω) at θ = Π∆,Ω

(
Y (t)

)
. Es-

sentially, we need to compute the difference between the values of 〈 1
|Ω|A

(t), kuv>〉

and 〈 1
|Ω|A

(t), kûv̂>〉. Let α = 〈 1
|Ω|A

(t), kuv>〉, and α̂ = 〈 1
|Ω|A

(t), kûv̂>〉. Now, we have

the following w.p. at least 1− β:

α̂ =
kv̂>A(t)>û

|Ω|
=

kv̂>A(t)>A(t)v̂

|Ω|
(
λ̂+ Θ

(√
σ log(n/β)

√
n
))

=
k‖A(t)v̂‖2

2

|Ω|
(
λ̂+ Θ

(√
σ log(n/β)

√
n
))
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≥
k
(
‖A(t)v‖2

2 −O (σ log(n/β)
√
n)
)

|Ω|
(
λ̂+ Θ

(√
σ log(n/β)

√
n
))

=
k
(
|Ω|λ
k
α−O (σ log(n/β)

√
n)
)

|Ω|
(
λ̂+ Θ

(√
σ log(n/β)

√
n
)) , (6.9)

where λ2 is the maximum eigenvalue ofA(t)>A(t), the second equality follows from

the definition of û, and the inequality follows from Lemma 6.2.3. One can rewrite

(6.9) as:

α− α̂ ≤

1− λ(
λ̂+ Θ

(√
σ log(n/β)

√
n
))
α

︸ ︷︷ ︸
E1

+O

 kσ log(n/β)
√
n

|Ω|
(
λ̂+ Θ

(√
σ log(n/β)

√
n
))


︸ ︷︷ ︸
E2

.

(6.10)

We will analyze E1 and E2 in (6.10) separately. One can write E1 in (6.10) as

follows:

E1 =


(
λ̂+O

(√
σ log(n/β)

√
n
))
− λ(

λ̂+ Θ
(√

σ log(n/β)
√
n
))

α

=
k

|Ω|


(
λ̂+O

(√
σ log(n/β)

√
n
))
− λ(

λ̂+ Θ
(√

σ log(n/β)
√
n
))

λ. (6.11)

By Weyl’s inequality for eigenvalues, and the fact that w.p. at least 1 − β,

we have ‖Ŵ (t) − A(t)>A(t)‖2 = O (σ log(n/β)
√
n) because of spectral proper-

ties of random Gaussian matrices (Corollary 2.3.5 in Tao (2012)), it follows that∣∣∣λ̂− λ∣∣∣ = O
(√

σ log(n/β)
√
n
)

. Therefore, one can conclude from (6.11) that

E1 = O
(

k
|Ω|

√
σ log(n/β)

√
n
)

. Now, we will bound the term E2 in (6.10). Since

λ̂ ≥ 0, it follows that E2 = O
(

k
|Ω|

√
σ log(n/β)

√
n
)
. Therefore, the slack parameter

α− α̂ = E1 + E2 = O
(

k
|Ω|

√
σ log(n/β)

√
n
)

.
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Lemma 6.2.5. Define the operators PΩ and Π∆,Ω as described in function Alocal in Sec-

tion 6.2. Let L(Y ; Ω) = 1
2|Ω| ‖PΩ(Y − Y ∗)‖2

F for any matrix Y ∈ Rm×n. The following is

true for all Y ∈ Rm×n: L (Π∆,Ω (Y ) ; Ω) ≤ L (PΩ (Y ) ; Ω).

Proof. First, notice that for any matrix M =
[
m>1 , · · · ,m>m

]
(where m>i corresponds

to the i-th row of M ), we have ‖M‖2
F =

∑
i

‖mi‖2
2. Let Π∆ be the L2 projector onto

a ball of radius ∆, and Bn∆ be a ball of radius ∆ in n-dimensions, centered at the

origin. Then, for any pair of vectors, v1 ∈ Rn and v2 ∈ Bn∆, ‖Π∆ (v1) − v2‖2 ≤

‖v1 − v2‖2. This follows from the contraction property of L2-projection. Hence, by

the above two properties, and the fact that each row of the matrix PΩ (Y ∗) ∈ Bn∆, we

can conclude L (Π∆(PΩ(Y )); Ω) ≤ L (PΩ(Y ); Ω) for any Y ∈ Rm×n. This concludes

the proof.

This means we can still use Theorem 19. Hence, we can conclude that, w.p.

