92 research outputs found

    ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems

    Get PDF
    This paper proposes an implementation of a constrained analytic center cutting plane method to solve nonlinear multicommodity flow problems. The new approach exploits the property that the objective of the Lagrangian dual problem has a smooth component with second order derivatives readily available in closed form. The cutting planes issued from the nonsmooth component and the epigraph set of the smooth component form a localization set that is endowed with a self-concordant augmented barrier. Our implementation uses an approximate analytic center associated with that barrier to query the oracle of the nonsmooth component. The paper also proposes an approximation scheme for the original objective. An active set strategy can be applied to the transformed problem: it reduces the dimension of the dual space and accelerates computations. The new approach solves huge instances with high accuracy. The method is compared to alternative approaches proposed in the literatur

    Improving an interior-point algorithm for multicommodity flows by quadratic regularizations

    Get PDF
    One of the best approaches for some classes of multicommodity flow problems is a specialized interior-point method that solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient. Its efficiency depends on the spectral radius—in [0,1)—of a certain matrix in the definition of the preconditioner. In a recent work the authors improved this algorithm (i.e., reduced the spectral radius) for general block-angular problems by adding a quadratic regularization to the logarithmic barrier. This barrier was shown to be self-concordant, which guarantees the convergence and polynomial complexity of the algorithm. In this work we focus on linear multicommodity problems, a particular case of primal block-angular ones. General results are tailored for multicommodity flows, allowing a local sensitivity analysis on the effect of the regularization. Extensive computational results on some standard and some difficult instances, testing several regularization strategies, are also provided. These results show that the regularized interior-point algorithm is more efficient than the nonregularized one. From this work it can be concluded that, if interior-point methods based on conjugate gradients are used, linear multicommodity flow problems are most efficiently solved as a sequence of quadratic ones.Preprin

    Solving nonlinear multicommodity flow problems by the analytic center cutting plane method

    Get PDF
    The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with Dijkstra's d-heap algorithm. An implementation is described that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on well-known nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities

    A Stabilized Structured Dantzig-Wolfe Decomposition Method

    Get PDF
    We discuss an algorithmic scheme, which we call the stabilized structured Dantzig-Wolfe decomposition method, for solving large-scale structured linear programs. It can be applied when the subproblem of the standard Dantzig-Wolfe approach admits an alternative master model amenable to column generation, other than the standard one in which there is a variable for each of the extreme points and extreme rays of the corresponding polyhedron. Stabilization is achieved by the same techniques developed for the standard Dantzig-Wolfe approach and it is equally useful to improve the performance, as shown by computational results obtained on an application to the multicommodity capacitated network design problem
    • …
    corecore