≥ 1− β:

L
(
Y (T ); Ω

)
= O

(
k2

|Ω|T
+

k

|Ω|

√
σ log(n/β)

√
n

)

Here we used the fact that the curvature parameter Cf from Theorem 19 is at most

k2/|Ω| (see Jaggi et al. (2010) for a proof). Setting β = 1/3 completes the proof.

Remark 22. We further illustrate our empirical risk bound by considering a simple set-

ting: let Y ∗ be a rank-one matrix with Y ∗ij ∈ [−1, 1] and |Ω| = m
√
n. Then k = O(

√
mn),

and ∆ = O(n1/4), implying an error of Õ
(√

nm−2/5
)

hiding the privacy parameter ε; in

contrast, a trivial solution like Y = 0 leads to O(1) error. Naturally, the error increases

with n as there is more information to be protected. However, it decreases with a larger

number of users m as the presence/absence of a user has lesser effect on the solution with

increasing m. We leave further investigation into the dependency of the error on m for

future work.
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Remark 23. Our analysis does not require an upper bound on ‖Y ∗‖nuc (as stated in Theo-

rem 21); we would instead incur an additional error of min
‖Y ‖nuc≤k

1
|Ω| ‖PΩ (Y ∗ − Y )‖2

F . More-

over, consider a similar scenario as in Remark 22, but |Ω| = mn, i.e., all the entries of Y ∗

are revealed. In such a case, ∆ = O(
√
n), and the problem reduces to that of standard

low-rank matrix approximation of Y ∗. Note that our result here leads to an error bound of

Õ
(
n1/5m−2/5

)
, while the state-of-the-art result by Hardt & Roth (2013) leads to an error

bound of O(1) due to being in the much stricter standard DP model.

6.2.1.1 Generalization error guarantee

We now present a generalization error (defined in Equation 3.1) bound which

shows that our approach provides accurate prediction over unknown entries. For

obtaining our bound, we use the following result from Srebro & Shraibman (2005).

Theorem 24. Let Y ∗ be a hidden matrix, and the data samples in Ω be drawn uniformly

at random from [m]× [n]. Let A ∈ Rm×n be a matrix with rank (A) ≤ r, and let each entry

of A be bounded by a constant. Then, the following holds with probability at least 2/3 over

choosing Ω:

|L(A)− L(A; Ω)| = Õ

(√
r · (m+ n)

|Ω|

)
.

The Õ (·) hides poly-logarithmic terms in m and n.

Also, the output of Private FW (Algorithm 13) has rank at most T , where T is

the number of iterations. Thus, replacing T from Theorem 21, we get the following:

Corollary 6.2.1 (Generalization Error). Let ‖Y ∗‖nuc ≤ k for a hidden matrix Y ∗, and

‖PΩ(Y ∗i )‖2 ≤ ∆ for every row i of Y ∗. If we choose the number of rounds in Algorithm

13 to be O
(

k4/3

(|Ω|(m+n))1/3

)
, the data samples in Ω are drawn u.a.r. from [m] × [n], and

ε ≤ 2 log
(

1
δ

)
, then with probability at least 2/3 over the outcomes of the algorithm and
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choosing Ω, the following is true for the final completed matrix Y :

L(Y ) = Õ

(
k4/3∆n1/4√

ε|Ω|13/6(m+ n)1/6
+

(
k
√
m+ n

|Ω|

)2/3
)
.

The Õ (·) hides poly-logarithmic terms in m,n, |Ω| and δ.

Remark 25. We further illustrate our bound using a setting similar to the one considered

in Remark 22. Let Y ∗ be a rank-one matrix with Y ∗ij ∈ [−1, 1] for all i, j; let |Ω| ≥

m
√
n·polylog(n), i.e., the fraction of movies rated by each user is arbitrarily small for larger

n. For this setting, our generalization error is o(1) form = ω(n5/4). This is slightly higher

than the bound in the non-private setting by Shalev-Shwartz et al. (2011), wherem = ω(n)

is sufficient to get generalization error o(1). Also, as the first term in the error bound

pertains to DP, it decreases with a larger number of users m, and increases with n as it has

to preserve privacy of a larger number of items. In contrast, the second term is the matrix

completion error decreases with n. This is intuitive, as a larger number of movies enables

more sharing of information between users, thus allowing a better estimation of preferences

Y ∗. However, just increasing m may not always lead to a more accurate solution (for

example, consider the case of n = 1).

Remark 26. The guarantee in Corollary 6.2.1 is for uniformly random Ω, but using the

results of Shamir & Shalev-Shwartz (2011), it is straightforward to extend our results to

any i.i.d. distribution over Ω. Moreover, we can extend our results to handle strongly

convex and smooth loss functions instead of the squared loss considered in this chapter.

6.2.2 Efficient PCA via Oja’s Algorithm

Algorithm 13 requires computing the top eigenvector of Ŵ (t) = W (t) +N (t), where

W (t) =
∑

i

(
Ai

(t)
)>

Ai
(t) and N (t) is a random noise matrix. However, this can

be a bottleneck for computation as N (t) itself is a dense n × n matrix, implying
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a space complexity of Ω(n2 + mk), where k is the maximum number of ratings

provided by a user. Similarly, standard eigenvector computation algorithms will

require O(mk2 + n2) time (ignoring factors relating to rate of convergence), which

can be prohibitive for practical recommendation systems with large n. We would

like to stress that this issue plagues even standard DP PCA algorithms (Dwork

et al. (2014c)), which have quadratic space-time complexity in the number of di-

mensions.

We tackle this by using a stochastic algorithm for the top eigenvector compu-

tation that significantly reduces both space and time complexity while preserving

privacy. In particular, we use Oja’s algorithm (Jain et al. (2016)), which computes

top eigenvectors of a matrix with a stochastic access to the matrix itself. That is, if

we want to compute the top eigenvector ofW (t), we can use the following updates:

v̂τ = (I + ηXτ )v̂τ−1, v̂τ = v̂τ/‖v̂τ‖2 (6.12)

where E[Xτ ] = W (t). For example, we can update v̂τ using Xτ = W (t) +N
(t)
τ where

each entry of N (t)
τ is sampled i.i.d. from a Gaussian distribution calibrated to en-

sure DP. Even this algorithm in its current form does not decrease the space or time

complexity as we need to generate a dense matrixNτ
(t) in each iteration. However,

by observing that Nτ
(t)v = gτ ∼ N (0, σ21n) where v is independent of Nτ

(t), we can

now replace the generation of Nτ
(t) by the generation of a vector gτ , thus reducing

both the space and time complexity of our algorithm. The computation of each

update is significantly cheaper as long as mk � n2, which is the case for practical

recommendation systems as k tends to be fairly small there (typically on the order

of
√
n).

Algorithm 14 provides a pseudocode of the eigenvector computation method.
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Algorithm 14 Private Oja’s algorithm

Input: An m×n matrix A s.t. each row ‖Ai‖2 ≤ ∆, privacy parameters: (ε, δ) s.t.
ε ≤ 2 log(1/δ), total number of iterations: Γ
σ ← ∆2

√
256 · Γ log(2/δ)/ε, v̂0 ∼ N (0, σ2I)

for τ ∈ [Γ] do
η = 1

Γσ
√
n
, gτ ∼ N (0, σ21n)

v̂τ ← v̂τ−1 + η
(
ATAv̂τ−1 + gτ

)
, v̂τ ← v̂τ/‖v̂τ‖2

Return v̂Γ,
(
λ̂2

Γ ← ||A · v̂Γ||22 +N (0, σ2)
)

The computation of the approximate eigenvector v̂Γ and the eigenvalue λ̂2
Γ in it is

DP (directly follows via the proof of Theorem 20). The next natural question is how

well can v̂Γ approximate the behavior of the top eigenvector of the non-private co-

variance matrix W (t)? To this end, we provide Theorem 27 below that analyzes

Oja’s algorithm, and shows that the Rayleigh quotient of the approximate eigenvec-

tor is close to the top eigenvalue ofW (t). In particular, using Theorem 27 along with

the fact that in our case, V = σ2n, we have ‖A(t)‖2
2 ≤ ‖A(t)v̂Γ‖2

2 + O (σ
√
n log(η/β))

with high probability (w.p. ≥ 1 − β2)), where v̂Γ is the output of Algorithm 14,

Γ = Ω
(

min
{

1
β
, ‖A

(t)‖2
σ
√
n

})
, and η = 1

Γ·σ
√
n

.

Note that the above given bound is exactly the bound required in the proof of

Theorem 19 in Section 6.1.2. Hence, computing the top eigenvector privately using

Algorithm 14 does not change the utility bound of Theorem 21.

Theorem 27 (Based on Theorem 3 (Allen-Zhu & Li (2017))). Let X1, X2, . . . XΓ be

sampled i.i.d. such that for each i ∈ [Γ], we have E(Xi) = W = ATA. Moreover, let V =

max{‖E(Xi −W )T (Xi −W )‖, ‖E(Xi −W )(Xi −W )T‖}, and η = 1√
VΓ

. Then, the Γ-

th iterate of Oja’s Algorithm (Update (6.12)) , i.e., v̂Γ, satisfies (w.p. ≥ 1 − 1/poly(Γ)):

v̂TΓW v̂Γ ≥ ‖W‖2 −O
(√

V
Γ

+ ‖W‖2
Γ

)
.

Comparison with Private Power Iteration (PPI) method (Hardt & Roth (2013)): Pri-

vate PCA via PPI provides utility guarantees dependent on the gap between the
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top and the kth eigenvalue of the input matrix A for some k > 1, whereas private

Oja’s utility guarantee is gap-independent.

6.3 PRIVATE MATRIX COMPLETION VIA SINGULAR VALUE DECOMPO-

SITION

In this section, we study a simple SVD-based algorithm for differentially private

matrix completion. Our SVD-based algorithm for matrix completion just computes

a low-rank approximation of PΩ(Y ∗), but still provides reasonable error guarantees

(Keshavan et al. (2010)). Moreover, the algorithm forms a foundation for more

sophisticated algorithms like alternating minimization (Hardt & Wootters (2014)),

singular value projection (Jain et al. (2010)) and singular value thresholding (Cai

et al. (2010)). Thus, similar ideas may be used to extend our approach.

Algorithmic idea: At a high level, given rank r, Algorithm 15 first computes a

differentially private version of the top-r right singular subspace of PΩ(Y ∗), de-

noted by Vr. Each user projects her data record onto Vr (after appropriate scaling)

to complete her row of the matrix. Since each user’s completed row depends on

the other users via the global computation which is performed under differential

privacy, the overall agorithm satisfies joint differential privacy . In principle, this is

the same as in Section 6.2, except now it is a direct rank-r decomposition instead of

an iterative rank-1 decomposition. Also, our overall approach is similar to that of

McSherry & Mironov (2009), except that each user in McSherry & Mironov (2009)

uses a nearest neighbor algorithm in the local computation phase (see Algorithm

15). Additionally, in contrast to McSherry & Mironov (2009), we provide a formal

generalization guarantee.
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Algorithm 15 Private Matrix Completion via SVD

Input: Privacy parameters: (ε, δ), matrix dimensions: (m,n), uniform L2-bound
on the rows of PΩ(Y ∗): ∆, and rank bound: r
Global computation: Compute the top-r subspace Vr for the matrix Ŵ ←
m∑
i=1

Wi + N , where Wi = Π∆ (PΩ (Y ∗i ))>Π∆ (PΩ (Y ∗i )), Π∆ is the projection onto

the L2-ball of radius ∆, N ∈ Rn×n corresponds to a matrix with i.i.d. entries
from N (0, σ2), and σ ← ∆2

√
64 log(1/δ)/ε

Local computation: Each user i computes the i-th row of the private approxima-
tion Ŷ : Ŷi ← mn

|Ω|PΩ (Y ∗i )VrVr
>

6.3.1 Privacy and Utility Analysis

We now present the privacy and generalization guarantees for the above algo-

rithm.

Theorem 28. Algorithm 15 satisfies (ε, δ)-joint differential privacy .

The proof of privacy for Algorithm 15 follows immediately from the proof of

Theorem 20, as the key step of computing the top eigenvectors of the W matrix

remains the same.

For the generalization error bound for Algorithm 15, we use the standard low-

rank matrix completion setting, i.e., entries are sampled i.i.d., and the underlying

matrix Y ∗ is incoherent (Definition 29). Intuitively, incoherence ensures that the left

and right singular subspaces of a matrix have a low correlation with the standard

basis. The scale of µ is [0,max{m,n}]. Since, we are assuming m ≥ n, we have

µ ∈ [0,m].

Definition 29 (µ-incoherence (Jin et al. (2016))). Let Y ∈ Rm×n be a matrix of rank at

most r, and let U ∈ Rm×r and V ∈ Rr×n be the left and right singular subspaces of Y .
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Then, the incoherence µ is the following:

µ = max

{
m

r
max

1≤i≤m
‖UUT ei‖2,

n

r
max
1≤i≤n

‖V V Tfi‖2

}
.

Here, ei ∈ Rm and fi ∈ Rn are the i-th standard basis vectors in m and n dimensions,

respectively.

Under the above set of assumptions, we get:

Theorem 30. Let Y ∗ ∈ Rm×n be a rank-r, µ-incoherent matrix with condition number

κ = ‖Y ∗‖2/λr(Y
∗), where λr(·) corresponds to the r-th largest singular value. Also, let

the set of known entries Ω be sampled uniformly at random s.t. |Ω| ≥ c0κ
2µmr logm for a

large constant c0 > 0. Let ‖PΩ(Y ∗)i‖2 ≤ ∆ for every row i of Y ∗. Then, with probability

at least 2/3 over the outcomes of the algorithm, the following holds for Ŷ estimated by

Algorithm 15:

L(Ŷ ; Ω) = O

(
∆4κ4m3n4 · r · log(1/δ)

|Ω|4‖Y ∗‖2
2ε

2
+
µ‖Y ∗‖2

2 · r2 logm

n · |Ω|

)
.

Using ∆ ≤ ‖Y ∗‖2, we get:

L(Ŷ ) = O

min
(

∆2, µ
2rn
m

)
κ4m3n4r log(1/δ)

|Ω|4ε2
+
µ‖Y ∗‖2

2 · r2 logm

n · |Ω|

 .

The O (·) hides only universal constants.

Proof. Let B = 1
p
PΩ(Y ∗) where p = |Ω|/(m · n) and let Vr be the top-r right singular

subspace of B. Suppose Πr = VrV
>
r be the projector onto that subspace. Recall that

V̂r is the right singular subspace defined in Algorithm 15 and let Π̂r = V̂rV̂
T
r be the

corresponding projection matrix.
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Then, using the triangular inequality, we have:

‖BΠ̂r − Y ∗‖2 ≤ ‖BΠr − Y ∗‖2 + ‖BΠ̂r −BΠr‖2

≤ c1‖Y ∗‖2

√
µmr logm

|Ω|
+ ‖BΠ̂r −BΠr‖2, (6.13)

where the second inequality follows from the following standard result (Lemma

6.3.1) from the matrix completion literature, and holds w.p. ≥ 1− 1/m10.

Lemma 6.3.1 (Follows from Lemma A.3 in Jin et al. (2016)). LetM be anm×nmatrix

with m ≥ n, rank r, and incoherence µ, and Ω be a subset of i.i.d. samples from M . There

exists universal constants c1 and c0 such that if |Ω| ≥ c0µmr logm, then with probability

at least 1− 1/m10, we have:

‖M − mn

|Ω|
PΩ(M)‖2 ≤ c1‖M‖2

√
µ ·m · r logm

|Ω|
.

Using Theorem 6 of Dwork et al. (2014b), the following holds with probability

at least 2/3,

‖Π̂r − Πr‖2 = O

(
∆2
√
n log(1/δ)

(α2
r − α2

r+1)ε

)
, (6.14)

where αi is the i-th singular value of PΩ(Y ∗) = p ·B.

Recall that κ = ‖Y ∗‖2/λr(Y
∗), where λr is the r-th singular value of Y ∗. Let

|Ω| ≥ c0κ
2µmr logm with a large constant c0 > 0. Then, using Lemma 6.3.1 and

Weyl’s inequality, we have (w.p. ≥ 1− 1/m10):

αr ≥ 0.9 · p1

κ
‖Y ∗‖2, and αr+1 ≤ c1p · ‖Y ∗‖2

√
µ ·m · r logm

|Ω|
≤ 0.1 · αr

(6.15)
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Similarly,

‖B‖2 ≤ 2‖Y ∗‖2, w.p. ≥ 1− 1/m10. (6.16)

Using (6.13), (6.14), (6.15), and (6.16), we have w.p. ≥ 2
3
− 5

m10 :

‖BΠ̂r − Y ∗‖2 ≤ 8‖Y ∗‖2 ·
∆2κ2

√
n log(1/δ)

p2‖Y ∗‖2
2ε

+ c1‖Y ∗‖2

√
µ ·m · r logm

|Ω|
.

Recall that Ŷ = 1
p
PΩ(Y ∗)Π̂r = BΠ̂r. Hence:

‖BΠ̂r − Y ∗‖2
2

mn
≤ O

(
∆4κ4n log(1/δ)

mn · p4‖Y ∗‖2
2ε

2

)
+ c1‖Y ∗‖2

2

µ ·m · r logm

mn · |Ω|
.

The theorem now follows by using ‖A‖2
F ≤ r‖A‖2

2, where r is the rank of A.

Remark 31. Let Y ∗ be a rank one incoherent matrix with Y ∗ij = Θ(1), |Ω| = m
√
n,

∆ = O(n1/4), and µ = O(1). Notice that the spectral norm ‖Y ∗‖2 ≈
√
mn. Hence, the

first term in the bound reduces to O
(
n2

m2

)
and the second error term is O

(
1√
n

)
, whereas

a trivial solution of Y = 0 leads to O(1) error. Similar to the behavior in Remark 25, the

first term above increases with n, and decreases with increasing m due to the noise added,

while the second term decreases with increasing n due to more sharing between users.

Remark 32. Under the assumptions of Theorem 30, the second term can be arbitrarily

small for other standard matrix completion methods like the FW-based method (Algo-

rithm 13) studied in Section 6.2 above. However, the first error term for such methods

can be significantly larger. For example, the error of Algorithm 13 in the setting of Re-

mark 31 is ≈ O
(
n13/24

m5/12

)
as the second term in Corollary 6.2.1 vanishes in this setting;

in contrast, the error of the SVD-based method (Algorithm 15) is O
(
n2

m2 + 1√
n

)
. On the

other hand, if the data does not satisfy the assumptions of Theorem 30, then the error in-

curred by Algorithm 15 can be significantly larger (or even trivial) when compared to that

of Algorithm 13.
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6.4 EXPERIMENTAL EVALUATION

We now present empirical results for Private FW (Algorithm 13) on several bench-

mark datasets, and compare its performance to state-of-the-art methods like McSh-

erry & Mironov (2009), and private as well as non-private variant of the Projected

Gradient Descent (PGD) method (Cai et al. (2010); Bassily et al. (2014a); Abadi

et al. (2016)). In all our experiments, we see that private FW provides accuracy

very close to that of the non-private baseline, and almost always significantly out-

performs both the private baselines.

Datasets: As we want to preserve privacy of every user, and the output for each

user is n-dimensional, we can expect the private recommendations to be accurate

only when m � n (see Theorem 20). Due to this constraint, we conduct experi-

ments on the following datasets:

1. Synthetic: We generate a random rank-one matrix Y ∗ = uvT with unit L∞-

norm, m = 500k, and n = 400.

2. Jester: This dataset contains n = 100 jokes, and m ≈ 73k users. We rescale the

ratings to be from 0 to 5.

3. MovieLens10M (Top 400): We pick the n = 400 most rated movies from the

Movielens10M dataset, resulting in m ≈ 70k users of the ≈ 71k users in the

dataset.

4. Netflix (Top 400): We pick the n = 400 most rated movies from the Netflix

prize dataset, resulting in m ≈ 474k users of the ≈ 480k users in the dataset.

5. Yahoo! Music (Top 400): We pick the n = 400 most rated songs from the Yahoo!

music dataset, resulting in m ≈ 995k users of the ≈ 1m users in the dataset.
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We rescale the ratings to be from 0 to 5.

Procedure: For all datasets, we randomly sample 1% of the given ratings for

measuring the test error. For experiments with privacy, for all datasets except

Jester, we randomly select at most ξ = 80 ratings per user to get PΩ(Y ∗). We vary

the privacy parameter ε ∈ [0.1, 5], but keep δ = 10−6, thus ensuring that δ < 1
m

for

all datasets. Moreover, we report results averaged over 10 independent runs. The

requirement in Algorithm 13 that ε ≤ 2 log (1/δ) is satisfied by all the values of ε

considered for the experiments.

Note that the privacy guarantee is user-level, which effectively translates to an

entry-level guarantee of εentry = εuser
ξ

, i.e., εentry ∈ [0.00125, 0.0625] as εuser ∈ [0.1, 5].

For the experiments with private Frank-Wolfe (Algorithm 13), we normalize

the data as r̂i,j = ri,j − ui for all i ∈ [m], j ∈ [n], where ri,j is user i’s rating for item

j, and ui is the average rating of user i. Note that each user can safely perform

such a normalization at her end without incurring any privacy cost. Regarding

the parameter choices for private FW, we cross-validate over the nuclear norm

bound k, and the number of iterations T for each dataset. For k, we set it to the

actual nuclear norm for the synthetic dataset, and choose from {20k, 25k} for Jester,

{120k, 130k} for Netflix, {30k, 40k} for MovieLens10M, and {130k, 150k} for the

Yahoo! Music dataset. We choose T from various values in [5, 50]. Consequently,

the rank of the prediction matrix for all the private FW experiments is at most 50.

For faster training, we calibrate the scale of the noise in every iteration according

to the number of iterations that the algorithm has completed, while still ensuring

the overall DP guarantee.

Non-private baseline: For the non-private baseline, we normalize the training

data for the experiments with non-private Frank-Wolfe by removing the per-user
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and per-movie averages (as in Jaggi et al. (2010)), and we run non-private FW for

400 iterations. For non-private PGD, we tune the step size schedule. We find that

non-private FW and non-private PGD converge to the same accuracy after tuning,

and hence, we use this as our baseline.

Private baselines: To the best of our knowledge, only McSherry & Mironov (2009)

and Liu et al. (2015) address the user-level DP matrix completion problem. While

we present an empirical evaluation of the ‘SVD after cleansing method’ from the

former, we refrain from comparing to the latter as the exact privacy parameters

(ε and δ) for the Stochastic Gradient Langevin Dynamics based algorithm in Liu

et al. (2015) (correspondigly, in Wang et al. (2015)) are unclear. They use a Markov

chain based sampling method; to obtain quantifiable (ε, δ), the sampled distribu-

tion is required to converge (non-asymptotically) to a DP preserving distribution

in L1 distance, for which we are not aware of any analysis. We also provide a

comparison with private PGD (Algorithm 16).

For the ‘SVD after cleansing method’ from McSherry & Mironov (2009), we set

δ = 10−6, and select ε appropriately to ensure a fair comparison. We normalize

the data by removing the private versions of the global average rating and the per-

movie averages. We tune the shrinking parameters βm and βp from various values

in [5, 15], and β from [5, 25]. For private PGD, we tune T from various values in

[5, 50], and the step size schedule from
{
t−1/2, t−1, 0.05, 0.1, 0.2, 0.5

}
for t ∈ [T ]. We

set the nuclear norm constraint k equal to the nuclear norm of the hidden matrix,

and for faster training, we calibrate the scale of the noise as in our private FW

experiments.

Results: Figure 6.2 shows the results of our experiments. Even though all the

considered private algorithms satisfy Joint DP, our private FW method almost al-
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Algorithm 16 Private Projected Gradient Descent

Input: Set of revealed entries: Ω, operator: PΩ, matrix: PΩ(Y ∗) ∈ Rm×n, bound
on ‖PΩ(Y ∗i )‖2: ∆, nuclear norm constraint: k, time bound: T , step size schedule:
ηt for t ∈ [T ], privacy parameters: (ε, δ)

σ ← ∆2
√

64 · T log(1/δ)/ε
Y (0) ← {0}m×n
for t ∈ [T ] do
Y (t) ← Y (t−1) − ηt · PΩ

(
Y ∗ − Y (t)

)
W (t) ← Y (t)>Y (t) +N (t), where N (t) ∈ Rn×n corresponds to a matrix with i.i.d.
entries from N (0, σ2)

V̂ ← Eigenvectors ofW (t), Λ̂2 ←Diagonal matrix containing the n eigenvalues
of W (t)

Û ← Y (t)V̂ Λ̂−1

if
∑
i∈[n]

Λ̂i,i > k then

Find a diagonal matrix Z s.t.
∑
i∈[n]

Zi,i = k, and ∃τ s.t. ∀i ∈ [n], Zi,i =

max
(

0, Λ̂i,i − τ
)

else
Z ← Λ̂

Y (t) ← ÛZV̂ >

Return Y (T )

ways incurs a significantly lower test RMSE than the two private baselines. Note

that although non-private PGD provides similar empirical accuracy as non-private

FW, the difference in performance for their private versions can be attributed to the

noise being calibrated to a rank-one update for our private Frank-Wolfe. In all our

experiments, the implementation of private FW with Oja’s method (Algorithm 14)

did not suffer any perceivable loss of accuracy as compared to the variant in Algo-

rithm 13; all the plots in Figure 6.2 remain identical.

6.4.1 Additional Experimental Evaluation

Here, we provide the empirical results for our private Frank-Wolfe algorithm (Al-

gorithm 13) as well as the ‘SVD after cleansing method’ of McSherry & Mironov
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Root mean squared error (RMSE) vs. ε, on (a) syn-
thetic, (b) Jester, (c) MovieLens10M, (d) Netflix, and (e) Yahoo! Music
datasets, for δ = 10−6. A legend for all the plots is given in (f).

(2009) for n = 900 with all the above considered datasets (except Jester). We see

that private PGD takes too long to complete for n = 900; we present an evaluation

for the other algorithms for the following additional datasets:

1. Synthetic-900: We generate a random rank-one matrix Y ∗ = uvT with unit

L∞-norm, m = 500k, and n = 900.

2. MovieLens10M (Top 900): We pick the n = 900 most rated movies from the

Movielens10M dataset, which has m ≈ 70k users of the ≈ 71k users in the

dataset.

3. Netflix (Top 900): We pick the n = 900 most rated movies from the Netflix

prize dataset, which has m ≈ 477k users of the ≈ 480k users in the dataset.
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4. Yahoo! Music (Top 900): We pick the n = 900 most rated songs from the Yahoo!

music dataset, which has m ≈ 998k users of the ≈ 1m users in the dataset.

We rescale the ratings to be from 0 to 5.

We follow the same experimental procedure as above. For the nuclear norm

bound k, we set it to the actual nuclear norm for Synthetic-900 dataset, and choose

from {150k, 160k} for Netflix, {50k, 60k} for MovieLens10M, and {260k, 270k} for

the Yahoo! Music dataset. We choose T from various values in [5, 50].

(a) (b) (c)

(d) (e)

Figure 6.3: Root mean squared error (RMSE) vs. ε, on (a) Synthetic-
900, (b) MovieLens10M, (c) Netflix, and (d) Yahoo! Music datasets,
for δ = 10−6. A legend for all the plots is given in (e).

In Figure 6.3, we show the results of our experiments on the Synthetic-900

dataset in plot (a), MovieLens10M (Top 900) in plot (b), Netflix (Top 900) in plot (c),

and Yahoo! Music (Top 900) in plot (d). In all the plots, we see that the test RMSE

for private Frank-Wolfe almost always incurs a significantly lower error than the
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method of McSherry & Mironov (2009).
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CHAPTER 7

Conclusions and Open Problems

The main contribution of our work has been to design scalable private learning

techniques that provide generalization guarantees comparable to the best possible

non-private one within the class of interest. Additionally, the techniques have been

designed to be widely applicable and easy to implement. For future work, there

are several directions that we think will be interesting.

Private Convex Optimization: We developed Approximate Minima Perturbation,

a practical algorithm for private convex optimization that can leverage any off-

the-shelf optimizer, and has a competitive hyperparameter-free variant that can be

used for supervised learning. We have also performed an extensive empirical eval-

uation of state-of-the-art approaches for differentially private convex optimization.

This benchmark provides a standard point of comparison for further advances in

differentially private convex optimization.

The utility guarantee of our AMP technique (Theorem 2) applies when the

model space is Rn (i.e., unconstrained optimization). It will be interesting to un-

derstand AMP’s utility when the model space is an n-dimensional ball with a fixed

diameter (i.e., constrained optimization). Another important direction to explore is

whether the assumptions we make, namely convexity and smoothness of the loss

function, are necessary for methods similar to Objective Perturbation (including

our method AMP) to provide a privacy guarantee.

Model-agnostic Private Learning: We designed an algorithm with formal utility

guarantees for obtaining private classifiers, in the presence of a limited amount of

opt-in data, while requiring only a black-box access to a non-private learner.
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An important direction is to extend this framework beyond classification tasks,

for example, to regression. Moreover, our algorithm is designed to aggregate clas-

sification labels, which are discrete scalars. It will be interesting to see if there are

effective techniques for aggregating gradients, which are continuous vectors. Such

techniques can widen the applicability of the framework.

Private Matrix Completion: We designed the Private Frank-Wolfe algorithm

for private matrix completion that provides strong user-level privacy guarantees

along with formal utility guarantees and a strong empirical performance. We also

gave an optimal differentially private algorithm for singular vector computation,

that provides significant savings in terms of space and time when operating on

sparse matrices.

It will be interesting to understand the optimal dependence of the generaliza-

tion error for our Private Frank-Wolfe technique on the number of users and the

number of items. Extending our designed techniques to other popular matrix com-

pletion methods, like alternating minimization, is another promising direction.
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